1
|
Bao Y, Liu J, Li Z, Sun Y, Chen J, Ma Y, Li G, Wang T, Liu H, Zhang X, Yan R, Yao Z, Guo X, Fang R, Feng J, Xia W, Xiang AP, Chen X. Ex vivo-generated human CD1c + regulatory B cells by a chemically defined system suppress immune responses and alleviate graft-versus-host disease. Mol Ther 2024; 32:4372-4382. [PMID: 39489917 PMCID: PMC11638867 DOI: 10.1016/j.ymthe.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
IL-10+ regulatory B cells (Bregs) show great promise in treating graft-versus-host disease (GVHD), a life-threatening complication of post-hematopoietic stem cell transplantation. However, obtaining high-quality human IL-10+ Bregs in vitro remains a challenge due to the lack of unique specific markers and the triggering of pro-inflammatory cytokine expression. Here, by uncovering the critical signaling pathways in Breg induction by mesenchymal stromal cells (MSCs), we first established an efficient Breg induction system based on MSCs and GSK-3β blockage (CHIR-99021), which had a robust capacity to induce IL-10+ Bregs while suppressing tumor necrosis factor α (TNF-α) expression. Furthermore, these Breg populations could be identified and enriched by CD1c+. Mechanistically, MSCs induced the expansion of Bregs through the PKA-mediated phosphorylation of cAMP response element-binding protein (CREB). Thus, we developed a chemically defined inducing protocol by PKA-CREB agonist, instead of MSCs, which can also effectively induce CD1c+ Bregs with lower TNF-α expression. Importantly, induced CD1c+ Bregs suppressed the proliferation of peripheral blood mononuclear cells and the inflammatory cytokine secretion of T cells. When adoptively transferred into a humanized mouse model of GVHD, induced CD1c+ Bregs effectively alleviated GVHD. Overall, we established an efficient ex vivo induction system for human Bregs, which has implications for developing novel Bregs-based therapies for GVHD.
Collapse
Affiliation(s)
- Yingying Bao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China; Institute of Gene and Cell Therapy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jialing Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Zhishan Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Yueming Sun
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Junhua Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Gang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Huanyi Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Rong Yan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Zhenxia Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Xiaolu Guo
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, Guangdong, China
| | - Rui Fang
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, Guangdong, China
| | - Jianqi Feng
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, Guangdong, China
| | - Wenjie Xia
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou 510095, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China.
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China.
| |
Collapse
|
2
|
Balistreri CR, Vinciguerra C, Magro D, Di Stefano V, Monastero R. Towards personalized management of myasthenia gravis phenotypes: From the role of multi-omics to the emerging biomarkers and therapeutic targets. Autoimmun Rev 2024; 23:103669. [PMID: 39426579 DOI: 10.1016/j.autrev.2024.103669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Predicting the onset, progression, and outcome of rare and chronic neurological diseases, i.e. neuromuscular diseases, is an important goal for both clinicians and researchers and should guide clinical decision-making and personalized treatment plans. A prime example is myasthenia gravis (MG), an antibody-mediated disease that affects multiple components of the postsynaptic membrane, impairing neuromuscular transmission and producing fatigable muscle weakness. MG is characterized by several clinical phenotypes, defined by a broad spectrum of factors, which have contributed to the current lack of consensus on the optimal management and treatments of this disease and its related phenotypes (subtypes). This represents a crucial challenge in MG and encourages a revolutionary change in diagnostic, prognostic and therapeutic guidelines. Emerging factors, such as demographic, clinical and pathophysiological factors, must also be considered. Consequently, the different MG phenotypes are characterized by precise biological signatures, which could represent appropriate biomarkers and targets. Here we describe and discuss these new concepts, highlighting that, thanks to multi-omics technologies, the identification of emerging diagnostic/prognostic biomarkers, such as miRNAs, and the subsequent development of new diagnostic/therapeutic algorithms could be facilitated. The latter, in turn, could facilitate the management of different MG phenotypes also in a personalized manner. Limitations and advantages are also reported.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bind), University of Palermo, 90134 Palermo, Italy.
| | - Claudia Vinciguerra
- Neurology Unit, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84131 Salerno, Italy.
| | - Daniele Magro
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bind), University of Palermo, 90134 Palermo, Italy.
| | - Vincenzo Di Stefano
- Neurology Unit, Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy.
| | - Roberto Monastero
- Memory and Parkinson's disease Center Policlinico "Paolo Giaccone", Palermo, and Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90129, Via La Loggia 1, Palermo, Italy.
| |
Collapse
|
3
|
Pogorelov D, Bode SFN, He X, Ramiro-Garcia J, Hedin F, Ammerlaan W, Konstantinou M, Capelle CM, Zeng N, Poli A, Domingues O, Montamat G, Hunewald O, Ciré S, Baron A, Longworth J, Demczuk A, Bazon ML, Casper I, Klimek L, Neuberger-Castillo L, Revets D, Guyonnet L, Delhalle S, Zimmer J, Benes V, Codreanu-Morel F, Lehners-Weber C, Weets I, Alper P, Brenner D, Gutermuth J, Guerin C, Morisset M, Hentges F, Schneider R, Shamji MH, Betsou F, Wilmes P, Glaab E, Cosma A, Goncalves J, Hefeng FQ, Ollert M. Multiomics approaches disclose very-early molecular and cellular switches during insect-venom allergen-specific immunotherapy: an observational study. Nat Commun 2024; 15:10266. [PMID: 39592626 PMCID: PMC11599746 DOI: 10.1038/s41467-024-54684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Allergen-specific immunotherapy (AIT) induces immune tolerance, showing the highest success rate (>95%) for insect venom while a much lower chance for pollen allergy. However, the molecular switches leading to successful durable tolerance restoration remain elusive. The primary outcome of this observational study is the comprehensive immunological cellular characterization during the AIT initiation phase, whereas the secondary outcomes are the serological and Th2-cell-type-specific transcriptomic analyses. Here we apply a multilayer-omics approach to reveal dynamic peripheral immune landscapes during the AIT-initiation phase in venom allergy patients (VAP) versus pollen-allergic and healthy controls. Already at baseline, VAP exhibit altered abundances of several cell types, including classical monocytes (cMono), CD4+ hybrid type 1-type 17 cells (Th1-Th17 or Th1/17) and CD8+ counterparts (Tc1-Tc17 or Tc1/17). At 8-24 h following AIT launch in VAP, we identify a uniform AIT-elicited pulse of late-transitional/IL-10-producing B cells, IL-6 signaling within Th2 cells and non-inflammatory serum-IL-6 levels. Sequential induction of activation and survival protein markers also immediately occur. A disequilibrium between serum IL-6 and cMono in VAP baseline is restored at day seven following AIT launch. Our longitudinal analysis discovers molecular switches during initiation-phase insect-venom AIT that secure long-term outcomes. Trial number: NCT02931955.
Collapse
Affiliation(s)
- Dimitrii Pogorelov
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Center of Allergy & Environment, Technical University of Munich, Munich, Germany
| | - Sebastian Felix Nepomuk Bode
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Xin He
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Javier Ramiro-Garcia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Fanny Hedin
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Wim Ammerlaan
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
| | - Maria Konstantinou
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Christophe M Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Ni Zeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Guillem Montamat
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Séverine Ciré
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Alexandre Baron
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Agnieszka Demczuk
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Murilo Luiz Bazon
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Ingrid Casper
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | | | - Dominique Revets
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Lea Guyonnet
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Cytometry Platform, Institut Curie; Innovative Therapies in Haemostasis, INSERM, Université de Paris, Paris, France
| | - Sylvie Delhalle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Françoise Codreanu-Morel
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Christiane Lehners-Weber
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Ilse Weets
- Department of Clinical Biology/ Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Pinar Alper
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Jan Gutermuth
- Department of Dermatology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Coralie Guerin
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Cytometry Platform, Institut Curie; Innovative Therapies in Haemostasis, INSERM, Université de Paris, Paris, France
| | - Martine Morisset
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
- Allergy Unit, Angers University Hospital, Angers, France
| | - François Hentges
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, Imperial College London, London, UK
| | - Fay Betsou
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
- CRBIP, Institut Pasteur, Université Paris Cité, Paris, France
| | - Paul Wilmes
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Antonio Cosma
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jorge Goncalves
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Feng Q Hefeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
4
|
Ahsan NF, Lourenço S, Psyllou D, Long A, Shankar S, Bashford-Rogers R. The current understanding of the phenotypic and functional properties of human regulatory B cells (Bregs). OXFORD OPEN IMMUNOLOGY 2024; 5:iqae012. [PMID: 39346706 PMCID: PMC11427547 DOI: 10.1093/oxfimm/iqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
B cells can have a wide range of pro- and anti- inflammatory functions. A subset of B cells called regulatory B cells (Bregs) can potently suppress immune responses. Bregs have been shown to maintain immune homeostasis and modulate inflammatory responses. Bregs are an exciting cellular target across a range of diseases, including Breg induction in autoimmunity, allergy and transplantation, and Breg suppression in cancers and infection. Bregs exhibit a remarkable phenotypic heterogeneity, rendering their unequivocal identification a challenging task. The lack of a universally accepted and exclusive surface marker set for Bregs across various studies contributes to inconsistencies in their categorization. This review paper presents a comprehensive overview of the current understanding of the phenotypic and functional properties of human Bregs while addressing the persisting ambiguities and discrepancies in their characterization. Finally, the paper examines the promising therapeutic opportunities presented by Bregs as their immunomodulatory capacities have gained attention in the context of autoimmune diseases, allergic conditions, and cancer. We explore the exciting potential in harnessing Bregs as potential therapeutic agents and the avenues that remain open for the development of Breg-based treatment strategies.
Collapse
Affiliation(s)
- Nawara Faiza Ahsan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Stella Lourenço
- Keizo Asami Institute, Federal University of Pernambuco, Recife 50740-520, Brazil
| | - Dimitra Psyllou
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Alexander Long
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Sushma Shankar
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Rachael Bashford-Rogers
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Oxford Cancer Centre, University of Oxford, Oxford OX3 7LH, United Kingdom
| |
Collapse
|
5
|
Luu M, Krause FF, Monning H, Wempe A, Leister H, Mainieri L, Staudt S, Ziegler-Martin K, Mangold K, Kappelhoff N, Shaul YD, Göttig S, Plaza-Sirvent C, Schulte LN, Bekeredjian-Ding I, Schmitz I, Steinhoff U, Visekruna A. Dissecting the metabolic signaling pathways by which microbial molecules drive the differentiation of regulatory B cells. Mucosal Immunol 2024:S1933-0219(24)00096-5. [PMID: 39265892 DOI: 10.1016/j.mucimm.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The host-microbiome axis has been implicated in promoting anti-inflammatory immune responses. Yet, the underlying molecular mechanisms of commensal-mediated IL-10 production by regulatory B cells (Bregs) are not fully elucidated. Here, we demonstrate that bacterial CpG motifs trigger the signaling downstream of TLR9 promoting IκBNS-mediated expression of Blimp-1, a transcription regulator of IL-10. Surprisingly, this effect was counteracted by the NF-κB transcription factor c-Rel. A functional screen for intestinal bacterial species identified the commensal Clostridium sporogenes, secreting high amounts of short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs), as an amplifier of IL-10 production by promoting sustained mTOR signaling in B cells. Consequently, enhanced Breg functionality was achieved by combining CpG with the SCFA butyrate or the BCFA isovalerate thereby synergizing TLR- and mTOR-mediated pathways. Collectively, Bregs required two bacterial signals (butyrate and CpG) to elicit their full suppressive capacity and ameliorate T cell-mediated intestinal inflammation. Our study has dissected the molecular pathways induced by bacterial factors, which might contribute not only to better understanding of host-microbiome interactions, but also to exploration of new strategies for improvement of anti-inflammatory cellular therapy.
