1
|
Biller AM, Balakrishnan P, Spitschan M. Behavioural determinants of physiologically-relevant light exposure. COMMUNICATIONS PSYCHOLOGY 2024; 2:114. [PMID: 39614105 DOI: 10.1038/s44271-024-00159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024]
Abstract
Light exposure triggers a range of physiological and behavioural responses that can improve and challenge health and well-being. Insights from laboratory studies have recently culminated in standards and guidelines for measuring and assessing healthy light exposure, and recommendations for healthy light levels. Implicit to laboratory paradigms is a simplistic input-output relationship between light and its effects on physiology. This simplified approach ignores that humans actively shape their light exposure through behaviour. This article presents a novel framework that conceptualises light exposure as an individual behaviour to meet specific, person-based needs. Key to healthy light exposure is shaping behaviour, beyond shaping technology.
Collapse
Affiliation(s)
- Anna M Biller
- Department Health and Sport Sciences, Chronobiology & Health, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | - Priji Balakrishnan
- Laboratory of Architecture and Intelligent Living (AIL), Karlsruhe Institute of Technology, Karlsruhe, Germany
- Chair of Lighting Technology, Technische Universität Berlin, Berlin, Germany
| | - Manuel Spitschan
- Department Health and Sport Sciences, Chronobiology & Health, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
| |
Collapse
|
2
|
Blume C, Cajochen C, Schöllhorn I, Slawik HC, Spitschan M. Effects of calibrated blue-yellow changes in light on the human circadian clock. Nat Hum Behav 2024; 8:590-605. [PMID: 38135734 PMCID: PMC10963261 DOI: 10.1038/s41562-023-01791-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/16/2023] [Indexed: 12/24/2023]
Abstract
Evening exposure to short-wavelength light can affect the circadian clock, sleep and alertness. Intrinsically photosensitive retinal ganglion cells expressing melanopsin are thought to be the primary drivers of these effects. Whether colour-sensitive cones also contribute is unclear. Here, using calibrated silent-substitution changes in light colour along the blue-yellow axis, we investigated whether mechanisms of colour vision affect the human circadian system and sleep. In a 32.5-h repeated within-subjects protocol, 16 healthy participants were exposed to three different light scenarios for 1 h starting 30 min after habitual bedtime: baseline control condition (93.5 photopic lux), intermittently flickering (1 Hz, 30 s on-off) yellow-bright light (123.5 photopic lux) and intermittently flickering blue-dim light (67.0 photopic lux), all calibrated to have equal melanopsin excitation. We did not find conclusive evidence for differences between the three lighting conditions regarding circadian melatonin phase delays, melatonin suppression, subjective sleepiness, psychomotor vigilance or sleep.The Stage 1 protocol for this Registered Report was accepted in principle on 9 September 2020. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.13050215.v1 .
Collapse
Affiliation(s)
- Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Helen C Slawik
- Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Manuel Spitschan
- Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
- TUM Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany.
| |
Collapse
|
3
|
Spitschan M, Joyce DS. Human-Centric Lighting Research and Policy in the Melanopsin Age. POLICY INSIGHTS FROM THE BEHAVIORAL AND BRAIN SCIENCES 2023; 10:237-246. [PMID: 38919981 PMCID: PMC7615961 DOI: 10.1177/23727322231196896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Beyond visual function, specialized light-sensitive retinal circuits involving the photopigment melanopsin drive critical aspects of human physiology and behavior, including sleep-wake rhythms, hormone production, mood, and cognition. Fundamental discoveries of visual neurobiology dating back to the 1990s have given rise to strong interest from the lighting industry in optimizing lighting to benefit health. Consequently, evidence-based recommendations, regulations, and policies need to translate current knowledge of neurobiology into practice. Here, reviewing recent advances in understanding of NIF circuits in humans leads to proposed strategies to optimize electric lighting. Highlighted knowledge gaps must be addressed urgently, as well as the challenge of developing personalized, adaptive NIF lighting interventions accounting for complex individual differences in physiology, behavior, and environment. Finally, lighting equity issues appear in the context of marginalized groups, who have traditionally been underserved in research on both fundamental visual processes and applied lighting. Biologically optimal light is a fundamental environmental right.
Collapse
Affiliation(s)
- Manuel Spitschan
- TUM School of Medicine & Health, Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
- Max Planck Institute for Biological Cybernetics, Max Planck Research Group Translational Sensory & Circadian Neuroscience, Tübingen, Germany
| | - Daniel S. Joyce
- Centre for Health Research, University of Southern Queensland, Ipswich, Queensland, Australia
- School of Psychology and Wellbeing, University of Southern Queensland, Ipswich, Queensland, Australia
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|
4
|
Lok R, Duran M, Zeitzer JM. Moving time zones in a flash with light therapy during sleep. Sci Rep 2023; 13:14458. [PMID: 37660233 PMCID: PMC10475014 DOI: 10.1038/s41598-023-41742-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
In humans, exposure to continuous light is typically used to change the timing of the circadian clock. This study examines the efficiency of a sequence of light flashes ("flash therapy") applied during sleep to shift the clock. Healthy participants (n = 10) took part in two 36-h laboratory stays, receiving a placebo (goggles, no light) during one visit and the intervention (goggles, 2-ms flashes broad-spectrum light for 60 min, delivered every 15 s, starting 30 min after habitual sleep onset) during the other. Circadian phase shift was assessed with changes in salivary dim light melatonin onset (DLMO). Sleep, measured with polysomnography, was analyzed to assess changes in sleep architecture and spectral power. After 1 h of flashes, DLMO showed a substantial delay (1.13 ± 1.27 h) compared to placebo (12 ± 20 min). Two individuals exhibited very large shifts of 6.4 and 3.1 h. There were no substantive differences in sleep architecture, but some evidence for greater instability in sleep. 1 h of flash therapy during sleep evokes large changes in circadian timing, up to 6 h, and does so with only minimal, if any, impact on sleep. Flash therapy may offer a practical option to delay the circadian clock in shift workers and jet travelers.
Collapse
Affiliation(s)
- Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Marisol Duran
- Palo Alto Veterans Institute for Research, Palo Alto, CA, 94304, USA
| | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
5
|
Kosanovic Rajacic B, Sagud M, Pivac N, Begic D. Illuminating the way: the role of bright light therapy in the treatment of depression. Expert Rev Neurother 2023; 23:1157-1171. [PMID: 37882458 DOI: 10.1080/14737175.2023.2273396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Despite the growing number of different therapeutic options, treatment of depression is still a challenge. A broader perspective reveals the benefits of bright light therapy (BLT). It stimulates intrinsically photosensitive retinal ganglion cells, which induces a complex cascade of events, including alterations in melatonergic, neurotrophic, GABAergic, glutamatergic, noradrenergic, serotonergic systems, and HPA axis, suggesting that BLT effects expand beyond the circadian pacemaker. AREAS COVERED In this review, the authors present and discuss recent data of BLT in major depressive disorder, non-seasonal depression, bipolar depression or depressive phase of bipolar disorder, and seasonal affective disorder, as well as in treatment-resistant depression (TRD). The authors further highlight BLT effects in various depressive disorders compared to placebo and report data from several studies suggesting a response to BLT in TRD. Also, the authors report data showing that BLT can be used both as a monotherapy or in combination with other pharmacological treatments. EXPERT OPINION BLT is an easy-to-use and low-budget therapy with good tolerability. Future studies should focus on clinical and biological predictors of response to BLT, on defining specific populations which may benefit from BLT and establishing treatment protocols regarding timing, frequency, and duration of BLT.
Collapse
Affiliation(s)
- Biljana Kosanovic Rajacic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marina Sagud
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine University of Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, Croatian Zagorje Polytechnic Krapina, Krapina, Croatia
| | - Drazen Begic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine University of Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
Canazei M, Dick M, Pohl W, Weninger J, Hubel N, Staggl S, Weiss EM. Impact of repeated morning bright white light exposures on attention in a simulated office environment. Sci Rep 2023; 13:8730. [PMID: 37253767 DOI: 10.1038/s41598-023-35689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
Attention is essential to the work. This study investigated the effects of two different light pulses on a simple attention task. In addition, the effects of subsequent exposure to constant but different illuminance levels on the continuation of the simple attention task and a subsequent complex attention task were examined. A total of 56 subjects were assigned in random order to two white light interventions that were repeated five times during the morning. Each light intervention consisted of a brief light pulse followed by constant light exposure and differed in temporal dimming dynamics and corneal illuminance. Subjective and psychometric parameters were recorded several times during light exposure. Heart rate variability (HRV) was derived from continuous electrocardiograms. Subjects showed improved reaction speed in the simple attention task, accompanied by higher HRV under a brighter light pulse without habituation by repetition. This difference in simple attention performance disappeared when light exposure remained the same after the light pulse. In addition, higher reaction speed and HRV were observed in the complex attention task under constant bright light exposure. Intermittent bright light seems promising to acutely improve attentional performance in office workplaces. Future research is needed to investigate daytime light effects on other work-related cognitive functions.
