1
|
Cornelius RJ, Maeoka Y, Shinde U, McCormick JA. Familial Hyperkalemic Hypertension. Compr Physiol 2024; 14:5839-5874. [PMID: 39699086 DOI: 10.1002/cphy.c240004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K + secretion by downstream nephron segments. CUL3 and KLHL3 are now known to form a ubiquitin ligase complex that promotes proteasomal degradation of WNK kinases, which activate downstream kinases that phosphorylate and thus activate NCC. For CUL3, potent effects on the vasculature that contribute to the more severe hypertensive phenotype have also been identified. Here we outline the in vitro and in vivo studies that led to the discovery of the molecular pathways regulating NCC and vascular tone, and how FHHt-causing mutations disrupt these pathways. Potential mechanisms for variability in disease severity related to differential effects of each mutation on the kidney and vasculature are described, and other possible effects of the mutant proteins beyond the kidney and vasculature are explored. © 2024 American Physiological Society. Compr Physiol 14:5839-5874, 2024.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Han J, Wu J, Kou WT, Xie LN, Tang YL, Zhi DL, Li P, Chen DQ. New insights into SUMOylation and NEDDylation in fibrosis. Front Pharmacol 2024; 15:1476699. [PMID: 39697538 PMCID: PMC11652140 DOI: 10.3389/fphar.2024.1476699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Fibrosis is the outcome of any abnormal tissue repair process that results in normal tissue replacement with scar tissue, leading to persistent tissue damage and cellular injury. During the process of fibrosis, many cytokines and chemokines are involved, and their activities are controlled by post-translational modifications, especially SUMOylation and NEDDylation. Both these modifications entail a three-step process of activation, conjugation, and ligation that involves three kinds of enzymes, namely, E1 activating, E2 conjugating, and E3 ligase enzymes. SUMOylation participates in organ fibrosis by modulating FXR, PML, TGF-β receptor I, Sirt3, HIF-1α, and Sirt1, while NEDDylation influences organ fibrosis by regulating cullin3, NIK, SRSF3, and UBE2M. Further investigations exhibit the therapeutic potentials of SUMOylation/NEDDylation activators and inhibitors against organ fibrosis, especially ginkgolic acid in SUMOylation and MLN4924 in NEDDylation. These results demonstrate the therapeutic effects of SUMOylation and NEDDylation against organ fibrosis and highlight their activators as well as inhibitors as potential candidates. In the future, deeper investigations of SUMOylation and NEDDylation are needed to identify novel substrates against organ fibrosis; moreover, clinical investigations are needed to determine the therapeutic effects of their activators and inhibitors that can benefit patients. This review highlights that SUMOylation and NEDDylation function as potential therapeutic targets for organ fibrosis.
Collapse
Affiliation(s)
- Jin Han
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of Nephrology, Chang An District Hospital, Xi’an, Shaanxi, China
| | - Jun Wu
- School of Pharmacy, Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Wen-Tao Kou
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of Nephrology, Chang An District Hospital, Xi’an, Shaanxi, China
| | - Li-Na Xie
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of Nephrology, Chang An District Hospital, Xi’an, Shaanxi, China
| | - Ya-Li Tang
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of Nephrology, Chang An District Hospital, Xi’an, Shaanxi, China
| | - Da-Long Zhi
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of Nephrology, Chang An District Hospital, Xi’an, Shaanxi, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Dan-Qian Chen
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of Nephrology, Chang An District Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Ren H, Luan Z, Zhang R, Zhang H, Bian C. A novel approach to explore metabolic diseases: Neddylation. Pharmacol Res 2024; 210:107532. [PMID: 39637955 DOI: 10.1016/j.phrs.2024.107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Protein post translational modification (PTM) is the main regulatory mechanism for eukaryotic cell function, among which ubiquitination is based on the reversible degradation of proteins by the ubiquitin proteasome system to regulate cell homeostasis. The neural precursor cell expressed developmental downregulated gene 8 (NEDD8) is a kind of ubiquitin like protein that shares 80 % homology and 60 % identity with ubiquitin. The PTM process by covalently binding NEDD8 to lysine residues in proteins is called neddylation. The neddylation reaction could be regulated by NEDD8, its precursors, substrates, E1 activating enzymes, E2 binding enzymes, E3 ligases, de-neddylases, and its inhibitors, such as MLN4924. NEDD8 is widely expressed in the whole cell structure of multiple tissues and species, and neddylation related factors are highly expressed in metabolism related adrenal glands, thyroid glands, parathyroid glands, skeletal muscles, myocardium, and adipose tissues, related to metabolic cardiovascular, cerebrovascular and liver diseases, adipogenic and osteogenic differentiation, as well as tumor glycolysis and glucose metabolism resulting from angiogenesis and endothelial disfunction, hepatotoxicity, adipogenesis, osteogenesis, Warburg effect, and insulin function. This review provides researchers with a new approach to explore metabolic diseases via searching and analyzing the histological, cytological, and subcellular localization of neddylation specific molecules in databases, and exploring specific mechanism neddylation mediating metabolic diseases by searching for neddylation related terms with the development of pre-clinical neddylation pharmacological inhibitors.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Zhilin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ruijing Zhang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haibo Zhang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Che Bian
- Department of General Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Hu M, Alkhairy S, Lee I, Pillich RT, Fong D, Smith K, Bachelder R, Ideker T, Pratt D. Evaluation of large language models for discovery of gene set function. Nat Methods 2024:10.1038/s41592-024-02525-x. [PMID: 39609565 DOI: 10.1038/s41592-024-02525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Gene set enrichment is a mainstay of functional genomics, but it relies on gene function databases that are incomplete. Here we evaluate five large language models (LLMs) for their ability to discover the common functions represented by a gene set, supported by molecular rationale and a self-confidence assessment. For curated gene sets from Gene Ontology, GPT-4 suggests functions similar to the curated name in 73% of cases, with higher self-confidence predicting higher similarity. Conversely, random gene sets correctly yield zero confidence in 87% of cases. Other LLMs (GPT-3.5, Gemini Pro, Mixtral Instruct and Llama2 70b) vary in function recovery but are falsely confident for random sets. In gene clusters from omics data, GPT-4 identifies common functions for 45% of cases, fewer than functional enrichment but with higher specificity and gene coverage. Manual review of supporting rationale and citations finds these functions are largely verifiable. These results position LLMs as valuable omics assistants.
Collapse
Affiliation(s)
- Mengzhou Hu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sahar Alkhairy
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ingoo Lee
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rudolf T Pillich
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dylan Fong
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kevin Smith
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Robin Bachelder
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Dexter Pratt
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Maeoka Y, Bradford T, Su XT, Sharma A, Yang CL, Ellison DH, McCormick JA, Cornelius RJ. Distal convoluted tubule-specific disruption of the COP9 signalosome but not its regulatory target cullin 3 causes tubular injury. Am J Physiol Renal Physiol 2024; 327:F667-F682. [PMID: 39205661 PMCID: PMC11483082 DOI: 10.1152/ajprenal.00138.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The disease familial hyperkalemic hypertension (FHHt; also known as Gordon syndrome) is caused by aberrant accumulation of with-no-lysine kinase (WNK4) activating the NaCl cotransporter (NCC) in the distal convoluted tubule (DCT) of the kidney. Mutations in cullin 3 (CUL3) cause FHHt by disrupting interaction with the deneddylase COP9 signalosome (CSN). Deletion of Cul3 or Jab1 (the catalytically active CSN subunit) along the entire nephron causes a partial FHHt phenotype with activation of the WNK4-STE20/SPS1-related proline/alanine-rich kinase (SPAK)-NCC pathway. However, progressive kidney injury likely prevents hypertension, hyperkalemia, and hyperchloremic metabolic acidosis associated with FHHt. We hypothesized that DCT-specific deletion would more closely model the disease. We used Slc12a3-Cre-ERT2 mice to delete Cul3 (DCT-Cul3-/-) or Jab1 (DCT-Jab1-/-) only in the DCT and examined the mice after short- and long-term deletion. Short-term DCT-specific knockout of both Cul3 and Jab1 mice caused elevated WNK4, pSPAKS373, and pNCCT53 abundance. However, neither model demonstrated changes in plasma K+, Cl-, or total CO2, even though no injury was present. Long-term DCT-Jab1-/- mice showed significantly lower NCC and parvalbumin abundance and a higher abundance of kidney injury molecule-1, a marker of proximal tubule injury. No injury or reduction in NCC or parvalbumin was observed in long-term DCT-Cul3-/- mice. In summary, the prevention of injury outside the DCT did not lead to a complete FHHt phenotype despite activation of the WNK4-SPAK-NCC pathway, possibly due to insufficient NCC activation. Chronically, only DCT-Jab1-/- mice developed tubule injury and atrophy of the DCT, suggesting a direct JAB1 effect or dysregulation of other cullins as mechanisms for injury.NEW & NOTEWORTHY CUL3 degrades WNK4, which prevents activation of NCC in the DCT. CSN regulation of CUL3 is impaired in the disease FHHt, causing accumulation of WNK4. Short-term DCT-specific disruption of CUL3 or the CSN in mice resulted in activation of the WNK4-SPAK-NCC pathway but not hyperkalemic metabolic acidosis found in FHHt. Tubule injury was observed only after long-term CSN disruption. The data suggest that disruption of other cullins may be the cause for the injury.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Tanner Bradford
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Xiao-Tong Su
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Avika Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
- LeDucq Transatlantic Network of Excellence, Boston, Massachusetts, United States
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
6
|
Omage K, McCormick JA. Cullin 3/with No Lysine [K] Kinase/Ste20/SPS-Related Proline Alanine Rich Kinase Signaling: Impact on NaCl Cotransporter Activity in BP Regulation. KIDNEY360 2024; 5:1386-1393. [PMID: 39120943 PMCID: PMC11441819 DOI: 10.34067/kid.0000000000000527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024]
Abstract
The sodium chloride cotransporter (NCC) fine-tunes Na + balance and indirectly affects the homeostasis of other ions including K + , Mg 2+ , and Ca 2+ . Owing to its effects on Na + balance, BP is significantly affected by alterations in NCC activity. Several factors have been reported to influence the expression and activity of NCC. One critical factor is NCC phosphorylation/dephosphorylation that occurs at key serine-threonine amino acid residues of the protein. Phosphorylation, which results in increased NCC activity, is mediated by the with no lysine [K] (WNK)-SPS-related proline alanine rich kinase (SPAK)/OSR1 kinases. NCC activation stimulates reabsorption of Na + , increasing extracellular fluid volume and hence BP. On the other hand, proteasomal degradation of WNK kinases after ubiquitination by the Cullin 3-Kelch-like 3 E3 ubiquitin ligase complex and dephosphorylation pathways oppose WNK-SPAK/OSR1-mediated NCC activation. Components of the Cullin 3/Kelch-like 3-WNK-SPAK/OSR1 regulatory pathway may be targets for novel antihypertensive drugs. In this review, we outline the impact of these regulators on the activity of NCC and the consequent effect on BP.
Collapse
Affiliation(s)
- Kingsley Omage
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
7
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
8
|
Murali SK, McCormick JA, Fenton RA. Regulation of the water channel aquaporin-2 by cullin E3 ubiquitin ligases. Am J Physiol Renal Physiol 2024; 326:F814-F826. [PMID: 38545647 PMCID: PMC11381000 DOI: 10.1152/ajprenal.00049.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 05/04/2024] Open
Abstract
Aquaporin 2 (AQP2) is a vasopressin (VP)-regulated water channel in the renal collecting duct. Phosphorylation and ubiquitylation of AQP2 play an essential role in controlling the cellular abundance of AQP2 and its accumulation on the plasma membrane in response to VP. Cullin-RING ubiquitin ligases (CRLs) are multisubunit E3 ligases involved in ubiquitylation and degradation of their target proteins, eight of which are expressed in the collecting duct. Here, we used an established cell model of the collecting duct (mpkCCD14 cells) to study the role of cullins in modulating AQP2. Western blotting identified Cul-1 to Cul-5 in mpkCCD14 cells. Treatment of cells for 4 h with a pan-cullin inhibitor (MLN4924) decreased AQP2 abundance, prevented a VP-induced reduction in AQP2 Ser261 phosphorylation, and attenuated VP-induced plasma membrane accumulation of AQP2 relative to the vehicle. AQP2 ubiquitylation levels were significantly higher after MLN4924 treatment compared with controls, and they remained higher despite VP treatment. Cullin inhibition increased ERK1/2 activity, a kinase that regulates AQP2 Ser261 phosphorylation, and VP-induced reductions in ERK1/2 phosphorylation were absent during MLN4924 treatment. Furthermore, the greater Ser261 phosphorylation and reduction in AQP2 abundance during MLN4924 treatment were attenuated during ERK1/2 inhibition. MLN4924 increased intracellular calcium levels via calcium release-activated calcium channels, inhibition of which abolished MLN4924 effects on Ser261 phosphorylation and AQP2 abundance. In conclusion, CRLs play a vital role in mediating some of the effects of VP to increase AQP2 plasma membrane accumulation and AQP2 abundance. Whether modulation of cullin activity can contribute to body water homeostasis requires further studies.NEW & NOTEWORTHY Aquaporin 2 (AQP2) is essential for body water homeostasis and is regulated by the antidiuretic hormone vasopressin. The posttranslational modification ubiquitylation is a key regulator of AQP2 abundance and plasma membrane localization. Here we demonstrate that cullin-RING E3 ligases play a vital role in mediating some of the effects of vasopressin to increase AQP2 abundance and plasma membrane accumulation. The results suggest that manipulating cullin activity could be a novel strategy to alter kidney water handling.