Collapse
Affiliation(s)
- Maik Luu
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany; Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany.
| | - Felix F Krause
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Heide Monning
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Anne Wempe
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Lisa Mainieri
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Sarah Staudt
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kai Ziegler-Martin
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kira Mangold
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany; Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nora Kappelhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Yoav D Shaul
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| | | | - Leon N Schulte
- Institute for Lung Research, Philipps-University Marburg, Marburg, Germany
| | | | - Ingo Schmitz
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
6
|
Castenmiller SM, Kanagasabesan N, Guislain A, Nicolet BP, van Loenen MM, Monkhorst K, Veenhof AA, Smit EF, Hartemink KJ, Haanen JB, de Groot R, Wolkers MC. Tertiary lymphoid structure-related immune infiltrates in NSCLC tumor lesions correlate with low tumor-reactivity of TIL products. Oncoimmunology 2024; 13:2392898. [PMID: 39188755 PMCID: PMC11346574 DOI: 10.1080/2162402x.2024.2392898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Adoptive transfer of tumor infiltrating lymphocytes (TIL therapy) has proven highly effective for treating solid cancers, including non-small cell lung cancer (NSCLC). However, not all patients benefit from this therapy for yet unknown reasons. Defining markers that correlate with high tumor-reactivity of the autologous TIL products is thus key for achieving better tailored immunotherapies. We questioned whether the composition of immune cell infiltrates correlated with the tumor-reactivity of expanded TIL products. Unbiased flow cytometry analysis of immune cell infiltrates of 26 early-stage and 20 late-stage NSCLC tumor lesions was used for correlations with the T cell differentiation and activation status, and with the expansion rate and anti-tumor response of generated TIL products. The composition of tumor immune infiltrates was highly variable between patients. Spearman's Rank Correlation revealed that high B cell infiltration negatively correlated with the tumor-reactivity of the patient's expanded TIL products, as defined by cytokine production upon exposure to autologous tumor digest. In-depth analysis revealed that tumor lesions with high B cell infiltrates contained tertiary lymphoid structure (TLS)-related immune infiltrates, including BCL6+ antibody-secreting B cells, IgD+BCL6+ B cells and CXCR5+BLC6+ CD4+ T cells, and higher percentages of naïve CD8+ T cells. In conclusion, the composition of immune cell infiltrates in NSCLC tumors associates with the functionality of the expanded TIL product. Our findings may thus help improve patient selection for TIL therapy.
Collapse
Affiliation(s)
- Suzanne M. Castenmiller
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Nandhini Kanagasabesan
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Aurélie Guislain
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Benoît P. Nicolet
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Marleen M. van Loenen
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Kim Monkhorst
- Department of Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
| | - Alexander A.F.A. Veenhof
- Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
| | - Egbert F. Smit
- Department of Thoracic Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Koen J. Hartemink
- Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
| | - John B.A.G. Haanen
- Division of Medical Oncology and Division of Molecular Oncology and Immunology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Head of Melanoma Clinic, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Rosa de Groot
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Hematology, LUMC, Leiden, The Netherlands
| | - Monika C. Wolkers
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
7
|
Qiu GH, Yu B, Ma M. G protein-coupled receptor-mediated signaling of immunomodulation in tumor progression. FASEB J 2024; 38:e23829. [PMID: 39017658 DOI: 10.1096/fj.202400458r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
G protein-coupled receptors (GPCRs) are essential contributors to tumor growth and metastasis due to their roles in immune cell regulation. Therefore, GPCRs are potential targets for cancer immunotherapy. Here, we discuss the current understanding of the roles of GPCRs and their signaling pathways in tumor progression from an immunocellular perspective. Additionally, we focus on the roles of GPCRs in regulating immune checkpoint proteins involved in immune evasion. Finally, we review the progress of clinical trials of GPCR-targeted drugs for cancer treatment, which may be combined with immunotherapy to improve treatment efficacy. This expanded understanding of the role of GPCRs may shed light on the mechanisms underlying tumor progression and provide a novel perspective on cancer immunotherapy.
Collapse
Affiliation(s)
- Guang-Hong Qiu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Bin Yu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Mei Ma
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| |
Collapse
|
8
|
Noviello M, De Lorenzo R, Chimienti R, Maugeri N, De Lalla C, Siracusano G, Lorè NI, Rancoita PMV, Cugnata F, Tassi E, Dispinseri S, Abbati D, Beretta V, Ruggiero E, Manfredi F, Merolla A, Cantarelli E, Tresoldi C, Pastori C, Caccia R, Sironi F, Marzinotto I, Saliu F, Ghezzi S, Lampasona V, Vicenzi E, Cinque P, Manfredi AA, Scarlatti G, Dellabona P, Lopalco L, Di Serio C, Malnati M, Ciceri F, Rovere-Querini P, Bonini C. The longitudinal characterization of immune responses in COVID-19 patients reveals novel prognostic signatures for disease severity, patients' survival and long COVID. Front Immunol 2024; 15:1381091. [PMID: 39136010 PMCID: PMC11317765 DOI: 10.3389/fimmu.2024.1381091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/07/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction SARS-CoV-2 pandemic still poses a significant burden on global health and economy, especially for symptoms persisting beyond the acute disease. COVID-19 manifests with various degrees of severity and the identification of early biomarkers capable of stratifying patient based on risk of progression could allow tailored treatments. Methods We longitudinally analyzed 67 patients, classified according to a WHO ordinal scale as having Mild, Moderate, or Severe COVID-19. Peripheral blood samples were prospectively collected at hospital admission and during a 6-month follow-up after discharge. Several subsets and markers of the innate and adaptive immunity were monitored as putative factors associated with COVID-19 symptoms. Results More than 50 immunological parameters were associated with disease severity. A decision tree including the main clinical, laboratory, and biological variables at admission identified low NK-cell precursors and CD14+CD91+ monocytes, and high CD8+ Effector Memory T cell frequencies as the most robust immunological correlates of COVID-19 severity and reduced survival. Moreover, low regulatory B-cell frequency at one month was associated with the susceptibility to develop long COVID at six months, likely due to their immunomodulatory ability. Discussion These results highlight the profound perturbation of the immune response during COVID-19. The evaluation of specific innate and adaptive immune-cell subsets allows to distinguish between different acute and persistent COVID-19 symptoms.
Collapse
Affiliation(s)
- Maddalena Noviello
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Rebecca De Lorenzo
- Vita-Salute San Raffaele University, Milan, Italy
- Internal Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Raniero Chimienti
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Norma Maugeri
- Autoimmunity and Vascular Inflammation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia De Lalla
- Experimental Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Gabriel Siracusano
- Immunobiology of Human Immunodeficiency Virus (HIV) Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Ivan Lorè
- Emerging Bacterial Pathogens Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paola Maria Vittoria Rancoita
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Cugnata
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Beretta
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Aurora Merolla
- Vita-Salute San Raffaele University, Milan, Italy
- Internal Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Cantarelli
- Biological Resource Center Centro Risorse Biologiche-Ospedale San Raffaele (CRB-OSR), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Tresoldi
- Biological Resource Center Centro Risorse Biologiche-Ospedale San Raffaele (CRB-OSR), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Pastori
- Immunobiology of Human Immunodeficiency Virus (HIV) Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Caccia
- Neurovirology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sironi
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Marzinotto
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Fabio Saliu
- Emerging Bacterial Pathogens Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paola Cinque
- Neurovirology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Andrea Manfredi
- Autoimmunity and Vascular Inflammation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Lopalco
- Immunobiology of Human Immunodeficiency Virus (HIV) Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Clelia Di Serio
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Mauro Malnati
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy
- Internal Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
9
|
Sîrbulescu RF, Nicholson K, Kawai K, Hilton OM, Sobell D, Jin G, Verrill DE, Dwyer LJ, Xiong Y, Bachanová P, Kim SE, Gallup S, Gelevski D, Daley H, Hernandez Rodriguez DE, Negre H, Sturtevant O, Nikiforow S, Ritz J, Chen YB, Reeves PM, Sluder AE, Berry JD, Sadri-Vakili G, Cudkowicz M, Poznansky MC. Allogeneic B cell immunomodulatory therapy in amyotrophic lateral sclerosis. FASEB J 2024; 38:e23796. [PMID: 38967302 DOI: 10.1096/fj.202302659r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an orphan neurodegenerative disease. Immune system dysregulation plays an essential role in ALS onset and progression. Our preclinical studies have shown that the administration of exogenous allogeneic B cells improves outcomes in murine models of skin and brain injury through a process termed pligodraxis, in which B cells adopt an immunoregulatory and neuroprotective phenotype in an injured environment. Here, we investigated the effects of B-cell therapy in the SOD1G93A mouse preclinical model of ALS and in a person living with ALS. Purified splenic mature naïve B cells from haploidentical donor mice were administered intravenously in SOD1G93A mice for a total of 10 weekly doses. For the clinical study in a person with advanced ALS, IgA gammopathy of unclear significance, and B lymphopenia, CD19+ B cells were positively selected from a healthy haploidentical donor and infused intravenously twice, at a 60-day interval. Repeated intravenous B-cell administration was safe and significantly delayed disease onset, extended survival, reduced cellular apoptosis, and decreased astrogliosis in SOD1G93A mice. Repeated B-cell infusion in a person with ALS was safe and did not appear to generate a clinically evident inflammatory response. An improvement of 5 points on the ALSFRS-R scale was observed after the first infusion. Levels of inflammatory markers showed persistent reduction post-infusion. This represents a first demonstration of the efficacy of haploidentical B-cell infusion in the SOD1G93A mouse and the safety and feasibility of using purified haploidentical B lymphocytes as a cell-based therapeutic strategy for a person with ALS.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Sean M. Healey and AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Katharine Nicholson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Sean M. Healey and AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kento Kawai
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Orla M Hilton
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Don Sobell
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gina Jin
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David E Verrill
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liam J Dwyer
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Bachanová
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Spencer E Kim
- Sean M. Healey and AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shannon Gallup
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dario Gelevski
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Heather Daley
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Hélène Negre
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Olive Sturtevant
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Nikiforow
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jerome Ritz
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi-Bin Chen
- The Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick M Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ann E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James D Berry
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Sean M. Healey and AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ghazaleh Sadri-Vakili
- Sean M. Healey and AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Merit Cudkowicz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Sean M. Healey and AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Fukasawa T, Yoshizaki-Ogawa A, Sato S, Yoshizaki A. The role of B cells in systemic sclerosis. J Dermatol 2024; 51:904-913. [PMID: 38321641 DOI: 10.1111/1346-8138.17134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024]
Abstract
Systemic sclerosis (SSc) is a rare and refractory systemic disease characterized by fibrosis and vasculopathy in the presence of autoimmune abnormalities. While the exact cause of SSc is incompletely understood, the specific autoantibodies identified in SSc are closely linked to disease severity and prognosis, indicating a significant role of autoimmune abnormalities in the pathogenesis of SSc. Although the direct pathogenic mechanisms of autoantibodies in SSc are not fully elucidated, numerous prior investigations have demonstrated the involvement of B cells in the pathogenesis of SSc through various mechanisms. Additionally, several clinical trials have explored the efficacy of B-cell depletion therapy for SSc, with many reporting positive outcomes. However, the role of B cells in SSc pathogenesis is multifaceted, as they can both promote inflammation and exert inhibitory functions. This article provides an overview of the involvement of B cells in SSc development, incorporating the latest research findings.