Collapse
Affiliation(s)
- Markus Canazei
- Department of Psychology, University of Innsbruck, Innrain 52 F, 6020, Innsbruck, Austria.
| | - Maximilian Dick
- Department of Psychology, University of Innsbruck, Innrain 52 F, 6020, Innsbruck, Austria
- Research and Development Department, Bartenbach GmbH, Rinnerstrasse 14, Aldrans, Austria
| | - Wilfried Pohl
- Research and Development Department, Bartenbach GmbH, Rinnerstrasse 14, Aldrans, Austria
| | - Johannes Weninger
- Research and Development Department, Bartenbach GmbH, Rinnerstrasse 14, Aldrans, Austria
| | - Niclas Hubel
- Department of Psychology, University of Innsbruck, Innrain 52 F, 6020, Innsbruck, Austria
| | - Siegmund Staggl
- Department of Psychology, University of Innsbruck, Innrain 52 F, 6020, Innsbruck, Austria
| | - Elisabeth M Weiss
- Department of Psychology, University of Innsbruck, Innrain 52 F, 6020, Innsbruck, Austria
| |
Collapse
|
7
|
Wen P, Tan F, Wu M, Cai Q, Xu R, Zhang X, Wang Y, Li S, Lei M, Chen H, Khan MSA, Zou Q, Hu X. Proper use of light environments for mitigating the effects of COVID-19 and other prospective public health emergency lockdowns on sleep quality and fatigue in adolescents. Heliyon 2023; 9:e14627. [PMID: 37064435 PMCID: PMC10027303 DOI: 10.1016/j.heliyon.2023.e14627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) remains a public health emergency of international concern, and some countries still implement strict regional lockdowns. Further, the upcoming 2023 Asian Games and World University Games will implement a closed-loop management system. Quarantine can harm mental and physical health, to which adolescents are more vulnerable compared with adults. Previous studies indicated that light can affect our psychology and physiology, and adolescents were exposed to the artificial light environment in the evening during the lockdown. Thus, this study aimed to establish and assess appropriate residential light environments to mitigate the effects of lockdowns on sleep quality and fatigue in adolescents. The participants were 66 adolescents (12.15 ± 2.45 years of age) in a closed-loop management environment, who participated in a 28-day (7-day baseline, 21-day light intervention) randomized controlled trial of a light-emitting diode (LED) light intervention. The adolescents were exposed to different correlated color temperature (CCT) LED light environments (2000 K or 8000 K) for 1 h each evening. The results for self-reported daily sleep quality indicated that the low CCT LED light environment significantly improved sleep quality (p < 0.05), and the blood test results for serum urea and hemoglobin indicated that this environment also significantly reduced fatigue (p < 0.05) and moderately increased performance, compared to the high CCT LED light environment. These findings can serve as a springboard for further research that aims to develop interventions to reduce the effects of public health emergency lockdowns on mental and physical health in adolescents, and provide a reference for participants in the upcoming Asian Games and World University Games.
Collapse
Affiliation(s)
- Peijun Wen
- School of Physical Education, South China University of Technology, Guangzhou, 510641, China
| | - Fuyun Tan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Meng Wu
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Qijun Cai
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Ruiping Xu
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Xiaowen Zhang
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Yongzhi Wang
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, China
| | - Shukun Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Menglai Lei
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Huanqing Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Muhammad Saddique Akbar Khan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xiaodong Hu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Ishihara A, Courville AB, Chen KY. The Complex Effects of Light on Metabolism in Humans. Nutrients 2023; 15:nu15061391. [PMID: 36986120 PMCID: PMC10056135 DOI: 10.3390/nu15061391] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Light is an essential part of many life forms. The natural light–dark cycle has been the dominant stimulus for circadian rhythms throughout human evolution. Artificial light has restructured human activity and provided opportunities to extend the day without reliance on natural day–night cycles. The increase in light exposure at unwanted times or a reduced dynamic range of light between the daytime and nighttime has introduced negative consequences for human health. Light exposure is closely linked to sleep–wake regulation, activity and eating patterns, body temperature, and energy metabolism. Disruptions to these areas due to light are linked to metabolic abnormalities such as an increased risk of obesity and diabetes. Research has revealed that various properties of light influence metabolism. This review will highlight the complex role of light in human physiology, with a specific emphasis on metabolic regulation from the perspective of four main properties of light (intensity, duration, timing of exposure, and wavelength). We also discuss the potential influence of the key circadian hormone melatonin on sleep and metabolic physiology. We explore the relationship between light and metabolism through circadian physiology in various populations to understand the optimal use of light to mitigate short and long-term health consequences.
Collapse
|
9
|
Optimizing Light Flash Sequence Duration to Shift Human Circadian Phase. BIOLOGY 2022; 11:biology11121807. [PMID: 36552316 PMCID: PMC9775356 DOI: 10.3390/biology11121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Unlike light input for forming images, non-image-forming retinal pathways are optimized to convey information about the total light environment, integrating this information over time and space. In a variety of species, discontinuous light sequences (flashes) can be effective stimuli, notably impacting circadian entrainment. In this study, we examined the extent to which this temporal integration can occur. A group of healthy, young (n = 20) individuals took part in a series of 16-day protocols in which we examined the impact of different lengths of light flash sequences on circadian timing. We find a significant phase change of -0.70 h in response to flashes that did not differ by duration; a 15-min sequence could engender as much change in circadian timing as 3.5-h sequences. Acute suppression of melatonin was also observed during short (15-min) exposures, but not in exposures over one hour in length. Our data are consistent with the theory that responses to light flashes are mediated by the extrinsic, rod/cone pathway, and saturate the response of this pathway within 15 min. Further excitation leads to no greater change in circadian timing and an inability to acutely suppress melatonin, indicating that this pathway may be in a refractory state following this brief light stimulation.
Collapse
|
10
|
Yousefzadehfard Y, Wechsler B, DeLorenzo C. Human circadian rhythm studies: Practical guidelines for inclusion/exclusion criteria and protocol. Neurobiol Sleep Circadian Rhythms 2022; 13:100080. [PMID: 35989718 PMCID: PMC9382328 DOI: 10.1016/j.nbscr.2022.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/03/2022] Open
Abstract
As interest in circadian rhythms and their effects continues to grow, there is an increasing need to perform circadian studies in humans. Although the constant routine is the gold standard for these studies, there are advantages to performing more naturalistic studies. Here, a review of protocols for such studies is provided along with sample inclusion and exclusion criteria. Sleep routines, drug use, shift work, and menstrual cycle are addressed as screening considerations. Regarding protocol, best practices for measuring melatonin, including light settings, posture, exercise, and dietary habits are described. The inclusion/exclusion recommendations and protocol guidelines are intended to reduce confounding variables in studies that do not involve the constant routine. Given practical limitations, a range of recommendations is provided from stringent to lenient. The scientific rationale behind these recommendations is discussed. However, where the science is equivocal, recommendations are based on empirical decisions made in previous studies. While not all of the recommendations listed may be practical in all research settings and with limited potential participants, the goal is to allow investigators to make well informed decisions about their screening procedures and protocol techniques and to improve rigor and reproducibility, in line with the objectives of the National Institutes of Health.
Collapse
Affiliation(s)
- Yashar Yousefzadehfard
- Center for Understanding Biology Using Imaging Technology, Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA.,Department of Psychiatry, Texas Tech University Health Science Center, Midland, TX, USA
| | - Bennett Wechsler
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christine DeLorenzo
- Center for Understanding Biology Using Imaging Technology, Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
11
|
Ricketts EJ, Joyce DS, Rissman AJ, Burgess HJ, Colwell CS, Lack LC, Gradisar M. Electric lighting, adolescent sleep and circadian outcomes, and recommendations for improving light health. Sleep Med Rev 2022; 64:101667. [PMID: 36064209 PMCID: PMC10693907 DOI: 10.1016/j.smrv.2022.101667] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/26/2023]
Abstract
Light is a potent circadian entraining agent. For many people, daily light exposure is fundamentally dysregulated with reduced light during the day and increased light into the late evening. This lighting schedule promotes chronic disruption to circadian physiology resulting in a myriad of impairments. Developmental changes in sleep-wake physiology suggest that such light exposure patterns may be particularly disruptive for adolescents and further compounded by lifestyle factors such as early school start times. This narrative review describes evidence that reduced light exposure during the school day delays the circadian clock, and longer exposure durations to light-emitting electronic devices in the evening suppress melatonin. While home lighting in the evening can suppress melatonin secretion and delay circadian phase, the patterning of light exposure across the day and evening can have moderating effects. Photic countermeasures may be flexibly and scalably implemented to support sleep-wake health; including manipulations of light intensity, spectra, duration and delivery modality across multiple contexts. An integrative approach addressing physiology, attitudes, and behaviors will support optimization of light-driven sleep-wake outcomes in adolescents.