Collapse
Affiliation(s)
- Sathish K Murali
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - James A McCormick
- Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Maeoka Y, Nguyen LT, Sharma A, Cornelius RJ, Su XT, Gutierrez MR, Carbajal-Contreras H, Castañeda-Bueno M, Gamba G, McCormick JA. Dysregulation of the WNK4-SPAK/OSR1 pathway has a minor effect on baseline NKCC2 phosphorylation. Am J Physiol Renal Physiol 2024; 326:F39-F56. [PMID: 37881876 DOI: 10.1152/ajprenal.00100.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
The with-no-lysine kinase 4 (WNK4)-sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway mediates activating phosphorylation of the furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and the thiazide-sensitive NaCl cotransporter (NCC). The commonly used pT96/pT101-pNKCC2 antibody cross-reacts with pT53-NCC in mice on the C57BL/6 background due to a five amino acid deletion. We generated a new C57BL/6-specific pNKCC2 antibody (anti-pT96-NKCC2) and tested the hypothesis that the WNK4-SPAK/OSR1 pathway strongly regulates the phosphorylation of NCC but not NKCC2. In C57BL/6 mice, anti-pT96-NKCC2 detected pNKCC2 and did not cross-react with NCC. Abundances of pT96-NKCC2 and pT53-NCC were evaluated in Wnk4-/-, Osr1-/-, Spak-/-, and Osr1-/-/Spak-/- mice and in several models of the disease familial hyperkalemic hypertension (FHHt) in which the CUL3-KLHL3 ubiquitin ligase complex that promotes WNK4 degradation is dysregulated (Cul3+/-/Δ9, Klhl3-/-, and Klhl3R528H/R528H). All mice were on the C57BL/6 background. In Wnk4-/- mice, pT53-NCC was almost absent but pT96-NKCC2 was only slightly lower. pT53-NCC was almost absent in Spak-/- and Osr1-/-/Spak-/- mice, but pT96-NKCC2 abundance did not differ from controls. pT96-NKCC2/total NKCC2 was slightly lower in Osr1-/- and Osr1-/-/Spak-/- mice. WNK4 expression colocalized not only with NCC but also with NKCC2 in Klhl3-/- mice, but pT96-NKCC2 abundance was unchanged. Consistent with this, furosemide-induced urinary Na+ excretion following thiazide treatment was similar between Klhl3-/- and controls. pT96-NKCC2 abundance was also unchanged in the other FHHt mouse models. Our data show that disruption of the WNK4-SPAK/OSR1 pathway only mildly affects NKCC2 phosphorylation, suggesting a role for other kinases in NKCC2 activation. In FHHt models NKCC2 phosphorylation is unchanged despite higher WNK4 abundance, explaining the thiazide sensitivity of FHHt.NEW & NOTEWORTHY The renal cation cotransporters NCC and NKCC2 are activated following phosphorylation mediated by the WNK4-SPAK/OSR1 pathway. While disruption of this pathway strongly affects NCC activity, effects on NKCC2 activity are unclear since the commonly used phospho-NKCC2 antibody was recently reported to cross-react with phospho-NCC in mice on the C57BL/6 background. Using a new phospho-NKCC2 antibody specific for C57BL/6, we show that inhibition or activation of the WNK4-SPAK/OSR1 pathway in mice only mildly affects NKCC2 phosphorylation.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Luan T Nguyen
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Avika Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Xiao-Tong Su
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Marissa R Gutierrez
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
10
|
Sharma P, Chatrathi HE. Insights into the diverse mechanisms and effects of variant CUL3-induced familial hyperkalemic hypertension. Cell Commun Signal 2023; 21:286. [PMID: 37845702 PMCID: PMC10577937 DOI: 10.1186/s12964-023-01269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/12/2023] [Indexed: 10/18/2023] Open
Abstract
Familial hyperkalemic hypertension (FHHt), also known as Pseudohypoaldosteronism type II (PHAII) or Gordon syndrome is a rare Mendelian disease classically characterized by hyperkalemia, hyperchloremic metabolic acidosis, and high systolic blood pressure. The most severe form of the disease is caused by autosomal dominant variants in CUL3 (Cullin 3), a critical subunit of the multimeric CUL3-RING ubiquitin ligase complex. The recent identification of a novel FHHt disease variant of CUL3 revealed intricacies within the underlying disease mechanism. When combined with studies on canonical CUL3 variant-induced FHHt, these findings further support CUL3's role in regulating renal electrolyte transport and maintaining systemic vascular tone. However, the pathophysiological effects of CUL3 variants are often accompanied by diverse systemic disturbances in addition to classical FHHt symptoms. Recent global proteomic analyses provide a rationale for these systemic disturbances, paving the way for future mechanistic studies to reveal how CUL3 variants dysregulate processes outside of the renovascular axis. Video Abstract.
Collapse
Affiliation(s)
- Prashant Sharma
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA.
| | - Harish E Chatrathi
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
11
|
Jeong Y, Oh AR, Jung YH, Gi H, Kim YU, Kim K. Targeting E3 ubiquitin ligases and their adaptors as a therapeutic strategy for metabolic diseases. Exp Mol Med 2023; 55:2097-2104. [PMID: 37779139 PMCID: PMC10618535 DOI: 10.1038/s12276-023-01087-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
Posttranslational modification of proteins via ubiquitination determines their activation, translocation, dysregulation, or degradation. This process targets a large number of cellular proteins, affecting all biological pathways involved in the cell cycle, development, growth, and differentiation. Thus, aberrant regulation of ubiquitination is likely associated with several diseases, including various types of metabolic diseases. Among the ubiquitin enzymes, E3 ubiquitin ligases are regarded as the most influential ubiquitin enzymes due to their ability to selectively bind and recruit target substrates for ubiquitination. Continued research on the regulatory mechanisms of E3 ligases and their adaptors in metabolic diseases will further stimulate the discovery of new targets and accelerate the development of therapeutic options for metabolic diseases. In this review, based on recent discoveries, we summarize new insights into the roles of E3 ubiquitin ligases and their adaptors in the pathogenesis of metabolic diseases by highlighting recent evidence obtained in both human and animal model studies.
Collapse
Affiliation(s)
- Yelin Jeong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Ah-Reum Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Hoon Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - HyunJoon Gi
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Un Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea.
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
12
|
Ying S, Guo Q, Zhang C. KLHL3-dependent WNK4 degradation affected by potassium through the neddylation and autophagy pathway. BMC Nephrol 2023; 24:217. [PMID: 37481568 PMCID: PMC10362690 DOI: 10.1186/s12882-023-03257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Studies reported that kelch-like protein 3 (KLHL3)-Cullin3(CUL3) E3 ligase ubiquitinated with-no-lysine kinase 4 (WNK4). Impaired WNK4 ubiquitination plays a key role in Familial hyperkalemic hypertension (FHHt, also called pseudohypoaldosteronism type II) which results from overaction of thiazide-sensitive sodium chloride cotransport (NCC). In addition, researchers have also found that dietary potassium deficiency activates NCC along the renal distal convoluted tubule (DCT). However, the underlying mechanism remains unclear about the relationship between potassium and WNK4. METHODS In the present study, we conducted in vitro and in vivo experiments to confirm that KLHL3-dependent WNK4 degradation is affected by potassium through the neddylation and autophagy pathway. In vitro, the WNK4 and KLHL3 plasmids were cotransfected into HEK293 cell lines by lipofectamine 2000, and then incubated with different potassium concentrations (1mmol/L and 10mmol/L) for 24 h, and further treated with MLN4924 or the autophagy inhibitor or both of MLN4924 and the autophagy inhibitor for another 24 h respectively. In vivo, we created mice that were fed with low or high potassium diets and then were injected MLN4924 in the experimental groups. The expression of WNK4, pWNK4, KLHL3, NEDD8, LC3 ,and P62 was detected by western blotting in vitro and vivo experiments. RESULTS We found that the abundance and phosphorylation of WNK4 increase when neddylation is inhibited both in vitro and vivo. Furthermore, the abundance of pWNK4, WNK4, NEDD8, and KLHL3 was increased in the low potassium (LK) group. Inhibiting autophagy can ameliorate the effect of potassium on the abundance and activity of WNK4 to some extent. CONCLUSION These findings suggest a complex regulation of potassium in the degradation of WNK4. Low potassium can activate WNK4, which may be related to neddylation and autophagy, but the mechanism needs to be further studied.
Collapse
Affiliation(s)
- Siqi Ying
- Department of Nephrology, Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Qin Guo
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Shi, China
| | - Chong Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Shi, China.
| |
Collapse
|
13
|
Cornelius RJ, Maeoka Y, McCormick JA. Renal effects of cullin 3 mutations causing familial hyperkalemic hypertension. Curr Opin Nephrol Hypertens 2023; 32:335-343. [PMID: 37070483 PMCID: PMC10330058 DOI: 10.1097/mnh.0000000000000891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
PURPOSE OF REVIEW Mutations in the E3 ubiquitin ligase scaffold cullin 3 (CUL3) cause the disease familial hyperkalemic hypertension (FHHt) by hyperactivating the NaCl cotransporter (NCC). The effects of these mutations are complex and still being unraveled. This review discusses recent findings revealing the molecular mechanisms underlying the effects of CUL3 mutations in the kidney. RECENT FINDINGS The naturally occurring mutations that cause deletion of exon 9 (CUL3-Δ9) from CUL3 generate an abnormal CUL3 protein. CUL3-Δ9 displays increased interaction with multiple ubiquitin ligase substrate adaptors. However, in-vivo data show that the major mechanism for disease pathogenesis is that CUL3-Δ9 promotes degradation of itself and KLHL3, the specific substrate adaptor for an NCC-activating kinase. CUL3-Δ9 displays dysregulation via impaired binding to the CSN and CAND1, which cause hyperneddylation and compromised adaptor exchange, respectively. A recently discovered CUL3 mutant (CUL3-Δ474-477) displays many similarities to CUL3-Δ9 mutations but some key differences that likely account for the milder FHHt phenotype it elicits. Furthermore, recent work suggests that CUL3 mutations could have unidentified complications in patients and/or a predisposition to renal injury. SUMMARY This review summarizes recent studies highlighting advances in our understanding of the renal mechanisms by which CUL3 mutations modulate blood pressure in FHHt.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | | | | |
Collapse
|
14
|
Maeoka Y, Cornelius RJ, McCormick JA. Cullin 3 and Blood Pressure Regulation: Insights From Familial Hyperkalemic Hypertension. Hypertension 2023; 80:912-923. [PMID: 36861484 PMCID: PMC10133098 DOI: 10.1161/hypertensionaha.123.20525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The study of rare monogenic forms of hypertension has led to the elucidation of important physiological pathways controlling blood pressure. Mutations in several genes cause familial hyperkalemic hypertension (also known as Gordon syndrome or pseudohypoaldosteronism type II). The most severe form of familial hyperkalemic hypertension is caused by mutations in CUL3, encoding CUL3 (Cullin 3)-a scaffold protein in an E3 ubiquitin ligase complex that tags substrates for proteasomal degradation. In the kidney, CUL3 mutations cause accumulation of the substrate WNK (with-no-lysine [K]) kinase and ultimately hyperactivation of the renal NaCl cotransporter-the target of the first-line antihypertensive thiazide diuretics. The precise mechanisms by which mutant CUL3 causes WNK kinase accumulation have been unclear, but several functional defects are likely to contribute. The hypertension seen in familial hyperkalemic hypertension also results from effects exerted by mutant CUL3 on several pathways in vascular smooth muscle and endothelium that modulate vascular tone. This review summarizes the mechanisms by which wild type and mutant CUL3 modulate blood pressure through effects on the kidney and vasculature, potential effects in the central nervous system and heart, and future directions for investigation.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR
| | - Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR
| |
Collapse
|
15
|
Moretti T, Kim K, Tuladhar A, Kim J. KLHL12 can form large COPII structures in the absence of CUL3 neddylation. Mol Biol Cell 2023; 34:br4. [PMID: 36652337 PMCID: PMC10011723 DOI: 10.1091/mbc.e22-08-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CUL3-RING ubiquitin ligases (CRL3s) are involved in various cellular processes through different Bric-a-brac, Tramtrack, and Broad-complex (BTB)-domain proteins. KLHL12, a BTB-domain protein, is suggested to play an essential role in the export of large cargo molecules such as procollagen from the endoplasmic reticulum (ER). CRL3KLHL12 monoubiquitylates SEC31, leading to an increase in COPII vesicle dimension. Enlarged COPII vesicles can accommodate procollagen molecules. Thus, CRL3KLHL12 is essential for the assembly of large COPII structures and collagen secretion. CRL3s are activated by CUL3 neddylation. Here, we evaluated the importance of CUL3 neddylation in COPII assembly and collagen secretion. Unexpectedly, the assembly of large COPII-KLHL12 structures persisted and cellular collagen levels decreased on treatment with MLN4924, a potent inhibitor of NEDD8-activating enzyme. When we introduced mutations into KLHL12 at the CUL3 interface, these KLHL12 variants did not interact with neddylated CUL3, but one of them (Mut A) still supported large COPII-KLHL12 structures. Overexpression of wild-type KLHL12, but not Mut A, lowered cellular collagen levels most likely via lysosomal degradation. Our results suggest that CUL3 neddylation is not necessary for the formation of large COPII-KLHL12 structures, but active CRL3KLHL12 contributes to the maintenance of collagen levels in the cell.
