1
|
Salih MQ, Steiner L, Goessler W, Hama JR, Lajin B. Urinary excretion of H 2S methylation metabolites in oil refinery workers. Toxicol Lett 2024; 401:82-88. [PMID: 39303962 DOI: 10.1016/j.toxlet.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/19/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Hydrogen sulfide (H2S) is a toxic gas emitted through natural and anthropogenic activities. Chronic exposure to inhaled H2S at low sub-toxic levels is common among workers in oil refineries and may have important health implications. Inhaled H2S can be oxidized to thiosulfate or methylated to dimethylsulfide (DMS) which can be methylated to the novel human metabolite trimethylsulfonium (TMS) or oxidized to dimethylsulfoxide (DMSO) but the extent of methylation of inhaled H2S is currently unknown in humans. A total of 80 participants were recruited of which 40 were workers in an oil refinery in Kurdistan region, Iraq including those working in close contact with the facility area where H2S was measured at 1.5-5.0 mg m-3, and 40 controls living in a nearby city with no detectable H2S or perceptible odor (<0.1 mg m-3). A total of 240 urine samples were measured for multiple H2S-related metabolites. DMSO was consistently found in all urine samples with concentrations generally within the range of 1.0-10 µM. Although these concentrations were 10-100-fold higher than TMS urinary levels, clear correlation between DMSO and TMS was observed (rs 0.55, P < 0.0001), which supports DMS as common precursor. DMSO urinary levels were elevated in the oil refinery workers in close contact with the facilities (5.0 vs. 3.3 µM, P 0.03), but TMS was unaltered (0.13 vs. 0.14 µM, P 0.68). Overall, the results suggest that the investigated methylation metabolites are not sufficiently sensitive to low occupational exposure levels of inhaled H2S.
Collapse
Affiliation(s)
- Mamoon Q Salih
- Department of Medical Laboratory, Aynda Private Technical Institute, Erbil, Kurdistan Region 44001, Iraq
| | - Lorenz Steiner
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, Graz, Austria
| | - Jawameer R Hama
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Bassam Lajin
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, Graz, Austria; Institute of Chemistry, ChromICP, University of Graz, Universitaetsplatz 1, Graz, Austria.
| |
Collapse
|
2
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
3
|
Zhang CJ, Wang Y, Jin YQ, Zhu YW, Zhu SG, Wang QM, Jing MR, Zhang YX, Cai CB, Feng ZF, Ji XY, Wu DD. Recent advances in the role of hydrogen sulfide in age-related diseases. Exp Cell Res 2024; 441:114172. [PMID: 39053869 DOI: 10.1016/j.yexcr.2024.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
In recent years, the impact of age-related diseases on human health has become increasingly severe, and developing effective drugs to deal with these diseases has become an urgent task. Considering the essential regulatory role of hydrogen sulfide (H2S) in these diseases, it is regarded as a promising target for treatment. H2S is a novel gaseous transmitter involved in many critical physiological activities, including anti-oxidation, anti-inflammation, and angiogenesis. H2S also regulates cell activities such as cell proliferation, migration, invasion, apoptosis, and autophagy. These regulatory effects of H2S contribute to relieving and treating age-related diseases. In this review, we mainly focus on the pathogenesis and treatment prospects of H2S in regulating age-related diseases.
Collapse
Affiliation(s)
- Chao-Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuai-Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qi-Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chun-Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
4
|
Guo S, Zhang Y, Lian J, Su C, Wang H. The role of hydrogen sulfide in the regulation of necroptosis across various pathological processes. Mol Cell Biochem 2024:10.1007/s11010-024-05090-1. [PMID: 39138751 DOI: 10.1007/s11010-024-05090-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Necroptosis is a programmed cell death form executed by receptor-interacting protein kinase (RIPK) 1, RIPK3 and mixed lineage kinase domain-like protein (MLKL), which assemble into an oligomer called necrosome. Accumulating evidence reveals that necroptosis participates in many types of pathological processes. Hence, clarifying the mechanism of necroptosis in pathological processes is particularly important for the prevention and treatment of various diseases. For over 300 years, hydrogen sulfide (H2S) has been widely known in the scientific community as a toxic and foul-smelling gas. However, after discovering the important physiological and pathological functions of H2S, human understanding of this small molecule changed, believing that H2S is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO). H2S plays an important role in various diseases, but the related mechanisms are not yet fully understood. In recent years, more and more studies have shown that H2S regulation of necroptosis is involved in various pathological processes. Herein, we focus on the recent progress on the role of H2S regulation of necroptosis in different pathological processes and profoundly analyze the related mechanisms.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jingwen Lian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Chunqi Su
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
5
|
Lian J, Chen Y, Zhang Y, Guo S, Wang H. The role of hydrogen sulfide regulation of ferroptosis in different diseases. Apoptosis 2024:10.1007/s10495-024-01992-z. [PMID: 38980600 DOI: 10.1007/s10495-024-01992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/10/2024]
Abstract
Ferroptosis is a programmed cell death that relies on iron and lipid peroxidation. It differs from other forms of programmed cell death such as necrosis, apoptosis and autophagy. More and more evidence indicates that ferroptosis participates in many types of diseases, such as neurodegenerative diseases, ischemia-reperfusion injury, cardiovascular diseases and so on. Hence, clarifying the role and mechanism of ferroptosis in diseases is of great significance for further understanding the pathogenesis and treatment of some diseases. Hydrogen sulfide (H2S) is a colorless and flammable gas with the smell of rotten eggs. Many years ago, H2S was considered as a toxic gas. however, in recent years, increasing evidence indicates that it is the third important gas signaling molecule after nitric oxide and carbon monoxide. H2S has various physiological and pathological functions such as antioxidant stress, anti-inflammatory, anti-apoptotic and anti-tumor, and can participate in various diseases. It has been reported that H2S regulation of ferroptosis plays an important role in many types of diseases, however, the related mechanisms are not fully clear. In this review, we reviewed the recent literature about the role of H2S regulation of ferroptosis in diseases, and analyzed the relevant mechanisms, hoping to provide references for future in-depth researches.
Collapse
Affiliation(s)
- Jingwen Lian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yuhang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yanting Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shiyun Guo
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
6
|
Devereaux J, Robinson AM, Stavely R, Davidson M, Dargahi N, Ephraim R, Kiatos D, Apostolopoulos V, Nurgali K. Alterations in tryptophan metabolism and de novo NAD + biosynthesis within the microbiota-gut-brain axis in chronic intestinal inflammation. Front Med (Lausanne) 2024; 11:1379335. [PMID: 39015786 PMCID: PMC11250461 DOI: 10.3389/fmed.2024.1379335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background Inflammatory bowel disease is an incurable and idiopathic disease characterized by recurrent gastrointestinal tract inflammation. Tryptophan metabolism in mammalian cells and some gut microbes comprise intricate chemical networks facilitated by catalytic enzymes that affect the downstream metabolic pathways of de novo nicotinamide adenine dinucleotide (NAD+) synthesis. It is hypothesized that a correlation exists between tryptophan de novo NAD+ synthesis and chronic intestinal inflammation. Methods Transcriptome analysis was performed using high-throughput sequencing of mRNA extracted from the distal colon and brain tissue of Winnie mice with spontaneous chronic colitis and C57BL/6 littermates. Metabolites were assessed using ultra-fast liquid chromatography to determine differences in concentrations of tryptophan metabolites. To evaluate the relative abundance of gut microbial genera involved in tryptophan and nicotinamide metabolism, we performed 16S rRNA gene amplicon sequencing of fecal samples from C57BL/6 and Winnie mice. Results Tryptophan and nicotinamide metabolism-associated gene expression was altered in distal colons and brains of Winnie mice with chronic intestinal inflammation. Changes in these metabolic pathways were reflected by increases in colon tryptophan metabolites and decreases in brain tryptophan metabolites in Winnie mice. Furthermore, dysbiosis of gut microbiota involved in tryptophan and nicotinamide metabolism was evident in fecal samples from Winnie mice. Our findings shed light on the physiological alterations in tryptophan metabolism, specifically, its diversion from the serotonergic pathway toward the kynurenine pathway and consequential effects on de novo NAD+ synthesis in chronic intestinal inflammation. Conclusion The results of this study reveal differential expression of tryptophan and nicotinamide metabolism-associated genes in the distal colon and brain in Winnie mice with chronic intestinal inflammation. These data provide evidence supporting the role of tryptophan metabolism and de novo NAD+ synthesis in IBD pathophysiology.
Collapse
Affiliation(s)
- Jeannie Devereaux
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Ainsley M. Robinson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- School of Rural Health, La Trobe University, Melbourne, VIC, Australia
- Department of Medicine, Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Dimitros Kiatos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Medicine, Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Medicine, Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| |
Collapse
|
7
|
Zhong X, Liu F, Liang T, Lu R, Shi M, Zhou X, Yang M. The two-component system TtrRS boosts Vibrio parahaemolyticus colonization by exploiting sulfur compounds in host gut. PLoS Pathog 2024; 20:e1012410. [PMID: 39038066 PMCID: PMC11293645 DOI: 10.1371/journal.ppat.1012410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
One of the greatest challenges encountered by enteric pathogens is responding to rapid changes of nutrient availability in host. However, the mechanisms by which pathogens sense gastrointestinal signals and exploit available host nutrients for proliferation remain largely unknown. Here, we identified a two-component system in Vibrio parahaemolyticus, TtrRS, which senses environmental tetrathionate and subsequently activates the transcription of the ttrRS-ttrBCA-tsdBA gene cluster to promote V. parahaemolyticus colonization of adult mice. We demonstrated that TsdBA confers the ability of thiosulfate oxidation to produce tetrathionate which is sensed by TtrRS. TtrRS autoregulates and directly activates the transcription of the ttrBCA and tsdBA gene clusters. Activated TtrBCA promotes bacterial growth under micro-aerobic conditions by inducing the reduction of both tetrathionate and thiosulfate. TtrBCA and TsdBA activation by TtrRS is important for V. parahaemolyticus to colonize adult mice. Therefore, TtrRS and their target genes constitute a tetrathionate-responsive genetic circuit to exploit the host available sulfur compounds, which further contributes to the intestinal colonization of V. parahaemolyticus.