Collapse
Affiliation(s)
- Takemichi Fukasawa
- Department of Dermatology, Systemic Sclerosis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, Systemic Sclerosis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Systemic Sclerosis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Systemic Sclerosis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Markmann JF, Burrell BE, Bromberg JS, Hartono C, Kaufman DB, Possselt AM, Naji A, Bridges ND, Breeden C, Kanaparthi S, Pardo J, Kopetskie H, Mason K, Lim N, Chandran S. Immunosuppression withdrawal in living-donor renal transplant recipients following induction with antithymocyte globulin and rituximab: Results of a prospective clinical trial. Am J Transplant 2024; 24:1193-1204. [PMID: 38467375 DOI: 10.1016/j.ajt.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Durable tolerance in kidney transplant recipients remains an important but elusive goal. We hypothesized that adding B cell depletion to T cell depletion would generate an immune milieu postreconstitution dominated by immature transitional B cells, favoring tolerance. The Immune Tolerance Network ITN039ST Research Study of ATG and Rituximab in Renal Transplantation was a prospective multicenter pilot study of live donor kidney transplant recipients who received induction with rabbit antithymocyte globulin and rituximab and initiated immunosuppression (IS) withdrawal (ISW) at 26 weeks. The primary endpoint was freedom from rejection at 52 weeks post-ISW. Six of the 10 subjects successfully completed ISW. Of these 6 subjects, 4 restarted immunosuppressive medications due to acute rejection or recurrent disease, 1 remains IS-free for over 9 years, and 1 was lost to follow-up after being IS-free for 42 weeks. There were no cases of patient or graft loss. CD19+ B cell frequencies returned to predepletion levels by 26 weeks posttransplant; immunoglobulin D+CD27--naïve B cells predominated. In contrast, memory cells dominated the repopulation of the T cell compartment. A regimen of combined B and T cell depletion did not generate the tolerogenic B cell profile observed in preclinical studies and did not lead to durable tolerance in the majority of kidney transplant recipients.
Collapse
Affiliation(s)
- James F Markmann
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, Massachusetts, USA
| | - Bryna E Burrell
- Biomarker Discovery Group, Immune Tolerance Network, Bethesda, Maryland, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Choli Hartono
- Rogosin Institute, New York Presbyterian Hospital-Weill Cornell Medicine, New York, New York, USA
| | - Dixon B Kaufman
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrew M Possselt
- Department of Surgery, University of California-San Francisco Medical Center, San Francisco, California, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Nancy D Bridges
- Division of Allergy, Immunology and Transplantation, The National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Cynthia Breeden
- Immune Tolerance Network, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Sai Kanaparthi
- Immune Tolerance Network, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Jorge Pardo
- Immune Tolerance Network, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | - Noha Lim
- Immune Tolerance Network, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Sindhu Chandran
- Immune Tolerance Network, Clinical Trials Group at the University of California- San Francisco, San Francisco, California, USA.
| |
Collapse
|
12
|
Akatani R, Chihara N, Hara A, Tsuji A, Koto S, Kobayashi K, Toda T, Matsumoto R. Interleukin-6 Signaling Blockade Induces Regulatory Plasmablasts in Neuromyelitis Optica Spectrum Disorder. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200266. [PMID: 38889374 PMCID: PMC11188987 DOI: 10.1212/nxi.0000000000200266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/17/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND AND OBJECTIVES Interleukin-6 receptor antibodies (IL-6R Abs), including satralizumab, are increasingly used to prevent relapse for neuromyelitis optica spectrum disorder (NMOSD). However, the detailed mechanism of action of this treatment on the lymphocyte phenotype remains unclear. This study focused on B cells in patients with NMOSD, hypothesizing that IL-6R Ab enables B cells to acquire regulatory functions by producing the anti-inflammatory cytokine IL-10. METHODS Peripheral blood mononuclear cells were stimulated in vitro to induce the expansion of B-cell subsets, double-negative B cells (DNs; CD19+ IgD-, CD27-) and plasmablasts (PBs; CD19+, CD27hi, CD38hi). Whole B cells, DNs, or PBs were isolated after culture with IL-6R Ab, and IL-10 expression was quantified using quantitative PCR and a cytometric bead array. RNA sequencing was performed to identify the marker of regulatory PBs induced by IL-6R Ab. RESULTS DNs and PBs were observed to expand in patients with NMSOD during the acute attacks. In the in vitro model, IL-6R Ab increased IL-10 expression in B cells. Notably, IL-10 expression increased in PBs but not in DNs. Using RNA sequencing, CD200 was identified as a marker of regulatory PBs among the differentially expressed upregulated genes. CD200+ PBs produced more IL-10 than CD200- PBs. Furthermore, patients with NMOSD who received satralizumab had a higher proportion of CD200+ PBs than patients during the acute attacks. DISCUSSION Treatment with IL-6 signaling blockade elicited a regulatory phenotype in B cells and PBs. CD200+ PBs may be a marker of treatment responsiveness in the context of NMOSD pathophysiology.
Collapse
Affiliation(s)
- Ritsu Akatani
- From the Division of Neurology (R.A., N.C., A.H., A.T., S.K., R.M.); Division of Molecular Brain Science (K.K.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, The University of Tokyo, Japan
| | - Norio Chihara
- From the Division of Neurology (R.A., N.C., A.H., A.T., S.K., R.M.); Division of Molecular Brain Science (K.K.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, The University of Tokyo, Japan
| | - Atsushi Hara
- From the Division of Neurology (R.A., N.C., A.H., A.T., S.K., R.M.); Division of Molecular Brain Science (K.K.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, The University of Tokyo, Japan
| | - Asato Tsuji
- From the Division of Neurology (R.A., N.C., A.H., A.T., S.K., R.M.); Division of Molecular Brain Science (K.K.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, The University of Tokyo, Japan
| | - Shusuke Koto
- From the Division of Neurology (R.A., N.C., A.H., A.T., S.K., R.M.); Division of Molecular Brain Science (K.K.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, The University of Tokyo, Japan
| | - Kazuhiro Kobayashi
- From the Division of Neurology (R.A., N.C., A.H., A.T., S.K., R.M.); Division of Molecular Brain Science (K.K.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, The University of Tokyo, Japan
| | - Tatsushi Toda
- From the Division of Neurology (R.A., N.C., A.H., A.T., S.K., R.M.); Division of Molecular Brain Science (K.K.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, The University of Tokyo, Japan
| | - Riki Matsumoto
- From the Division of Neurology (R.A., N.C., A.H., A.T., S.K., R.M.); Division of Molecular Brain Science (K.K.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
13
|
Paparoditis P, Shulman Z. The tumor-driven antibody-mediated immune response in cancer. Curr Opin Immunol 2024; 88:102431. [PMID: 38866666 DOI: 10.1016/j.coi.2024.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Immune cells in the tumor microenvironment play a crucial role in cancer prognosis and response to immunotherapy. Recent studies highlight the significance of tumor-infiltrating B cells and tertiary lymphoid structures as markers of favorable prognosis and patient-positive response to immune checkpoint blockers in some types of cancer. Although the presence of germinal center B cells and plasma cells in the tumor microenvironment has been established, determining their tumor reactivity remains challenging. The few known tumor targets range from viral proteins to self and altered self-proteins. The emergence of self-reactive antibodies in patients with cancer, involves the opposing forces of antigen-driven affinity increase and peripheral tolerance mechanisms. Here, B cell tumor antigen specificity and affinity maturation in tumor-directed immune responses in cancer are discussed.
Collapse
Affiliation(s)
- Philipp Paparoditis
- Department of Systems Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ziv Shulman
- Department of Systems Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
14
|
Humby F, Kirkham B, Taams L. BiTE therapy for rheumatoid arthritis. Nat Med 2024; 30:1533-1534. [PMID: 38720000 DOI: 10.1038/s41591-024-02982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Affiliation(s)
- Frances Humby
- Department of Rheumatology, Guy's Hospital, Great Maze Pond, London, UK.
| | - Bruce Kirkham
- Department of Rheumatology, Guy's Hospital, Great Maze Pond, London, UK
| | - Leonie Taams
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Science, King's College London, London, UK
| |
Collapse
|
15
|
Knott-Torcal C, de la Blanca NS, Serrano-Somavilla A, Hernández RM, Sampedro-Núñez M, Ruiz-Rosso B, Jiménez-Blanco S, González-Amaro R, González-Baranda L, Garcimartin A, Marazuela M. Quantitative analysis of Tr1 lymphocytes in patients with type 2 diabetes mellitus. J Endocrinol Invest 2024; 47:1447-1455. [PMID: 38183564 PMCID: PMC11142976 DOI: 10.1007/s40618-023-02250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is usually accompanied by a low-grade inflammatory phenomenon, which participates in the pathogenesis of different complications of this condition. The inflammatory response is under the regulation of different mechanisms, including T regulatory (Treg) lymphocytes. However, the possible role of type 1 T regulatory (Tr1) cells in T2DM has not been explored so far. AIM To carry out a quantitative analysis of Tr1 lymphocytes and other immune cell subsets in patients with T2DM and correlate these results with clinical findings and treatments. MATERIALS AND METHODS Sixty patients with T2DM and twenty-three healthy controls were included in the study. Biochemical and anthropometric variables were evaluated, and Tr1 lymphocytes (CD4+CD49+LAG-3+IL-10+) and other cell subsets (Th17, Th22 and Foxp3 + Treg cells) were analyzed in peripheral blood samples by multiparametric flow cytometry. RESULTS Significant increased levels of Tr1 cells were detected in patients with severe and mild disease, compared to healthy controls. In addition, CD4+IL-10+ lymphocytes were also increased in patients with T2DM. In contrast, similar levels of Foxp3+ Treg cells, Th17 and Th22 lymphocytes were observed in patients and controls. Likewise, no significant associations were detected between Tr1 cell levels and different clinical and laboratory parameters. However, those patients receiving glucagon-like peptide-1 receptor agonists (GLP-1-RA) showed similar levels of Tr1 cells than healthy controls, and significant lower numbers than untreated patients. CONCLUSION We observed an increase in Tr1 and CD4+IL10+ lymphocyte levels in T2DM. Moreover, GLP1-RA treatment was significantly associated with normalization of the Tr1 levels. This highlights another potential immune dysfunction in patients with T2DM, which could participate in the pathogenesis of this condition.