Collapse
Affiliation(s)
- Emily J Ricketts
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States.
| | - Daniel S Joyce
- Department of Psychology, University of Nevada, Reno, NV, United States; School of Psychology and Wellbeing, The University of Southern Queensland, Ipswich, QLD, Australia
| | - Ariel J Rissman
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States
| | - Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States
| | - Leon C Lack
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; College of Education, Psychology and Social Work, Flinders University, Adelaide, SA, Australia
| | - Michael Gradisar
- WINK Sleep Pty Ltd, Adelaide, SA, Australia; Sleep Cycle AB, Gothenburg, Sweden
| |
Collapse
|
12
|
Pandi-Perumal SR, Cardinali DP, Zaki NFW, Karthikeyan R, Spence DW, Reiter RJ, Brown GM. Timing is everything: Circadian rhythms and their role in the control of sleep. Front Neuroendocrinol 2022; 66:100978. [PMID: 35033557 DOI: 10.1016/j.yfrne.2022.100978] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2021] [Accepted: 01/08/2022] [Indexed: 01/16/2023]
Abstract
Sleep and the circadian clock are intertwined and have persisted throughout history. The suprachiasmatic nucleus (SCN) orchestrates sleep by controlling circadian (Process C) and homeostatic (Process S) activities. As a "hand" on the endogenous circadian clock, melatonin is critical for sleep regulation. Light serves as a cue for sleep/wake control by activating retino-recipient cells in the SCN and subsequently suppressing melatonin. Clock genes are the molecular timekeepers that keep the 24 h cycle in place. Two main sleep and behavioural disorder diagnostic manuals have now officially recognised the importance of these processes for human health and well-being. The body's ability to respond to daily demands with the least amount of effort is maximised by carefully timing and integrating all components of sleep and waking. In the brain, the organization of timing is essential for optimal brain physiology.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Somnogen Canada Inc, College Street, Toronto, ON, Canada; Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, 1107 Buenos Aires, Argentina
| | - Nevin F W Zaki
- Department of Psychiatry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Molecular Brain Sciences, University of Toronto, 250 College St. Toronto, ON, Canada
| |
Collapse
|
13
|
Spitschan M, Mead J, Roos C, Lowis C, Griffiths B, Mucur P, Herf M, Nam S, Veitch JA. luox: validated reference open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res 2022; 6:69. [PMID: 34017925 PMCID: PMC8095192 DOI: 10.12688/wellcomeopenres.16595.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/22/2023] Open
Abstract
Light exposure has a profound impact on human physiology and behaviour. For example, light exposure at the wrong time can disrupt our circadian rhythms and acutely suppress the production of melatonin. In turn, appropriately timed light exposure can support circadian photoentrainment. Beginning with the discovery that melatonin production is acutely suppressed by bright light more than 40 years ago, understanding which aspects of light drive the 'non-visual' responses to light remains a highly active research area, with an important translational dimension and implications for "human-centric" or physiologically inspired architectural lighting design. In 2018, the International Commission on Illumination (CIE) standardised the spectral sensitivities for predicting the non-visual effects of a given spectrum of light with respect to the activation of the five photoreceptor classes in the human retina: the L, M and S cones, the rods, and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Here, we described a novel, lean, user-friendly, open-access and open-source platform for calculating quantities related to light. The platform, called luox, enables researchers and research users in vision science, lighting research, chronobiology, sleep research and adjacent fields to turn spectral measurements into reportable quantities. The luox code base, released under the GPL-3.0 License, is modular and therefore extendable to other spectrum-derived quantities. luox calculations of CIE quantities and indices have been endorsed by the CIE following black-box validation.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, Oxford, UK
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- TUM Department of Sport and Health Sciences (TUM SG), Chronobiology & Health, Technical University of Munich, Munich, Germany
- Max Planck Institute for Biological Cybernetics, Translational Sensory & Circadian Neuroscience, Tübingen, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
| | | | | | | | | | | | | | - Somang Nam
- National Research Council of Canada, Construction Research Centre, Ottawa, Canada
| | - Jennifer A. Veitch
- National Research Council of Canada, Construction Research Centre, Ottawa, Canada
| |
Collapse
|
14
|
Abstract
The timing, duration, and consolidation of sleep result from the interaction of the circadian timing system with a sleep-wake homeostatic process. When aligned and functioning optimally, this allows for wakefulness throughout the day and a long consolidated sleep episode at night. Changes to either the sleep regulatory process or how they interact can result in an inability to fall asleep at the desired time, difficulty remaining asleep, waking too early, and/or difficulty remaining awake throughout the day. This mismatch between the desired timing of sleep and the ability to fall asleep and remain asleep is a hallmark of a class of sleep disorders called the circadian rhythm sleep-wake disorders. In this updated article, we discuss typical changes in the circadian regulation of sleep with aging; how age influences the prevalence, diagnosis, and treatment of circadian rhythm sleep disorders; and how neurologic diseases in older patient impact circadian rhythms and sleep.
Collapse
Affiliation(s)
- Jee Hyun Kim
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Gonghangdae-ro 260, Gangseo-gu, Seoul, Republic of Korea
| | - Alexandria R Elkhadem
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, 221 Longwood Avenue BLI438, Boston, MA 02115, USA
| | - Jeanne F Duffy
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Zeitzer JM, Lok R. Circadian photoreception: The impact of light on human circadian rhythms. PROGRESS IN BRAIN RESEARCH 2022; 273:171-180. [PMID: 35940715 DOI: 10.1016/bs.pbr.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light is the preeminent external influence in determining the position of the internal circadian clock relative to the outside world. In this chapter, we discuss the different parameters of light that impact how it influences the human circadian clock. We detail how the timing (phase), intensity, duration and temporal structure, and spectral composition all can modulate the impact of light on both the timing of the circadian clock as well as its amplitude. The neurobiological underpinnings of the system are briefly discussed in the context of understanding how light can evoke its observed effects on the circadian clock.
Collapse
Affiliation(s)
- Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States.
| | - Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
16
|
Joyce DS, Spitschan M, Zeitzer JM. Duration invariance and intensity dependence of the human circadian system phase shifting response to brief light flashes. Proc Biol Sci 2022; 289:20211943. [PMID: 35259981 PMCID: PMC8905166 DOI: 10.1098/rspb.2021.1943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
The melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) are characterized by a delayed off-time following the cessation of light stimulation. Here, we exploited this unusual physiologic property to characterize the exquisite sensitivity of the human circadian system to flashed light. In a 34 h in-laboratory between-subjects design, we examined phase shifting in response to variable-intensity (3-9500 photopic lux) flashes at fixed duration (2 ms; n = 28 participants) and variable-duration (10 µs-10 s) flashes at fixed intensity (2000 photopic lux; n = 31 participants). Acute melatonin suppression, objective alertness and subjective sleepiness during the flash sequence were also assessed. We find a dose-response relationship between flash intensity and circadian phase shift, with an indication of a possible threshold-like behaviour. We find a slight parametric relationship between flash duration and circadian phase shift. Consistent with prior studies, we observe no dose-response relationship to either flash intensity or duration and the acute impact of light on melatonin suppression, objective alertness or subjective sleepiness. Our findings are consistent with circadian responses to a sequence of flashes being mediated by rod or cone photoreceptors via ipRGC integration.
Collapse
Affiliation(s)
- Daniel S. Joyce
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychology, University of Nevada Reno, Reno, NV, USA
| | - Manuel Spitschan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
| | - Jamie M. Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
17
|
Kaladchibachi S, Negelspach DC, Zeitzer JM, Fernandez FX. Investigation of the aging clock's intermittent-light responses uncovers selective deficits to green millisecond flashes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 228:112389. [PMID: 35086027 DOI: 10.1016/j.jphotobiol.2022.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The central pacemaker of flies, rodents, and humans generates less robust circadian output signals across normative aging. It is not well understood how changes in light sensitivity might contribute to this phenomenon. In the present study, we summarize results from an extended data series (n = 5681) showing that the locomotor activity rhythm of aged Drosophila can phase-shift normally to intermittently spaced episodes of bright polychromatic light exposure (600 lx) but that deficits emerge in response to 8, 16, and 120-millisecond flashes of narrowband blue (λm, 452 nm) and green (λm, 525 nm) LED light. For blue, phase-resetting of the activity rhythm of older flies is not as energy efficient as it is in younger flies at the fastest flash-exposures tested (8 milliseconds), suggesting there might be different floors of light duration necessary to incur photohabituation in each age group. For green, the responses of older flies are universally crippled relative to those of younger flies across the slate of protocols we tested. The difference in green flash photosensitivity is one of the most salient age-related phenotypes that has been documented in the circadian phase-shifting literature thus far. These data provide further impetus for investigations on pacemaker aging and how it might relate to changes in the circadian system's responses to particular sequences of light exposure tuned for wavelength, intensity, duration, and tempo.