Collapse
Affiliation(s)
- Xiaojun Zhong
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Fuwen Liu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Tianqi Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Ranran Lu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Mengting Shi
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Xiujuan Zhou
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Menghua Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| |
Collapse
|
8
|
Nishimura A, Tang X, Zhou L, Ito T, Kato Y, Nishida M. Sulfur metabolism as a new therapeutic target of heart failure. J Pharmacol Sci 2024; 155:75-83. [PMID: 38797536 DOI: 10.1016/j.jphs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/07/2024] [Accepted: 04/21/2024] [Indexed: 05/29/2024] Open
Abstract
Sulfur-based redox signaling has long attracted attention as critical mechanisms underlying the development of cardiac diseases and resultant heart failure. Especially, post-translational modifications of cysteine (Cys) thiols in proteins mediate oxidative stress-dependent cardiac remodeling including myocardial hypertrophy, senescence, and interstitial fibrosis. However, we recently revealed the existence of Cys persulfides and Cys polysulfides in cells and tissues, which show higher redox activities than Cys and substantially contribute to redox signaling and energy metabolism. We have established simple evaluation methods that can detect polysulfides in proteins and inorganic polysulfides in cells and revealed that polysulfides abundantly expressed in normal hearts are dramatically catabolized by exposure to ischemic/hypoxic and environmental electrophilic stress, which causes vulnerability of the heart to mechanical load. Accumulation of hydrogen sulfide, a nucleophilic catabolite of persulfides/polysulfides, may lead to reductive stress in ischemic hearts, and perturbation of polysulfide catabolism can improve chronic heart failure after myocardial infarction in mice. This review focuses on the (patho)physiological role of sulfur metabolism in hearts, and proposes that sulfur catabolism during ischemic/hypoxic stress has great potential as a new therapeutic strategy for the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
| | - Xiaokang Tang
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Liuchenzi Zhou
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Tomoya Ito
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
9
|
Zhang Y, Tang N, Zhou H, Zhu Y. The role of microbial metabolites in endocrine tumorigenesis: From the mechanistic insights to potential therapeutic biomarkers. Biomed Pharmacother 2024; 172:116218. [PMID: 38308969 DOI: 10.1016/j.biopha.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Microbial metabolites have been indicated to communicate with the host's endocrine system, regulating hormone production, immune-endocrine communications, and interactions along the gut-brain axis, eventually affecting the occurrence of endocrine cancer. Furthermore, microbiota metabolites such as short-chain fatty acids (SCFAs) have been found to affect the tumor microenvironment and boost immunity against tumors. SCFAs, including butyrate and acetate, have been demonstrated to exert anti-proliferative and anti-protective activity on pancreatic cancer cells. The employing of microbial metabolic products in conjunction with radiation and chemotherapy has shown promising outcomes in terms of reducing treatment side effects and boosting effectiveness. Certain metabolites, such as valerate and butyrate, have been made known to improve the efficiency of CAR T-cell treatment, whilst others, such as indole-derived tryptophan metabolites, have been shown to inhibit tumor immunity. This review explores the intricate interplay between microbial metabolites and endocrine tumorigenesis, spanning mechanistic insights to the discovery of potential therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Nie Tang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Hui Zhou
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ying Zhu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
10
|
Pope HF, Pilmane M, Junga A, Pētersons A. The Assessment of CDX1, IHH, SHH, GATA4, FOXA2, FOXF1 in Congenital Intra-Abdominal Adhesions. Acta Med Litu 2024; 31:109-121. [PMID: 38978864 PMCID: PMC11227690 DOI: 10.15388/amed.2024.31.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 07/10/2024] Open
Abstract
Congenital abdominal adhesions are a rare condition that can result in a small bowel obstruction at any age, more frequently in pediatric populations. The cause remains unknown, and the importance of aberrant congenital bands is related to the difficulty of diagnosis, and cases of death with late detection have been documented. This research examines the expression of Caudal Type Homeobox 1 (CDX1), Indian Hedgehog (IHH), Sonic Hedgehog (SHH), GATA Binding Protein 4 (GATA4), Forkhead Box A2 (FOXA2) and Forkhead Box F1 (FOXF1) gene expression in human abdominal congenital adhesion fibroblast and endothelium cells by chromogenic in situ hybridization, with the aim of elucidating their potential association with the etiology of congenital intra-abdominal adhesion band development. The potential genes' signals were examined using a semi-quantitative approach. Significant correlations were observed between the expression of CDX1 (p <.001) and SHH (p=0.032) genes in fibroblasts from congenital intra-abdominal adhesions compared to fibroblasts from control peritoneal tissue. Statistically significant very strong correlations were found between the CDX1 and IHH comparing endothelium and fibroblast cells in congenital abdominal adhesion bands. There was no statistically significant difference found in the distribution of IHH, FOXA2, GATA4, and FOXF1 between the fibroblasts and endothelium of the patients compared to the control group. The presence of notable distinctions and diverse associations suggests the potential involvement of numerous morpho-pathogenetic processes in the development of intraabdominal adhesions.
Collapse
Affiliation(s)
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Riga Stradiņš University, Riga, Latvia
| | - Anna Junga
- Institute of Anatomy and Anthropology, Riga Stradiņš University, Riga, Latvia
| | - Aigars Pētersons
- Children’s Clinical University Hospital, Riga Stradiņš University, Riga, Latvia
| |
Collapse
|
11
|
Antonaros F, Obermayer-Pietsch B, Ramacieri G, Vione B, Locatelli C, Goessler W, Caracausi M, Lajin B. First clinical evidence that trimethylsulfonium can serve as a biomarker for the production of the signaling molecule hydrogen sulfide. Clin Chim Acta 2024; 554:117780. [PMID: 38266970 DOI: 10.1016/j.cca.2024.117780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is established as the third gaseous signaling molecule and is known to be overproduced in down syndrome (DS) due to the extra copy of the CBS gene on chromosome 21, which has been suggested to contribute to the clinical manifestation of this condition. We recently discovered trimethylsulfonium (TMS) in human urine and highlighted its potential as a selective methylation metabolite of endogenously produced H2S, but the clinical utility of this novel metabolite has not been previously investigated. We hypothesize that the elevation of H2S production in DS would be reflected by an elevation in the methylation product TMS. METHODS To test this hypothesis, a case-control study was performed and the urinary levels of TMS were found to be higher in the DS group (geo. mean 4.5 nM, 95 % CI 2.4-3.9) than in the control (N) group (3.1 nM, 3.5-6.0), p-value 0.01, whereas the commonly used biomarker of hydrogen sulfide, thiosulfate, failed to reflect this alteration in H2S production (15 µM (N) vs. 13 µM (DS), p-value 0.24. RESULTS The observed association is in line with the proposed hypothesis and provides first clinical evidence of the utility of TMS as a novel and more sensitive biomarker for the endogenous production of the third gaseous signaling molecule than the conventionally used biomarker thiosulfate, which is heavily dependent on bacterial hydrogen sulfide production. CONCLUSION This work shows that TMS must be explored in clinical conditions where altered metabolism of hydrogen sulfide is implicated.
Collapse
Affiliation(s)
- Francesca Antonaros
- Department of Biomedical and Neuromotor Sciences, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna (BO), Italy
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Department of Internal Medicine and Gynecology and Obstetrics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; BioTechMed-GRAZ, 8010 Graz, Austria
| | - Giuseppe Ramacieri
- Department of Medical and Surgical Science, University of Bologna, Via Massarenti 11, 40138 Bologna (BO), Italy
| | - Beatrice Vione
- Department of Biomedical and Neuromotor Sciences, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna (BO), Italy; Department of Medical and Surgical Science, University of Bologna, Via Massarenti 11, 40138 Bologna (BO), Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy
| | - Walter Goessler
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy; BioTechMed-GRAZ, 8010 Graz, Austria
| | - Maria Caracausi
- Department of Biomedical and Neuromotor Sciences, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna (BO), Italy
| | - Bassam Lajin
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria; Institute of Chemistry, ChromICP, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria; BioTechMed-GRAZ, 8010 Graz, Austria.
| |
Collapse
|
12
|
Nguyen TTP, Nguyen PL, Park SH, Jung CH, Jeon TI. Hydrogen Sulfide and Liver Health: Insights into Liver Diseases. Antioxid Redox Signal 2024; 40:122-144. [PMID: 37917113 DOI: 10.1089/ars.2023.0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Hydrogen sulfide (H2S) is a recently recognized gasotransmitter involved in physiological and pathological conditions in mammals. It protects organs from oxidative stress, inflammation, hypertension, and cell death. With abundant expression of H2S-production enzymes, the liver is closely linked to H2S signaling. Recent Advances: Hepatic H2S comes from various sources, including gut microbiota, exogenous sulfur salts, and endogenous production. Recent studies highlight the importance of hepatic H2S in liver diseases such as nonalcoholic fatty liver disease (NAFLD), liver injury, and cancer, particularly at advanced stages. Endogenous H2S production deficiency is associated with severe liver disease, while exogenous H2S donors protect against liver dysfunction. Critical Issues: However, the roles of H2S in NAFLD, liver injury, and liver cancer are still debated, and its effects depend on donor type, dosage, treatment duration, and cell type, suggesting a multifaceted role. This review aimed to critically evaluate H2S production, metabolism, mode of action, and roles in liver function and disease. Future Direction: Understanding H2S's precise roles and mechanisms in liver health will advance potential therapeutic applications in preclinical and clinical research. Targeting H2S-producing enzymes and exogenous H2S sources, alone or in combination with other drugs, could be explored. Quantifying endogenous H2S levels may aid in diagnosing and managing liver diseases. Antioxid. Redox Signal. 40, 122-144.
Collapse
Affiliation(s)
- Thuy T P Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Phuc L Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
13
|
Philipp TM, Scheller AS, Krafczyk N, Klotz LO, Steinbrenner H. Methanethiol: A Scent Mark of Dysregulated Sulfur Metabolism in Cancer. Antioxidants (Basel) 2023; 12:1780. [PMID: 37760083 PMCID: PMC10525899 DOI: 10.3390/antiox12091780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
In order to cope with increased demands for energy and metabolites as well as to enhance stress resilience, tumor cells develop various metabolic adaptations, representing a hallmark of cancer. In this regard, the dysregulation of sulfur metabolism that may result in elevated levels of volatile sulfur compounds (VSCs) in body fluids, breath, and/or excretions of cancer patients has recently gained attention. Besides hydrogen sulfide (H2S), methanethiol is the predominant cancer-associated VSC and has been proposed as a promising biomarker for non-invasive cancer diagnosis. Gut bacteria are the major exogenous source of exposure to this foul-smelling toxic gas, with methanethiol-producing strains such as Fusobacterium nucleatum highly abundant in the gut microbiome of colorectal carcinoma (CRC) patients. Physiologically, methanethiol becomes rapidly degraded through the methanethiol oxidase (MTO) activity of selenium-binding protein 1 (SELENBP1). However, SELENBP1, which is considered a tumor suppressor, is often downregulated in tumor tissues, and this has been epidemiologically linked to poor clinical outcomes. In addition to impaired removal, an increase in methanethiol levels may derive from non-enzymatic reactions, such as a Maillard reaction between glucose and methionine, two metabolites enriched in cancer cells. High methionine concentrations in cancer cells may also result in enzymatic methanethiol production in mitochondria. Moreover, enzymatic endogenous methanethiol production may occur through methyltransferase-like protein 7B (METTL7B), which is present at elevated levels in some cancers, including CRC and hepatocellular carcinoma (HCC). In conclusion, methanethiol contributes to the scent of cancer as part of the cancer-associated signature combination of volatile organic compounds (VOCs) that are increasingly being exploited for non-invasive early cancer diagnosis.