Collapse
Affiliation(s)
- C Knott-Torcal
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
- Faculty of Pharmacy, Universidad Complutense de Madrid, Av. Séneca, 2, 28040, Madrid, Spain
| | - N S de la Blanca
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
| | - A Serrano-Somavilla
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
| | - R M Hernández
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
| | - M Sampedro-Núñez
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
| | - B Ruiz-Rosso
- Faculty of Pharmacy, Universidad Complutense de Madrid, Av. Séneca, 2, 28040, Madrid, Spain
| | - S Jiménez-Blanco
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
| | - R González-Amaro
- Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, SLP, México
| | - L González-Baranda
- Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, SLP, México
| | - A Garcimartin
- Faculty of Pharmacy, Universidad Complutense de Madrid, Av. Séneca, 2, 28040, Madrid, Spain.
| | - M Marazuela
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain.
| |
Collapse
|
16
|
Xu Z, Li R, Wang L, Wu Y, Tian Y, Su Y, Ma Y, Li R, Wei Y, Zhang C, Han S, Duan S, Peng H, Xue J. Pathogenic role of different phenotypes of immune cells in airway allergic diseases: a study based on Mendelian randomization. Front Immunol 2024; 15:1349470. [PMID: 38812518 PMCID: PMC11133742 DOI: 10.3389/fimmu.2024.1349470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Background Airway allergic disease (AAD) is a class of autoimmune diseases with predominantly Th2-type inflammation, mainly including allergic rhinitis (AR), allergic asthma (AS), and chronic sinusitis (CRS). There are very complex regulatory mechanisms between immune cells and AAD; however, previous reports found that the functions of the same immune cells in AAD are not identical. Objective The aim of this study was to explore the causal relationship between different phenotypic immune cells and their association with AAD. Method Utilizing the publicly available Genome-Wide Association Studies (GWAS) database, this study conducted a bidirectional Mendelian randomization (MR) to assess the causal relationship between immune cells of 731 different immunophenotypes and AAD. The primary assessment methods included inverse variance weighting, weighted median, and MR Egger. Additionally, sensitivity analyses such as MR-PRESSO, leave-one-out, and scatter plots were employed to eliminate the interference of heterogeneity and pleiotropy, ensuring the stability of the causal inference. Result A total of 38 immune cells with different immunophenotypes were found to be positively and causally associated with AR, of which 26 were protective factors and 12 were risk factors. Positive associations were found between 33 immune cells and AS, of which 14 were protective factors and 19 were risk factors, as well as between 39 immune cells and CRS, of which 22 were protective factors and 17 were risk factors. Finally, the results of all relevant immune cells for the three diseases were taken and intersected, and it was found that CD3 on CD39+-activated Treg (IVWAR = 0.001, IVWCRS = 0.043, IVWAS = 0.027) may be the key immune cell that inhibits the development of AAD (ORAR = 0.940, ORAS = 0.967, ORCRS = 0.976). Conclusion This study reveals that different immune phenotypes of immune cells are closely related to AAD at the genetic level, which provides a theoretical basis for future clinical studies.
Collapse
Affiliation(s)
- Zhihan Xu
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ren Li
- Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Leigang Wang
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yisha Wu
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuhe Tian
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yilin Su
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuqiang Ma
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruiying Li
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yao Wei
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chen Zhang
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shikai Han
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Siyu Duan
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haiyi Peng
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinmei Xue
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
17
|
Al-Hawary SIS, Jasim SA, Hjazi A, Ullah H, Bansal P, Deorari M, Sapaev IB, Ami AA, Mohmmed KH, Abosaoda MK. A new perspective on therapies involving B-cell depletion in autoimmune diseases. Mol Biol Rep 2024; 51:629. [PMID: 38717637 DOI: 10.1007/s11033-024-09575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 06/30/2024]
Abstract
It has been rediscovered in the last fifteen years that B-cells play an active role in autoimmune etiology rather than just being spectators. The clinical success of B-cell depletion therapies (BCDTs) has contributed to this. BCDTs, including those that target CD20, CD19, and BAFF, were first developed to eradicate malignant B-cells. These days, they treat autoimmune conditions like multiple sclerosis and systemic lupus erythematosus. Particular surprises have resulted from the use of BCDTs in autoimmune diseases. For example, even in cases where BCDT is used to treat the condition, its effects on antibody-secreting plasma cells and antibody levels are restricted, even though these cells are regarded to play a detrimental pathogenic role in autoimmune diseases. In this Review, we provide an update on our knowledge of the biology of B-cells, examine the outcomes of clinical studies employing BCDT for autoimmune reasons, talk about potential explanations for the drug's mode of action, and make predictions about future approaches to targeting B-cells other than depletion.
Collapse
Affiliation(s)
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Himayat Ullah
- College of Medicine, Shaqra University, 15526, Shaqra, Saudi Arabia.
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - I B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers National Research University, Tashkent, Uzbekistan
- Scientific Researcher, Western Caspian University, Baku, Azerbaijan
| | - Ahmed Ali Ami
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | | | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Hillah, Iraq
| |
Collapse
|
18
|
Li R, Lei Y, Rezk A, Diego A Espinoza, Wang J, Feng H, Zhang B, Barcelos IP, Zhang H, Yu J, Huo X, Zhu F, Yang C, Tang H, Goldstein AC, Banwell BL, Hakonarson H, Xu H, Mingueneau M, Sun B, Li H, Bar-Or A. Oxidative phosphorylation regulates B cell effector cytokines and promotes inflammation in multiple sclerosis. Sci Immunol 2024; 9:eadk0865. [PMID: 38701189 DOI: 10.1126/sciimmunol.adk0865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Dysregulated B cell cytokine production contributes to pathogenesis of immune-mediated diseases including multiple sclerosis (MS); however, the underlying mechanisms are poorly understood. In this study we investigated how cytokine secretion by pro-inflammatory (GM-CSF-expressing) and anti-inflammatory (IL-10-expressing) B cells is regulated. Pro-inflammatory human B cells required increased oxidative phosphorylation (OXPHOS) compared with anti-inflammatory B cells. OXPHOS reciprocally modulated pro- and anti-inflammatory B cell cytokines through regulation of adenosine triphosphate (ATP) signaling. Partial inhibition of OXPHOS or ATP-signaling including with BTK inhibition resulted in an anti-inflammatory B cell cytokine shift, reversed the B cell cytokine imbalance in patients with MS, and ameliorated neuroinflammation in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalitis mouse model. Our study identifies how pro- and anti-inflammatory cytokines are metabolically regulated in B cells and identifies ATP and its metabolites as a "fourth signal" that shapes B cell responses and is a potential target for restoring the B cell cytokine balance in autoimmune diseases.
Collapse
Affiliation(s)
- Rui Li
- Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute of Immunotherapy and Department of Neurology of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Yanting Lei
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Ayman Rezk
- Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diego A Espinoza
- Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jing Wang
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Huiru Feng
- Institute of Immunotherapy and Department of Neurology of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Bo Zhang
- Institute of Immunotherapy and Department of Neurology of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Isabella P Barcelos
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hang Zhang
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jing Yu
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xinrui Huo
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Fangyi Zhu
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Changxin Yang
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hao Tang
- MS Research Unit, Biogen, Cambridge, MA 02142, USA
| | - Amy C Goldstein
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brenda L Banwell
- Division of Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hongwei Xu
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | | | - Bo Sun
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- MS Research Unit, Biogen, Cambridge, MA 02142, USA
| |
Collapse
|
19
|
Chen W, Ning X, Liu Y, Shen T, Liu M, Yin H, Ding Y, Zhou J, Yin R, Cai L, Wu Y, Qian L. Myeloid-derived suppressor cells from tumour-bearing mice induce the population expansion of CD19 hiFcγRIIb hi regulatory B cells via PD-L1. Immunology 2024; 172:127-143. [PMID: 38332630 DOI: 10.1111/imm.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) increase in number and gain immunosuppressive functions in tumours and many other pathological conditions. MDSCs are characterized by their strong T-cell immunosuppressive capacity. The effects that MDSCs may have on B cells, especially within the tumour microenvironment, are less well understood. Here, we report that either monocytic MDSCs or polymorphonuclear MDSCs can promote increases in interleukin (IL)-10-expressing CD19hiFcγRIIbhi regulatory B cells in vitro and in vivo. Splenic transitional-1, -2, and -3 cells and marginal zone B cells, but not follicular B cells, differentiate into IL-10-expressing CD19hiFcγRIIbhi regulatory B cells. The adoptive transfer of CD19hiFcγRIIbhi regulatory B cells via tail vein injection can promote subcutaneous 3LL tumour growth in mice. The expression of programmed death-ligand 1 on MDSCs was found to be strongly associated with CD19hiFcγRIIbhi regulatory B cell population expansion. Furthermore, the frequency of circulating CD19+FcγRIIhi regulatory B cells was significantly increased in advanced-stage lung cancer patients. Our results unveil a critical role of MDSCs in regulatory B-cell differentiation and population expansion in lung cancer patients.
Collapse
Affiliation(s)
- Wenyan Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xiaomin Ning
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yang Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Tingting Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Mengru Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Hui Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yue Ding
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jingwen Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Rui Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Liangliang Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yuhan Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Li Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| |
Collapse
|
20
|
Cheng B, Li C, Li J, Gong L, Liang P, Chen Y, Zhan S, Xiong S, Zhong R, Liang H, Feng Y, Wang R, Wang H, Zheng H, Liu J, Zhou C, Shao W, Qiu Y, Sun J, Xie Z, Liang Z, Yang C, Cai X, Su C, Wang W, He J, Liang W. The activity and immune dynamics of PD-1 inhibition on high-risk pulmonary ground glass opacity lesions: insights from a single-arm, phase II trial. Signal Transduct Target Ther 2024; 9:93. [PMID: 38637495 PMCID: PMC11026465 DOI: 10.1038/s41392-024-01799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 04/20/2024] Open
Abstract
Immune checkpoint inhibitors targeting the programmed cell death-1 (PD-1) protein significantly improve survival in patients with advanced non-small-cell lung cancer (NSCLC), but its impact on early-stage ground-glass opacity (GGO) lesions remains unclear. This is a single-arm, phase II trial (NCT04026841) using Simon's optimal two-stage design, of which 4 doses of sintilimab (200 mg per 3 weeks) were administrated in 36 enrolled multiple primary lung cancer (MPLC) patients with persistent high-risk (Lung-RADS category 4 or had progressed within 6 months) GGOs. The primary endpoint was objective response rate (ORR). T/B/NK-cell subpopulations, TCR-seq, cytokines, exosomal RNA, and multiplexed immunohistochemistry (mIHC) were monitored and compared between responders and non-responders. Finally, two intent-to-treat (ITT) lesions (pure-GGO or GGO-predominant) showed responses (ORR: 5.6%, 2/36), and no patients had progressive disease (PD). No grade 3-5 TRAEs occurred. The total response rate considering two ITT lesions and three non-intent-to-treat (NITT) lesions (pure-solid or solid-predominant) was 13.9% (5/36). The proportion of CD8+ T cells, the ratio of CD8+/CD4+, and the TCR clonality value were significantly higher in the peripheral blood of responders before treatment and decreased over time. Correspondingly, the mIHC analysis showed more CD8+ T cells infiltrated in responders. Besides, responders' cytokine concentrations of EGF and CTLA-4 increased during treatment. The exosomal expression of fatty acid metabolism and oxidative phosphorylation gene signatures were down-regulated among responders. Collectively, PD-1 inhibitor showed certain activity on high-risk pulmonary GGO lesions without safety concerns. Such effects were associated with specific T-cell re-distribution, EGF/CTLA-4 cytokine compensation, and regulation of metabolism pathways.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jianfu Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Longlong Gong
- Medical Department, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Peng Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Ying Chen
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Shuting Zhan
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Shan Xiong
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Ran Zhong
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yi Feng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Runchen Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Haixuan Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Hongbo Zheng
- Medical Department, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Jun Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Chengzhi Zhou
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Wenlong Shao
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yuan Qiu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jiancong Sun
- Department of Radiation Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhong Xie
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Zhu Liang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chenglin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
21
|
Wang G, Che M, Zeng L, Liu H, Li L, Liu Z, Fu R. The immunologic abnormalities in patients with paroxysmal nocturnal hemoglobinuria are associated with disease progression. Saudi Med J 2024; 45:424-432. [PMID: 38657993 PMCID: PMC11147583 DOI: 10.15537/smj.2024.45.4.20231010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES To suggest the presence of a hyperimmune state in patients, and indicate that immune system attack on glycosylphosphatidylinositol (+) (GPI+) cells while escaping GPI- cell immunity. METHODS We retrospective the immune cell subtypes in peripheral blood from 25 patients visiting Tianjin Medical University General Hospital, Tianjin, China, with classical paroxysmal nocturnal hemoglobinuria (PNH) and 50 healthy controls. RESULTS The total CD3+ and CD3+CD8+ cell levels were higher in patients with PNH. The CD3+ cells are positively, correlated with lactate dehydrogenase (LDH; r=0.5453, p=0.0040), indirect bilirubin (r=0.4260, p=0.0379) and Flear- cells in monocytes (r=0.4099, p=0.0303). However, a negative correlation was observed between CD3+ cells and hemoglobin (r= -0.4530, p=0.0105). The total CD19+ cells decreased in patients, and CD19+ cells were negatively correlated with LDH (r= -0.5640, p=0.0077) and Flear- cells in monocytes (r= -0.4432, p=0.0341). Patients showed an increased proportion of total dendritic cells (DCs), with a higher proportion of myeloid DCs (mDCs) within the DC population. Moreover, the proportion of mDC/DC was positively correlated with CD59- cells (II + III types) in red cells (r=0.7941, p=0.0004), Flear- cells in granulocytes (r=0.5357, p=0.0396), and monocytes (r=0.6445, p=0.0095). CONCLUSION Our results demonstrated that immune abnormalities are associated with PNH development.