Collapse
Affiliation(s)
- Tamara Moretti
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Kyungho Kim
- Targeted Therapy Branch, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Astha Tuladhar
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Jinoh Kim
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| |
Collapse
|
16
|
Ares GR. Ubiquitination of NKCC2 by the cullin-RING E3 ubiquitin ligase family in the thick ascending limb of the loop of Henle. Am J Physiol Renal Physiol 2023; 324:F315-F328. [PMID: 36727946 PMCID: PMC9988521 DOI: 10.1152/ajprenal.00079.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Na+/K+/2Cl- cotransporter (NKCC2) in the thick ascending limb of the loop of Henle (TAL) mediates NaCl reabsorption. cGMP, the second messenger of nitric oxide and atrial natriuretic peptide, inhibits NKCC2 activity by stimulating NKCC2 ubiquitination and decreasing surface NKCC2 levels. Among the E3 ubiquitin ligase families, the cullin-RING E3 ubiquitin ligase (CRL) family is the largest. Cullins are molecular scaffold proteins that recruit multiple subunits to form the CRL complex. We hypothesized that a CRL complex mediates the cGMP-dependent increase in NKCC2 ubiquitination in TALs. Cullin-1, cullin-2, cullin-3, cullin-4A, and cullin-5 were expressed at the protein level, whereas the other members of the cullin family were expressed at the mRNA level, in rat TALs. CRL complex activity is regulated by neuronal precursor cell-expressed developmentally downregulated protein 8 (Nedd8) to cullins, a process called neddylation. Inhibition of cullin neddylation blunted the cGMP-dependent increase in ubiquitinated NKCC2 while increasing the expression of cullin-1 by threefold, but this effect was not seen with other cullins. CRL complex activity is also regulated by cullin-associated Nedd8-dissociated 1 (CAND1). CAND1 binds to cullins and promotes the exchange of substrate-recognition proteins to target different proteins for ubiquitination. CAND1 inhibition exacerbated the cGMP-dependent increase in NKCC2 ubiquitination and decreased surface NKCC2 expression. Finally, cGMP increased neddylation of cullins. We conclude that the cGMP-dependent increase in NKCC2 ubiquitination is mediated by a CRL complex. To the best of our knowledge, this is the first evidence that a CRL complex mediates NKCC2 ubiquitination in native TALs.NEW & NOTEWORTHY The Na+/K+/2Cl- cotransporter (NKCC2) reabsorbs NaCl by the thick ascending limb. Nitric oxide and atrial natriuretic peptide decrease NaCl reabsorption in thick ascending limbs by increasing the second messenger cGMP. The present findings indicate that cGMP increases NKCC2 ubiquitination via a cullin-RING ligase complex and regulates in part surface NKCC2 levels. Identifying the E3 ubiquitin ligases that regulate NKCC2 expression and activity may provide new targets for the development of specific loop diuretics.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States.,Department of Physiology, Integrative Bioscience Center, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
17
|
Bahena-Lopez JP, Rojas-Vega L, Chávez-Canales M, Bazua-Valenti S, Bautista-Pérez R, Lee JH, Madero M, Vazquez-Manjarrez N, Alquisiras-Burgos I, Hernandez-Cruz A, Castañeda-Bueno M, Ellison DH, Gamba G. Glucose/Fructose Delivery to the Distal Nephron Activates the Sodium-Chloride Cotransporter via the Calcium-Sensing Receptor. J Am Soc Nephrol 2023; 34:55-72. [PMID: 36288902 PMCID: PMC10101570 DOI: 10.1681/asn.2021121544] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/07/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The calcium-sensing receptor (CaSR) in the distal convoluted tubule (DCT) activates the NaCl cotransporter (NCC). Glucose acts as a positive allosteric modulator of the CaSR. Under physiologic conditions, no glucose is delivered to the DCT, and fructose delivery depends on consumption. We hypothesized that glucose/fructose delivery to the DCT modulates the CaSR in a positive allosteric way, activating the WNK4-SPAK-NCC pathway and thus increasing salt retention. METHODS We evaluated the effect of glucose/fructose arrival to the distal nephron on the CaSR-WNK4-SPAK-NCC pathway using HEK-293 cells, C57BL/6 and WNK4-knockout mice, ex vivo perfused kidneys, and healthy humans. RESULTS HEK-293 cells exposed to glucose/fructose increased SPAK phosphorylation in a WNK4- and CaSR-dependent manner. C57BL/6 mice exposed to fructose or a single dose of dapagliflozin to induce transient glycosuria showed increased activity of the WNK4-SPAK-NCC pathway. The calcilytic NPS2143 ameliorated this effect, which was not observed in WNK4-KO mice. C57BL/6 mice treated with fructose or dapagliflozin showed markedly increased natriuresis after thiazide challenge. Ex vivo rat kidney perfused with glucose above the physiologic threshold levels for proximal reabsorption showed increased NCC and SPAK phosphorylation. NPS2143 prevented this effect. In healthy volunteers, cinacalcet administration, fructose intake, or a single dose of dapagliflozin increased SPAK and NCC phosphorylation in urinary extracellular vesicles. CONCLUSIONS Glycosuria or fructosuria was associated with increased NCC, SPAK, and WNK4 phosphorylation in a CaSR-dependent manner.
Collapse
Affiliation(s)
- Jessica Paola Bahena-Lopez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- MD/PhD (PECEM) program, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lorena Rojas-Vega
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Intellectual Property Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INCICH, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Silvana Bazua-Valenti
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rocío Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Ju-Hye Lee
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Magdalena Madero
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Natalia Vazquez-Manjarrez
- Nutrition Division, Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ivan Alquisiras-Burgos
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Hernandez-Cruz
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - David H. Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- MD/PhD (PECEM) program, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
18
|
Carbajal-Contreras H, Gamba G, Castañeda-Bueno M. The serine-threonine protein phosphatases that regulate the thiazide-sensitive NaCl cotransporter. Front Physiol 2023; 14:1100522. [PMID: 36875042 PMCID: PMC9974657 DOI: 10.3389/fphys.2023.1100522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
The activity of the Na+-Cl- cotransporter (NCC) in the distal convoluted tubule (DCT) is finely tuned by phosphorylation networks involving serine/threonine kinases and phosphatases. While much attention has been paid to the With-No-lysine (K) kinase (WNK)- STE20-related Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive kinase 1 (OSR1) signaling pathway, there remain many unanswered questions regarding phosphatase-mediated modulation of NCC and its interactors. The phosphatases shown to regulate NCC's activity, directly or indirectly, are protein phosphatase 1 (PP1), protein phosphatase 2A (PP2A), calcineurin (CN), and protein phosphatase 4 (PP4). PP1 has been suggested to directly dephosphorylate WNK4, SPAK, and NCC. This phosphatase increases its abundance and activity when extracellular K+ is increased, which leads to distinct inhibitory mechanisms towards NCC. Inhibitor-1 (I1), oppositely, inhibits PP1 when phosphorylated by protein kinase A (PKA). CN inhibitors, like tacrolimus and cyclosporin A, increase NCC phosphorylation, giving an explanation to the Familial Hyperkalemic Hypertension-like syndrome that affects some patients treated with these drugs. CN inhibitors can prevent high K+-induced dephosphorylation of NCC. CN can also dephosphorylate and activate Kelch-like protein 3 (KLHL3), thus decreasing WNK abundance. PP2A and PP4 have been shown in in vitro models to regulate NCC or its upstream activators. However, no studies in native kidneys or tubules have been performed to test their physiological role in NCC regulation. This review focuses on these dephosphorylation mediators and the transduction mechanisms possibly involved in physiological states that require of the modulation of the dephosphorylation rate of NCC.