Collapse
Affiliation(s)
| | | | | | | | - Holger Steinbrenner
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, D-07743 Jena, Germany; (T.M.P.); (A.S.S.); (N.K.); (L.-O.K.)
| |
Collapse
|
14
|
Philipp TM, Gernoth L, Will A, Schwarz M, Ohse VA, Kipp AP, Steinbrenner H, Klotz LO. Selenium-binding protein 1 (SELENBP1) is a copper-dependent thiol oxidase. Redox Biol 2023; 65:102807. [PMID: 37437449 PMCID: PMC10362175 DOI: 10.1016/j.redox.2023.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/17/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023] Open
Abstract
Selenium-binding protein 1 (SELENBP1) was reported to act as a methanethiol oxidase (MTO) in humans, catalyzing the conversion of methanethiol to hydrogen peroxide, hydrogen sulfide and formaldehyde. Here, we identify copper ions as essential to this novel MTO activity. Site-directed mutagenesis of putative copper-binding sites in human SELENBP1 produced as recombinant protein in E. coli resulted in loss of its enzymatic function. On the other hand, the eponymous binding of selenium (as selenite) was no requirement for MTO activity and only moderately increased SELENBP1-catalyzed oxidation of methanethiol. Furthermore, SEMO-1, the SELENBP1 ortholog recently identified in the nematode C. elegans, also requires copper ions, and MTO activity was enhanced or abrogated, respectively, if worms were grown in the presence of cupric chloride or of a Cu chelator. In addition to methanethiol, we identified novel substrates of SELENBP1 from the group of volatile sulfur compounds, ranging from ethanethiol to 1-pentanethiol as well as 2-propene-1-thiol. Gut microbiome-derived methanethiol as well as food-derived volatile sulfur compounds (VSCs) account for malodors that may contribute to extraoral halitosis in humans, if not metabolized properly. As SELENBP1 is particularly abundant in tissues exposed to VSCs, such as colon, liver, and lung, it appears to contribute to copper-dependent VSC degradation.
Collapse
Affiliation(s)
- Thilo Magnus Philipp
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Leon Gernoth
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Will
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Schwarz
- Institute of Nutritional Sciences, Department of Nutritional Physiology, Friedrich Schiller University Jena, Jena, Germany
| | - Verena Alexia Ohse
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Anna Patricia Kipp
- Institute of Nutritional Sciences, Department of Nutritional Physiology, Friedrich Schiller University Jena, Jena, Germany
| | - Holger Steinbrenner
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Lars-Oliver Klotz
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
15
|
Skvorak K, Mitchell V, Teadt L, Franklin KA, Lee HO, Kruse N, Huitt-Roehl C, Hang J, Du F, Galanie S, Guan S, Aijaz H, Zhang N, Rajkovic G, Kruger WD, Ismaili MHA, Huisman G, McCluskie K, Silverman AP. An orally administered enzyme therapeutic for homocystinuria that suppresses homocysteine by metabolizing methionine in the gastrointestinal tract. Mol Genet Metab 2023; 139:107653. [PMID: 37463544 DOI: 10.1016/j.ymgme.2023.107653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Classical homocystinuria (HCU) is a rare inborn error of amino acid metabolism characterized by accumulation of homocysteine, an intermediate product of methionine metabolism, leading to significant systemic toxicities, particularly within the vascular, skeletal, and ocular systems. Most patients require lifelong dietary therapy with severe restriction of natural protein to minimize methionine intake, and many patients still struggle to maintain healthy homocysteine levels. Since eliminating methionine from the diet reduces homocysteine levels, we hypothesized that an enzyme that can degrade methionine within the gastrointestinal (GI) tract could help HCU patients maintain healthy levels while easing natural protein restrictions. We describe the preclinical development of CDX-6512, a methionine gamma lyase (MGL) enzyme that was engineered for stability and activity within the GI tract for oral administration to locally degrade methionine. CDX-6512 is stable to low pH and intestinal proteases, enabling it to survive the harsh GI environment without enteric coating and to degrade methionine freed from dietary protein within the small intestine. Administering CDX-6512 to healthy non-human primates following a high protein meal led to a dose-dependent suppression of plasma methionine. In Tg-I278T Cbs-/- mice, an animal model that recapitulates aspects of HCU disease including highly elevated serum homocysteine levels, oral dosing of CDX-6512 after a high protein meal led to suppression in serum levels of both methionine and homocysteine. When animals received a daily dose of CDX-6512 with a high protein meal for two weeks, the Tg-I278T Cbs-/- mice maintained baseline homocysteine levels, whereas homocysteine levels in untreated animals increased by 39%. These preclinical data demonstrate the potential of CDX-6512 as an oral enzyme therapy for HCU.
Collapse
Affiliation(s)
- Kristen Skvorak
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Vesna Mitchell
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Leann Teadt
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Hyung-Ok Lee
- Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Nikki Kruse
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Julie Hang
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Faye Du
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Steven Guan
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Hera Aijaz
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Nianliu Zhang
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Warren D Kruger
- Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | | | - Gjalt Huisman
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | | |
Collapse
|
16
|
Lajin B, Obermayer-Pietsch B, Somma R, Goessler W. A time-course investigation of the human urinary excretion of the hydrogen sulfide biomarker trimethylsulfonium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104162. [PMID: 37245608 DOI: 10.1016/j.etap.2023.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Hydrogen sulfide is a toxic gas but also recognized as an endogenously produced metabolite in humans playing key roles. We previously identified trimethylsulfonium, which can be a methylation product of hydrogen sulfide but the stability in the production of trimethylsulfonium has not been investigated. In the present work, the intra- and inter-individual variability in the excretion of trimethylsulfonium over 2 months in a group of healthy volunteers was investigated. Urinary levels of trimethylsulfonium (mean: 56 nM, 95% CI: 48-68 nM) were > 100-fold lower than the conventional hydrogen sulfide biomarker thiosulfate (13 µM, 12-15 µM) and the precursor for endogenous hydrogen sulfide production cystine (47 µM, 44-50 µM). There was no correlation between urinary trimethylsulfonium and thiosulfate. Higher intra-individual variability in the excretion of trimethylsulfonium (generally 2-8 fold) than that for cystine (generally 2-3 fold) was found. Trimethylsulfonium displayed significant inter-individual variability with two concentration clusters at 117 nM (97-141) and 27 nM (22-34). In conclusion, the observed inter- and intra-individual variability must be considered when using urinary trimethylsulfonium as a biomarker.
Collapse
Affiliation(s)
- Bassam Lajin
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria; Institute of Chemistry, ChromICP, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria.
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Department of Internal Medicine and Gynecology and Obstetrics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Renato Somma
- Istituto Nazionale di Geofisica e Vulcanologia Sezione di Napoli Osservatorio Vesuviano, 80124 Napoli, Italy; Consiglio Nazionale delle Ricerche ISMAR Istituto di Scienze Marine Napoli Calata Porta Di Massa, Porto Di Napoli 80, 80133 Napoli, Italy; Consiglio Nazionale delle Ricerche IRISS Istituto di Ricerca su Innovazione e Servizi per lo Sviluppo, Via Guglielmo Sanfelice, 8, 80134 Napoli, Italy
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| |
Collapse
|
17
|
Lazado CC, Voldvik V, Timmerhaus G, Andersen Ø. Fast and slow releasing sulphide donors engender distinct transcriptomic alterations in Atlantic salmon hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106574. [PMID: 37244121 DOI: 10.1016/j.aquatox.2023.106574] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Hydrogen sulphide (H2S) is a naturally occurring compound generated either endogenously or exogenously and serves both as a gaseous signalling molecule and an environmental toxicant. Though it has been extensively investigated in mammalian systems, the biological function of H2S in teleost fish is poorly identified. Here we demonstrate how exogenous H2S regulates cellular and molecular processes in Atlantic salmon (Salmo salar) using a primary hepatocyte culture as a model. We employed two forms of sulphide donors: the fast-releasing salt form, sodium hydrosulphide (NaHS) and the slow-releasing organic analogue, morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate (GYY4137). Hepatocytes were exposed to either a low (LD, 20 µg/L) or high (HD, 100 µg/L) dose of the sulphide donors for 24 hrs, and the expression of key sulphide detoxification and antioxidant defence genes were quantified by qPCR. The key sulphide detoxification genes sulfite oxidase 1 (soux) and the sulfide: quinone oxidoreductase 1 and 2 (sqor) paralogs in salmon showed pronounced expression in the liver and likewise responsive to the sulphide donors in the hepatocyte culture. These genes were ubiquitously expressed in different organs of salmon as well. HD-GYY4137 upregulated the expression of antioxidant defence genes, particularly glutathione peroxidase, glutathione reductase and catalase, in the hepatocyte culture. To explore the influence of exposure duration, hepatocytes were exposed to the sulphide donors (i.e., LD versus HD) either transient (1h) or prolonged (24h). Prolonged but not transient exposure significantly reduced hepatocyte viability, and the effects were not dependent on concentration or form. The proliferative potential of the hepatocytes was only affected by prolonged NaHS exposure, and the impact was not concentration dependent. Microarray analysis revealed that GYY4137 caused more substantial transcriptomic changes than NaHS. Moreover, transcriptomic alterations were more marked following prolonged exposure. Genes involved in mitochondrial metabolism were downregulated by the sulphide donors, primarily in NaHS-exposed cells. Both sulphide donors influenced the immune functions of hepatocytes: genes involved in lymphocyte-mediated response were affected by NaHS, whereas inflammatory response was targeted by GYY4137. In summary, the two sulphide donors impacted the cellular and molecular processes of teleost hepatocytes, offering new insights into the mechanisms underlying H2S interactions in fish.