Collapse
Affiliation(s)
- Guanrou Wang
- From the Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China.
| | - Mengting Che
- From the Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China.
| | - Lijie Zeng
- From the Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China.
| | - Hui Liu
- From the Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China.
| | - Liyan Li
- From the Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China.
| | - Zhaoyun Liu
- From the Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China.
| | - Rong Fu
- From the Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China.
| |
Collapse
|
22
|
Mohammadi V, Maleki AJ, Nazari M, Siahmansouri A, Moradi A, Elahi R, Esmaeilzadeh A. Chimeric Antigen Receptor (CAR)-Based Cell Therapy for Type 1 Diabetes Mellitus (T1DM); Current Progress and Future Approaches. Stem Cell Rev Rep 2024; 20:585-600. [PMID: 38153634 DOI: 10.1007/s12015-023-10668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that destroys insulin-producing pancreatic β-cells. Insulin replacement therapy is currently the mainstay of treatment for T1DM; however, treatment with insulin does not ameliorate disease progression, as dysregulated immune response and inflammation continue to cause further pancreatic β-cell degradation. Therefore, shifting therapeutic strategies toward immunomodulating approaches could be effective to prevent and reverse disease progression. Different immune-modulatory therapies could be used, e.g., monoclonal-based immunotherapy, mesenchymal stem cell, and immune cell therapy. Since immune-modulatory approaches could have a systemic effect on the immune system and cause toxicity, more specific treatment options should target the immune response against pancreatic β-cells. In this regard, chimeric antigen receptor (CAR)-based immunotherapy could be a promising candidate for modulation of dysregulated immune function in T1DM. CAR-based therapy has previously been approved for a number of hematologic malignancies. Nevertheless, there is renewed interest in CAR T cells' " off-the-shelf " treatment for T1DM. Several pre-clinical studies demonstrated that redirecting antigen-specific CAR T cells, especially regulatory CAR T cells (CAR Tregs), toward the pancreatic β-cells, could prevent diabetes onset and progression in diabetic mice models. Here, we aim to review the current progress of CAR-based immune-cell therapy for T1DM and the corresponding challenges, with a special focus on designing CAR-based immunomodulatory strategies to improve its efficacy in the treatment of T1DM.
Collapse
Affiliation(s)
- Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Siahmansouri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amirhosein Moradi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
23
|
Tompa A, Faresjö M. Shift in the B cell subsets between children with type 1 diabetes and/or celiac disease. Clin Exp Immunol 2024; 216:36-44. [PMID: 38134245 PMCID: PMC10929695 DOI: 10.1093/cei/uxad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
Our purpose was to characterize the pattern of B cell subsets in children with a combined diagnosis of type 1 diabetes (T1D) and celiac disease (C) since children with single or double diagnosis of these autoimmune diseases may differ in peripheral B cell subset phenotype patterns. B cells were analyzed with flow cytometry for the expression of differentiation/maturation markers to identify transitional, naive, and memory B cells. Transitional (CD24hiCD38hiCD19+) and memory Bregs (mBregs; CD24hiCD27+CD19+, CD1d+CD27+CD19+, and CD5+CD1d+CD19+) were classified as B cells with regulatory capacity. Children with a combined diagnosis of T1D and C showed a pattern of diminished peripheral B cell subsets. The B cells compartment in children with combined diagnosis had higher percentages of memory B subsets and Bregs, including activated subsets, compared to children with either T1D or C. Children with combined diagnosis had a lower percentage of naive B cells (CD27-CD19+; IgD+CD19+) and an increased percentage of memory B cells (CD27+CD19+; IgD-CD19+). A similar alteration was seen among the CD39+ expressing naive and memory B cells. Memory Bregs (CD1d+CD27+CD19+) were more frequent, contrary to the lower percentage of CD5+ transitional Bregs in children with a combined diagnosis. In children with either T1D or C, the peripheral B cell compartment was dominated by naive cells. Differences in the pattern of heterogeneous peripheral B cell repertoire subsets reflect a shifting in the B cell compartment between children with T1D and/or C. This is an immunological challenge of impact on the pathophysiology of these autoimmune diseases.
Collapse
Affiliation(s)
- Andrea Tompa
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
- Division of Diagnostics, Region Jönköping County, Jönköping, Sweden
| | - Maria Faresjö
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
- Department of Life Sciences, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
24
|
Cheng T, You Y, Jia B, Wang H, Lv M, Zhu X, Hu Y. Knowledge mapping of B cell and atherosclerosis over the past 20 years: A bibliometric analysis. Hum Vaccin Immunother 2023; 19:2277567. [PMID: 37953301 PMCID: PMC10760366 DOI: 10.1080/21645515.2023.2277567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Atherosclerosis (AS) is the main underlying cause of cardiovascular disease, and B cells are considered a key immune cell type to regulate AS. So far, there is no bibliometric study on B cell and AS. This study aims to comprehensively analyze the scientific output about B cell and AS, summarize the literature characteristics, explore research hotspots, and point out emerging trends. We searched the literature from 2003 to 2022 from the Web of Science Core Collection (WoSCC) database. CiteSpace, VOSviewer, and the R package "Bibliometrix" were used for literature analysis and visualization. A total of 1,062 articles and reviews were identified. The number of annual publications generally showed an upward trend. The United States and China were the most productive countries. Medical University of Vienna was the most productive research institution, and Binder Christoph J. was the most productive author, who was also from Medical University of Vienna. "Arteriosclerosis Thrombosis and Vascular Biology" was the most published journal and the most frequently cited journal. The most cited reference was written by Caligiuri G (2002) in "Journal of Clinical Investigation." The most frequent keywords were "inflammation," "macrophages," "cardiovascular disease," "T cells," "apoptosis," "immunity," "cytokines," "lymphocytes," etc. The trend topics were mainly focused on "immune infiltration," "immunoglobulins," and "biomarkers." The complex role of B cell subtypes and a variety of B cell mediators is the main research direction at present. In-depth analysis of B cell-specific targets can provide new ideas and methods for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- Clinical Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Yaping You
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Bochao Jia
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- Clinical Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Huan Wang
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Meng Lv
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xueping Zhu
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Yuanhui Hu
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
25
|
Daamen AR, Alajoleen RM, Grammer AC, Luo XM, Lipsky PE. Single-cell RNA sequencing analysis reveals the heterogeneity of IL-10 producing regulatory B cells in lupus-prone mice. Front Immunol 2023; 14:1282770. [PMID: 38155972 PMCID: PMC10752970 DOI: 10.3389/fimmu.2023.1282770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction B cells can have both pathogenic and protective roles in autoimmune diseases, including systemic lupus erythematosus (SLE). Deficiencies in the number or immunosuppressive function of IL-10 producing regulatory B cells (Bregs) can cause exacerbated autoimmune inflammation. However, the exact role of Bregs in lupus pathogenesis has not been elucidated. Methods We carried out gene expression analysis by scRNA-seq to characterize differences in splenic Breg subsets and molecular profiles through stages of disease progression in lupus-prone mice. Transcriptome-based changes in Bregs from mice with active disease were confirmed by phenotypic analysis. Results We found that a loss of marginal zone (MZ) lineage Bregs, an increase in plasmablast/plasma cell (PB-PC) lineage Bregs, and overall increases in inflammatory gene signatures were characteristic of active disease as compared to Bregs from the pre-disease stage. However, the frequencies of both MZ Bregs and PB-PCs expressing IL-10 were significantly decreased in active-disease mice. Conclusion Overall, we have identified changes to the repertoire and transcriptional landscape of Breg subsets associated with active disease that provide insights into the role of Bregs in lupus pathogenesis. These results could inform the design of Breg-targeted therapies and interventions to restore Breg suppressive function in autoimmunity.
Collapse
Affiliation(s)
- Andrea R. Daamen
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Razan M. Alajoleen
- Department of Biomedical Sciences and Pathology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Amrie C. Grammer
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| |
Collapse
|
26
|
Shimo Y, Cathomas F, Lin HY, Chan KL, Parise LF, Li L, Ferrer-Pérez C, Muhareb S, Costi S, Murrough JW, Russo SJ. Social stress induces autoimmune responses against the brain. Proc Natl Acad Sci U S A 2023; 120:e2305778120. [PMID: 38011565 DOI: 10.1073/pnas.2305778120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/01/2023] [Indexed: 11/29/2023] Open
Abstract
Clinical studies have revealed a high comorbidity between autoimmune diseases and psychiatric disorders, including major depressive disorder (MDD). However, the mechanisms connecting autoimmunity and depression remain unclear. Here, we aim to identify the processes by which stress impacts the adaptive immune system and the implications of such responses to depression. To examine this relationship, we analyzed antibody responses and autoimmunity in the chronic social defeat stress (CSDS) model in mice, and in clinical samples from patients with MDD. We show that socially stressed mice have elevated serum antibody concentrations. We also confirm that social stress leads to the expansion of specific T and B cell populations within the cervical lymph nodes, where brain-derived antigens are preferentially delivered. Sera from stress-susceptible (SUS) mice exhibited high reactivity against brain tissue, and brain-reactive immunoglobulin G (IgG) antibody levels positively correlated with social avoidance behavior. IgG antibody concentrations in the brain were significantly higher in SUS mice than in unstressed mice, and positively correlated with social avoidance. Similarly, in humans, increased peripheral levels of brain-reactive IgG antibodies were associated with increased anhedonia. In vivo assessment of IgG antibodies showed they largely accumulate around blood vessels in the brain only in SUS mice. B cell-depleted mice exhibited stress resilience following CSDS, confirming the contribution of antibody-producing cells to social avoidance behavior. This study provides mechanistic insights connecting stress-induced autoimmune reactions against the brain and stress susceptibility. Therapeutic strategies targeting autoimmune responses might aid in the treatment of patients with MDD featuring immune abnormalities.