Collapse
Affiliation(s)
- Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,PECEM (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,PECEM (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
19
|
Maeoka Y, Cornelius RJ, Ferdaus MZ, Sharma A, Nguyen LT, McCormick JA. Cullin 3 mutant causing familial hyperkalemic hypertension lacks normal activity in the kidney. Am J Physiol Renal Physiol 2022; 323:F564-F576. [PMID: 36007890 PMCID: PMC9602935 DOI: 10.1152/ajprenal.00153.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 01/07/2023] Open
Abstract
Mutations in the ubiquitin ligase scaffold protein cullin 3 (CUL3) cause the disease familial hyperkalemic hypertension (FHHt). We recently reported that in the kidney, aberrant mutant CUL3 (CUL3-Δ9) activity lowers the abundance of CUL3-Δ9 and Kelch-like 3, the CUL3 substrate adaptor for with-no-lysine kinase 4 (WNK4) and that this is mechanistically important. However, whether CUL3-Δ9 exerts additional effects on other targets that may alter renal function is unclear. Here, we sought to determine 1) whether CUL3-Δ9 expression can rescue the phenotype of renal tubule-specific Cul3 knockout mice, and 2) whether CUL3-Δ9 expression affects other CUL3 substrates. Using an inducible renal tubule-specific system, we studied two CUL3-Δ9-expressing mouse models: Cul3 knockout (Cul3-/-/Δ9) and Cul3 heterozygous background (Cul3+/-/Δ9, FHHt model). The effects of CUL3-Δ9 in these mice were compared with Cul3-/- and Cul3+/- mice. Similar to Cul3-/- mice, Cul3-/-/Δ9 mice displayed polyuria with loss of aquaporin 2 and collecting duct injury; proximal tubule injury also occurred. CUL3-Δ9 did not promote degradation of two CUL3 targets that accumulate in the Cul3-/- kidney: high-molecular-weight (HMW) cyclin E and NAD(P)H:quinone oxidoreductase 1 (NQO1) [a surrogate for the CUL3-Kelch-like ECH-associated protein 1 (KEAP1) substrate nuclear factor erythroid-2-related factor 2]. Since CUL3-Δ9 expression cannot rescue the Cul3-/- phenotype, our data suggest that CUL3-Δ9 cannot normally function in ubiquitin ligase complexes. In Cul3+/-/Δ9 mice, KEAP1 abundance did not differ but NQO1 abundance was higher, suggesting adaptor sequestration by CUL3-Δ9 in vivo. Together, our results provide evidence that in the kidney, CUL3-Δ9 completely lacks normal activity and can trap CUL3 substrate adaptors in inactive complexes.NEW & NOTEWORTHY CUL3 mutation (CUL3-Δ9) causes familial hyperkalemic hypertension (FHHt) by reducing adaptor KLHL3, impairing substrate WNK4 degradation. Whether CUL3-Δ9 affects other targets in kidneys remains unclear. We found that CUL3-Δ9 cannot degrade two CUL3 targets, cyclin E and nuclear factor erythroid-2-related factor 2 (NRF2; using a surrogate marker NQO1), or rescue injury or polyuria caused by Cul3 disruption. In an FHHt model, CUL3-Δ9 impaired NRF2 degradation without reduction of its adaptor KEAP1. Our data provide additional insights into CUL3-Δ9 function in the kidney.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Mohammed Zubaerul Ferdaus
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Avika Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Luan T Nguyen
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
20
|
Role of inwardly rectifying K+ channel 5.1 (Kir5.1) in the regulation of renal membrane transport. Curr Opin Nephrol Hypertens 2022; 31:479-485. [PMID: 35894283 DOI: 10.1097/mnh.0000000000000817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Kir5.1 interacts with Kir4.2 in proximal tubule and with Kir4.1 in distal convoluted tubule (DCT), connecting tubule (CNT) and cortical collecting duct (CCD) to form basolateral-K+-channels. Kir4.2/Kir5.1 and Kir4.1/Kir5.1 play an important role in regulating Na+/HCO3--transport of the proximal tubule and Na+/K+ -transport in the DCT/CNT/CCD. The main focus of this review is to provide an overview of the recent development in the field regarding the role of Kir5.1 regulating renal electrolyte transport in the proximal tubule and DCT. RECENT FINDINGS Loss-of-function-mutations of KCNJ16 cause a new form of tubulopathy, characterized by hypokalaemia, Na+-wasting, acid-base-imbalance and metabolic-acidosis. Abnormal bicarbonate transport induced by loss-of-function of KCNJ16-mutants is recapitulated in Kir4.2-knockout-(Kir4.2 KO) mice. Deletion of Kir5.1 also abolishes the effect of dietary Na+ and K+-intakes on the basolateral membrane voltage and NCC expression/activity. Long-term high-salt intake or high-K+-intake causes hyperkalaemic in Kir5.1-deficient mice. SUMMARY Kir4.2/Kir5.1 activity in the proximal tubule plays a key role in regulating Na+, K+ and bicarbonate-transport through regulating electrogenic-Na+-bicarbonate-cotransporter-(NBCe1) and type 3-Na+/H+-exchanger-(NHE3). Kir4.1/Kir5.1 activity of the DCT plays a critical role in mediating the effect of dietary-K+ and Na+-intakes on NCC activity/expression. As NCC determines the Na+ delivery rate to the aldosterone-sensitive distal nephron (ASDN), defective regulation of NCC during high-salt and high-K+ compromises renal K+ excretion and K+ homeostasis.
Collapse
|
21
|
Jang JH, Lee JW, Cho MJ, Hwang B, Kwon MG, Kim DH, Lee NK, Lee J, Park YJ, Yang YR, Kim J, Kim YH, An TH, Oh KJ, Bae KH, Park JG, Min JK. KLHL3 deficiency in mice ameliorates obesity, insulin resistance, and nonalcoholic fatty liver disease by regulating energy expenditure. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1250-1261. [PMID: 36028759 PMCID: PMC9440235 DOI: 10.1038/s12276-022-00833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022]
Abstract
Obesity is a growing global epidemic that can cause serious adverse health consequences, including insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD). Obesity development can be attributed to energy imbalance and metabolic inflexibility. Here, we demonstrated that lack of Kelch-like protein 3 (KLHL3) mitigated the development of obesity, IR, and NAFLD by increasing energy expenditure. KLHL3 mutations in humans cause Gordon’s hypertension syndrome; however, the role of KLHL3 in obesity was previously unknown. We examined differences in obesity-related parameters between control and Klhl3−/− mice. A significant decrease in body weight concomitant with fat mass loss and improved IR and NAFLD were observed in Klhl3−/− mice fed a high-fat (HF) diet and aged. KLHL3 deficiency inhibited obesity, IR, and NAFLD by increasing energy expenditure with augmentation of O2 consumption and CO2 production. Delivering dominant-negative (DN) Klhl3 using adeno-associated virus into mice, thereby dominantly expressing DN-KLHL3 in the liver, ameliorated diet-induced obesity, IR, and NAFLD. Finally, adenoviral overexpression of DN-KLHL3, but not wild-type KLHL3, in hepatocytes revealed an energetic phenotype with an increase in the oxygen consumption rate. The present findings demonstrate a novel function of KLHL3 mutation in extrarenal tissues, such as the liver, and may provide a therapeutic target against obesity and obesity-related diseases. Mice that are genetically engineered to lack a protein involved in regulating energy expenditure are protected against the onset of obesity and the related problems of insulin resistance and non-alcoholic fatty liver disease. Jeong-Ki Min, Jong-Gil Park and colleagues at the Korea Research Institute of Bioscience & Biotechnology in South Korea, Daejon, discovered that the beneficial effect of the lack of the protein, called KLHL3, was due to an increase in energy expenditure. Mutations in the gene for KLHL3 are known to cause a variety of metabolic diseases in humans, including a form of high blood pressure called Gordon’s hypertension syndrome, but the protein’s role in human obesity has not been studied. The results suggest that drugs able to regulate the production or activity of KLHL3 might offer a new approach to treating obesity.
Collapse
Affiliation(s)
- Ju-Hong Jang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jeong Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Byungtae Hwang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Min-Gi Kwon
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Dong-Hwan Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Nam-Kyung Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jinchul Kim
- Aging Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea. .,Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea. .,Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
22
|
Wang WH, Lin DH. Inwardly rectifying K + channels 4.1 and 5.1 (Kir4.1/Kir5.1) in the renal distal nephron. Am J Physiol Cell Physiol 2022; 323:C277-C288. [PMID: 35759440 PMCID: PMC9291425 DOI: 10.1152/ajpcell.00096.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The inwardly rectifying potassium channel (Kir) 4.1 (encoded by KCNJ10) interacts with Kir5.1 (encoded by KCNJ16) to form a major basolateral K+ channel in the renal distal convoluted tubule (DCT), connecting tubule (CNT), and the cortical collecting duct (CCD). Kir4.1/Kir5.1 heterotetramer plays an important role in regulating Na+ and K+ transport in the DCT, CNT, and CCD. A recent development in the field has firmly established the role of Kir4.1/Kir5.1 heterotetramer of the DCT in the regulation of thiazide-sensitive Na-Cl cotransporter (NCC). Changes in Kir4.1/Kir5.1 activity of the DCT are an essential step for the regulation of NCC expression/activity induced by dietary K+ and Na+ intakes and play a role in modulating NCC by type 2 angiotensin II receptor (AT2R), bradykinin type II receptor (BK2R), and β-adrenergic receptor. Since NCC activity determines the Na+ delivery rate to the aldosterone-sensitive distal nephron (ASDN), a distal nephron segment from late DCT to CCD, Kir4.1/Kir5.1 activity plays a critical role not only in the regulation of renal Na+ absorption but also in modulating renal K+ excretion and maintaining K+ homeostasis. Thus, Kir4.1/Kir5.1 activity serves as an important component of renal K+ sensing mechanism. The main focus of this review is to provide an overview regarding the role of Kir4.1 and Kir5.1 of the DCT and CCD in the regulation of renal K+ excretion and Na+ absorption.
Collapse
Affiliation(s)
- Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
23
|
Cornelius RJ, Nelson JW, Su XT, Yang CL, Ellison DH. COP9 signalosome deletion promotes renal injury and distal convoluted tubule remodeling. Am J Physiol Renal Physiol 2022; 323:F4-F19. [PMID: 35532068 PMCID: PMC9236871 DOI: 10.1152/ajprenal.00436.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cullin-RING ligases are a family of E3 ubiquitin ligases that control cellular processes through regulated degradation. Cullin 3 targets with-no-lysine kinase 4 (WNK4), a kinase that activates the Na+-Cl- cotransporter (NCC), the main pathway for Na+ reabsorption in the distal convoluted tubule (DCT). Mutations in the cullin 3 gene lead to familial hyperkalemic hypertension by increasing WNK4 abundance. The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) regulates the activity of cullin-RING ligases by removing the ubiquitin-like protein neural precursor cell expressed developmentally downregulated protein 8. Genetic deletion of the catalytically active CSN subunit, Jab1, along the nephron in mice (KS-Jab1-/-) led to increased WNK4 abundance; however, NCC abundance was substantially reduced. We hypothesized that the reduction in NCC resulted from a cortical injury that led to hypoplasia of the segment, which counteracted WNK4 activation of NCC. To test this, we studied KS-Jab1-/- mice at weekly intervals over a period of 3 wk. The results showed that NCC abundance was unchanged until 3 wk after Jab1 deletion, at which time other DCT-specific proteins were also reduced. The kidney injury markers kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin demonstrated kidney injury immediately after Jab1 deletion; however, the damage was initially limited to the medulla. The injury progressed and expanded into the cortex 3 wk after Jab1 deletion coinciding with loss of the DCT. The data indicate that nephron-specific disruption of the cullin-RING ligase system results in a complex progression of tubule injury that leads to hypoplasia of the DCT.NEW & NOTEWORTHY Cullin 3 (CUL3) targets with-no-lysine-kinase 4 (WNK4), which activates Na+-Cl- cotransporter (NCC) in the distal convoluted tubule (DCT) of the kidney. Renal-specific genetic deletion of the constitutive photomorphogenesis 9 signalosome, an upstream regulator of CUL3, resulted in a reduction of NCC due to DCT hypoplasia, which coincided with cortical kidney injury. The data indicate that nephron-specific disruption of the cullin-RING ligase system results in a complex progression of tubule injury leading to hypoplasia of the DCT.
Collapse
Affiliation(s)
- Ryan J. Cornelius
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Jonathan W. Nelson
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Xiao-Tong Su
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Chao-Ling Yang
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - David H. Ellison
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon,2Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
24
|
Jung JU, Jaykumar AB, Cobb MH. WNK1 in Malignant Behaviors: A Potential Target for Cancer? Front Cell Dev Biol 2022; 10:935318. [PMID: 35813203 PMCID: PMC9257110 DOI: 10.3389/fcell.2022.935318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the major cause of mortality in cancer patients. Analyses of mouse models and patient data have implicated the protein kinase WNK1 as one of a handful of genes uniquely linked to a subset of invasive cancers. WNK1 signaling pathways are widely implicated in the regulation of ion co-transporters and in controlling cell responses to osmotic stress. In this review we will discuss its actions in tumor malignancy in human cancers and present evidence for its function in invasion, migration, angiogenesis and mesenchymal transition.
Collapse
Affiliation(s)
| | | | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
25
|
A case of novel mutation of Cullin 3 gene in pseudohypoaldosteronism type II. J Hypertens 2022; 40:1239-1242. [PMID: 35703886 DOI: 10.1097/hjh.0000000000003117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pseudohypoaldosteronism type II (PHA II) is a rare inherited disease characterized by hypertension, hyperkalemia and metabolic acidosis. With the development of gene sequencing technology, more genetic mutations underlying PHA II were reported and the understanding of its pathogenesis has gone deep into the molecular level. Here, we present a juvenile case of PHA II. A novel missense mutation (c.1376 A>T) located in exon 9 of Cullin 3 (CUL3) was found by whole-exome sequencing. The clinical manifestations were significantly improved after oral hydrochlorothiazide. This case enriches the genetic and clinical phenotype spectrum of PHA II and provides experience for diagnosing and treating the disease.