Collapse
Affiliation(s)
- Carlo C Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway.
| | - Vibeke Voldvik
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| | - Gerrit Timmerhaus
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| | - Øivind Andersen
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| |
Collapse
|
18
|
Santana Maldonado C, Weir A, Rumbeiha WK. A comprehensive review of treatments for hydrogen sulfide poisoning: past, present, and future. Toxicol Mech Methods 2023; 33:183-196. [PMID: 36076319 DOI: 10.1080/15376516.2022.2121192] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Hydrogen sulfide (H2S) poisoning remains a significant source of occupational fatalities and is the second most common cause of toxic gas-induced deaths. It is a rapidly metabolized systemic toxicant targeting the mitochondria, among other organelles. Intoxication is mostly acute, but chronic or in-between exposure scenarios also occur. Some genetic defects in H2S metabolism lead to lethal chronic H2S poisoning. In acute exposures, the neural, respiratory, and cardiovascular systems are the primary target organs resulting in respiratory distress, convulsions, hypotension, and cardiac irregularities. Some survivors of acute poisoning develop long-term sequelae, particularly in the central nervous system. Currently, treatment for H2S poisoning is primarily supportive care as there are no FDA-approved drugs. Besides hyperbaric oxygen treatment, drugs in current use for the management of H2S poisoning are controversial. Novel potential drugs are under pre-clinical research development, most of which target binding the H2S. However, there is an acute need to discover new drugs to prevent and treat H2S poisoning, including reducing mortality and morbidity, preventing sequalae from acute exposures, and for treating cumulative pathology from chronic exposures. In this paper, we perform a comprehensive review of H2S poisoning including perspectives on past, present, and future.
Collapse
Affiliation(s)
| | - Abigail Weir
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| | - Wilson K Rumbeiha
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| |
Collapse
|
19
|
Zhang Y, Jing M, Cai C, Zhu S, Zhang C, Wang Q, Zhai Y, Ji X, Wu D. Role of hydrogen sulphide in physiological and pathological angiogenesis. Cell Prolif 2022; 56:e13374. [PMID: 36478328 PMCID: PMC9977675 DOI: 10.1111/cpr.13374] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The role of hydrogen sulphide (H2 S) in angiogenesis has been widely demonstrated. Vascular endothelial growth factor (VEGF) plays an important role in H2 S-induced angiogenesis. H2 S promotes angiogenesis by upregulating VEGF via pro-angiogenic signal transduction. The involved signalling pathways include the mitogen-activated protein kinase pathway, phosphoinositide-3 kinase pathway, nitric oxide (NO) synthase/NO pathway, signal transducer and activator of transcription 3 (STAT3) pathway, and adenosine triphosphate (ATP)-sensitive potassium (KATP ) channels. H2 S has been shown to contribute to tumour angiogenesis, diabetic wound healing, angiogenesis in cardiac and cerebral ischaemic tissues, and physiological angiogenesis during the menstrual cycle and pregnancy. Furthermore, H2 S can exert an anti-angiogenic effect by inactivating Wnt/β-catenin signalling or blocking the STAT3 pathway in tumours. Therefore, H2 S plays a double-edged sword role in the process of angiogenesis. The regulation of H2 S production is a promising therapeutic approach for angiogenesis-associated diseases. Novel H2 S donors and/or inhibitors can be developed in the treatment of angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Yan‐Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Mi‐Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Chun‐Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Shuai‐Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Chao‐Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Qi‐Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Yuan‐Kun Zhai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical SciencesHenan UniversityKaifengHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina,School of StomatologyHenan UniversityKaifengHenanChina
| |
Collapse
|
20
|
Stummer N, Weghuber D, Feichtinger RG, Huber S, Mayr JA, Kofler B, Neureiter D, Klieser E, Hochmann S, Lauth W, Schneider AM. Hydrogen Sulfide Metabolizing Enzymes in the Intestinal Mucosa in Pediatric and Adult Inflammatory Bowel Disease. Antioxidants (Basel) 2022; 11:2235. [PMID: 36421421 PMCID: PMC9686699 DOI: 10.3390/antiox11112235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Hydrogen sulfide (H2S) is a toxic gas that has important regulatory functions. In the colon, H2S can be produced and detoxified endogenously. Both too little and too much H2S exposure are associated with inflammatory bowel disease (IBD), a chronic intestinal disease mainly classified as Crohn's disease (CD) and ulcerative colitis (UC). As the pathogenesis of IBD remains elusive, this study's aim was to investigate potential differences in the expression of H2S-metabolizing enzymes in normal aging and IBD. Intestinal mucosal biopsies of 25 adults and 22 children with IBD along with those of 26 healthy controls were stained immunohistochemically for cystathionine-γ-lyase (CSE), 3-mercapto-sulfurtransferase (3-MST), ethylmalonic encephalopathy 1 protein (ETHE1), sulfide:quinone oxidoreductase (SQOR) and thiosulfate sulfurtransferase (TST). Expression levels were calculated by multiplication of the staining intensity and percentage of positively stained cells. Healthy adults showed an overall trend towards lower expression of H2S-metabolizing enzymes than healthy children. Adults with IBD also tended to have lower expression compared to controls. A similar trend was seen in the enzyme expression of children with IBD compared to controls. These results indicate an age-related decrease in the expression of H2S-metabolizing enzymes and a dysfunctional H2S metabolism in IBD, which was less pronounced in children.
Collapse
Affiliation(s)
- Nathalie Stummer
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - René G. Feichtinger
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Sara Huber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Johannes A. Mayr
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Barbara Kofler
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Eckhard Klieser
- Institute of Pathology, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Sarah Hochmann
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Wanda Lauth
- Department of Mathematics, Paris Lodron University, 5020 Salzburg, Austria
| | - Anna M. Schneider
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| |
Collapse
|
21
|
Birg A, Ritz N, Barton LL, Lin HC. Hydrogen Availability Is Dependent on the Actions of Both Hydrogen-Producing and Hydrogen-Consuming Microbes. Dig Dis Sci 2022; 68:1253-1259. [PMID: 36323965 DOI: 10.1007/s10620-022-07743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2022] [Indexed: 12/09/2022]
Abstract
Hydrogen gas (H2) is produced by H2-producing microbes in the gut during polysaccharide fermentation. Gut microbiome also includes H2-consuming microbes utilizing H2 for metabolism: methanogens producing methane, CH4, and sulfate-reducing bacteria producing hydrogen sulfide, H2S. H2S is not measured in the evaluation of gaseous byproducts of microbial fermentation. We hypothesize that the availability of measured H2 depends on both hydrogen producers and hydrogen consumers by measuring H2 in vitro and in vivo. In the in vitro study, groups were Bacteroides thetaiotaomicron (B. theta, H2 producers), Desulfovibrio vulgaris (D. vulgaris, H2 consumers), and D. vulgaris + B. theta combined. Gas samples were collected at 2 h and 24 h after incubation and assayed for H2, CH4, and H2S. In the in vivo study Sprague-Dawley rats were gavaged with suspended bacteria in four groups: B. theta, D. vulgaris, combined, and control. Gas was analyzed for H2 at 60 min. In the in vitro experiment, H2 concentration was higher in the combined group (188 ± 93.3 ppm) compared with D. vulgaris (27.17 ± 9.6 ppm) and B. theta groups (34.2 ± 29.8 ppm; P < 0.05); H2S concentration was statistically higher in the combined group (10.32 ± 1.5 ppm) compared with B. theta (0.19 ± 0.03 ppm) and D. vulgaris group (3.46 ± 0.28 ppm; P < 0.05). In the in vivo study, H2 concentrations were significantly higher in the B. theta group (44.3 ± 6.0 ppm) compared with control (31.8 ± 4.3) and the combined group (34.2 ± 8.7, P < 0.05). This study shows that sulfate-reducing bacteria could convert available H2 to H2S, leading to measured hydrogen levels that are dependent on the actions of both H2 producers and H2 consumers.
Collapse
Affiliation(s)
- Aleksandr Birg
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Nathaniel Ritz
- Biomedical Research Institute of New Mexico, Albuquerque, NM, 87108, USA
| | - Larry L Barton
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Henry C Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, 87106, USA.
- Medicine Service, New Mexico VA Health Care System, 1501 San Pedro St., Albuquerque, NM, 87108, USA.
| |
Collapse
|
22
|
Scheller AS, Philipp TM, Klotz LO, Steinbrenner H. Altered Capacity for H 2S Production during the Spontaneous Differentiation of Caco-2 Cells to Colonocytes Due to Reciprocal Regulation of CBS and SELENBP1. Antioxidants (Basel) 2022; 11:antiox11101957. [PMID: 36290680 PMCID: PMC9598602 DOI: 10.3390/antiox11101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogen sulfide (H2S) has been proposed to promote tumor growth. Elevated H2S levels have been detected in human colorectal cancer (CRC) biopsies, resulting from the selective upregulation of cystathionine β-synthase (CBS). In contrast, the recently identified novel H2S-generating enzyme, selenium-binding protein 1 (SELENBP1), is largely suppressed in tumors. Here, we provide the first comparative analysis of the four human H2S-producing enzymes and the key H2S-catabolizing enzyme, sulfide:quinone oxidoreductase (SQOR), in Caco-2 human colorectal adenocarcinoma cells. The gene expression pattern of proliferating Caco-2 cells parallels that of CRC, while confluent cells undergo spontaneous differentiation to a colonocyte-like phenotype. SELENBP1 and SQOR were strongly upregulated during spontaneous differentiation, whereas CBS was downregulated. Cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase remained unaffected. Terminally differentiated cells showed an enhanced capacity to produce H2S from methanethiol and homocysteine. Differentiation induced by exposure to butyrate also resulted in the upregulation of SELENBP1, accompanied by increased SELENBP1 promoter activity. In contrast to spontaneous differentiation, however, butyrate did not cause downregulation of CBS. In summary, SELENBP1 and CBS are reciprocally regulated during the spontaneous differentiation of Caco-2 cells, thus paralleling their opposing regulation in CRC. Butyrate exposure, while imitating some aspects of spontaneous differentiation, does not elicit the same expression patterns of genes encoding H2S-modulating enzymes.
Collapse
|
23
|
Fang TT, Zou ZP, Zhou Y, Ye BC. Prebiotics-Controlled Disposable Engineered Bacteria for Intestinal Diseases. ACS Synth Biol 2022; 11:3004-3014. [PMID: 36037444 DOI: 10.1021/acssynbio.2c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As a new method of diagnosis and treatment for intestinal diseases, intelligent engineered bacteria based on synthetic biology have been developed vigorously in recent years. However, how to deal with the engineered bacteria in vivo after completing the tasks is an urgent problem to be resolved. In this study, we constructed a thiosulfate (a biomarker of inflammatory bowel disease)-responsive engineered bacteria to generate two signals, sfGFP (monitoring) and gain-of-function (translation activation) mutation (ACG to ATG), in the initiation codon of lysisE (recording) via the CRISPR/Cas9-mediated base editing system. Once these two signals were detected, xylose could be added to induce lysis E expression, resulting in the destruction of the edited bacteria and the release of AvCystain simultaneously. Overall, our innovative engineered bacteria can record instant and historical information of the disease, and especially, the edited bacteria can be artificially attenuated and release drug in situ when needed, ultimately serving as a disposable and recyclable candidate for more types of diseases.