Collapse
Affiliation(s)
- Yusuke Shimo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Hsiao-Yun Lin
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kenny L Chan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lyonna F Parise
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Long Li
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Carmen Ferrer-Pérez
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Samer Muhareb
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sara Costi
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY 10029
| | - James W Murrough
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY 10029
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
27
|
Chen X, Guo H, Jin D, Lu Y, Zhang L. Distribution characteristics of circulating B cell subpopulations in patients with chronic kidney disease. Sci Rep 2023; 13:20797. [PMID: 38012211 PMCID: PMC10682455 DOI: 10.1038/s41598-023-47742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
This study compared the levels of circulating B cell subpopulations in patients with different stages of chronic kidney disease (CKD), investigated the effects of haemodialysis (HD) on the B cell-related immune spectrum in patients with end-stage renal disease, and evaluated the link between renal function and immune homeostasis. Overall, 197 patients with CKD (158 non-dialysis patients with CKD stages I-V and 39 end-stage patients undergoing maintenance HD) and 77 healthy controls were included. Compared to healthy controls, patients with CKD stages I-II showed no significant differences except for the proportion of transitional B cells; patients with CKD stage V showed a significant decrease in the proportions of transitional B cells and CD5+ B cells and a significant increase in double-negative (DN) B cells. Compared with early-stage patients with CKD, the absolute count of various B cell subpopulations in advanced-stage patients with CKD showed a significant decrease. The distribution of circulating B cell subpopulations in patients with CKD was significantly altered and was associated with CKD progression. Furthermore, the proportion of DN B cells and CD5+ B cells was inconsistent pre- and post-HD. This in-depth study of the immune status of patients with CKD may have important clinical value.
Collapse
Affiliation(s)
- Xuya Chen
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 West Wuning Road, Dongyang, 322100, Zhejiang, China
| | - Haoyang Guo
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 West Wuning Road, Dongyang, 322100, Zhejiang, China
| | - Danxia Jin
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 West Wuning Road, Dongyang, 322100, Zhejiang, China
| | - Yan Lu
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 West Wuning Road, Dongyang, 322100, Zhejiang, China
| | - Longyi Zhang
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 West Wuning Road, Dongyang, 322100, Zhejiang, China.
| |
Collapse
|
28
|
Luo Y, Acevedo D, Vlagea A, Codina A, García-García A, Deyà-Martínez A, Martí-Castellote C, Esteve-Solé A, Alsina L. Changes in Treg and Breg cells in a healthy pediatric population. Front Immunol 2023; 14:1283981. [PMID: 38077340 PMCID: PMC10704817 DOI: 10.3389/fimmu.2023.1283981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
The interpretation of clinical diagnostic results in suspected inborn errors of immunity, including Tregopathies, is hampered by the lack of age-stratified reference values for regulatory T cells (Treg) in the pediatric population and a consensus on which Treg immunophenotype to use. Regulatory B cells (Breg) are an important component of the regulatory system that have been poorly studied in the pediatric population. We analyzed (1) the correlation between the three immunophenotypic definitions of Treg (CD4+CD25hiCD127low, CD4+CD25hiCD127lowFoxP3+, CD4+CD25hiFoxP3+), and with CD4+CD25hi and (2) the changes in Treg and Breg frequencies and their maturation status with age. We performed peripheral blood immunophenotyping of Treg and Breg (CD19+CD24hiCD38hi) by flow cytometry in 55 healthy pediatric controls. We observed that Treg numbers varied depending on the definition used, and the frequency ranged between 3.3-9.7% for CD4+CD25hiCD127low, 0.07-1.6% for CD4+CD25hiCD127lowFoxP3+, and 0.24-2.83% for CD4+CD25hiFoxP3+. The correlation between the three definitions of Treg was positive for most age ranges, especially between the two intracellular panels and with CD4+CD25hi vs CD4+CD25hiCD127low. Treg and Breg frequencies tended to decline after 7 and 3 years onwards, respectively. Treg's maturation status increased with age, with a decline of naïve Treg and an increase in memory/effector Treg from age 7 onwards. Memory Breg increased progressively from age 3 onwards. In conclusion, the number of Treg frequencies spans a wide range depending on the immunophenotypic definition used despite a good level of correlation exists between them. The decline in numbers and maturation process with age occurs earlier in Breg than in Treg.
Collapse
Affiliation(s)
- Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Anna Codina
- Biobanco Pediátrico para la Investigación Hospital Sant Joan de Déu, Barcelona, Spain
| | - Ana García-García
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Angela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Celia Martí-Castellote
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Medical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Neziraj T, Siewert L, Pössnecker E, Pröbstel AK. Therapeutic targeting of gut-originating regulatory B cells in neuroinflammatory diseases. Eur J Immunol 2023; 53:e2250033. [PMID: 37624875 DOI: 10.1002/eji.202250033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/29/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Regulatory B cells (Bregs) are immunosuppressive cells that support immunological tolerance by the production of IL-10, IL-35, and TGF-β. Bregs arise from different developmental stages in response to inflammatory stimuli. In that regard, mounting evidence points towards a direct influence of gut microbiota on mucosal B cell development, activation, and regulation in health and disease. While an increasing number of diseases are associated with alterations in gut microbiome (dysbiosis), little is known about the role of microbiota on Breg development and induction in neuroinflammatory disorders. Notably, gut-originating, IL-10- and IgA-producing regulatory plasma cells have recently been demonstrated to egress from the gut to suppress inflammation in the CNS raising fundamental questions about the triggers and functions of mucosal-originating Bregs in systemic inflammation. Advancing our understanding of Bregs in neuroinflammatory diseases could lead to novel therapeutic approaches. Here, we summarize the main aspects of Breg differentiation and functions and evidence about their involvement in neuroinflammatory diseases. Further, we highlight current data of gut-originating Bregs and their microbial interactions and discuss future microbiota-regulatory B cell-targeted therapies in immune-mediated diseases.
Collapse
Affiliation(s)
- Tradite Neziraj
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Lena Siewert
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Elisabeth Pössnecker
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
30
|
Labrosse R, Chu JI, Armant MA, Everett JK, Pellin D, Kareddy N, Frelinger AL, Henderson LA, O’Connell AE, Biswas A, Coenen-van der Spek J, Miggelbrink A, Fiorini C, Adhikari H, Berry CC, Cantu VA, Fong J, Jaroslavsky J, Karadeniz DF, Li QZ, Reddy S, Roche AM, Zhu C, Whangbo JS, Dansereau C, Mackinnon B, Morris E, Koo SM, London WB, Baris S, Ozen A, Karakoc-Aydiner E, Despotovic JM, Forbes Satter LR, Saitoh A, Aizawa Y, King A, Nguyen MAT, Vu VDU, Snapper SB, Galy A, Notarangelo LD, Bushman FD, Williams DA, Pai SY. Outcomes of hematopoietic stem cell gene therapy for Wiskott-Aldrich syndrome. Blood 2023; 142:1281-1296. [PMID: 37478401 PMCID: PMC10731922 DOI: 10.1182/blood.2022019117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/23/2023] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder characterized by combined immunodeficiency, eczema, microthrombocytopenia, autoimmunity, and lymphoid malignancies. Gene therapy (GT) to modify autologous CD34+ cells is an emerging alternative treatment with advantages over standard allogeneic hematopoietic stem cell transplantation for patients who lack well-matched donors, avoiding graft-versus-host-disease. We report the outcomes of a phase 1/2 clinical trial in which 5 patients with severe WAS underwent GT using a self-inactivating lentiviral vector expressing the human WAS complementary DNA under the control of a 1.6-kB fragment of the autologous promoter after busulfan and fludarabine conditioning. All patients were alive and well with sustained multilineage vector gene marking (median follow-up: 7.6 years). Clinical improvement of eczema, infections, and bleeding diathesis was universal. Immune function was consistently improved despite subphysiologic levels of transgenic WAS protein expression. Improvements in platelet count and cytoskeletal function in myeloid cells were most prominent in patients with high vector copy number in the transduced product. Two patients with a history of autoimmunity had flares of autoimmunity after GT, despite similar percentages of WAS protein-expressing cells and gene marking to those without autoimmunity. Patients with flares of autoimmunity demonstrated poor numerical recovery of T cells and regulatory T cells (Tregs), interleukin-10-producing regulatory B cells (Bregs), and transitional B cells. Thus, recovery of the Breg compartment, along with Tregs appears to be protective against development of autoimmunity after GT. These results indicate that clinical and laboratory manifestations of WAS are improved with GT with an acceptable safety profile. This trial is registered at clinicaltrials.gov as #NCT01410825.
Collapse
Affiliation(s)
- Roxane Labrosse
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Division of Allergy and Immunology, Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | - Julia I. Chu
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Division of Pediatric Allergy, Immunology and Bone Marrow Transplantation, Benioff Children’s Hospital, University of California San Francisco, San Francisco, CA
| | - Myriam A. Armant
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - John K. Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Danilo Pellin
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
| | - Niharika Kareddy
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Andrew L. Frelinger
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Amy E. O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | - Amlan Biswas
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Jet Coenen-van der Spek
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Alexandra Miggelbrink
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Claudia Fiorini
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Hriju Adhikari
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles C. Berry
- Division of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health, UC San Diego, La Jolla, CA
| | - Vito Adrian Cantu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Johnson Fong
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Jason Jaroslavsky
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Derin F. Karadeniz
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Quan-Zhen Li
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Aoife M. Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jennifer S. Whangbo
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Colleen Dansereau
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
| | - Brenda Mackinnon
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
| | - Emily Morris
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
| | - Stephanie M. Koo
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
| | - Wendy B. London
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Safa Baris
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University, Istanbul, Turkey
- The Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
| | - Ahmet Ozen
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University, Istanbul, Turkey
- The Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University, Istanbul, Turkey
- The Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
| | - Jenny M. Despotovic
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Lisa R. Forbes Satter
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuta Aizawa
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Alejandra King
- Hospital Luis Calvo Mackenna, Clínica Alemana De Santiago Universidad del Desarrollo, Santiago, Chile
| | - Mai Anh Thi Nguyen
- Department of Pediatrics, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vy Do Uyen Vu
- Department of Pediatrics, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Anne Galy
- Genethon, Évry, France
- University of Paris-Saclay, University of Évry, INSERM, Genethon, Integrare Research Unit UMR_S951, Évry, France
| | - Luigi D. Notarangelo
- Division of Immunology, Boston Children’s Hospital, Boston, MA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David A. Williams
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Sung-Yun Pai
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
31
|
Wu Z, Young NS. Single-cell genomics in acquired bone marrow failure syndromes. Blood 2023; 142:1193-1207. [PMID: 37478398 PMCID: PMC10644099 DOI: 10.1182/blood.2022018581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023] Open
Abstract
Mechanistic studies of immune bone marrow failure are difficult because of the scarcity of residual cells, the involvement of multiple cell types, and the inherent complexities of hematopoiesis and immunity. Single-cell genomic technologies and bioinformatics allow extensive, multidimensional analysis of a very limited number of cells. We review emerging applications of single-cell techniques, and early results related to disease pathogenesis: effector and target cell populations and relationships, cell-autonomous and nonautonomous phenotypes in clonal hematopoiesis, transcript splicing, chromosomal abnormalities, and T-cell receptor usage and clonality. Dense and complex data from single-cell techniques provide insights into pathophysiology, natural history, and therapeutic drug effects.