Collapse
|
26
|
Anderegg MA, Gyimesi G, Ho TM, Hediger MA, Fuster DG. The Less Well-Known Little Brothers: The SLC9B/NHA Sodium Proton Exchanger Subfamily—Structure, Function, Regulation and Potential Drug-Target Approaches. Front Physiol 2022; 13:898508. [PMID: 35694410 PMCID: PMC9174904 DOI: 10.3389/fphys.2022.898508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
The SLC9 gene family encodes Na+/H+ exchangers (NHEs), a group of membrane transport proteins critically involved in the regulation of cytoplasmic and organellar pH, cell volume, as well as systemic acid-base and volume homeostasis. NHEs of the SLC9A subfamily (NHE 1–9) are well-known for their roles in human physiology and disease. Much less is known about the two members of the SLC9B subfamily, NHA1 and NHA2, which share higher similarity to prokaryotic NHEs than the SLC9A paralogs. NHA2 (also known as SLC9B2) is ubiquitously expressed and has recently been shown to participate in renal blood pressure and electrolyte regulation, insulin secretion and systemic glucose homeostasis. In addition, NHA2 has been proposed to contribute to the pathogenesis of polycystic kidney disease, the most common inherited kidney disease in humans. NHA1 (also known as SLC9B1) is mainly expressed in testis and is important for sperm motility and thus male fertility, but has not been associated with human disease thus far. In this review, we present a summary of the structure, function and regulation of expression of the SLC9B subfamily members, focusing primarily on the better-studied SLC9B paralog, NHA2. Furthermore, we will review the potential of the SLC9B subfamily as drug targets.
Collapse
Affiliation(s)
- Manuel A. Anderegg
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Manuel A. Anderegg,
| | - Gergely Gyimesi
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Membrane Transport Discovery Lab, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tin Manh Ho
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias A. Hediger
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Membrane Transport Discovery Lab, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel G. Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Cullin 3 Exon 9 Deletion in Familial Hyperkalemic Hypertension Impairs Cullin3-Ring-E3 Ligase (CRL3) Dynamic Regulation and Cycling. Int J Mol Sci 2022; 23:ijms23095151. [PMID: 35563538 PMCID: PMC9105235 DOI: 10.3390/ijms23095151] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Cullin 3 (CUL3) is the scaffold of Cullin3 Ring E3-ligases (CRL3s), which use various BTB-adaptor proteins to ubiquitinate numerous substrates targeting their proteasomal degradation. CUL3 mutations, responsible for a severe form of familial hyperkalemia and hypertension (FHHt), all result in a deletion of exon 9 (amino-acids 403-459) (CUL3-∆9). Surprisingly, while CUL3-∆9 is hyperneddylated, a post-translational modification that typically activates CRL complexes, it is unable to ubiquitinate its substrates. In order to understand the mechanisms behind this loss-of function, we performed comparative label-free quantitative analyses of CUL3 and CUL3-∆9 interactome by mass spectrometry. It was observed that CUL3-∆9 interactions with COP9 and CAND1, both involved in CRL3 complexes’ dynamic assembly, were disrupted. These defects result in a reduction in the dynamic cycling of the CRL3 complexes, making the CRL3-∆9 complex an inactive BTB-adaptor trap, as demonstrated by SILAC experiments. Collectively, the data indicated that the hyperneddylated CUL3-∆9 protein is inactive as a consequence of several structural changes disrupting its dynamic interactions with key regulatory partners.
Collapse
|
28
|
Jung JU, Ghosh A, Earnest S, Deaton SL, Cobb MH. UBR5 is a novel regulator of WNK1 stability. Am J Physiol Cell Physiol 2022; 322:C1176-C1186. [PMID: 35442829 DOI: 10.1152/ajpcell.00417.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The with no lysine (K) 1 (WNK1) protein kinase maintains cellular ion homeostasis in many tissues through actions on ion cotransporters and channels. Increased accumulation of WNK1 protein leads to pseudohypoaldosteronism type II (PHAII), a form of familial hypertension. WNK1 can be degraded via its adaptor-dependent recruitment to the Cullin3-RBX1 E3 ligase complex by the ubiquitin-proteasome system. Disruption of this process also leads to disease. To determine if this is the primary mechanism of WNK1 turnover, we examined WNK1 protein stability and degradation by measuring its rate of decay after blockade of translation. Here, we show that WNK1 protein degradation exhibits atypical kinetics in Hela cells. Consistent with this apparent complexity, we found that multiple degradative pathways can modulate cellular WNK1 protein amount. WNK1 protein is degraded not only by the proteasome, but also by the lysosome. Non-lysosomal cysteine proteases calpain and caspases also influence WNK1 degradation, as inhibitors of these proteases modestly increased WNK1 protein expression. Importantly, we discovered that the E3 ubiquitin ligase UBR5 interacts with WNK1 and its deficiency results in increased WNK1 protein. Our results further demonstrate that increased WNK1 in UBR5-depleted cells is attributable to reduced lysosomal degradation of WNK1 protein. Taken together, our findings provide insights into the multiplicity of degradative pathways involved in WNK1 turnover and uncover UBR5 as a previously unknown regulator of WNK1 protein stability that leads to lysosomal degradation of WNK1 protein.
Collapse
Affiliation(s)
- Ji-Ung Jung
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Anwesha Ghosh
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Svetlana Earnest
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Staci L Deaton
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
29
|
Wu J, Fang S, Lu KT, Kumar G, Reho JJ, Brozoski DT, Otanwa AJ, Hu C, Nair AR, Wackman KK, Agbor LN, Grobe JL, Sigmund CD. Endothelial Cullin3 Mutation Impairs Nitric Oxide-Mediated Vasodilation and Promotes Salt-Induced Hypertension. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac017. [PMID: 35493997 PMCID: PMC9045850 DOI: 10.1093/function/zqac017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/13/2023]
Abstract
Human hypertension caused by in-frame deletion of CULLIN3 exon-9 (Cul3∆9) is driven by renal and vascular mechanisms. We bred conditionally activatable Cul3∆9 transgenic mice with tamoxifen-inducible Tie2-CREERT2 mice to test the importance of endothelial Cul3. The resultant mice (E-Cul3∆9) trended towards elevated nighttime blood pressure (BP) correlated with increased nighttime activity, but displayed no difference in daytime BP or activity. Male and female E-Cul3∆9 mice together exhibited a decline in endothelial-dependent relaxation in carotid artery. Male but not female E-Cul3∆9 mice displayed severe endothelial dysfunction in cerebral basilar artery. There was no impairment in mesenteric artery and no difference in smooth muscle function, suggesting the effects of Cul3∆9 are arterial bed-specific and sex-dependent. Expression of Cul3∆9 in primary mouse aortic endothelial cells decreased endogenous Cul3 protein, phosphorylated (S1177) endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. Protein phosphatase (PP) 2A, a known Cul3 substrate, dephosphorylates eNOS. Cul3∆9-induced impairment of eNOS activity was rescued by a selective PP2A inhibitor okadaic acid, but not by a PP1 inhibitor tautomycetin. Because NO deficiency contributes to salt-induced hypertension, we tested the salt-sensitivity of E-Cul3∆9 mice. While both male and female E-Cul3∆9 mice developed salt-induced hypertension and renal injury, the pressor effect of salt was greater in female mutants. The increased salt-sensitivity in female E-Cul3∆9 mice was associated with decreased renovascular relaxation and impaired natriuresis in response to a sodium load. Thus, CUL3 mutations in the endothelium may contribute to human hypertension in part through decreased endothelial NO bioavailability, renovascular dysfunction, and increased salt-sensitivity of BP.
Collapse
Affiliation(s)
- Jing Wu
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Shi Fang
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA,Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Ko-Ting Lu
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Gaurav Kumar
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - John J Reho
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Daniel T Brozoski
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Adokole J Otanwa
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Chunyan Hu
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Anand R Nair
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Kelsey K Wackman
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Larry N Agbor
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Justin L Grobe
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | | |
Collapse
|
30
|
Maeoka Y, Ferdaus MZ, Cornelius RJ, Sharma A, Su XT, Miller LN, Robertson JA, Gurley SB, Yang CL, Ellison DH, McCormick JA. Combined Kelch-like 3 and Cullin 3 Degradation is a Central Mechanism in Familial Hyperkalemic Hypertension in Mice. J Am Soc Nephrol 2022; 33:584-600. [PMID: 35064051 PMCID: PMC8975056 DOI: 10.1681/asn.2021081099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/10/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Mutations in the ubiquitin ligase scaffold protein Cullin 3 (CUL3) gene cause the disease familial hyperkalemic hypertension (FHHt). In the kidney, mutant CUL3 (CUL3-Δ9) increases abundance of With-No-Lysine (K) Kinase 4 (WNK4), inappropriately activating sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK), which then phosphorylates and hyperactivates the Na+Cl- cotransporter (NCC). The precise mechanism by which CUL3-Δ9 causes FHHt is unclear. We tested the hypothesis that reduced abundance of CUL3 and of Kelch-like 3 (KLHL3), the CUL3 substrate adaptor for WNK4, is mechanistically important. Because JAB1, an enzyme that inhibits CUL3 activity by removing the ubiquitin-like protein NEDD8, cannot interact with CUL3-Δ9, we also determined whether Jab1 disruption mimicked the effects of CUL3-Δ9 expression. METHODS We used an inducible renal tubule-specific system to generate several mouse models expressing CUL3-Δ9, mice heterozygous for both CUL3 and KLHL3 (Cul3+/-/Klhl3+/- ), and mice with short-term Jab1 disruption (to avoid renal injury associated with long-term disruption). RESULTS Renal KLHL3 was higher in Cul3-/- mice, but lower in Cul3-/-/Δ9 mice and in the Cul3+/-/Δ9 FHHt model, suggesting KLHL3 is a target for both WT and mutant CUL3. Cul3+/-/Klhl3+/- mice displayed increased WNK4-SPAK activation and phospho-NCC abundance and an FHHt-like phenotype with increased plasma [K+] and salt-sensitive blood pressure. Short-term Jab1 disruption in mice lowered the abundance of CUL3 and KLHL3 and increased the abundance of WNK4 and phospho-NCC. CONCLUSIONS Jab1-/- mice and Cul3+/-/Klhl3+/- mice recapitulated the effects of CUL3-Δ9 expression on WNK4-SPAK-NCC. Our data suggest degradation of both KLHL3 and CUL3 plays a central mechanistic role in CUL3-Δ9-mediated FHHt.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Mohammed Z. Ferdaus
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Ryan J. Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Avika Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Xiao-Tong Su
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Lauren N. Miller
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Joshua A. Robertson
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Susan B. Gurley
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - David H. Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
- Veterans Affairs Portland Healthcare System, Portland, Oregon
| | - James A. McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
31
|
Chatrathi HE, Collins JC, Wolfe LA, Markello TC, Adams DR, Gahl WA, Werner A, Sharma P. Novel CUL3 Variant Causing Familial Hyperkalemic Hypertension Impairs Regulation and Function of Ubiquitin Ligase Activity. Hypertension 2022; 79:60-75. [PMID: 34878901 PMCID: PMC8667186 DOI: 10.1161/hypertensionaha.121.17624] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Familial hyperkalemic hypertension is caused by pathogenic variants in genes of the CUL3 (cullin-3)-KLHL3 (kelch-like-family-member-3)-WNK (with no-lysine [K] kinase) pathway, manifesting clinically as hyperkalemia, metabolic acidosis, and high systolic blood pressure. The ubiquitin E3 ligase CUL3-KLHL3 targets WNK kinases for degradation to limit activation of the thiazide-sensitive NCC (Na-Cl cotransporter). All known variants in CUL3 lead to exon 9 skipping (CUL3Δ9) and typically result in severe familial hyperkalemic hypertension and growth disturbances in patients. Whether other variants in CUL3 cause familial hyperkalemic hypertension is unknown. Here, we identify a novel de novo heterozygous CUL3 variant (CUL3Δ474-477) in a pediatric familial hyperkalemic hypertension patient with multiple congenital anomalies and reveal molecular mechanisms by which CUL3Δ474-477 leads to dysregulation of the CUL3-KLHL3-WNK signaling axis. Using patient-derived urinary extracellular vesicles and dermal fibroblasts, in vitro assays, and cultured kidney cells, we demonstrate that CUL3Δ474-477 causes reduced total CUL3 levels due to increased autoubiquitination. The CUL3Δ474-477 that escapes autodegradation shows enhanced modification with NEDD8 (neural precursor cell expressed developmentally down-regulated protein 8) and increased formation of CUL3-KLHL3 complexes that are impaired in ubiquitinating WNK4. Proteomic analysis of CUL3 complexes revealed that, in addition to increased KLHL3 binding, the CUL3Δ474-477 variant also exhibits increased interactions with other BTB (Bric-a-brac, Tramtrack, and Broad complex) substrate adaptors, providing a rationale for the patient's diverse phenotypes. We conclude that the pathophysiological effects of CUL3Δ474-477 are caused by reduced CUL3 levels and formation of catalytically impaired CUL3 ligase complexes.