Collapse
Affiliation(s)
- Ting-Ting Fang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen-Ping Zou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
24
|
Miljkovic JL, Burger N, Gawel JM, Mulvey JF, Norman AAI, Nishimura T, Tsujihata Y, Logan A, Sauchanka O, Caldwell ST, Morris JL, Prime TA, Warrington S, Prudent J, Bates GR, Aksentijević D, Prag HA, James AM, Krieg T, Hartley RC, Murphy MP. Rapid and selective generation of H 2S within mitochondria protects against cardiac ischemia-reperfusion injury. Redox Biol 2022; 55:102429. [PMID: 35961099 PMCID: PMC9382561 DOI: 10.1016/j.redox.2022.102429] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 02/02/2023] Open
Abstract
Mitochondria-targeted H2S donors are thought to protect against acute ischemia-reperfusion (IR) injury by releasing H2S that decreases oxidative damage. However, the rate of H2S release by current donors is too slow to be effective upon administration following reperfusion. To overcome this limitation here we develop a mitochondria-targeted agent, MitoPerSulf that very rapidly releases H2S within mitochondria. MitoPerSulf is quickly taken up by mitochondria, where it reacts with endogenous thiols to generate a persulfide intermediate that releases H2S. MitoPerSulf is acutely protective against cardiac IR injury in mice, due to the acute generation of H2S that inhibits respiration at cytochrome c oxidase thereby preventing mitochondrial superoxide production by lowering the membrane potential. Mitochondria-targeted agents that rapidly generate H2S are a new class of therapy for the acute treatment of IR injury.
Collapse
Affiliation(s)
- Jan Lj Miljkovic
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Nils Burger
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Justyna M Gawel
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Takanori Nishimura
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 251-8555, Japan
| | - Yoshiyuki Tsujihata
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 251-8555, Japan
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Olga Sauchanka
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Jordan L Morris
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Tracy A Prime
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | | | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Georgina R Bates
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Dunja Aksentijević
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
25
|
Decomposition kinetics and postmortem production of hydrogen sulfide and its metabolites. Forensic Sci Int 2022; 340:111426. [PMID: 36007360 DOI: 10.1016/j.forsciint.2022.111426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Hydrogen sulfide (H2S), an endogenous gas, can also be generated from organics putrefaction. It is difficult for suspected cases of H2S poisoning to determine whether H2S in specimens is ingested by antemortem poisoning or generated from organics putrefaction. The aim of this study was to find the biomarkers of acute H2S poisoning via comparing the concentrations of H2S and its metabolites over time in specimens. METHODS The H2S-spiked blood and blank blood group were established. The decomposition kinetics and the postmortem production of H2S were studied due to organics putrefaction. The specimens were placed under 4 conditions of 37, 20, 4 and - 20 ℃. The content of H2S in specimens was quantified by gas chromatography-mass spectrometry, and the contents of its metabolites (thiosulfate and trimethylsulfonium) were measured by liquid chromatography-mass spectrometry, and the variation of its concentration was evaluated. RESULTS In H2S-spiked blood, H2S decreased sharply in the initial stage at 37, 20 and 4 °C, and increased first and then decreased later; but it was relatively stable at - 20 °C. In spiked blood, thiosulfate was 9-fold higher than endogenous concentrations, which increased at first and then decreased during storage. Except for thiosulfate at 37 °C, H2S and thiosulfate in blank blood both increased at first and then decreased in storage; but trimethylsulfonium (TMS) gradually decreased over time in both groups. CONCLUSIONS Thiosulfate is a reliable biomarker of acute H2S poisoning at - 20℃ within 7 days. But H2S, because of instability and volatility, is not an ideal poisoning marker. TMS is not an appropriate biomarker due to extremely low concentration in blood.
Collapse
|
26
|
Lu D, Wang L, Liu G, Wang S, Wang Y, Wu Y, Wang J, Sun X. Role of hydrogen sulfide in subarachnoid hemorrhage. CNS Neurosci Ther 2022; 28:805-817. [PMID: 35315575 PMCID: PMC9062544 DOI: 10.1111/cns.13828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/19/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a common acute and severe disease worldwide, which imposes a heavy burden on families and society. However, the current therapeutic strategies for SAH are unsatisfactory. Hydrogen sulfide (H2 S), as the third gas signaling molecule after carbon monoxide and nitric oxide, has been widely studied recently. There is growing evidence that H2 S has a promising future in the treatment of central nervous system diseases. In this review, we focus on the effects of H2 S in experimental SAH and elucidate the underlying mechanisms. We demonstrate that H2 S has neuroprotective effects and significantly reduces secondary damage caused by SAH via antioxidant, antiinflammatory, and antiapoptosis mechanisms, and by alleviating cerebral edema and vasospasm. Based on these findings, we believe that H2 S has great potential in the treatment of SAH and warrants further study to promote its early clinical application.
Collapse
Affiliation(s)
- Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Lingling Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Shixin Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Yi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Yu Wu
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Jing Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| |
Collapse
|
27
|
Philipp TM, Gong W, Köhnlein K, Ohse VA, Müller FI, Priebs J, Steinbrenner H, Klotz LO. SEMO-1, a novel methanethiol oxidase in Caenorhabditis elegans, is a pro-aging factor conferring selective stress resistance. Biofactors 2022; 48:699-706. [PMID: 35316559 DOI: 10.1002/biof.1836] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/04/2022] [Indexed: 01/21/2023]
Abstract
Methanethiol is a toxic gas produced through bacterial degradation of sulfur-containing amino acids. Applying a novel enzymatic assay, we here identified a methanethiol oxidase (MTO) that catalyzes the degradation of methanethiol in the nematode Caenorhabditis elegans (C. elegans). The corresponding protein, Y37A1B.5, previously characterized as a C. elegans ortholog of human selenium-binding protein 1 (SELENBP1), was renamed SEMO-1 (SELENBP1 ortholog with methanethiol oxidase activity). Worms rendered deficient in SEMO-1 not only showed decreased hydrogen sulfide production from methanethiol catabolism but they were also more resistant to oxidative stress and had an elevated life span. In contrast, resistance to selenite was significantly lowered in SEMO-1-deficient worms. Naturally occurring mutations of human SELENBP1 were introduced to recombinant SEMO-1 through site-directed mutagenesis and resulted in loss of its MTO activity, indicating a similar enzymatic mechanism for SELENBP1 and SEMO-1. In summary, SEMO-1 confers resistance to toxic selenite and the ability to metabolize toxic methanethiol. These beneficial effects might be a trade-off for its negative impact on C. elegans life span.
Collapse
Affiliation(s)
- Thilo Magnus Philipp
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Weiye Gong
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Karl Köhnlein
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Verena Alexia Ohse
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Frederike Iris Müller
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Josephine Priebs
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Holger Steinbrenner
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Lars-Oliver Klotz
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
- Aging Research Center Jena, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
28
|
Huang J, Huang P, Lu J, Wu N, Lin G, Zhang X, Cao H, Geng W, Zhai B, Xu C, Sun Z. Gene expression profiles provide insights into the survival strategies in deep-sea mussel (Bathymodiolus platifrons) of different developmental stages. BMC Genomics 2022; 23:311. [PMID: 35439939 PMCID: PMC9016928 DOI: 10.1186/s12864-022-08505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background Deep-sea mussels living in the cold seeps with enormous biomass act as the primary consumers. They are well adapted to the extreme environment where light is absent, and hydrogen sulfide, methane, and other hydrocarbon-rich fluid seepage occur. Despite previous studies on diversity, role, evolution, and symbiosis, the changing adaptation patterns during different developmental stages of the deep-sea mussels remain largely unknown. Results The deep-sea mussels (Bathymodiolus platifrons) of two developmental stages were collected from the cold seep during the ocean voyage. The gills, mantles, and adductor muscles of these mussels were used for the Illumina sequencing. A total of 135 Gb data were obtained, and subsequently, 46,376 unigenes were generated using de-novo assembly strategy. According to the gene expression analysis, amounts of genes were most actively expressed in the gills, especially genes involved in environmental information processing. Genes encoding Toll-like receptors and sulfate transporters were up-regulated in gills, indicating that the gill acts as both intermedium and protective screen in the deep-sea mussel. Lysosomal enzymes and solute carrier responsible for nutrients absorption were up-regulated in the older mussel, while genes related to toxin resistance and autophagy were up-regulated in the younger one, suggesting that the older mussel might be in a vigorous stage while the younger mussel was still paying efforts in survival and adaptation. Conclusions In general, our study suggested that the adaptation capacity might be formed gradually during the development of deep-sea mussels, in which the gill and the symbionts play essential roles. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08505-9.
Collapse
Affiliation(s)
- Junrou Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Peilin Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China. .,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, Guangdong, China. .,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510275, Guangdong, China. .,Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| | - Nengyou Wu
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Institute of Marine Geology, China Geological Survey, Qingdao, 266071, China. .,Laboratory for Mineral Resources, Qingdao Pilot National Laboratory for Marine Sciences and Technology, Qingdao, 266071, China.