Collapse
Affiliation(s)
| | | | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences and Stanford Center for Sleep Sciences and Medicine, Stanford University, Stanford, CA, USA; Mental Illness Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Department of Neurology, University of Arizona, Tucson, AZ, USA; BIO5 and McKnight Brain Research Institutes, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
18
|
Mason BJ, Tubbs AS, Fernandez FX, Grandner MA. Spectrophotometric properties of commercially available blue blockers across multiple lighting conditions. Chronobiol Int 2022; 39:653-664. [PMID: 34983271 PMCID: PMC9106867 DOI: 10.1080/07420528.2021.2021229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Lenses that filter short-wavelength ("blue") light are commercially marketed to improve sleep and circadian health. Despite their widespread use, minimal data are available regarding their comparative efficacy in curtailing blue light exposure while maintaining visibility. Fifty commercial lenses were evaluated using five light sources: a blue LED array, a computer tablet display, an incandescent lamp, a fluorescent overhead luminaire, and sunlight. Absolute irradiance was measured at baseline and for each lens across the visual spectrum (380-780 nm), which allowed calculation of percent transmission. Transmission specificity was also calculated to determine whether light transmission was predominantly circadian-proficient (455-560 nm) or non-proficient (380-454 nm and 561-780 nm). Lenses were grouped by tint and metrics were compared between groups. Red-tinted lenses exhibited the lowest transmission of circadian-proficient light, while reflective blue lenses had the highest transmission. Orange-tinted lenses transmitted similar circadian-proficient light as red-tinted lenses but transmitted more non-circadian-proficient light, resulting in higher transmission specificity. Orange-tinted lenses had the highest transmission specificity while limiting biologically active light exposure in ordinary lighting conditions. Glasses incorporating these lenses currently have the greatest potential to support circadian sleep-wake rhythms.
Collapse
Affiliation(s)
- Brooke J Mason
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine - Tucson, Tucson, Arizona, USA
| | - Andrew S Tubbs
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine - Tucson, Tucson, Arizona, USA
| | - Fabian-Xosé Fernandez
- Light Algorithms Laboratory, Department of Psychology, University of Arizona College of Science, Tucson, Arizona, USA
| | - Michael A Grandner
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine - Tucson, Tucson, Arizona, USA
| |
Collapse
|
19
|
Beyond irradiance: Visual signals influencing mammalian circadian function. PROGRESS IN BRAIN RESEARCH 2022; 273:145-169. [DOI: 10.1016/bs.pbr.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Spectral sensitivity of circadian phase resetting, melatonin suppression and acute alerting effects of intermittent light exposure. Biochem Pharmacol 2021; 191:114504. [DOI: 10.1016/j.bcp.2021.114504] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
|
21
|
Taillard J, Gronfier C, Bioulac S, Philip P, Sagaspe P. Sleep in Normal Aging, Homeostatic and Circadian Regulation and Vulnerability to Sleep Deprivation. Brain Sci 2021; 11:1003. [PMID: 34439622 PMCID: PMC8392749 DOI: 10.3390/brainsci11081003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/30/2022] Open
Abstract
In the context of geriatric research, a growing body of evidence links normal age-related changes in sleep with many adverse health outcomes, especially a decline in cognition in older adults. The most important sleep alterations that continue to worsen after 60 years involve sleep timing, (especially early wake time, phase advance), sleep maintenance (continuity of sleep interrupted by numerous awakenings) and reduced amount of sigma activity (during non-rapid eye movement (NREM) sleep) associated with modifications of sleep spindle characteristics (density, amplitude, frequency) and spindle-Slow Wave coupling. After 60 years, there is a very clear gender-dependent deterioration in sleep. Even if there are degradations of sleep after 60 years, daytime wake level and especially daytime sleepiness is not modified with age. On the other hand, under sleep deprivation condition, older adults show smaller cognitive impairments than younger adults, suggesting an age-related lower vulnerability to extended wakefulness. These sleep and cognitive age-related modifications would be due to a reduced homeostatic drive and consequently a reduced sleep need, an attenuation of circadian drive (reduction of sleep forbidden zone in late afternoon and wake forbidden zone in early morning), a modification of the interaction of the circadian and homeostatic processes and/or an alteration of subcortical structures involved in generation of circadian and homeostatic drive, or connections to the cerebral cortex with age. The modifications and interactions of these two processes with age are still uncertain, and still require further investigation. The understanding of the respective contribution of circadian and homeostatic processes in the regulation of neurobehavioral function with aging present a challenge for improving health, management of cognitive decline and potential early chronobiological or sleep-wake interventions.
Collapse
Affiliation(s)
- Jacques Taillard
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
| | - Claude Gronfier
- Lyon Neuroscience Research Center (CRNL), Integrative Physiology of the Brain Arousal Systems (Waking) Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000 Lyon, France;
| | - Stéphanie Bioulac
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
- Pôle Neurosciences Cliniques, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Pierre Philip
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
- Pôle Neurosciences Cliniques, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Patricia Sagaspe
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
- Pôle Neurosciences Cliniques, CHU de Bordeaux, F-33076 Bordeaux, France
| |
Collapse
|
22
|
Measurement of Circadian Effectiveness in Lighting for Office Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As one factor among others, circadian effectiveness depends on the spatial light distribution of the prevalent lighting conditions. In a typical office context focusing on computer work, the light that is experienced by the office workers is usually composed of a direct component emitted by the room luminaires and the computer monitors as well as by an indirect component reflected from the walls, surfaces, and ceiling. Due to this multi-directional light pattern, spatially resolved light measurements are required for an adequate prediction of non-visual light-induced effects. In this work, we therefore propose a novel methodological framework for spatially resolved light measurements that allows for an estimate of the circadian effectiveness of a lighting situation for variable field of view (FOV) definitions. Results of exemplary in-field office light measurements are reported and compared to those obtained from standard spectral radiometry to validate the accuracy of the proposed approach. The corresponding relative error is found to be of the order of 3–6%, which denotes an acceptable range for most practical applications. In addition, the impact of different FOVs as well as non-zero measurement angles will be investigated.
Collapse
|
23
|
Spitschan M, Garbazza C, Kohl S, Cajochen C. Sleep and circadian phenotype in people without cone-mediated vision: a case series of five CNGB3 and two CNGA3 patients. Brain Commun 2021; 3:fcab159. [PMID: 34447932 PMCID: PMC8385249 DOI: 10.1093/braincomms/fcab159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 01/28/2023] Open
Abstract
Light exposure entrains the circadian clock through the intrinsically photosensitive retinal ganglion cells, which sense light in addition to the cone and rod photoreceptors. In congenital achromatopsia (prevalence 1:30-50 000), the cone system is non-functional, resulting in severe light avoidance and photophobia at daytime light levels. How this condition affects circadian and neuroendocrine responses to light is not known. In this case series of genetically confirmed congenital achromatopsia patients (n = 7; age 30-72 years; 6 women, 1 male), we examined survey-assessed sleep/circadian phenotype, self-reported visual function, sensitivity to light and use of spectral filters that modify chronic light exposure. In all but one patient, we measured rest-activity cycles using actigraphy over 3 weeks and measured the melatonin phase angle of entrainment using the dim-light melatonin onset. Owing to their light sensitivity, congenital achromatopsia patients used filters to reduce retinal illumination. Thus, congenital achromatopsia patients experienced severely attenuated light exposure. In aggregate, we found a tendency to a late chronotype. We found regular rest-activity patterns in all patients and normal phase angles of entrainment in participants with a measurable dim-light melatonin onset. Our results reveal that a functional cone system and exposure to daytime light intensities are not necessary for regular behavioural and hormonal entrainment, even when survey-assessed sleep and circadian phenotype indicated a tendency for a late chronotype and sleep problems in our congenital achromatopsia cohort.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
- Centre for Chronobiology, Psychiatry Hospital of the University of Basel (UPK), CH-4002 Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, CH-4055 Basel, Switzerland
| | - Corrado Garbazza
- Centre for Chronobiology, Psychiatry Hospital of the University of Basel (UPK), CH-4002 Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, CH-4055 Basel, Switzerland
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, D-72076 Tübingen, Germany
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatry Hospital of the University of Basel (UPK), CH-4002 Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, CH-4055 Basel, Switzerland
| |
Collapse
|
24
|
Spitschan M. Time-Varying Light Exposure in Chronobiology and Sleep Research Experiments. Front Neurol 2021; 12:654158. [PMID: 34335437 PMCID: PMC8319561 DOI: 10.3389/fneur.2021.654158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Light exposure profoundly affects human physiology and behavior through circadian and neuroendocrine photoreception primarily through the melanopsin-containing intrinsically photosensitive retinal ganglion cells. Recent research has explored the possibility of using temporally patterned stimuli to manipulate circadian and neuroendocrine responses to light. This mini-review, geared to chronobiologists, sleep researchers, and scientists in adjacent disciplines, has two objectives: (1) introduce basic concepts in time-varying stimuli and (2) provide a checklist-based set of recommendations for documenting time-varying light exposures based on current best practices and standards.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.,Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
25
|
Prayag AS, Münch M, Aeschbach D, Chellappa SL, Gronfier C. Reply to Bracke et al. Comment on "Prayag et al. Light Modulation of Human Clocks, Wake, and Sleep. Clocks&Sleep 2019, 1, 193-208". Clocks Sleep 2021; 3:398-402. [PMID: 34287255 PMCID: PMC8293177 DOI: 10.3390/clockssleep3030026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023] Open
Abstract
We thank Bracke and colleagues [...].