Collapse
Affiliation(s)
- Zhijie Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Neal S. Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
32
|
Daguenet E, Magné N. B and T cells in immune responses - Friends, foes or innocent contributors? Indian J Cancer 2023; 60:593-594. [PMID: 38258872 DOI: 10.4103/ijc.ijc_1011_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/01/2021] [Indexed: 01/24/2024]
Affiliation(s)
- Elisabeth Daguenet
- Department of Clinical Hematology and Cellular Therapy, Lucien Neuwirth Cancer Institute, Saint-Priest-en-Jarez, France
- Department of Research and Teaching, Lucien Neuwirth Cancer Institute, Saint-Priest-en-Jarez, France
| | - Nicolas Magné
- Department of Research and Teaching, Lucien Neuwirth Cancer Institute, Saint-Priest-en-Jarez, France
- Laboratory of Cellular and Molecular Radiobiology, UMR CNRS5822/IN2P3, IPNL, PRISME, Villeurbanne, France
| |
Collapse
|
33
|
Parodis I, Long X, Karlsson MCI, Huang X. B Cell Tolerance and Targeted Therapies in SLE. J Clin Med 2023; 12:6268. [PMID: 37834911 PMCID: PMC10573616 DOI: 10.3390/jcm12196268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic systemic autoimmune disease of high clinical and molecular heterogeneity, and a relapsing-remitting pattern. The disease is currently without cure and more prevalent in women. B cell tolerance and production of autoantibodies are critical mechanisms that drive SLE pathophysiology. However, how the balance of the immune system is broken and how the innate and adaptive immune systems are interacting during lupus-specific autoimmune responses are still largely unknown. Here, we review the latest knowledge on B cell development, maturation, and central versus peripheral tolerance in connection to SLE and treatment options. We also discuss the regulation of B cells by conventional T cells, granulocytes, and unconventional T cells, and how effector B cells exert their functions in SLE. We also discuss mechanisms of action of B cell-targeted therapies, as well as possible future directions based on current knowledge of B cell biology.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, 70281 Örebro, Sweden
| | - Xuan Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Mikael C. I. Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Xin Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| |
Collapse
|
34
|
Zheremyan EA, Ustiugova AS, Uvarova AN, Karamushka NM, Stasevich EM, Gogoleva VS, Bogolyubova AV, Mitkin NA, Kuprash DV, Korneev KV. Differentially activated B cells develop regulatory phenotype and show varying immunosuppressive features: a comparative study. Front Immunol 2023; 14:1178445. [PMID: 37731503 PMCID: PMC10509016 DOI: 10.3389/fimmu.2023.1178445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Regulatory B lymphocytes (Bregs) are B cells with well-pronounced immunosuppressive properties, allowing them to suppress the activity of effector cells. A broad repertoire of immunosuppressive mechanisms makes Bregs an attractive tool for adoptive cell therapy for diseases associated with excessive activation of immune reactions. Such therapy implies Breg extraction from the patient's peripheral blood, ex vivo activation and expansion, and further infusion into the patient. At the same time, the utility of Bregs for therapeutic approaches is limited by their small numbers and extremely low survival rate, which is typical for all primary B cell cultures. Therefore, extracting CD19+ cells from the patient's peripheral blood and specifically activating them ex vivo to make B cells acquire a suppressive phenotype seems to be far more productive. It will allow a much larger number of B cells to be obtained initially, which may significantly increase the likelihood of successful immunosuppression after adoptive Breg transfer. This comparative study focuses on finding ways to efficiently manipulate B cells in vitro to differentiate them into Bregs. We used CD40L, CpG, IL4, IL21, PMA, and ionomycin in various combinations to generate immunosuppressive phenotype in B cells and performed functional assays to test their regulatory capacity. This work shows that treatment of primary B cells using CD40L + CpG + IL21 mix was most effective in terms of induction of functionally active regulatory B lymphocytes with high immunosuppressive capacity ex vivo.
Collapse
Affiliation(s)
- Elina A Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alina S Ustiugova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Aksinya N Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nina M Karamushka
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina M Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Violetta S Gogoleva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Apollinariya V Bogolyubova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Nikita A Mitkin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill V Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| |
Collapse
|
35
|
Chen R, Zou J, Kang R, Tang D. The Redox Protein High-Mobility Group Box 1 in Cell Death and Cancer. Antioxid Redox Signal 2023; 39:569-590. [PMID: 36999916 DOI: 10.1089/ars.2023.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Significance: As a redox-sensitive protein, high-mobility group box 1 (HMGB1) is implicated in regulating stress responses to oxidative damage and cell death, which are closely related to the pathology of inflammatory diseases, including cancer. Recent Advances: HMGB1 is a nonhistone nuclear protein that acts as a deoxyribonucleic acid chaperone to control chromosomal structure and function. HMGB1 can also be released into the extracellular space and function as a damage-associated molecular pattern protein during cell death, including during apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, alkaliptosis, and cuproptosis. Once released, HMGB1 binds to membrane receptors to shape immune and metabolic responses. In addition to subcellular localization, the function and activity of HMGB1 also depend on its redox state and protein posttranslational modifications. Abnormal HMGB1 plays a dual role in tumorigenesis and anticancer therapy (e.g., chemotherapy, radiation therapy, and immunotherapy) depending on the tumor types and stages. Critical Issues: A comprehensive understanding of the role of HMGB1 in cellular redox homeostasis is important for deciphering normal cellular functions and pathological manifestations. In this review, we discuss compartmental-defined roles of HMGB1 in regulating cell death and cancer. Understanding these advances may help us develop potential HMGB1-targeting drugs or approaches to treat oxidative stress-related diseases or pathological conditions. Future Directions: Further studies are required to dissect the mechanism by which HMGB1 maintains redox homeostasis under different stress conditions. A multidisciplinary effort is also required to evaluate the potential applications of precisely targeting the HMGB1 pathway in human health and disease. Antioxid. Redox Signal. 39, 569-590.
Collapse
Affiliation(s)
- Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Ju Zou
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
36
|
Playoust E, Remark R, Vivier E, Milpied P. Germinal center-dependent and -independent immune responses of tumor-infiltrating B cells in human cancers. Cell Mol Immunol 2023; 20:1040-1050. [PMID: 37419983 PMCID: PMC10468534 DOI: 10.1038/s41423-023-01060-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023] Open
Abstract
B cells play essential roles in immunity, mainly through the production of high affinity plasma cells (PCs) and memory B (Bmem) cells. The affinity maturation and differentiation of B cells rely on the integration of B-cell receptor (BCR) intrinsic and extrinsic signals provided by antigen binding and the microenvironment, respectively. In recent years, tumor infiltrating B (TIL-B) cells and PCs (TIL-PCs) have been revealed as important players in antitumor responses in human cancers, but their interplay and dynamics remain largely unknown. In lymphoid organs, B-cell responses involve both germinal center (GC)-dependent and GC-independent pathways for Bmem cell and PC production. Affinity maturation of BCR repertoires occurs in GC reactions with specific spatiotemporal dynamics of signal integration by B cells. In general, the reactivation of high-affinity Bmem cells by antigens triggers GC-independent production of large numbers of PC without BCR rediversification. Understanding B-cell dynamics in immune responses requires the integration of multiple tools and readouts such as single-cell phenotyping and RNA-seq, in situ analyses, BCR repertoire analysis, BCR specificity and affinity assays, and functional tests. Here, we review how those tools have recently been applied to study TIL-B cells and TIL-PC in different types of solid tumors. We assessed the published evidence for different models of TIL-B-cell dynamics involving GC-dependent or GC-independent local responses and the resulting production of antigen-specific PCs. Altogether, we highlight the need for more integrative B-cell immunology studies to rationally investigate TIL-B cells as a leverage for antitumor therapies.
Collapse
Affiliation(s)
- Eve Playoust
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | | | - Eric Vivier
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Innate Pharma, Marseille, France
| | - Pierre Milpied
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| |
Collapse
|
37
|
Magatti M, Pischiutta F, Ortolano F, Pasotti A, Caruso E, Cargnoni A, Papait A, Capuzzi F, Zoerle T, Carbonara M, Stocchetti N, Borsa S, Locatelli M, Erba E, Prati D, Silini AR, Zanier ER, Parolini O. Systemic immune response in young and elderly patients after traumatic brain injury. Immun Ageing 2023; 20:41. [PMID: 37573338 PMCID: PMC10422735 DOI: 10.1186/s12979-023-00369-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of death and long-term disability worldwide. In addition to primary brain damage, systemic immune alterations occur, with evidence for dysregulated immune responses in aggravating TBI outcome and complications. However, immune dysfunction following TBI has been only partially understood, especially in the elderly who represent a substantial proportion of TBI patients and worst outcome. Therefore, we aimed to conduct an in-depth immunological characterization of TBI patients, by evaluating both adaptive (T and B lymphocytes) and innate (NK and monocytes) immune cells of peripheral blood mononuclear cells (PBMC) collected acutely (< 48 h) after TBI in young (18-45 yo) and elderly (> 65 yo) patients, compared to age-matched controls, and also the levels of inflammatory biomarkers. RESULTS Our data show that young respond differently than elderly to TBI, highlighting the immune unfavourable status of elderly compared to young patients. While in young only CD4 T lymphocytes are activated by TBI, in elderly both CD4 and CD8 T cells are affected, and are induced to differentiate into subtypes with low cytotoxic activity, such as central memory CD4 T cells and memory precursor effector CD8 T cells. Moreover, TBI enhances the frequency of subsets that have not been previously investigated in TBI, namely the double negative CD27- IgD- and CD38-CD24- B lymphocytes, and CD56dim CD16- NK cells, both in young and elderly patients. TBI reduces the production of pro-inflammatory cytokines TNF-α and IL-6, and the expression of HLA-DM, HLA-DR, CD86/B7-2 in monocytes, suggesting a compromised ability to drive a pro-inflammatory response and to efficiently act as antigen presenting cells. CONCLUSIONS We described the acute immunological response induced by TBI and its relation with injury severity, which could contribute to pathologic evolution and possibly outcome. The focus on age-related immunological differences could help design specific therapeutic interventions based on patients' characteristics.