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Xilin Zhang
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Institute of Marine Geology, China Geological Survey, Qingdao, 266071, China.,Laboratory for Mineral Resources, Qingdao Pilot National Laboratory for Marine Sciences and Technology, Qingdao, 266071, China
| | - Hong Cao
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Institute of Marine Geology, China Geological Survey, Qingdao, 266071, China.,Laboratory for Mineral Resources, Qingdao Pilot National Laboratory for Marine Sciences and Technology, Qingdao, 266071, China
| | - Wei Geng
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Institute of Marine Geology, China Geological Survey, Qingdao, 266071, China.,Laboratory for Mineral Resources, Qingdao Pilot National Laboratory for Marine Sciences and Technology, Qingdao, 266071, China
| | - Bin Zhai
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Institute of Marine Geology, China Geological Survey, Qingdao, 266071, China.,Laboratory for Mineral Resources, Qingdao Pilot National Laboratory for Marine Sciences and Technology, Qingdao, 266071, China
| | - Cuiling Xu
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Institute of Marine Geology, China Geological Survey, Qingdao, 266071, China.,Laboratory for Mineral Resources, Qingdao Pilot National Laboratory for Marine Sciences and Technology, Qingdao, 266071, China
| | - Zhilei Sun
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Institute of Marine Geology, China Geological Survey, Qingdao, 266071, China.,Laboratory for Mineral Resources, Qingdao Pilot National Laboratory for Marine Sciences and Technology, Qingdao, 266071, China
| |
Collapse
|
29
|
Mateus I, Prip-Buus C. Hydrogen sulphide in liver glucose/lipid metabolism and non-alcoholic fatty liver disease. Eur J Clin Invest 2022; 52:e13680. [PMID: 34519030 PMCID: PMC9285505 DOI: 10.1111/eci.13680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND For a long time, hydrogen sulphide (H2 S) was considered only as a toxic gas, inhibiting mitochondrial respiration at the level of cytochrome c oxidase, and an environmental pollutant. Nowadays, H2 S is recognized as the third mammalian gasotransmitter, playing an important role in inflammation, septic shock, ischaemia reperfusion events, cardiovascular disease and more recently in liver physiology and chronic liver diseases such as non-alcoholic fatty liver disease (NAFLD). METHODS This narrative review is based on literature search using PubMed. RESULTS From a bioenergetic perspective, H2 S is a very unique molecule, serving as a mitochondrial poison at high concentrations or as an inorganic mitochondrial substrate at low concentrations. By using transgenic animal models to specifically modulate liver H2 S biosynthesis or exogenous compounds that release H2 S, several studies demonstrated that H2 S is a key player in liver glucose and lipid metabolism. Liver H2 S content and biosynthesis were also altered in NAFLD animal models with the in vivo administration of H2 S-releasing molecules preventing the further escalation into non-alcoholic-steatohepatitis. Liver steady-state levels of H2 S, and hence its cell signalling properties, are controlled by a tight balance between its biosynthesis, mainly through the transsulphuration pathway, and its mitochondrial oxidation via the sulphide oxidizing unit. However, studies investigating mitochondrial H2 S oxidation in liver dysfunction still remain scarce. CONCLUSIONS Since H2 S emerges as a key regulator of liver metabolism and metabolic flexibility, further understanding the physiological relevance of mitochondrial H2 S oxidation in liver energy homeostasis and its potential implication in chronic liver diseases are of great interest.
Collapse
Affiliation(s)
- Inês Mateus
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| | - Carina Prip-Buus
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| |
Collapse
|
30
|
Abstract
Significance: Reactive sulfur and nitrogen species such as hydrogen sulfide (H2S) and nitric oxide (NO•) are ubiquitous cellular signaling molecules that play central roles in physiology and pathophysiology. A deeper understanding of these signaling pathways will offer new opportunities for therapeutic treatments and disease management. Recent Advances: Chemiluminescence methods have been fundamental in detecting and measuring biological reactive sulfur and nitrogen species, and new approaches are emerging for imaging these analytes in living intact specimens. Ozone-based and luminol-based chemiluminescence methods have been optimized for quantitative analysis of hydrogen sulfide and nitric oxide in biological samples and tissue homogenates, and caged luciferin and 1,2-dioxetanes are emerging as a versatile approach for monitoring and imaging reactive sulfur and nitrogen species in living cells and animal models. Critical Issues: This review article will cover the major chemiluminescence approaches for detecting, measuring, and imaging reactive sulfur and nitrogen species in biological systems, including a brief history of the development of the most established approaches and highlights of the opportunities provided by emerging approaches. Future Directions: Emerging chemiluminescence approaches offer new opportunities for monitoring and imaging reactive sulfur and nitrogen species in living cells, animals, and human clinical samples. Widespread adoption and translation of these approaches, however, requires an emphasis on rigorous quantitative methods, reproducibility, and effective technology transfer. Antioxid. Redox Signal. 36, 337-353.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA
| | - Yujin Lisa Kim
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA
| | - Alexander Ryan Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA.,Center for Drug Discovery, Design, and Delivery (CD), Southern Methodist University, Dallas, Texas USA
| |
Collapse
|
31
|
Wang J, Childers WS. The Future Potential of Biosensors to Investigate the Gut-Brain Axis. Front Bioeng Biotechnol 2022; 9:826479. [PMID: 35096802 PMCID: PMC8795891 DOI: 10.3389/fbioe.2021.826479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The multifaceted and heterogeneous nature of depression presents challenges in pinpointing treatments. Among these contributions are the interconnections between the gut microbiome and neurological function termed the gut-brain axis. A diverse range of microbiome-produced metabolites interact with host signaling and metabolic pathways through this gut-brain axis relationship. Therefore, biosensor detection of gut metabolites offers the potential to quantify the microbiome's contributions to depression. Herein we review synthetic biology strategies to detect signals that indicate gut-brain axis dysregulation that may contribute to depression. We also highlight future challenges in developing living diagnostics of microbiome conditions influencing depression.
Collapse
Affiliation(s)
| | - W. Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Jiang S, Xue D, Zhang M, Li Q, Liu H, Zhao D, Zhou G, Li C. Myoglobin diet affected colonic mucus layer and barrier by increasing the abundance of several beneficial gut bacteria. Food Funct 2022; 13:9060-9077. [DOI: 10.1039/d2fo01799g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study aimed to explore the in vitro digestion of myoglobin diet and its relationship with the gut microbiota and intestinal barrier at two feeding time points. In vitro study...
Collapse
|
33
|
Khan I, Bai Y, Zha L, Ullah N, Ullah H, Shah SRH, Sun H, Zhang C. Mechanism of the Gut Microbiota Colonization Resistance and Enteric Pathogen Infection. Front Cell Infect Microbiol 2021; 11:716299. [PMID: 35004340 PMCID: PMC8733563 DOI: 10.3389/fcimb.2021.716299] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
The mammalian gut microbial community, known as the gut microbiota, comprises trillions of bacteria, which co-evolved with the host and has an important role in a variety of host functions that include nutrient acquisition, metabolism, and immunity development, and more importantly, it plays a critical role in the protection of the host from enteric infections associated with exogenous pathogens or indigenous pathobiont outgrowth that may result from healthy gut microbial community disruption. Microbiota evolves complex mechanisms to restrain pathogen growth, which included nutrient competition, competitive metabolic interactions, niche exclusion, and induction of host immune response, which are collectively termed colonization resistance. On the other hand, pathogens have also developed counterstrategies to expand their population and enhance their virulence to cope with the gut microbiota colonization resistance and cause infection. This review summarizes the available literature on the complex relationship occurring between the intestinal microbiota and enteric pathogens, describing how the gut microbiota can mediate colonization resistance against bacterial enteric infections and how bacterial enteropathogens can overcome this resistance as well as how the understanding of this complex interaction can inform future therapies against infectious diseases.
Collapse
Affiliation(s)
- Israr Khan
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Naeem Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Habib Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Syed Rafiq Hussain Shah
- Department of Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hui Sun
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
| |
Collapse
|
34
|
Magli E, Perissutti E, Santagada V, Caliendo G, Corvino A, Esposito G, Esposito G, Fiorino F, Migliaccio M, Scognamiglio A, Severino B, Sparaco R, Frecentese F. H 2S Donors and Their Use in Medicinal Chemistry. Biomolecules 2021; 11:1899. [PMID: 34944543 PMCID: PMC8699746 DOI: 10.3390/biom11121899] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that has an important role in many physiological and pathological processes in mammalian tissues, with the same importance as two others endogenous gasotransmitters such as NO (nitric oxide) and CO (carbon monoxide). Endogenous H2S is involved in a broad gamut of processes in mammalian tissues including inflammation, vascular tone, hypertension, gastric mucosal integrity, neuromodulation, and defense mechanisms against viral infections as well as SARS-CoV-2 infection. These results suggest that the modulation of H2S levels has a potential therapeutic value. Consequently, synthetic H2S-releasing agents represent not only important research tools, but also potent therapeutic agents. This review has been designed in order to summarize the currently available H2S donors; furthermore, herein we discuss their preparation, the H2S-releasing mechanisms, and their -biological applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (E.M.); (E.P.); (V.S.); (G.C.); (A.C.); (G.E.); (G.E.); (F.F.); (M.M.); (A.S.); (B.S.); (R.S.)
| |
Collapse
|
35
|
Sibinelli-Sousa S, de Araújo-Silva AL, Hespanhol JT, Bayer-Santos E. Revisiting the steps of Salmonella gut infection with a focus on antagonistic interbacterial interactions. FEBS J 2021; 289:4192-4211. [PMID: 34546626 DOI: 10.1111/febs.16211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
A commensal microbial community is established in the mammalian gut during its development, and these organisms protect the host against pathogenic invaders. The hallmark of noninvasive Salmonella gut infection is the induction of inflammation via effector proteins secreted by the type III secretion system, which modulate host responses to create a new niche in which the pathogen can overcome the colonization resistance imposed by the microbiota. Several studies have shown that endogenous microbes are important to control Salmonella infection by competing for resources. However, there is limited information about antimicrobial mechanisms used by commensals and pathogens during these in vivo disputes for niche control. This review aims to revisit the steps that Salmonella needs to overcome during gut colonization-before and after the induction of inflammation-to achieve an effective infection. We focus on a series of reported and hypothetical antagonistic interbacterial interactions in which both contact-independent and contact-dependent mechanisms might define the outcome of the infection.
Collapse
Affiliation(s)
| | | | - Julia Takuno Hespanhol
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Ethel Bayer-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| |
Collapse
|
36
|
Birg A, Lin HC, Kanagy N. Portal Venous Flow Is Increased by Jejunal but Not Colonic Hydrogen Sulfide in a Nitric Oxide-Dependent Fashion in Rats. Dig Dis Sci 2021; 66:2661-2668. [PMID: 32918175 PMCID: PMC8022870 DOI: 10.1007/s10620-020-06597-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/29/2020] [Indexed: 12/09/2022]
Abstract
Hydrogen sulfide (H2S) is a recently discerned endogenous signaling molecule that modulates the vascular system. Endogenous hydrogen sulfide has been shown to dilate both the mesenteric and portal vasculature. Gut microbiome, via sulfur reducing bacteria, is another source of H2S production within the gut lumen; this source of H2S is primarily produced and detoxified in the colon under physiologic conditions. Nitric oxide (NO), a major endogenous vasodilator in the portal circulation, participates in H2S-induced vasodilation in some vascular beds. We hypothesize that jejunal but not colonic H2S increases portal vein flow in a NO-dependent fashion. To evaluate the effects of luminal H2S, venous blood flow, portal venous pressure, and systemic venous pressure were measured in rats after administration of either vehicle or an H2S donor (NaHS) into the jejunum or the colon. We found that portal venous pressure and systemic pressure did not change and were similar between the three study groups. However, portal venous blood flow significantly increased following jejunal administration of NaHS but not in response to colonic NaHS or vehicle administration. To test the contribution of NO production to this response, another group of animals was treated with either an NO synthase inhibitor (N-Ω-nitro-L-arginine, L-NNA) or saline prior to jejunal NaHS infusion. After L-NNA pretreatment, NaHS caused a significant fall rather than increase in portal venous flow compared to saline pretreatment. These data demonstrate that H2S within the small intestine significantly increases portal venous blood flow in a NO-dependent fashion.