Collapse
Affiliation(s)
- Abhishek S. Prayag
- Lyon Neuroscience Research Center (CRNL), Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, 69000 Lyon, France;
| | - Mirjam Münch
- Centre for Public Health Research, Massey University, Wellington 6140, New Zealand;
| | - Daniel Aeschbach
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51170 Cologne, Germany;
- Faculty of Medicine, University of Bonn, 53127 Bonn, Germany
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Sarah L. Chellappa
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Claude Gronfier
- Lyon Neuroscience Research Center (CRNL), Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, 69000 Lyon, France;
| |
Collapse
|
26
|
Spitschan M, Mead J, Roos C, Lowis C, Griffiths B, Mucur P, Herf M. luox: novel validated open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res 2021; 6:69. [PMID: 34017925 PMCID: PMC8095192 DOI: 10.12688/wellcomeopenres.16595.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Light exposure has a profound impact on human physiology and behaviour. For example, light exposure at the wrong time can disrupt our circadian rhythms and acutely suppress the production of melatonin. In turn, appropriately timed light exposure can support circadian photoentrainment. Beginning with the discovery that melatonin production is acutely suppressed by bright light more than 40 years ago, understanding which aspects of light drive the 'non-visual' responses to light remains a highly active research area, with an important translational dimension and implications for "human-centric" or physiologically inspired architectural lighting design. In 2018, the International Commission on Illumination (CIE) standardised the spectral sensitivities for predicting the non-visual effects of a given spectrum of light with respect to the activation of the five photoreceptor classes in the human retina: the L, M and S cones, the rods, and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Here, we described a novel, lean, user-friendly, open-access and open-source platform for calculating quantities related to light. The platform, called luox, enables researchers and research users in chronobiology, sleep research and adjacent field to turn spectral measurements into reportable quantities. The luox code base, released under the GPL-3.0 License, is modular and therefore extendable to other spectrum-derived quantities. luox has been endorsed by the CIE following black-box validation.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, Oxford, UK.,Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Ruby NF. Suppression of Circadian Timing and Its Impact on the Hippocampus. Front Neurosci 2021; 15:642376. [PMID: 33897354 PMCID: PMC8060574 DOI: 10.3389/fnins.2021.642376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
In this article, I describe the development of the disruptive phase shift (DPS) protocol and its utility for studying how circadian dysfunction impacts memory processing in the hippocampus. The suprachiasmatic nucleus (SCN) of the Siberian hamster is a labile circadian pacemaker that is easily rendered arrhythmic (ARR) by a simple manipulation of ambient lighting. The DPS protocol uses room lighting to administer a phase-advancing signal followed by a phase-delaying signal within one circadian cycle to suppress clock gene rhythms in the SCN. The main advantage of this model for inducing arrhythmia is that the DPS protocol is non-invasive; circadian rhythms are eliminated while leaving the animals neurologically and genetically intact. In the area of learning and memory, DPS arrhythmia produces much different results than arrhythmia by surgical ablation of the SCN. As I show, SCN ablation has little to no effect on memory. By contrast, DPS hamsters have an intact, but arrhythmic, SCN which produces severe deficits in memory tasks that are accompanied by fragmentation of electroencephalographic theta oscillations, increased synaptic inhibition in hippocampal circuits, and diminished responsiveness to cholinergic signaling in the dentate gyrus of the hippocampus. The studies reviewed here show that DPS hamsters are a promising model for translational studies of adult onset circadian dysfunction in humans.
Collapse
Affiliation(s)
- Norman F. Ruby
- Biology Department, Stanford University, Stanford, CA, United States
| |
Collapse
|
28
|
Spitschan M, Mead J, Roos C, Lowis C, Griffiths B, Mucur P, Herf M. luox: novel open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res 2021; 6:69. [DOI: 10.12688/wellcomeopenres.16595.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 11/20/2022] Open
Abstract
Light exposure has a profound impact on human physiology and behaviour. For example, light exposure at the wrong time can disrupt our circadian rhythms and acutely suppress the production of melatonin. In turn, appropriately timed light exposure can support circadian photoentrainment. Beginning with the discovery that melatonin production is acutely suppressed by bright light more than 40 years ago, understanding which aspects of light drive the 'non-visual' responses to light remains a highly active research area, with an important translational dimension and implications for "human-centric" or physiologically inspired architectural lighting design. In 2018, the International Commission on Illumination (CIE) standardised the spectral sensitivities for predicting the non-visual effects of a given spectrum of light with respect to the activation of the five photoreceptor classes in the human retina: the L, M and S cones, the rods, and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Here, we described a novel, lean, user-friendly, open-access and open-source platform for calculating quantities related to light. The platform, called luox, enables researchers and research users in chronobiology, sleep research and adjacent field to turn spectral measurements into reportable quantities. The luox code base, released under the GPL-3.0 License, is modular and therefore extendable to other spectrum-derived quantities.
Collapse
|
29
|
Chellappa SL. Individual differences in light sensitivity affect sleep and circadian rhythms. Sleep 2021; 44:zsaa214. [PMID: 33049062 PMCID: PMC7879412 DOI: 10.1093/sleep/zsaa214] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Artificial lighting is omnipresent in contemporary society with disruptive consequences for human sleep and circadian rhythms because of overexposure to light, particularly in the evening/night hours. Recent evidence shows large individual variations in circadian photosensitivity, such as melatonin suppression, due to artificial light exposure. Despite the emerging body of research indicating that the effects of light on sleep and circadian rhythms vary dramatically across individuals, recommendations for appropriate light exposure in real-life settings rarely consider such individual effects. This review addresses recently identified links among individual traits, for example, age, sex, chronotype, genetic haplotypes, and the effects of evening/night light on sleep and circadian hallmarks, based on human laboratory and field studies. Target biological mechanisms for individual differences in light sensitivity include differences occurring within the retina and downstream, such as the central circadian clock. This review also highlights that there are wide gaps of uncertainty, despite the growing awareness that individual differences shape the effects of evening/night light on sleep and circadian physiology. These include (1) why do certain individual traits differentially affect the influence of light on sleep and circadian rhythms; (2) what is the translational value of individual differences in light sensitivity in populations typically exposed to light at night, such as night shift workers; and (3) what is the magnitude of individual differences in light sensitivity in population-based studies? Collectively, the current findings provide strong support for considering individual differences when defining optimal lighting specifications, thus allowing for personalized lighting solutions that promote quality of life and health.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
30
|
Wong KY, Fernandez FX. Circadian Responses to Light-Flash Exposure: Conceptualization and New Data Guiding Future Directions. Front Neurol 2021; 12:627550. [PMID: 33643205 PMCID: PMC7905211 DOI: 10.3389/fneur.2021.627550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/21/2021] [Indexed: 01/03/2023] Open
Abstract
A growing number of studies document circadian phase-shifting after exposure to millisecond light flashes. When strung together by intervening periods of darkness, these stimuli evoke pacemaker responses rivaling or outmatching those created by steady luminance, suggesting that the circadian system's relationship to light can be contextualized outside the principle of simple dose-dependence. In the current review, we present a brief chronology of this work. We then develop a conceptual model around it that attempts to relate the circadian effects of flashes to a natural integrative process the pacemaker uses to intermittently sample the photic information available at dawn and dusk. Presumably, these snapshots are employed as building blocks in the construction of a coherent representation of twilight the pacemaker consults to orient the next day's physiology (in that way, flash-resetting of pacemaker rhythms might be less an example of a circadian visual illusion and more an example of the kinds of gestalt inferences that the image-forming system routinely makes when identifying objects within the visual field; i.e., closure). We conclude our review with a discussion on the role of cones in the pacemaker's twilight predictions, providing new electrophysiological data suggesting that classical photoreceptors—but not melanopsin—are necessary for millisecond, intermediate-intensity flash responses in ipRGCs (intrinsically photosensitive retinal ganglion cells). Future investigations are necessary to confirm this “Cone Sentinel Model” of circadian flash-integration and twilight-prediction, and to further define the contribution of cones vs. rods in transducing pacemaker flash signals.
Collapse
Affiliation(s)
- Kwoon Y Wong
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Fabian-Xosé Fernandez
- Department of Psychology, BIO5 Research Institute, University of Arizona, Tucson, AZ, United States.,Department of Neurology, McKnight Brain Research Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
31
|
Rea MS, Nagare R, Figueiro MG. Modeling Circadian Phototransduction: Quantitative Predictions of Psychophysical Data. Front Neurosci 2021; 15:615322. [PMID: 33613181 PMCID: PMC7893103 DOI: 10.3389/fnins.2021.615322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/08/2021] [Indexed: 01/29/2023] Open
Abstract
A revised computational model of circadian phototransduction is presented. The first step was to characterize the spectral sensitivity of the retinal circuit using suppression of the synthesis of melatonin by the pineal gland at night as the outcome measure. From the spectral sensitivity, circadian light was defined. Circadian light, thereby rectifies any spectral power distribution into a single, instantaneous photometric quantity. The second step was to characterize the circuit’s response characteristic to different amounts of circadian light from threshold to saturation. By doing so a more complete instantaneous photometric quantity representing the circadian stimulus was defined in terms of both the spectral sensitivity and the response magnitude characteristic of the circadian phototransduction circuit. To validate the model of the circadian phototransduction circuit, it was necessary to augment the model to account for different durations of the circadian stimulus and distribution of the circadian stimulus across the retina. Two simple modifications to the model accounted for the duration and distribution of continuous light exposure during the early biological night. A companion paper (https://www.frontiersin.org/articles/10.3389/fnins.2020.615305/full) provides a neurophysiological foundation for the model parameters.