Collapse
Affiliation(s)
- Harish E. Chatrathi
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland 20892, USA,Share the first authorship position
| | - Jason C. Collins
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA,Share the first authorship position
| | - Lynne A. Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas C. Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland 20892, USA,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland Bethesda, Maryland 20892, USA
| | - David R. Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland 20892, USA,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland Bethesda, Maryland 20892, USA
| | - William A. Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland 20892, USA,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland Bethesda, Maryland 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Prashant Sharma
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland 20892, USA,Correspondence: Prashant Sharma, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, 5625 Fishers Lane, Rockville, MD.
| |
Collapse
|
32
|
Wu J, Sigmund CD. Comorbidities Caused by a Corrupt Cullin 3: Lessons Learned From Bedside to Bench. Hypertension 2022; 79:76-78. [PMID: 34878897 PMCID: PMC8667228 DOI: 10.1161/hypertensionaha.121.18430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jing Wu
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Curt D. Sigmund
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
33
|
Marcoux AA, Tremblay LE, Slimani S, Fiola MJ, Mac-Way F, Haydock L, Garneau AP, Isenring P. Anatomophysiology of the Henle's Loop: Emphasis on the Thick Ascending Limb. Compr Physiol 2021; 12:3119-3139. [PMID: 34964111 DOI: 10.1002/cphy.c210021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The loop of Henle plays a variety of important physiological roles through the concerted actions of ion transport systems in both its apical and basolateral membranes. It is involved most notably in extracellular fluid volume and blood pressure regulation as well as Ca2+ , Mg2+ , and acid-base homeostasis because of its ability to reclaim a large fraction of the ultrafiltered solute load. This nephron segment is also involved in urinary concentration by energizing several of the steps that are required to generate a gradient of increasing osmolality from cortex to medulla. Another important role of the loop of Henle is to sustain a process known as tubuloglomerular feedback through the presence of specialized renal tubular cells that lie next to the juxtaglomerular arterioles. This article aims at describing these physiological roles and at discussing a number of the molecular mechanisms involved. It will also report on novel findings and uncertainties regarding the realization of certain processes and on the pathophysiological consequences of perturbed salt handling by the thick ascending limb of the loop of Henle. Since its discovery 150 years ago, the loop of Henle has remained in the spotlight and is now generating further interest because of its role in the renal-sparing effect of SGLT2 inhibitors. © 2022 American Physiological Society. Compr Physiol 12:1-21, 2022.
Collapse
Affiliation(s)
- Andrée-Anne Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Laurence E Tremblay
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Samira Slimani
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Marie-Jeanne Fiola
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Fabrice Mac-Way
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Ludwig Haydock
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Alexandre P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada.,Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, University of Montréal, Montréal, QC, Canada
| | - Paul Isenring
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| |
Collapse
|
34
|
Potassium Effects on NCC Are Attenuated during Inhibition of Cullin E3-Ubiquitin Ligases. Cells 2021; 11:cells11010095. [PMID: 35011657 PMCID: PMC8750104 DOI: 10.3390/cells11010095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
The thiazide-sensitive sodium chloride cotransporter (NCC) plays a vital role in maintaining sodium (Na+) and potassium (K+) homeostasis. NCC activity is modulated by with-no-lysine kinases 1 and 4 (WNK1 and WNK4), the abundance of which is controlled by the RING-type E3 ligase Cullin 3 (Cul3) and its substrate adapter Kelch-like protein 3. Dietary K+ intake has an inverse correlation with NCC activity, but the mechanism underlying this phenomenon remains to be fully elucidated. Here, we investigated the involvement of other members of the cullin family in mediating K+ effects on NCC phosphorylation (active form) and abundance. In kidneys from mice fed diets varying in K+ content, there were negative correlations between NCC (phosphorylated and total) and active (neddylated) forms of cullins (Cul1, 3, 4, and 5). High dietary K+ effects on phosphorylated NCC were attenuated in Cul3 mutant mice (CUL3-Het/Δ9). Short-term (30 min) and long-term (24 h) alterations in the extracellular K+ concentration did not affect cullin neddylation levels in ex vivo renal tubules. In the short term, the ability of high extracellular K+ to decrease NCC phosphorylation was preserved in the presence of MLN4924 (pan-cullin inhibitor), but the response to low extracellular K+ was absent. In the long term, MLN4924 attenuated the effects of high extracellular K+ on NCC phosphorylation, and responses to low extracellular K+ were absent. Our data suggest that in addition to Cul3, other cullins are involved in mediating the effects of K+ on NCC phosphorylation and abundance.
Collapse
|
35
|
Zhang Y, Guo Q, Jiang G, Zhang C. Dysfunction of Cullin 3 RING E3 ubiquitin ligase causes vasoconstriction and increased sodium reabsorption in diabetes. Arch Biochem Biophys 2021; 710:109000. [PMID: 34343486 DOI: 10.1016/j.abb.2021.109000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
Impaired endothelium-mediated vasodilation and/or increased sensitivity to vasoconstrictors lead to vascular smooth muscle cell (VSMC) dysfunction in individuals with diabetes. Diabetic nephropathy is associated with a considerably higher risk of cardiovascular disease and death than their nondiabetic counterparts. We studied the activity of Cullin 3 RING ubiquitin ligase (CRL3) and its substrates in mice using an intraperitoneal injection of streptozotocin (STZ) and db/db mice. The levels of CRL3 adaptors, including Kelch-like 2/3 (KLHL2/3) and Rho-related BTB domain-containing protein 1, were significantly decreased in the aortic tissues and heart of the STZ group, whereas the levels of Cullin 3 (CUL3) and its neddylated derivatives were substantially increased. Decreased KLHL3 expression and significantly increased expression of NEDD8 conjugates were observed in the kidneys of db/db mice. The neddylation inhibitor MLN4924 decreased the degradation of KLHL2/KLHL3 under high-glucose conditions with/without insulin, and transfection with KLHL2 promoted the degradation of its substrates with-no-lysine (WNK) kinases. Increased abundance of WNK3, RhoA/ROCK activity and phosphodiesterase 5 enhanced the sensibility to vasoconstrictors and impaired vasodilation. Moreover, WNK3 localized in VSMCs undergoing cell division, and high-glucose medium increased WNK3 signaling in VSMCs undergoing mitosis, which might explain the increased thickness of aortic tissues in subjects with diabetes. Increases in WNK4 abundance resulted in increased sodium reabsorption in the distal renal tubules. Thus, KLHL2/RhoBTB1/KLHL3 inactivation in the aortic tissues and kidney is a result of excessive activation of neddylation in hyperglycemia and hyperinsulinemia, which affects vascular tone and sodium reabsorption.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Guo
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gengru Jiang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Ostrosky-Frid M, Chávez-Canales M, Zhang J, Andrukhova O, Argaiz ER, Lerdo-de-Tejada F, Murillo-de-Ozores A, Sanchez-Navarro A, Rojas-Vega L, Bobadilla NA, Vazquez N, Castañeda-Bueno M, Alessi DR, Gamba G. Role of KLHL3 and dietary K + in regulating KS-WNK1 expression. Am J Physiol Renal Physiol 2021; 320:F734-F747. [PMID: 33682442 PMCID: PMC8174809 DOI: 10.1152/ajprenal.00575.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
The physiological role of the shorter isoform of with no lysine kinase (WNK)1 that is exclusively expressed in the kidney (KS-WNK1), with particular abundance in the distal convoluted tubule, remains elusive. KS-WNK1, despite lacking the kinase domain, is nevertheless capable of stimulating the NaCl cotransporter, apparently through activation of WNK4. It has recently been shown that a less severe form of familial hyperkalemic hypertension featuring only hyperkalemia is caused by missense mutations in the WNK1 acidic domain that preferentially affect cullin 3 (CUL3)-Kelch-like protein 3 (KLHL3) E3-induced degradation of KS-WNK1 rather than that of full-length WNK1. Here, we show that full-length WNK1 is indeed less impacted by the CUL3-KLHL3 E3 ligase complex compared with KS-WNK1. We demonstrated that the unique 30-amino acid NH2-terminal fragment of KS-WNK1 is essential for its activating effect on the NaCl cotransporter and recognition by KLHL3. We identified specific amino acid residues in this region critical for the functional effect of KS-WNK1 and KLHL3 sensitivity. To further explore this, we generated KLHL3-R528H knockin mice that mimic human mutations causing familial hyperkalemic hypertension. These mice revealed that the KLHL3 mutation specifically increased expression of KS-WNK1 in the kidney. We also observed that in wild-type mice, the expression of KS-WNK1 was only detectable after exposure to a low-K+ diet. These findings provide new insights into the regulation and function of KS-WNK1 by the CUL3-KLHL3 complex in the distal convoluted tubule and indicate that this pathway is regulated by dietary K+ levels.NEW & NOTEWORTHY In this work, we demonstrated that the kidney-specific isoform of with no lysine kinase 1 (KS-WNK1) in the kidney is modulated by dietary K+ and activity of the ubiquitin ligase protein Kelch-like protein 3. We analyzed the role of different amino acid residues of KS-WNK1 in its activity against the NaCl cotransporter and sensitivity to Kelch-like protein 3.
Collapse
Affiliation(s)
- Mauricio Ostrosky-Frid
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- PECEM (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, United Kingdom
| | - Olena Andrukhova
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Eduardo R Argaiz
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernando Lerdo-de-Tejada
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adrian Murillo-de-Ozores
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Andrea Sanchez-Navarro
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lorena Rojas-Vega
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma A Bobadilla
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma Vazquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- PECEM (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
37
|
Meor Azlan NF, Koeners MP, Zhang J. Regulatory control of the Na-Cl co-transporter NCC and its therapeutic potential for hypertension. Acta Pharm Sin B 2021; 11:1117-1128. [PMID: 34094823 PMCID: PMC8144889 DOI: 10.1016/j.apsb.2020.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Hypertension is the largest risk factor for cardiovascular disease, the leading cause of mortality worldwide. As blood pressure regulation is influenced by multiple physiological systems, hypertension cannot be attributed to a single identifiable etiology. Three decades of research into Mendelian forms of hypertension implicated alterations in the renal tubular sodium handling, particularly the distal convoluted tubule (DCT)-native, thiazide-sensitive Na-Cl cotransporter (NCC). Altered functions of the NCC have shown to have profound effects on blood pressure regulation as illustrated by the over activation and inactivation of the NCC in Gordon's and Gitelman syndromes respectively. Substantial progress has uncovered multiple factors that affect the expression and activity of the NCC. In particular, NCC activity is controlled by phosphorylation/dephosphorylation, and NCC expression is facilitated by glycosylation and negatively regulated by ubiquitination. Studies have even found parvalbumin to be an unexpected regulator of the NCC. In recent years, there have been considerable advances in our understanding of NCC control mechanisms, particularly via the pathway containing the with-no-lysine [K] (WNK) and its downstream target kinases, SPS/Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress responsive 1 (OSR1), which has led to the discovery of novel inhibitory molecules. This review summarizes the currently reported regulatory mechanisms of the NCC and discusses their potential as therapeutic targets for treating hypertension.