Collapse
Affiliation(s)
- Aleksandr Birg
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, MSC10-5550, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Henry C Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, MSC10-5550, 1 University of New Mexico, Albuquerque, NM, 87131, USA
- New Mexico VA Health Care System, Albuquerque, NM, 87108, USA
| | - Nancy Kanagy
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
37
|
Philipp TM, Will A, Richter H, Winterhalter PR, Pohnert G, Steinbrenner H, Klotz LO. A coupled enzyme assay for detection of selenium-binding protein 1 (SELENBP1) methanethiol oxidase (MTO) activity in mature enterocytes. Redox Biol 2021; 43:101972. [PMID: 33901808 PMCID: PMC8099554 DOI: 10.1016/j.redox.2021.101972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 01/23/2023] Open
Abstract
Methanethiol, a gas with the characteristic smell of rotten cabbage, is a product of microbial methionine degradation. In the human body, methanethiol originates primarily from bacteria residing in the lumen of the large intestine. Selenium-binding protein 1 (SELENBP1), a marker protein of mature enterocytes, has recently been identified as a methanethiol oxidase (MTO). It catalyzes the conversion of methanethiol to hydrogen sulfide (H2S), hydrogen peroxide (H2O2) and formaldehyde. Here, human Caco-2 intestinal epithelial cells were subjected to enterocyte-like differentiation, followed by analysis of SELENBP1 levels and MTO activity. To that end, we established a novel coupled assay to assess MTO activity mimicking the proximity of microbiome and intestinal epithelial cells in vivo. The assay is based on in situ-generation of methanethiol as catalyzed by a bacterial recombinant l-methionine gamma-lyase (MGL), followed by detection of H2S and H2O2. Applying this assay, we verified the loss and impairment of MTO function in SELENBP1 variants (His329Tyr; Gly225Trp) previously identified in individuals with familial extraoral halitosis. MTO activity was strongly enhanced in Caco-2 cells upon enterocyte differentiation, in parallel with increased SELENBP1 levels. This suggests that mature enterocytes located at the tip of colonic crypts are capable of eliminating microbiome-derived methanethiol.
Collapse
Affiliation(s)
- Thilo Magnus Philipp
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Will
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Hannes Richter
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | | | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Holger Steinbrenner
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Lars-Oliver Klotz
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
38
|
Landry AP, Ballou DP, Banerjee R. Hydrogen Sulfide Oxidation by Sulfide Quinone Oxidoreductase. Chembiochem 2021; 22:949-960. [PMID: 33080111 PMCID: PMC7969369 DOI: 10.1002/cbic.202000661] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/19/2020] [Indexed: 02/05/2023]
Abstract
Hydrogen sulfide (H2 S) is an environmental toxin and a heritage of ancient microbial metabolism that has stimulated new interest following its discovery as a neuromodulator. While many physiological responses have been attributed to low H2 S levels, higher levels inhibit complex IV in the electron transport chain. To prevent respiratory poisoning, a dedicated set of enzymes that make up the mitochondrial sulfide oxidation pathway exists to clear H2 S. The committed step in this pathway is catalyzed by sulfide quinone oxidoreductase (SQOR), which couples sulfide oxidation to coenzyme Q10 reduction in the electron transport chain. The SQOR reaction prevents H2 S accumulation and generates highly reactive persulfide species as products; these can be further oxidized or can modify cysteine residues in proteins by persulfidation. Here, we review the kinetic and structural characteristics of human SQOR, and how its unconventional redox cofactor configuration and substrate promiscuity lead to sulfide clearance and potentially expand the signaling potential of H2 S. This dual role of SQOR makes it a promising target for H2 S-based therapeutics.
Collapse
Affiliation(s)
- Aaron P. Landry
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - David P. Ballou
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
39
|
Maldonato BJ, Russell DA, Totah RA. Human METTL7B is an alkyl thiol methyltransferase that metabolizes hydrogen sulfide and captopril. Sci Rep 2021; 11:4857. [PMID: 33649426 PMCID: PMC7921093 DOI: 10.1038/s41598-021-84218-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/12/2021] [Indexed: 11/15/2022] Open
Abstract
Methylation of alkyl thiols is a biotransformation pathway designed to reduce thiol reactivity and potential toxicity, yet the gene and protein responsible for human alkyl thiol methyltransferase (TMT) activity remain unknown. Here we demonstrate with a range of experimental approaches using cell lines, in vitro systems, and recombinantly expressed enzyme, that human methyltransferase-like protein 7B (METTL7B) catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (AdoMet) to hydrogen sulfide (H2S) and other exogenous thiol small molecules. METTL7B gene modulation experiments, including knockdown in HepG2 cells and overexpression in HeLa cells, directly alter the methylation of the drug captopril, a historic probe substrate for TMT activity. Furthermore, recombinantly expressed and purified wild-type METTL7B methylates several thiol compounds, including H2S, 7α-thiospironolactone, L-penicillamine, and captopril, in a time- and concentration-dependent manner. Typical for AdoMet-dependent small molecule methyltransferases, S-adenosyl-L-homocysteine (AdoHcy) inhibited METTL7B activity in a competitive fashion. Similarly, mutating a conserved aspartate residue, proposed to anchor AdoMet into the active site, to an alanine (D98A) abolished methylation activity. Endogenous thiols such as glutathione and cysteine, or classic substrates for other known small molecule S-, N-, and O-methyltransferases, were not substrates for METTL7B. Our results confirm, for the first time, that METTL7B, a gene implicated in multiple disease states including rheumatoid arthritis and breast cancer, encodes a protein that methylates small molecule alkyl thiols. Identifying the catalytic function of METTL7B will enable future pharmacological research in disease pathophysiology where altered METTL7B expression and, potentially H2S levels, can disrupt cell growth and redox state.
Collapse
Affiliation(s)
- Benjamin J Maldonato
- Department of Medicinal Chemistry, University of Washington, 1959 NE Pacific Ave, Box 357610, Seattle, WA, 98195, USA
| | - Drake A Russell
- Department of Medicinal Chemistry, University of Washington, 1959 NE Pacific Ave, Box 357610, Seattle, WA, 98195, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, 1959 NE Pacific Ave, Box 357610, Seattle, WA, 98195, USA.
| |
Collapse
|
40
|
Gui DD, Luo W, Yan BJ, Ren Z, Tang ZH, Liu LS, Zhang JF, Jiang ZS. Effects of gut microbiota on atherosclerosis through hydrogen sulfide. Eur J Pharmacol 2021; 896:173916. [PMID: 33529724 DOI: 10.1016/j.ejphar.2021.173916] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases are the leading cause of death and morbidity worldwide. Atherosclerotic cardiovascular disease (ASCVD) is affected by both environmental and genetic factors. Microenvironmental disorders of the human gut flora are associated with a variety of health problems, not only gastrointestinal diseases, such as inflammatory bowel disease, but also extralintestinal organs. Hydrogen sulfide (H2S) is the third gas signaling molecule other than nitric oxide and carbon monoxide. In the cardiovascular system, H2S plays important roles in the regulation of blood pressure, angiogenesis, smooth muscle cell proliferation and apoptosis, anti-oxidative stress, cardiac functions. This review is aiming to explore the potential role of gut microbiota in the development of atherosclerosis through hydrogen sulfide production as a novel therapeutic direction for atherosclerosis.
Collapse
Affiliation(s)
- Dan-Dan Gui
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Wen Luo
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Bin-Jie Yan
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Ji-Feng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China.
| |
Collapse
|
41
|
Blachier F, Andriamihaja M, Larraufie P, Ahn E, Lan A, Kim E. Production of hydrogen sulfide by the intestinal microbiota and epithelial cells and consequences for the colonic and rectal mucosa. Am J Physiol Gastrointest Liver Physiol 2021; 320:G125-G135. [PMID: 33084401 DOI: 10.1152/ajpgi.00261.2020] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Among bacterial metabolites, hydrogen sulfide (H2S) has received increasing attention. The epithelial cells of the large intestine are exposed to two sources of H2S. The main one is the luminal source that results from specific bacteria metabolic activity toward sulfur-containing substrates. The other source in colonocytes is from the intracellular production mainly through cystathionine β-synthase (CBS) activity. H2S is oxidized by the mitochondrial sulfide oxidation unit, resulting in ATP synthesis, and, thus, establishing this compound as the first mineral energy substrate in colonocytes. However, when the intracellular H2S concentration exceeds the colonocyte capacity for its oxidation, it inhibits the mitochondrial respiratory chain, thus affecting energy metabolism. Higher luminal H2S concentration affects the integrity of the mucus layer and displays proinflammatory effects. However, a low/minimal amount of endogenous H2S exerts an anti-inflammatory effect on the colon mucosa, pointing out the ambivalent effect of H2S depending on its intracellular concentration. Regarding colorectal carcinogenesis, forced CBS expression in late adenoma-like colonocytes increased their proliferative activity, bioenergetics capacity, and tumorigenicity; whereas, genetic ablation of CBS in mice resulted in a reduced number of mutagen-induced aberrant crypt foci. Activation of endogenous H2S production and low H2S extracellular concentration enhance cancerous colorectal cell proliferation. Higher exogenous H2S concentrations markedly reduce mitochondrial ATP synthesis and proliferative capacity in cancerous cells and enhance glycolysis but do not affect their ATP cell content or viability. Thus, it appears that, notably through an effect on colonocyte energy metabolism, endogenous and microbiota-derived H2S are involved in the host intestinal physiology and physiopathology.