Collapse
Affiliation(s)
- Mark S Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States.,Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rohan Nagare
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States.,Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mariana G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States.,Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
32
|
Walbeek TJ, Harrison EM, Gorman MR, Glickman GL. Naturalistic Intensities of Light at Night: A Review of the Potent Effects of Very Dim Light on Circadian Responses and Considerations for Translational Research. Front Neurol 2021; 12:625334. [PMID: 33597916 PMCID: PMC7882611 DOI: 10.3389/fneur.2021.625334] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
In this review, we discuss the remarkable potency and potential applications of a form of light that is often overlooked in a circadian context: naturalistic levels of dim light at night (nLAN), equivalent to intensities produced by the moon and stars. It is often assumed that such low levels of light do not produce circadian responses typically associated with brighter light levels. A solid understanding of the impacts of very low light levels is complicated further by the broad use of the somewhat ambiguous term “dim light,” which has been used to describe light levels ranging seven orders of magnitude. Here, we lay out the argument that nLAN exerts potent circadian effects on numerous mammalian species, and that given conservation of anatomy and function, the efficacy of light in this range in humans warrants further investigation. We also provide recommendations for the field of chronobiological research, including minimum requirements for the measurement and reporting of light, standardization of terminology (specifically as it pertains to “dim” light), and ideas for reconsidering old data and designing new studies.
Collapse
Affiliation(s)
- Thijs J Walbeek
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Elizabeth M Harrison
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Michael R Gorman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Department of Psychology, University of California, San Diego, San Diego, CA, United States
| | - Gena L Glickman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Departments of Psychiatry and Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
33
|
Lee R, Tapia A, Kaladchibachi S, Grandner MA, Fernandez FX. Meta-analysis of light and circadian timekeeping in rodents. Neurosci Biobehav Rev 2021; 123:215-229. [PMID: 33513413 DOI: 10.1016/j.neubiorev.2020.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
We conducted a meta-analysis of papers published over the past half-century (1964-2017) that quantified the phase-shifting effects of timed light exposure on rodent locomotor rhythms. Descriptive statistics were tabulated in order to explore the extent to which these studies were generalizable across species, sex, age, circadian timing, and light sources. Attempts at understanding photic resetting were primarily targeted at younger male animals, with particular emphases placed on characterizing the pacemaker systems of C57BL/6 mice and Syrian hamsters during the parts of their subjective night most sensitive to delivery of white-fluorescent light. With subsequent analyses restricted to these rodent models, we then assessed the relationship between luminous exposure (via broadspectrum emission) and phase-shifting through a series of linear regressions. Monotonically increasing illuminance-response functions were noted at most circadian times surveyed. In the aggregate, our results show that previous research conducted on light's regulation of circadian timekeeping has been skewed in design with respect to several important biological variables. This bias might limit translation of phototherapy-relevant data to women and older individuals.
Collapse
Affiliation(s)
- Robert Lee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Amaris Tapia
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | | | - Michael A Grandner
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona, Tucson, AZ, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Department of Neurology, University of Arizona, Tucson, AZ, USA; BIO5 and McKnight Brain Research Institutes, Tucson, AZ, USA.
| |
Collapse
|
34
|
Kronauer RE, Hilaire MA, Rahman SA, Czeisler CA, Klerman EB. An Exploration of the Temporal Dynamics of Circadian Resetting Responses to Short- and Long-Duration Light Exposures: Cross-Species Consistencies and Differences. J Biol Rhythms 2019; 34:497-514. [PMID: 31368391 PMCID: PMC7363039 DOI: 10.1177/0748730419862702] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Light is the most effective environmental stimulus for shifting the mammalian circadian pacemaker. Numerous studies have been conducted across multiple species to delineate wavelength, intensity, duration, and timing contributions to the response of the circadian pacemaker to light. Recent studies have revealed a surprising sensitivity of the human circadian pacemaker to short pulses of light. Such responses have challenged photon counting-based theories of the temporal dynamics of the mammalian circadian system to both short- and long-duration light stimuli. Here, we collate published light exposure data from multiple species, including gerbil, hamster, mouse, and human, to investigate these temporal dynamics and explore how the circadian system integrates light information at both short- and long-duration time scales to produce phase shifts. Based on our investigation of these data sets, we propose 3 new interpretations: (1) intensity and duration are independent factors of total phase shift magnitude, (2) the possibility of a linear/log temporal function of light duration that is universal for all intensities for durations less than approximately 12 min, and (3) a potential universal minimum light duration of ~0.7 sec that describes a "dead zone" of light stimulus. We show that these properties appear to be consistent across mammalian species. These interpretations, if confirmed by further experiments, have important practical implications in terms of understanding the underlying physiology and for the design of lighting regimens to reset the mammalian circadian pacemaker.
Collapse
Affiliation(s)
- Richard E. Kronauer
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Melissa A. Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Shadab A. Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Elizabeth B. Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Gladanac B, Jonkman J, Shapiro CM, Brown TJ, Ralph MR, Casper RF, Rahman SA. Removing Short Wavelengths From Polychromatic White Light Attenuates Circadian Phase Resetting in Rats. Front Neurosci 2019; 13:954. [PMID: 31551702 PMCID: PMC6746919 DOI: 10.3389/fnins.2019.00954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/23/2019] [Indexed: 11/13/2022] Open
Abstract
Visible light is the principal stimulus for resetting the mammalian central circadian pacemaker. Circadian phase resetting is most sensitive to short-wavelength (blue) visible light. We examined the effects of removing short-wavelengths < 500 nm from polychromatic white light using optical filters on circadian phase resetting in rats. Under high irradiance conditions, both long- (7 h) and short- (1 h) duration short-wavelength filtered (< 500 nm) light exposure attenuated phase-delay shifts in locomotor activity rhythms by (∼40-50%) as compared to unfiltered light exposure. However, there was no attenuation in phase resetting under low irradiance conditions. Additionally, the reduction in phase-delay shifts corresponded to regionally specific attenuation in molecular markers of pacemaker activation in response to light exposure, including c-FOS, Per1 and Per2. These results demonstrate that removing short-wavelengths from polychromatic white light can attenuate circadian phase resetting in an irradiance dependent manner. These results have important implications for designing and optimizing lighting interventions to enhance circadian adaptation.
Collapse
Affiliation(s)
- Bojana Gladanac
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - James Jonkman
- Advanced Optical Microscopy Facility, University Health Network, Toronto, ON, Canada
| | - Colin M Shapiro
- Department of Psychiatry and Ophthalmology, University of Toronto, Toronto, ON, Canada.,Youthdale Child and Adolescent Sleep Centre, Toronto, ON, Canada
| | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Division of Reproductive Endocrinology and Infertility, University of Toronto, Toronto, ON, Canada
| | - Martin R Ralph
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Robert F Casper
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Division of Reproductive Endocrinology and Infertility, University of Toronto, Toronto, ON, Canada
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
36
|
Kaplan KA, Mashash M, Williams R, Batchelder H, Starr-Glass L, Zeitzer JM. Effect of Light Flashes vs Sham Therapy During Sleep With Adjunct Cognitive Behavioral Therapy on Sleep Quality Among Adolescents: A Randomized Clinical Trial. JAMA Netw Open 2019; 2:e1911944. [PMID: 31553469 PMCID: PMC6763980 DOI: 10.1001/jamanetworkopen.2019.11944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPORTANCE Owing to biological, behavioral, and societal factors, sleep duration in teenagers is often severely truncated, leading to pervasive sleep deprivation. OBJECTIVE To determine whether a novel intervention, using both light exposure during sleep and cognitive behavioral therapy (CBT), would increase total sleep time in teenagers by enabling them to go to sleep earlier than usual. DESIGN, SETTING, AND PARTICIPANTS This double-blind, placebo-controlled, randomized clinical trial, conducted between November 1, 2013, and May 31, 2016, among 102 adolescents enrolled full-time in grades 9 to 12, who expressed difficulty going to bed earlier and waking up early enough, was composed of 2 phases. In phase 1, participants were assigned to receive either 3 weeks of light or sham therapy and were asked to try to go to sleep earlier. In phase 2, participants received 4 brief CBT sessions in addition to a modified light or sham therapy. All analyses were performed on an intent-to-treat basis. INTERVENTIONS Light therapy consisted of receiving a 3-millisecond light flash every 20 seconds during the final 3 hours of sleep (phase 1) or final 2 hours of sleep (phase 2). Sham therapy used an identical device, but delivered 1 minute of light pulses (appearing in 20-second intervals, for a total of 3 pulses) per hour during the final 3 hours of sleep (phase 1) or 2 hours of sleep (phase 2). Light therapy occurred every night during the 4-week intervention. Cognitive behavioral therapy consisted of four 50-minute in-person sessions once per week. MAIN OUTCOMES AND MEASURES Primary outcome measures included diary-based sleep times, momentary ratings of evening sleepiness, and subjective measures of sleepiness and sleep quality. RESULTS Among the 102 participants (54 female [52.9%]; mean [SD] age, 15.6 [1.1] years), 72 were enrolled in phase 1 and 30 were enrolled in phase 2. Mixed-effects models revealed that light therapy alone was inadequate in changing the timing of sleep. However, compared with sham therapy plus CBT alone, light therapy plus CBT significantly moved sleep onset a mean (SD) of 50.1 (27.5) minutes earlier and increased nightly total sleep time by a mean (SD) of 43.3 (35.0) minutes. Light therapy plus CBT also resulted in a 7-fold greater increase in bedtime compliance than that observed among participants receiving sham plus CBT (mean [SD], 2.21 [3.91] vs 0.29 [0.76]), as well as a mean 0.55-point increase in subjective evening sleepiness as compared with a mean 0.48-point decrease in participants receiving sham plus CBT as measured on a 7-point sleepiness scale. CONCLUSIONS AND RELEVANCE This study found that light exposure during sleep, in combination with a brief, motivation-focused CBT intervention, was able to consistently move bedtimes earlier and increase total sleep time in teenagers. This type of passive light intervention in teenagers may lead to novel therapeutic applications. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01406691.