Collapse
Key Words
- ATP, adenosine triphosphate
- Blood pressure regulation
- CCC, cation-coupled chloride cotransporters
- CCT, conserved carboxy-terminal
- CNI, calcineurin inhibitors
- CUL3, cullin 3
- CUL3/KLHL3-WNK-SPAK/OSR1
- Ca2+, calcium ion
- Cardiovascular disease
- DAG, diacylglycerol
- DCT, distal convoluted tubule
- DUSP, dual specificity phosphatases
- ECF, extracellular fluid
- ELISA, enzyme-bound immunosorbent analysis
- ERK, extracellular signal-regulated kinases
- EnaC, epithelial sodium channels
- GABA, gamma-aminobutyric acid
- HEK293, human embryonic kidney 293
- Hypertension
- I1, inhibitor 1
- K+, potassium ion
- KCC, potassium-chloride-cotransporters
- KLHL3, kelch-like 3
- KS-WNK1, kidney specific-WNK1
- Kinase inhibitors
- MAPK, mitogen-activated protein kinase
- MO25, mouse protein-25
- Membrane trafficking
- NCC, sodium–chloride cotransporters
- NKCC, sodium–potassium–chloride-cotransporter
- Na+, sodium ion
- NaCl, sodium chloride
- NaCl-cotransporter NCC
- OSR1, oxidative stress-responsive gene 1
- PCT, proximal convoluted tubule
- PHAII, pseudohypoaldosteronism type II
- PP, protein phosphatase
- PV, parvalbumin
- ROMK, renal outer medullary potassium
- RasGRP1, RAS guanyl-releasing protein 1
- SLC12, solute carrier 12
- SPAK, Ste20-related proline-alanine-rich-kinase
- TAL, thick ascending limb
- Therapeutic targets
- WNK, with-no-lysine kinases
- mDCT, mammalian DCT
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Maarten P. Koeners
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| |
Collapse
|
38
|
Zhang Y, Jiang G, Zhang C. Downregulation of Cullin 3 Ligase Signaling Pathways Contributes to Hypertension in Preeclampsia. Front Cardiovasc Med 2021; 8:654254. [PMID: 33928137 PMCID: PMC8076533 DOI: 10.3389/fcvm.2021.654254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Preeclampsia (PE) is a leading cause of maternal and perinatal morbidity and mortality; however, its etiology and pathophysiology remain obscure. PE is initiated by inadequate spiral artery remodeling and subsequent placental ischemia/hypoxia, which stimulates release of bioactive factors into maternal circulation, leading to hypertension and renal damage. Methods and Results: Abundance of key components of cullin 3-ring ubiquitin ligase (CRL3), including cullin 3 (CUL3) and its neddylated modification, and adaptors including Kelch-like 2 (KLHL2) and Rho-related BTB domain containing protein 1 was all decreased in spiral arteries and placentas of PE patients. Similar changes were found in aortic tissues and renal distal tubules of pregnant mice treated with Nω-nitro-l-arginine methyl ester hydrochloride. The downregulation of CRL3 function led to accumulation of with-no-lysine kinases, phosphodiesterase 5, and RhoA in vessels and renal distal tubules, which promoted vasoconstriction and Na-Cl cotransporter activation in the distal convoluted tubule (DCT), as well as vascular and DCT structure remodeling. Proton pump inhibitor esomeprazole partially restored CRL3 function. In vitro studies have shown that increased abundance of JAB1, a component of the COP9 signalosome, inhibited CUL3 neddylation and promoted the expression of hypoxia-inducible factor 1α, which downregulated peroxisome proliferator-activated receptor γ and further promoted CUL3 inactivation. KLHL3/2 was degraded by increased autophagy. Conclusion: These findings support that the downregulation of CRL3 function disrupts the balance of vasoconstriction and vasodilation and aggravates excess reabsorption of sodium in PE.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gengru Jiang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Brown A, Meor Azlan NF, Wu Z, Zhang J. WNK-SPAK/OSR1-NCC kinase signaling pathway as a novel target for the treatment of salt-sensitive hypertension. Acta Pharmacol Sin 2021; 42:508-517. [PMID: 32724175 PMCID: PMC8115323 DOI: 10.1038/s41401-020-0474-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypertension is the most prevalent health condition worldwide, affecting ~1 billion people. Gordon's syndrome is a form of secondary hypertension that can arise due to a number of possible mutations in key genes that encode proteins in a pathway containing the With No Lysine [K] (WNK) and its downstream target kinases, SPS/Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress responsive kinase 1 (OSR1). This pathway regulates the activity of the thiazide-sensitive sodium chloride cotransporter (NCC), which is responsible for NaCl reabsorption in the distal nephron. Therefore, mutations in genes encoding proteins that regulate the NCC proteins disrupt ion homeostasis and cause hypertension by increasing NaCl reabsorption. Thiazide diuretics are currently the main treatment option for Gordon's syndrome. However, they have a number of side effects, and chronic usage can lead to compensatory adaptations in the nephron that counteract their action. Therefore, recent research has focused on developing novel inhibitory molecules that inhibit components of the WNK-SPAK/OSR1-NCC pathway, thereby reducing NaCl reabsorption and restoring normal blood pressure. In this review we provide an overview of the currently reported molecular inhibitors of the WNK-SPAK/OSR1-NCC pathway and discuss their potential as treatment options for Gordon's syndrome.
Collapse
Affiliation(s)
- Archie Brown
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
| | - Zhijuan Wu
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
- Newcastle University Business School, Newcastle University, Newcastle upon Tyne, NE1 4SE, UK
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK.
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China.
| |
Collapse
|
40
|
Guo Q, Zhang Y, Jiang GR, Zhang C. Decreased KLHL3 expression is involved in the activation of WNK-OSR1/SPAK-NCC cascade in type 1 diabetic mice. Pflugers Arch 2021; 473:185-196. [PMID: 33432425 DOI: 10.1007/s00424-020-02509-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Familial hyperkalemic hypertension (FHHt; also called pseudohypoaldosteronism type II) is a hereditary hypertensive disease which can be caused by mutations in four genes: WNK1 [with no lysine (K) 1], WNK4, Kelch-like3 (KLHL3), and cullin3 (CUL3). Decreased KLHL3 expression was identified as being involved in the pathogenesis of FHHt caused by cullin 3 disease mutations. Recent studies have revealed an increased WNK4 and hence Na-Cl cotransporter (NCC) activity in the db/db mice, resulting from PKC-mediated KLHL3 phosphorylation, which impairs the degradation of its substrate, WNK4. However, whether WNK4 and NCC were activated in type 1 diabetes still remains unclear. We created streptozotocin-induced type 1 diabetic mice and revealed that renal WNK-oxidative stress response kinase-1/STE20/SPS1-related proline alanine-rich kinase (OSR1/SPAK)-NCC cascade was activated, whereas KLHL3 expression was markedly decreased and CUL3 was heavily neddylated. Moreover, decreased KLHL3 was reversed and WNK1 and WNK4 abundance increased by MLN4924, a neddylation inhibitor. In vitro, our study also showed decreased KLHL3 abundance without any significant change in phosphorylated KLHL3 under high glucose exposure. These results indicate that decreased KLHL3 likely plays a role in the pathogenesis of renal sodium reabsorption in hyperglycemic conditions.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Blood Glucose/metabolism
- Blood Pressure
- Cullin Proteins/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- HEK293 Cells
- Humans
- Kidney/metabolism
- Kidney/physiopathology
- Male
- Mice, Inbred C57BL
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Renal Reabsorption
- Signal Transduction
- Sodium/metabolism
- Solute Carrier Family 12, Member 3/metabolism
- Streptozocin
- Ubiquitination
- WNK Lysine-Deficient Protein Kinase 1/genetics
- WNK Lysine-Deficient Protein Kinase 1/metabolism
- Mice
Collapse
Affiliation(s)
- Qin Guo
- Department of Nephrology, Shanghai Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ya Zhang
- Department of Nephrology, Shanghai Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Geng-Ru Jiang
- Department of Nephrology, Shanghai Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Chong Zhang
- Department of Nephrology, Shanghai Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
41
|
Franken GAC, Adella A, Bindels RJM, de Baaij JHF. Mechanisms coupling sodium and magnesium reabsorption in the distal convoluted tubule of the kidney. Acta Physiol (Oxf) 2021; 231:e13528. [PMID: 32603001 PMCID: PMC7816272 DOI: 10.1111/apha.13528] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Hypomagnesaemia is a common feature of renal Na+ wasting disorders such as Gitelman and EAST/SeSAME syndrome. These genetic defects specifically affect Na+ reabsorption in the distal convoluted tubule, where Mg2+ reabsorption is tightly regulated. Apical uptake via TRPM6 Mg2+ channels and basolateral Mg2+ extrusion via a putative Na+ -Mg2+ exchanger determines Mg2+ reabsorption in the distal convoluted tubule. However, the mechanisms that explain the high incidence of hypomagnesaemia in patients with Na+ wasting disorders of the distal convoluted tubule are largely unknown. In this review, we describe three potential mechanisms by which Mg2+ reabsorption in the distal convoluted tubule is linked to Na+ reabsorption. First, decreased activity of the thiazide-sensitive Na+ /Cl- cotransporter (NCC) results in shortening of the segment, reducing the Mg2+ reabsorption capacity. Second, the activity of TRPM6 and NCC are determined by common regulatory pathways. Secondary effects of NCC dysregulation such as hormonal imbalance, therefore, might disturb TRPM6 expression. Third, the basolateral membrane potential, maintained by the K+ permeability and Na+ -K+ -ATPase activity, provides the driving force for Na+ and Mg2+ extrusion. Depolarisation of the basolateral membrane potential in Na+ wasting disorders of the distal convoluted tubule may therefore lead to reduced activity of the putative Na+ -Mg2+ exchanger SLC41A1. Elucidating the interconnections between Mg2+ and Na+ transport in the distal convoluted tubule is hampered by the currently available models. Our analysis indicates that the coupling of Na+ and Mg2+ reabsorption may be multifactorial and that advanced experimental models are required to study the molecular mechanisms.
Collapse
Affiliation(s)
- Gijs A. C. Franken
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Anastasia Adella
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - René J. M. Bindels
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Jeroen H. F. de Baaij
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
42
|
Zhang B, Xu R, Fang G, Zhao Y. 20-HETE downregulates Na/K-ATPase α1 expression via the ubiquitination pathway. Prostaglandins Other Lipid Mediat 2021; 152:106503. [PMID: 33199266 DOI: 10.1016/j.prostaglandins.2020.106503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
In this article, we found that 20-Hydroxyeicosatetraenoic acid (20-HETE) reduced Na/K-ATPase α1 expression via the ubiquitin-proteasome pathway. The ubiquitination level of Na/K-ATPase α1 protein was increased in 20-HETE-treated mouse cortical collecting duct cells and the kidney tissues of CYP4F2 transgenic mice. We also demonstrated that 20-HETE-induced high level phosphorylation of Na/K-ATPase α1 was necessary for its ubiquitination.The protein kinase C inhibitor sotrastaurin significantly reduced the phosphorylation of Na/K-ATPase α1 and increased the expression of Na/K-ATPase α1 although 20-HETE stimulus being applied at the same time. Moreover, high level of 20-HETE increased the expression and neddylation of Cullin3,which is an important ubiquitin E3 ligase in kidney. MLN4924, an inhibitor of NEDD8-activating enzyme, inhibited neddylation of Cullin3 and reversed the reduction of Na/K-ATPase α1 expression caused by 20-HETE. Thus, 20-HETE downregulates Na/K-ATPase α1 via the ubiquitination pathway, and phosphorylation of Na/K-ATPase α1 is a prerequisite to ubiquitination. Additionally, 20-HETE regulates Cullin3 expression via neddylation.
Collapse
Affiliation(s)
- Bijun Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Runhong Xu
- Genet Lab, Maternal & Child Health Hospital of Hubei Province, Hubei, China
| | - Guicun Fang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanyan Zhao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The goal of this review is to evaluate recent advances in understanding the pivotal roles of Cullin-3 (CUL3) in blood pressure regulation with a focus on its actions in the kidney and blood vessels. RECENT FINDINGS Cul3-based ubiquitin ligase regulates renal electrolyte transport, vascular tone, and redox homeostasis by facilitating the normal turnover of (1) with-no-lysine kinases in the distal nephron, (2) RhoA and phosphodiesterase 5 in the vascular smooth muscle, and (3) nuclear factor E2-related factor 2 in antioxidant responses. CUL3 mutations identified in familial hyperkalemic hypertension (FHHt) yield a mutant protein lacking exon 9 (CUL3∆9) which displays dual gain and loss of function. CUL3∆9 acts in a dominant manner to impair CUL3-mediated substrate ubiquitylation and degradation. The consequent accumulation of substrates and overactivation of downstream signaling cause FHHt through increased sodium reabsorption, enhanced vasoconstriction, and decreased vasodilation. CUL3 ubiquitin ligase maintains normal cardiovascular and renal physiology through posttranslational modification of key substrates which regulate blood pressure. Interference with CUL3 disturbs these key downstream pathways. Further understanding the spatial and temporal specificity of how CUL3 functions in these pathways is necessary to identify novel therapeutic targets for hypertension.