Collapse
Affiliation(s)
- François Blachier
- UMR PNCA, Nutrition Physiology and Alimentary Behavior, Université Paris-Saclay, AgroParisTech, INRAE, Paris, France
| | - Mireille Andriamihaja
- UMR PNCA, Nutrition Physiology and Alimentary Behavior, Université Paris-Saclay, AgroParisTech, INRAE, Paris, France
| | - Pierre Larraufie
- UMR PNCA, Nutrition Physiology and Alimentary Behavior, Université Paris-Saclay, AgroParisTech, INRAE, Paris, France
| | - Eunyeong Ahn
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, South Korea
| | - Annaïg Lan
- UMR PNCA, Nutrition Physiology and Alimentary Behavior, Université Paris-Saclay, AgroParisTech, INRAE, Paris, France
| | - Eunjung Kim
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, South Korea
| |
Collapse
|
42
|
Kushkevych I, Dordević D, Vítězová M. Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development. J Adv Res 2021; 27:71-78. [PMID: 33318867 PMCID: PMC7728581 DOI: 10.1016/j.jare.2020.03.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Increased numbers of sulfate-reducing bacteria (SRB) are often found in the feces of people and animals with inflammatory bowel disease. The final products of their metabolism are hydrogen sulfide and acetate, which are produced during dissimilatory sulfate reduction process. OBJECTIVES The aim of the study was to monitor processes concerning sulfate reduction microbial metabolisms, including: the main microbial genera monitoring and their hydrogen sulfide production in the intestines of healthy and not healthy individuals, phylogenetic analysis of SRB isolates, cluster analysis of SRB physiological and biochemical parameters, SRB growth kinetic parameters calculation, same as the application of the two-factor dispersion analysis for finding relationship between SRB biomass accumulation, temperature and pH. Feces samples from healthy people and patients with colitis were used for isolation of sulfate-reducing microbial communities. METHODS Microbiological, biochemical, biophysical, molecular biology methods, and statistical processing of the results have been used for making an evaluation of gained results. RESULTS Two dominant SRB morphotypes differed in colony size and quantitative ratio in the feces of healthy and colitis patients were observed and identified. In the feces of healthy people, 93% of SRB of morphotype I prevailed (Desulfovibrio) while morphotype II made only 7% (Desulfomicrobium); in the feces of patients with colitis, the ratio of these morphotypes was 99:1, respectively. Hydrogen sulfide concentrations are also higher in the feces of people with colitis and certain synergy effects exist among acetate produced by SRB. CONCLUSIONS The study results brought important findings concerning colony environments with developed colitis and these findings can lead to the development of possible risk indicators of ulcerative colitis prevalence.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department of Molecular Biology and Pharmaceutical Biotechnology, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic
| | - Dani Dordević
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
43
|
Abstract
A balanced gut microbiota contributes to health, but the mechanisms maintaining homeostasis remain elusive. Microbiota assembly during infancy is governed by competition between species and by environmental factors, termed habitat filters, that determine the range of successful traits within the microbial community. These habitat filters include the diet, host-derived resources, and microbiota-derived metabolites, such as short-chain fatty acids. Once the microbiota has matured, competition and habitat filtering prevent engraftment of new microbes, thereby providing protection against opportunistic infections. Competition with endogenous Enterobacterales, habitat filtering by short-chain fatty acids, and a host-derived habitat filter, epithelial hypoxia, also contribute to colonization resistance against Salmonella serovars. However, at a high challenge dose, these frank pathogens can overcome colonization resistance by using their virulence factors to trigger intestinal inflammation. In turn, inflammation increases the luminal availability of host-derived resources, such as oxygen, nitrate, tetrathionate, and lactate, thereby creating a state of abnormal habitat filtering that enables the pathogen to overcome growth inhibition by short-chain fatty acids. Thus, studying the process of ecosystem invasion by Salmonella serovars clarifies that colonization resistance can become weakened by disrupting host-mediated habitat filtering. This insight is relevant for understanding how inflammation triggers dysbiosis linked to noncommunicable diseases, conditions in which endogenous Enterobacterales expand in the fecal microbiota using some of the same growth-limiting resources required by Salmonella serovars for ecosystem invasion. In essence, ecosystem invasion by Salmonella serovars suggests that homeostasis and dysbiosis simply represent states where competition and habitat filtering are normal or abnormal, respectively.
Collapse
|
44
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
45
|
Müştak İB, Müştak HK, Sarıçam S. Molecular characterisation of hydrogen sulfide negative Salmonella enterica serovar Havana. Antonie van Leeuwenhoek 2020; 113:1241-1246. [PMID: 32607922 DOI: 10.1007/s10482-020-01432-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/28/2020] [Indexed: 11/26/2022]
Abstract
Hydrogen sulfide (H2S) detection is a screening method for distinguishing and identifying Salmonella strains from other bacteria in the intestine. Incidences of H2S-negative Salmonella have recently been reported in different countries. Although a high resistance rate against antimicrobial agents has been reported for H2S-positive Salmonella in many regions of the world, there is increasing evidence that high resistance to antibiotics has also increased in many H2S-negative Salmonella isolates. In this study, molecular characterisation of three H2S-negative Salmonella Havana, isolated from cloacal swab samples of broiler chickens, was performed. The phsA, phsB and phsC genes of the phs operon, which is responsible for hydrogen sulfide production, were amplified. Sequence analysis was then performed to identify mutations in the gene cluster. The antimicrobial resistance profiles of the isolates were determined by disc diffusion. Molecular characterisation was performed by multilocus sequence typing (MLST) and pulsed field gel electrophoresis (PFGE). The sequence analysis showed identified five point mutations in the phsA gene and one point mutation in the phsC gene in all isolates. The antibiotic resistance profile showed that the strains were resistant to cefoxitin and ceftazidime. MLST analysis showed that all strains belonged to sequence type (ST) 1621. This study is the first to report the H2S-negative S. Havana serotype.
Collapse
Affiliation(s)
- İnci Başak Müştak
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Şehit Ömer Halisdemir Bulv. Dışkapı, Ankara, 06110, Turkey
| | - Hamit Kaan Müştak
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Şehit Ömer Halisdemir Bulv. Dışkapı, Ankara, 06110, Turkey.
| | - Seyyide Sarıçam
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Şehit Ömer Halisdemir Bulv. Dışkapı, Ankara, 06110, Turkey
| |
Collapse
|
46
|
Taylor SJ, Winter SE. Salmonella finds a way: Metabolic versatility of Salmonella enterica serovar Typhimurium in diverse host environments. PLoS Pathog 2020; 16:e1008540. [PMID: 32525928 PMCID: PMC7289338 DOI: 10.1371/journal.ppat.1008540] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Savannah J. Taylor
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (SEW); (SJT)
| | - Sebastian E. Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (SEW); (SJT)
| |
Collapse
|
47
|
Biological Effects of Hydrogen Sulfide and Its Protective Role in Intracerebral Hemorrhage. J Mol Neurosci 2020; 70:2020-2030. [DOI: 10.1007/s12031-020-01608-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
|
48
|
Barra M, Danino T, Garrido D. Engineered Probiotics for Detection and Treatment of Inflammatory Intestinal Diseases. Front Bioeng Biotechnol 2020; 8:265. [PMID: 32296696 PMCID: PMC7137092 DOI: 10.3389/fbioe.2020.00265] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory intestinal diseases such as Crohn's disease and ulcerative colitis have seen an increase in their prevalence in developing countries throughout the current decade. These are caused by a combination of genetic and environmental factors, altered immune response, intestinal epithelium disruption and dysbiosis in the gut microbiome. Current therapies are mainly focused on treating symptoms and are often expensive and ineffective in the long term. Recently, there has been an increase in our understanding of the relevance of the gut microbiome and its impact on human health. Advances in the use of probiotics and synthetic biology have led to the development of intestinal biosensors, bacteria engineered to detect inflammation biomarkers, that work as diagnostic tools. Additionally, live biotherapeutics have been engineered as delivery vehicles to produce treatment in situ avoiding common complications and side effects of current therapies. These genetic constructs often express a therapeutic substance constitutively, but others could be regulated externally by specific substrates, making the production of their treatment more efficient. Additionally, certain probiotics detecting specific biomarkers in situ and responding by generating a therapeutic substance are beginning to be developed. While most studies are still in the laboratory stage, a few modified probiotics have been tested in humans. These advances indicate that live biotherapeutics could have great potential as new treatments for inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Maria Barra
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
49
|
Zaorska E, Tomasova L, Koszelewski D, Ostaszewski R, Ufnal M. Hydrogen Sulfide in Pharmacotherapy, Beyond the Hydrogen Sulfide-Donors. Biomolecules 2020; 10:biom10020323. [PMID: 32085474 PMCID: PMC7072623 DOI: 10.3390/biom10020323] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) is one of the important biological mediators involved in physiological and pathological processes in mammals. Recently developed H2S donors show promising effects against several pathological processes in preclinical and early clinical studies. For example, H2S donors have been found to be effective in the prevention of gastrointestinal ulcers during anti-inflammatory treatment. Notably, there are well-established medicines used for the treatment of a variety of diseases, whose chemical structure contains sulfur moieties and may release H2S. Hence, the therapeutic effect of these drugs may be partly the result of the release of H2S occurring during drug metabolism and/or the effect of these drugs on the production of endogenous hydrogen sulfide. In this work, we review data regarding sulfur drugs commonly used in clinical practice that can support the hypothesis about H2S-dependent pharmacotherapeutic effects of these drugs.
Collapse
Affiliation(s)
- Ewelina Zaorska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.)
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.)
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-116-6195
| |
Collapse
|
50
|
The smell of longevity: a combination of Volatile Organic Compounds (VOCs) can discriminate centenarians and their offspring from age-matched subjects and young controls. GeroScience 2019; 42:201-216. [PMID: 31808027 DOI: 10.1007/s11357-019-00143-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Aging is characterized by dynamic changes at metabolic level that lead to modifications in the composition of the metabolome. Since the identification of biomarkers that can discriminate people of different age and health status has recently attracted a great interest, we wondered whether age-specific changes in the metabolome could be identified and serve as new and informative biomarkers of aging and longevity. In the last few years, a specific branch of metabonomics devoted to the study of volatile organic compounds (VOCs) has been developed. To date, little is known about the profile of specific VOCs in healthy aging and longevity in humans; therefore, we investigated the profile of VOCs in both urine and feces samples from 73 volunteers of different age including centenarians that represent useful "super-controls" to identify potential biomarkers of successful aging and footprints of longevity. To this purpose, we performed a discriminant analysis by which we were able to identify specific profiles of urinary and fecal VOCs. Such profiles can discriminate different age groups, from young to centenarians, and, even more interesting, centenarians' offspring from age-matched controls. Moreover, we were able to identify VOCs that are specific for the couples "centenarians - offspring" or the trios "centenarians - offspring - spouse," suggesting the possible existence of a familiar component also for VOCs profile.
Collapse
|