Collapse
Affiliation(s)
- Katherine A. Kaplan
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Meital Mashash
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Rayma Williams
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | | | | | - Jamie M. Zeitzer
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| |
Collapse
|
37
|
Kaladchibachi S, Negelspach DC, Zeitzer JM, Fernandez F. Optimization of circadian responses with shorter and shorter millisecond flashes. Biol Lett 2019; 15:20190371. [PMID: 31387472 PMCID: PMC6731482 DOI: 10.1098/rsbl.2019.0371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
Recent work suggests that the circadian pacemaker responds optimally to millisecond flashes of light, not continuous light exposure as has been historically believed. It is unclear whether these responses are influenced by the physical characteristics of the pulsing. In the present study, Drosophila (n = 2199) were stimulated with 8, 16 or 120 ms flashes. For each duration, the energy content of the exposure was systematically varied by changing the pulse irradiance and the number of stimuli delivered over a fixed 15 min administration window (64 protocols surveyed in all). Results showed that per microjoule invested, 8 ms flashes were more effective at resetting the circadian activity rhythm than 16- and 120 ms flashes (i.e. left shift of the dose-response curve, as well as a higher estimated maximal response). These data suggest that the circadian pacemaker's photosensitivity declines within milliseconds of light contact. Further introduction of light beyond a floor of (at least) 8 ms leads to diminishing returns on phase-shifting.
Collapse
Affiliation(s)
| | | | - Jamie M. Zeitzer
- Department of Psychiatry and Behavioral Sciences and Stanford Center for Sleep Sciences and Medicine, Stanford University, Stanford, CA, USA
- Mental Illness Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Fabian Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
- BIO5 and McKnight Brain Research Institutes, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
38
|
Abstract
Humans live in a 24-hour environment, in which light and darkness follow a diurnal pattern. Our circadian pacemaker, the suprachiasmatic nuclei (SCN) in the hypothalamus, is entrained to the 24-hour solar day via a pathway from the retina and synchronises our internal biological rhythms. Rhythmic variations in ambient illumination impact behaviours such as rest during sleep and activity during wakefulness as well as their underlying biological processes. Rather recently, the availability of artificial light has substantially changed the light environment, especially during evening and night hours. This may increase the risk of developing circadian rhythm sleep-wake disorders (CRSWD), which are often caused by a misalignment of endogenous circadian rhythms and external light-dark cycles. While the exact relationship between the availability of artificial light and CRSWD remains to be established, nocturnal light has been shown to alter circadian rhythms and sleep in humans. On the other hand, light can also be used as an effective and noninvasive therapeutic option with little to no side effects, to improve sleep,mood and general well-being. This article reviews our current state of knowledge regarding the effects of light on circadian rhythms, sleep, and mood.
Collapse
Affiliation(s)
- Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland.,Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Corrado Garbazza
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Manuel Spitschan
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Abstract
Melanopsin is a short-wavelength-sensitive photopigment that was discovered only around 20 years ago. It is expressed in the cell bodies and processes of a subset of retinal ganglion cells in the retina (the intrinsically photosensitive retinal ganglion cells; ipRGCs), thereby allowing them to signal light even in the absence of cone and rod input. Many of the fundamental properties of melanopsin signalling in humans for both visual (e.g. detection, discrimination, brightness estimation) and non-visual function (e.g. melatonin suppression, circadian phase shifting) remain to be elucidated. Here, we give an overview of what we know about melanopsin contributions in visual function and non-visual function.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, United Kingdom.,Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Switzerland
| |
Collapse
|
40
|
Spitschan M, Stefani O, Blattner P, Gronfier C, Lockley SW, Lucas RJ. How to Report Light Exposure in Human Chronobiology and Sleep Research Experiments. Clocks Sleep 2019; 1:280-289. [PMID: 31281903 PMCID: PMC6609447 DOI: 10.3390/clockssleep1030024] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
Exposure to light has short- and long-term impacts on non-visual responses in humans. While many aspects related to non-visual light sensitivity have been characterised (such as the action spectrum for melatonin suppression), much remains to be elucidated. Here, we provide a set of minimum reporting guidelines for reporting the stimulus conditions involving light as an intervention in chronobiology, sleep research and environmental psychology experiments. Corresponding to the current state-of-the-art knowledge (June 2019), these are (i) measure and report the spectral power distribution of the acute stimulus from the observer's point of view; (ii) measure and report the spectral power distribution of the background light environment from the observer's point of view; (iii), make spectra available in tabulated form, (iv) report α-opic (ir)radiances and illuminance; (v) describe the timing properties of stimulus (duration and pattern); (vi) describe the spatial properties of stimulus (spatial arrangement and extent), and (vii) report measurement conditions and equipment. We supplement the minimum reporting guidelines with optional reporting suggestions and discuss limitations of the reporting scheme.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), 4002 Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, 4055 Basel, Switzerland
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), 4002 Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, 4055 Basel, Switzerland
| | - Peter Blattner
- Federal Institute of Metrology METAS, 3003 Bern-Wabern, Switzerland
| | - Claude Gronfier
- Lyon Neuroscience Research Center, Waking team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000 Lyon, France
| | - Steven W. Lockley
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, 18 Innovation Walk, Clayton, VIC 3800, Australia
| | - Robert J. Lucas
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
41
|
Fernandez F. Circadian Responses to Fragmented Light: Research Synopsis in Humans. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:337-348. [PMID: 31249494 PMCID: PMC6585514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Light is the chief signal used by the human circadian pacemaker to maintain precise biological timekeeping. Though it has been historically assumed that light resets the pacemaker's rhythm in a dose-dependent fashion, a number of studies report enhanced circadian photosensitivity to the initial moments of light exposure, such that there are quickly diminishing returns on phase-shifting the longer the light is shown. In the current review, we summarize findings from a family of experiments conducted over two decades in the research wing of the Brigham and Women's Hospital that examined the human pacemaker's responses to standardized changes in light patterns generated from an overhead fluorescent ballast. Across several hundred days of laboratory recording, the research group observed phase-shifts in the body temperature and melatonin rhythms that scaled with illuminance. However, as suspected, phase resetting was optimized when exposure occurred as a series of minute-long episodes separated by periods of intervening darkness. These observations set the stage for a more recent program of study at Stanford University that evaluated whether the human pacemaker was capable of integrating fragmented bursts of light in much the same way it perceived steady luminance. The results here suggest that ultra-short durations of light-lasting just 1-2 seconds in total-can elicit pacemaker responses rivaling those created by continuous hour-long stimulation if those few seconds of light are evenly distributed across the hour as discreet 2-millisecond pulses. We conclude our review with a brief discussion of these findings and their potential application in future phototherapy techniques.