Collapse
|
44
|
Yamazaki O, Hirohama D, Ishizawa K, Shibata S. Role of the Ubiquitin Proteasome System in the Regulation of Blood Pressure: A Review. Int J Mol Sci 2020; 21:E5358. [PMID: 32731518 PMCID: PMC7432568 DOI: 10.3390/ijms21155358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
The kidney and the vasculature play crucial roles in regulating blood pressure. The ubiquitin proteasome system (UPS), a multienzyme process mediating covalent conjugation of the 76-amino acid polypeptide ubiquitin to a substrate protein followed by proteasomal degradation, is involved in multiple cellular processes by regulating protein turnover in various tissues. Increasing evidence demonstrates the roles of UPS in blood pressure regulation. In the kidney, filtered sodium is reabsorbed through diverse sodium transporters and channels along renal tubules, and studies conducted till date have provided insights into the complex molecular network through which ubiquitin ligases modulate sodium transport in different segments. Components of these pathways include ubiquitin ligase neuronal precursor cell-expressed developmentally downregulated 4-2, Cullin-3, and Kelch-like 3. Moreover, accumulating data indicate the roles of UPS in blood vessels, where it modulates nitric oxide bioavailability and vasoconstriction. Cullin-3 not only regulates renal salt reabsorption but also controls vascular tone using different adaptor proteins that target distinct substrates in vascular smooth muscle cells. In endothelial cells, UPS can also contribute to blood pressure regulation by modulating endothelial nitric oxide synthase. In this review, we summarize current knowledge regarding the role of UPS in blood pressure regulation, focusing on renal sodium reabsorption and vascular function.
Collapse
Affiliation(s)
| | | | | | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan; (O.Y.); (D.H.); (K.I.)
| |
Collapse
|
45
|
Cornelius RJ, Sharma A, Su XT, Guo JJ, McMahon JA, Ellison DH, McMahon AP, McCormick JA. A novel distal convoluted tubule-specific Cre-recombinase driven by the NaCl cotransporter gene. Am J Physiol Renal Physiol 2020; 319:F423-F435. [PMID: 32657158 DOI: 10.1152/ajprenal.00101.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cre-lox technology has revolutionized research in renal physiology by allowing site-specific genetic recombination in individual nephron segments. The distal convoluted tubule (DCT), consisting of distinct early (DCT1) and late (DCT2) segments, plays a central role in Na+ and K+ homeostasis. The only established Cre line targeting the DCT is Pvalb-Cre, which is limited by noninducibility, activity along DCT1 only, and activity in neurons. Here, we report the characterization of the first Cre line specific to the entire DCT. CRISPR/Cas9 targeting was used to introduce a tamoxifen-inducible IRES-Cre-ERT2 cassette downstream of the coding region of the Slc12a3 gene encoding the NaCl cotransporter (NCC). The resulting Slc12a3-Cre-ERT2 mice were crossed with R26R-YFP reporter mice, which revealed minimal leakiness with 6.3% of NCC-positive cells expressing yellow fluorescent protein (YFP) in the absence of tamoxifen. After tamoxifen injection, YFP expression was observed in 91.2% of NCC-positive cells and only in NCC-positive cells, revealing high recombination efficiency and DCT specificity. Crossing to R26R-TdTomato mice revealed higher leakiness (64.5%), suggesting differential sensitivity of the floxed site. Western blot analysis revealed no differences in abundances of total NCC or the active phosphorylated form of NCC in Slc12a3-Cre-ERT2 mice of either sex compared with controls. Plasma K+ and Mg2+ concentrations and thiazide-sensitive Na+ and K+ excretion did not differ in Slc12a3-Cre-ERT2 mice compared with controls when sex matched. These data suggest genetic modification had no obvious effect on NCC function. Slc12a3-Cre-ERT2 mice are the first line generated demonstrating inducible Cre recombinase activity along the entire DCT and will be a useful tool to study DCT function.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Avika Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Xiao-Tong Su
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Jin-Jin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad California Institute of Regenerative Medicine Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad California Institute of Regenerative Medicine Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon.,Veterans Affairs Portland Health Care System, Portland, Oregon
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad California Institute of Regenerative Medicine Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
46
|
Nakano K, Kubota Y, Mori T, Chiga M, Mori T, Sonoda S, Ueda D, Asakura I, Ikegaya T, Kagawa J, Uchida S, Kubota A. Familial cases of pseudohypoaldosteronism type II harboring a novel mutation in the Cullin 3 gene. Nephrology (Carlton) 2020; 25:818-821. [PMID: 32619053 DOI: 10.1111/nep.13752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/07/2020] [Accepted: 06/19/2020] [Indexed: 11/30/2022]
Abstract
Pseudohypoaldosteronism type II (PHA II) is inherited in an autosomal dominant manner and is characterized by hypertension, hyperkalemia, and hyperchloremic metabolic acidosis. The enhancement of with-no-lysine kinase (WNK) functions is correlated to the pathogenesis of the condition. Cullin 3 (CUL3) forms an E3 ubiquitin ligase complex, and it can ubiquitinate WNK. Most CUL3 gene mutations are distributed in sites, such as intron 8 splice acceptor, intron 9 splice donor, and putative intron 8 splice branch sites, which are involved in the splicing of exon 9. These mutations result in the deletion of exon 9, which reduces the activity of ubiquitination against WNK and inhibits the degradation of WNK. In this report, we identified a novel CUL3 c.1312A>G mutation in familial cases. A mutation prediction software showed that the significance of these mutations was not clear. However, using the Human Splicing Finder 3.1 software, in silico analyses revealed that these mutations induced splicing alterations, which affected the sites of exon 9, altered the balance between predicted exonic splicing enhancers and silencers, and led to the deletions of exon 9. This study presented a novel pathogenic splicing variant to the CUL3 mutation and provided a reference for further research about the mechanisms of splicing. Moreover, it showed that not only amino acid substitution caused by nonsynonymous mutations but also splicing motif changes due to base substitutions have important roles in the pathogenesis of PHA II.
Collapse
Affiliation(s)
- Kiyoshi Nakano
- Department of Pediatrics, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Yasuo Kubota
- Department of Pediatrics, Fujieda Municipal General Hospital, Fujieda, Japan.,Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takayuki Mori
- Department of Pediatrics, Fujieda Municipal General Hospital, Fujieda, Japan.,Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoko Chiga
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shyunya Sonoda
- Department of Pediatrics, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Daisuke Ueda
- Department of Pediatrics, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Isao Asakura
- Department of Pediatrics, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Takeshi Ikegaya
- Department of Pediatrics, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Jiro Kagawa
- Department of Pediatrics, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Shinichi Uchida
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Kubota
- Department of Pediatrics, Fujieda Municipal General Hospital, Fujieda, Japan
| |
Collapse
|
47
|
Abstract
Multiple studies have confirmed that speckle-type pox virus and zinc finger (POZ) protein (SPOP) functions as a substrate adaptor of cullin 3-based E3 ligase and has a crucial role in various cellular processes via specific targeting of proteins for ubiquitination and subsequent proteasomal degradation. Dysregulation of SPOP-mediated proteolysis might be involved in the development and progression of human prostate and kidney cancers. In prostate cancer, SPOP seems to function as a tumour suppressor by targeting several proteins, including androgen receptor (AR), steroid receptor coactivator 3 (SRC3) and BRD4, for degradation, whereas it might function as an oncoprotein in kidney cancer, for example, by targeting phosphatase and tensin homologue (PTEN) for proteasomal degradation. In addition, nuclear SPOP targets AR for degradation and has a role as a tumour suppressor in prostate cancer; however, in kidney cancer, SPOP largely accumulates in the cytoplasm and fails to promote degradation of AR located in the nucleus, resulting in activation of AR-driven pathways and cancer progression. Owing to the context-dependent function of SPOP in human malignancies, further assessment of the molecular mechanisms involving SPOP in prostate and kidney cancers is needed to improve our understanding of its role in the development of these cancer types. Treatments that target SPOP might become therapeutic strategies in these malignancies in the future.
Collapse
|
48
|
De novo variants in CUL3 are associated with global developmental delays with or without infantile spasms. J Hum Genet 2020; 65:727-734. [PMID: 32341456 DOI: 10.1038/s10038-020-0758-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/16/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022]
Abstract
The ubiquitin-proteasome system is the principal system for protein degradation mediated by ubiquitination and is involved in various cellular processes. Cullin-RING ligases (CRL) are one class of E3 ubiquitin ligases that mediate polyubiquitination of specific target proteins, leading to decomposition of the substrate. Cullin 3 (CUL3) is a member of the Cullin family proteins, which act as scaffolds of CRL. Here we describe three cases of global developmental delays, with or without epilepsy, who had de novo CUL3 variants. One missense variant c.854T>C, p.(Val285Ala) and two frameshift variants c.137delG, p.(Arg46Leufs*32) and c.1239del, p.(Asp413Glufs*42) were identified by whole-exome sequencing. The Val285 residue located in the Cullin N-terminal domain and p.Val285Ala CUL3 mutant showed significantly weaker interactions to the BTB domain proteins than wild-type CUL3. Our findings suggest that de novo CUL3 variants may cause structural instability of the CRL complex and impairment of the ubiquitin-proteasome system, leading to diverse neuropsychiatric disorders.
Collapse
|
49
|
Furusho T, Uchida S, Sohara E. The WNK signaling pathway and salt-sensitive hypertension. Hypertens Res 2020; 43:733-743. [PMID: 32286498 DOI: 10.1038/s41440-020-0437-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022]
Abstract
The distal nephron of the kidney has a central role in sodium and fluid homeostasis, and disruption of this homeostasis due to mutations of with-no-lysine kinase 1 (WNK1), WNK4, Kelch-like 3 (KLHL3), or Cullin 3 (CUL3) causes pseudohypoaldosteronism type II (PHAII), an inherited hypertensive disease. WNK1 and WNK4 activate the NaCl cotransporter (NCC) at the distal convoluted tubule through oxidative stress-responsive gene 1 (OSR1)/Ste20-related proline-alanine-rich kinase (SPAK), constituting the WNK-OSR1/SPAK-NCC phosphorylation cascade. The level of WNK protein is regulated through degradation by the CUL3-KLHL3 E3 ligase complex. In the normal state, the activity of WNK signaling in the kidney is physiologically regulated by sodium intake to maintain sodium homeostasis in the body. In patients with PHAII, however, because of the defective degradation of WNK kinases, NCC is constitutively active and not properly suppressed by a high salt diet, leading to abnormally increased salt reabsorption and salt-sensitive hypertension. Importantly, recent studies have demonstrated that potassium intake, insulin, and TNFα are also physiological regulators of WNK signaling, suggesting that they contribute to the salt-sensitive hypertension associated with a low potassium diet, metabolic syndrome, and chronic kidney disease, respectively. Moreover, emerging evidence suggests that WNK signaling also has some unique roles in metabolic, cardiovascular, and immunological organs. Here, we review the recent literature and discuss the molecular mechanisms of the WNK signaling pathway and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Taisuke Furusho
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
50
|
Jobbagy S, Vitturi DA, Salvatore SR, Pires MF, Rowart P, Emlet DR, Ross M, Hahn S, St. Croix C, Wendell SG, Subramanya AR, Straub AC, Tan RJ, Schopfer FJ. Nrf2 activation protects against lithium-induced nephrogenic diabetes insipidus. JCI Insight 2020; 5:128578. [PMID: 31941842 PMCID: PMC7030822 DOI: 10.1172/jci.insight.128578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Lithium (Li) is the mainstay pharmacotherapeutic mood stabilizer in bipolar disorder. Its efficacious use is complicated by acute and chronic renal side effects, including nephrogenic diabetes insipidus (NDI) and progression to chronic kidney disease (CKD). The nuclear factor erythroid-derived 2-related factor 2 (Nrf2) pathway senses and coordinates cellular responses to oxidative and electrophilic stress. Here, we identify that graded genetic activation of Nrf2 protects against Li-induced NDI (Li-NDI) and volume wasting via an aquaporin 2-independent mechanism. Renal Nrf2 activity is differentially expressed on functional segments of the nephron, and its activation along the distal tubule and collecting duct directly modulates ion transporter expression, mimicking paradoxical effects of diuretics in mitigating Li-NDI. In addition, Nrf2 reduces cyclooxygenase expression and vasoactive prostaglandin biosynthesis. Pharmacologic activation of Nrf2 confers protective effects, confirming this pathway as a potentially novel druggable target for the prevention of acute and chronic renal sequelae of Li therapy.
Collapse
Affiliation(s)
| | - Dario A. Vitturi
- Department of Pharmacology and Chemical Biology
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | | | | | | | - David R. Emlet
- Center for Critical Care Nephrology, Department of Critical Care Medicine
| | | | - Scott Hahn
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | | | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology
- Health Sciences Metabolomics and Lipidomics Core, and
| | - Arohan R. Subramanya
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | - Roderick J. Tan
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|