Collapse
Affiliation(s)
- Fabian Fernandez
- To whom all correspondence should be addressed: Fabian Fernandez, PhD, Department of Psychology, 1501 N. Campbell Avenue Life Sciences North, Room 349, Tucson, Arizona, 85724;
| |
Collapse
|
42
|
Prayag AS, Najjar RP, Gronfier C. Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans. J Pineal Res 2019; 66:e12562. [PMID: 30697806 DOI: 10.1111/jpi.12562] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/01/2019] [Accepted: 01/19/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Light elicits a range of non-visual responses in humans. Driven predominantly by intrinsically photosensitive retinal ganglion cells (ipRGCs), but also by rods and/or cones, these responses include melatonin suppression. A sigmoidal relationship has been established between melatonin suppression and light intensity; however, photoreceptoral involvement remains unclear. METHODS AND RESULTS In this study, we first modelled the relationships between alpha-opic illuminances and melatonin suppression using an extensive dataset by Brainard and colleagues. Our results show that (a) melatonin suppression is better predicted by melanopic illuminance compared to other alpha-opic illuminances, (b) melatonin suppression is predicted to occur at levels as low as ~1.5 melanopic lux (melanopsin-weighted irradiance 0.2 µW/cm2 ), (c) saturation occurs at 305 melanopic lux (melanopsin-weighted irradiance 36.6 µW/cm2 ). We then tested this melanopsin-weighted illuminance-response model derived from Brainard and colleagues' data and show that it predicts equally well melatonin suppression data from our laboratory, although obtained using different intensities and exposure duration. DISCUSSION Together, our findings suggest that melatonin suppression by monochromatic lights is predominantly driven by melanopsin and that it can be initiated at extremely low melanopic lux levels in experimental conditions. This emphasizes the concern of the non-visual impacts of low light intensities in lighting design and light-emitting devices.
Collapse
Affiliation(s)
- Abhishek S Prayag
- Lyon Neuroscience Research Center, Integrative Physiology of the Brain Arousal Systems, Waking team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
| | - Raymond P Najjar
- Department of Visual Neuroscience, Singapore Eye Research Institute, Singapore
- The Ophthalmology & Visual Sciences ACP, Duke-NUS Medical School, Singapore
| | - Claude Gronfier
- Lyon Neuroscience Research Center, Integrative Physiology of the Brain Arousal Systems, Waking team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
| |
Collapse
|
43
|
Gnocchi D, Custodero C, Sabbà C, Mazzocca A. Circadian rhythms: a possible new player in non-alcoholic fatty liver disease pathophysiology. J Mol Med (Berl) 2019; 97:741-759. [PMID: 30953079 DOI: 10.1007/s00109-019-01780-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022]
Abstract
Over the last decades, a better knowledge of the molecular machinery supervising the regulation of circadian clocks has been achieved, and numerous findings have helped in unravelling the outstanding significance of the molecular clock for the proper regulation of our physiologic and metabolic homeostasis. Non-alcoholic fatty liver disease (NAFLD) is currently considered as one of the emerging liver pathologies in the Western countries due to the modification of eating habits and lifestyle. Although NAFLD is considered a pretty benign condition, it can progress towards non-alcoholic steatohepatitis (NASH) and eventually hepatocellular carcinoma (HCC). The pathogenic mechanisms involved in NAFLD development are complex, since this disease is a multifactorial condition. Major metabolic deregulations along with a genetic background are believed to take part in this process. In this light, the aim of this review is to give a comprehensive description of how our circadian machinery is regulated and to describe to what extent our internal clock is involved in the regulation of hormonal and metabolic homeostasis, and by extension in the development and progression of NAFLD/NASH and eventually in the onset of HCC.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Carlo Custodero
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
44
|
Abstract
Light, through its non-imaging forming effects, plays a dominant role on a myriad of physiological functions, including the human sleep–wake cycle. The non-image forming effects of light heavily rely on specific properties such as intensity, duration, timing, pattern, and wavelengths. Here, we address how specific properties of light influence sleep and wakefulness in humans through acute effects, e.g., on alertness, and/or effects on the circadian timing system. Of critical relevance, we discuss how different characteristics of light exposure across the 24-h day can lead to changes in sleep–wake timing, sleep propensity, sleep architecture, and sleep and wake electroencephalogram (EEG) power spectra. Ultimately, knowledge on how light affects sleep and wakefulness can improve light settings at home and at the workplace to improve health and well-being and optimize treatments of chronobiological disorders.
Collapse
|
45
|
Prayag AS, Jost S, Avouac P, Dumortier D, Gronfier C. Dynamics of Non-visual Responses in Humans: As Fast as Lightning? Front Neurosci 2019; 13:126. [PMID: 30890907 PMCID: PMC6411922 DOI: 10.3389/fnins.2019.00126] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
The eye drives non-visual (NV) responses to light, including circadian resetting, pupillary reflex and alerting effects. Initially thought to depend on melanopsin-expressing retinal ganglion cells (ipRGCs), classical photopigments play a modulatory role in some of these responses. As most studies have investigated only a limited number of NV functions, generally under conditions of relatively high light levels and long duration of exposure, whether NV functions share similar irradiance sensitivities and response dynamics during light exposure is unknown. We addressed this issue using light exposure paradigms spectrally and spatially tuned to target mainly cones or ipRGCs, and by measuring longitudinally (50 min) several NV responses in 28 men. We demonstrate that the response dynamics of NV functions are faster than previously thought. We find that the brain, the heart, and thermoregulation are activated within 1 to 5 min of light exposure. Further, we show that NV functions do not share the same response sensitivities. While the half-maximum response is only ∼48 s for the tonic pupil diameter, it is ∼12 min for EEG gamma activity. Most NV responses seem to be saturated by low light levels, as low as 90 melanopic lux. Our results also reveal that it is possible to maintain optimal visual performance while modulating NV responses. Our findings have real-life implications. On one hand, light therapy paradigms should be re-evaluated with lower intensities and shorter durations, with the potential of improving patients' compliance. On the other hand, the significant impact of low intensity and short duration light exposures on NV physiology should make us reconsider the potential health consequences of light exposure before bedtime, in particular on sleep and circadian physiology.
Collapse
Affiliation(s)
- Abhishek S Prayag
- Lyon Neuroscience Research Center, Integrative Physiology of the Brain Arousal Systems, Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Sophie Jost
- ENTPE, LGCB, Université de Lyon, Lyon, France
| | | | | | - Claude Gronfier
- Lyon Neuroscience Research Center, Integrative Physiology of the Brain Arousal Systems, Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
46
|
Hanifin J, Lockley S, Cecil K, West K, Jablonski M, Warfield B, James M, Ayers M, Byrne B, Gerner E, Pineda C, Rollag M, Brainard G. Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses. Physiol Behav 2019; 198:57-66. [DOI: 10.1016/j.physbeh.2018.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/06/2018] [Accepted: 10/03/2018] [Indexed: 11/25/2022]
|
47
|
Han Z, Li X, Xu W, She Q, Liang S, Li X, Li Y. Melatonin concentrations in Chinese mitten crabs (Eriocheir sinesis) are affected by artificial photoperiods. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1533725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhibin Han
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weibin Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qiuxin She
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shudong Liang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yingdong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
48
|
Tähkämö L, Partonen T, Pesonen AK. Systematic review of light exposure impact on human circadian rhythm. Chronobiol Int 2018; 36:151-170. [DOI: 10.1080/07420528.2018.1527773] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Leena Tähkämö
- Lighting Unit, Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Timo Partonen
- Mental Health Unit, Department of Public Health Solutions, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Anu-Katriina Pesonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, University of Helsinki, Finland
| |
Collapse
|
49
|
Responses to Intermittent Light Stimulation Late in the Night Phase Before Dawn. Clocks Sleep 2018; 1:26-41. [PMID: 33089153 PMCID: PMC7509681 DOI: 10.3390/clockssleep1010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/26/2018] [Indexed: 12/04/2022] Open
Abstract
The circadian clock is comprised of two oscillators that independently track sunset (evening) and sunrise (morning), though little is known about how light responses differ in each. Here, we quantified the morning oscillator’s responses to 19 separate pulse trains, collecting observations from over 1300 Drosophila at ZT23. Our results show that the advances in activity onset produced by these protocols depended on the tempo of light administration even when total exposure was conserved across a 15-min window. Moreover, patterns of stimulation previously shown to optimize the evening oscillator’s delay resetting at ZT13 (an hour after dusk) were equally effective for the M oscillator at ZT23 (an hour before dawn), though the morning oscillator was by comparison more photosensitive and could benefit from a greater number of fractionation strategies that better converted light into phase-shifting drive. These data continue to build the case that the reading frames for the pacemaker’s time-of-day estimates at dusk and dawn are not uniform and suggest that the “photologic” for the evening versus morning oscillator’s resetting might be dissociable.
Collapse
|
50
|
Negelspach DC, Kaladchibachi S, Fernandez F. The circadian activity rhythm is reset by nanowatt pulses of ultraviolet light. Proc Biol Sci 2018; 285:20181288. [PMID: 30068685 PMCID: PMC6111179 DOI: 10.1098/rspb.2018.1288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
The circadian pacemaker synchronizes to the Earth's rotation by tracking step-by-step changes in illumination that occur as the sun passes the horizon. While twilight progressions of irradiance and colour are considered important stimuli in this process, comparably less thought has been given to the possibility that ultraviolet A (UVA) radiation might actually play a more formative role given its evolutionary significance in shaping 24 h timekeeping. Here, we show that Drosophila activity rhythms can be phase-shifted by UVA light at an energy range seated well below that of the visible spectrum. Because the energy threshold for this resetting matches the incident amount of UVA on the human retina at twilight, our results suggest that UVA light has the potential to function as a similar time cue in people.
Collapse
Affiliation(s)
| | | | - Fabian Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|