Collapse
Affiliation(s)
- Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.
| | - Francesca Pischiutta
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Fabrizio Ortolano
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Pasotti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Enrico Caruso
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Andrea Papait
- Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy
| | - Franco Capuzzi
- Dipartimento Medicina di Laboratorio, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Tommaso Zoerle
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Marco Carbonara
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nino Stocchetti
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Stefano Borsa
- Unit of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Marco Locatelli
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
- Unit of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Elisa Erba
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Antonietta R Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Elisa R Zanier
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Ornella Parolini
- Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Roma, Italy
| |
Collapse
|
38
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
39
|
Iwata S, Hajime Sumikawa M, Tanaka Y. B cell activation via immunometabolism in systemic lupus erythematosus. Front Immunol 2023; 14:1155421. [PMID: 37256149 PMCID: PMC10225689 DOI: 10.3389/fimmu.2023.1155421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease involving multiple organs in which B cells perform important functions such as antibody and cytokine production and antigen presentation. B cells are activated and differentiated by the primary B cell receptor, co-stimulatory molecule signals-such as CD40/CD40L-, the Toll-like receptors 7,9, and various cytokine signals. The importance of immunometabolism in the activation, differentiation, and exerting functions of B cells and other immune cells has been widely reported in recent years. However, the regulatory mechanism of immunometabolism in B cells and its involvement in SLE pathogenesis remain elusive. Similarly, the importance of the PI3K-Akt-mTOR signaling pathway, glycolytic system, and oxidative phosphorylation has been demonstrated in the mechanisms of B cell immunometabolic activation, mainly in mouse studies. However, the activation of the mTOR pathway in B cells in patients with SLE, the induction of plasmablast differentiation through metabolic and transcription factor regulation by mTOR, and the involvement of this phenomenon in SLE pathogenesis are unclear. In our studies using activated B cells derived from healthy donors and from patients with SLE, we observed that methionine, an essential amino acid, is important for mTORC1 activation. Further, we observed that splenic tyrosine kinase and mTORC1 activation synergistically induce EZH2 expression and plasmablasts by suppressing BACH2 expression through epigenomic modification. Additionally, we identified another mechanism by which the glutaminolysis-induced enhancement of mitochondrial function promotes plasmablast differentiation in SLE. In this review, we focused on the SLE exacerbation mechanisms related to the activation of immune cells-especially B cells-and immunometabolism and reported the latest findings in the field.
Collapse
Affiliation(s)
- Shigeru Iwata
- Department of Rheumatology and Clinical Immunology, Wakayama Medical University, Wakayama, Japan
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Maiko Hajime Sumikawa
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
40
|
Nikolova-Ganeva K, Tchorbanov A. Folic acid in systemic lupus erythematosus - a new aspect. Clin Rheumatol 2023; 42:1729-1730. [PMID: 37106121 DOI: 10.1007/s10067-023-06604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Affiliation(s)
- Kalina Nikolova-Ganeva
- Laboratory of Experimental Immunology, Department of Immunology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, 26 "Acad. Georgy Bonchev" Str, 1113, Sofia, Bulgaria.
| | - Andrey Tchorbanov
- Laboratory of Experimental Immunology, Department of Immunology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, 26 "Acad. Georgy Bonchev" Str, 1113, Sofia, Bulgaria
- National Institute of Immunology, 1517, Sofia, Bulgaria
| |
Collapse
|
41
|
Barcelos F, Brás-Geraldes C, Martins C, Papoila AL, Monteiro R, Cardigos J, Madeira N, Alves N, Vaz-Patto J, Cunha-Branco J, Borrego LM. Added value of lymphocyte subpopulations in the classification of Sjögren's syndrome. Sci Rep 2023; 13:6872. [PMID: 37106029 PMCID: PMC10140065 DOI: 10.1038/s41598-023-31782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Sjögren's Syndrome (SjS) is a chronic systemic immune-mediated inflammatory disease characterized by lymphocytic infiltration and consequent lesion of exocrine glands. SjS diagnosis and classification remains a challenge, especially at SjS onset, when patients may have milder phenotypes of the disease or uncommon presentations. New biomarkers are needed for the classification of SjS, thus, we aimed to evaluate the added-value of lymphocyte subpopulations in discriminating SjS and non-Sjögren Sicca patients. Lymphocyte subsets from 62 SjS and 63 Sicca patients were characterized by flow cytometry. The 2002 AECG and the 2016 ACR/EULAR SjS classification criteria were compared with clinical diagnosis. The added discriminative ability of joining lymphocytic populations to classification criteria was assessed by the area under the Receiver-Operating-Characteristic Curve (AUC). Considering clinical diagnosis as the gold-standard, we obtained an AUC = 0.952 (95% CI: 0.916-0.989) for AECG and an AUC = 0.921 (95% CI: 0.875-0.966) for ACR/EULAR criteria. Adding Tfh and Bm1 subsets to AECG criteria, performance increased, attaining an AUC = 0.985 (95% CI: 0.968-1.000) (p = 0.021). Th1/Breg-like CD24hiCD27+ and switched-memory B-cells maximized the AUC of ACR/EULAR criteria to 0.953 (95% CI: 0.916-0.990) (p = 0.043). Our exploratory study supports the potential use of lymphocyte subpopulations, such as unswitched memory B cells, to improve the performance of classification criteria, since their discriminative ability increases when specific subsets are added to the criteria.
Collapse
Affiliation(s)
- Filipe Barcelos
- Comprehensive Health Research Centre, CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Universidade Nova de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal.
- Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal.
- Rheumatology Department, Hospital CUF Descobertas, Lisbon, Portugal.
| | - Carlos Brás-Geraldes
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Centro de Estatística E Aplicações, CEAUL, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Martins
- Comprehensive Health Research Centre, CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Universidade Nova de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana-Luísa Papoila
- Centro de Estatística E Aplicações, CEAUL, Universidade de Lisboa, Lisbon, Portugal
- NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ricardo Monteiro
- Comprehensive Health Research Centre, CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Universidade Nova de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Cardigos
- Ophthalmology Department, Centro Hospitalar de Lisboa Central, Hospital de Santo António Dos Capuchos, Lisbon, Portugal
| | - Nathalie Madeira
- Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal
| | - Nuno Alves
- Ophthalmology Department, Centro Hospitalar de Lisboa Central, Hospital de Santo António Dos Capuchos, Lisbon, Portugal
- Ophthalmology Department, Hospital CUF Descobertas, Lisbon, Portugal
| | - José Vaz-Patto
- Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal
| | - Jaime Cunha-Branco
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital CUF Descobertas, Lisbon, Portugal
- Chronic Diseases Research Center, NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz, Lisbon, Portugal
| | - Luís-Miguel Borrego
- Comprehensive Health Research Centre, CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Universidade Nova de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- Immunoalergy Department, Hospital da Luz Lisboa, Lisbon, Portugal
| |
Collapse
|
42
|
Grammatikopoulou MG, Syrmou V, Lioliopoulou ML, Gkiouras K, Simopoulou T, Katsiari CG, Vassilakou T, Bogdanos DP. Anorexia Nervosa in Juvenile Systemic Lupus Erythematosus (SLE): A Causality Dilemma. CHILDREN (BASEL, SWITZERLAND) 2023; 10:697. [PMID: 37189946 PMCID: PMC10137086 DOI: 10.3390/children10040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
Juvenile-onset systemic lupus erythematosus (jSLE) is an autoimmune disorder with multifaceted clinical findings in different organ systems. Neuropsychiatric manifestations affect more than half of SLE patients, and there is increasing evidence that anorexia nervosa (AN), a feeding and eating disorder (FED) characterized by significantly reduced energy intake, is among them. Herein, a review of the literature on the potential association between jSLE and AN was performed. Reported clinical cases were identified, and putative pathophysiological mechanisms were sought that could potentially explain the observed relationship between these two pathological entities. Four reports of isolated cases and a case series including seven patients were identified. In this limited patient pool, the diagnosis of AN preceded that of SLE in the majority of cases, whereas in all cases both entities were diagnosed within a time span of two years. Many explanations for the observed relationships have been proposed. AN has been associated with the stress of chronic disease diagnosis; on the other hand, the chronic inflammation associated with AN may contribute to the development/appearance of SLE. Adverse childhood experiences, concentrations of leptin, shared autoantibodies, and genetic traits appear to be important factors in this well-established interplay. In essence, it seems important to increase clinician awareness of the concomitant development of AN and SLE and invite further research on the subject.
Collapse
Affiliation(s)
- Maria G. Grammatikopoulou
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Vasiliki Syrmou
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Maria-Lydia Lioliopoulou
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Konstantinos Gkiouras
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Theodora Simopoulou
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Christina G. Katsiari
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Tonia Vassilakou
- Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, GR-11521 Athens, Greece
| | - Dimitrios P. Bogdanos
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| |
Collapse
|
43
|
Hassuna NA, Hussien SS, Abdelhakeem M, Aboalela A, Ahmed E, Abdelrahim SS. Regulatory B cells (Bregs) in Helicobacter pylori chronic infection. Helicobacter 2023; 28:e12951. [PMID: 36661205 DOI: 10.1111/hel.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is linked with a wide variety of diseases and was reported in more than half of the world's population. Chronic H. pylori infection and its final clinical outcome depend mainly on the bacterial virulence factors and its ability to manipulate and adapt to human immune responses. Bregs blood levels have been correlated with increased bacterial load and infection chronicity, especially Gram-negative bacterial infection. This study aimed to identify prevalence and virulence factors of chronic H. pylori infection among symptomatic Egyptian patients and to examine its possible correlation to levels of regulatory B cells (Bregs) in blood. MATERIALS AND METHODS Gastric biopsies and blood samples from each of 113 adult patients, who underwent upper endoscopy, were examined for the detection of H. pylori by culture and PCR methods. Conventional PCR was used to determine various virulent genes prevalence and association to clinical outcome. Flow cytometry was used to evaluate Bregs levels. RESULTS Helicobacter pylori prevalence was 49.1% (55/112). Regarding virulence genes incidence, flaA gene was detected in 73% (40/55), vir B11 in 56.4% (31/55), hopZ1 in 34.5% (19/55), hopZ2 in 89% (49/55), babA2 in 52.7% (29/55), dupA jhp917 in 61.8% (34/55), vacA m1/m2 in 70.9% (39/55), and vacA s1/s2 in 69% (38/55) strains. Bregs levels were significantly lower in H. pylori-infected patients (p = 0.013), while total leukocyte count (TLC) showed no significant differences. CONCLUSION Helicobacter pylori infection prevalence was almost 49%, and the infection was found to be related to inflammatory conditions as gastritis and ulcers rather than malignant transformations. Also, we found that CD24+ CD38+ B cells were downregulated in H. pylori-infected patients.
Collapse
Affiliation(s)
- Noha A Hassuna
- Medical Microbiology and Immunology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Sahar Sh Hussien
- Medical Microbiology and Immunology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Mohammed Abdelhakeem
- Clinical Pathology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Elham Ahmed
- Internal Medicine Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Soha S Abdelrahim
- Medical Microbiology and Immunology Department, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
44
|
Mohammed SA, Hetta HF, Zahran AM, Tolba MEM, Attia RAH, Behnsawy HM, Algammal AM, Batiha GES, Mohammed AQ, Ahmad AA. T cell subsets, regulatory T, regulatory B cells and proinflammatory cytokine profile in Schistosoma haematobium associated bladder cancer: First report from Upper Egypt. PLoS Negl Trop Dis 2023; 17:e0011258. [PMID: 37068081 PMCID: PMC10109487 DOI: 10.1371/journal.pntd.0011258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND The function of different populations of the immune system in bladder cancer (BCa) is well established. However, the cohesive role of the immune cell profile of schistosomal BCa at systemic and tissue levels is still lacking, especially in endemic countries. The balance hypothesized between protumorigenic and antitumor molecules determines the prognosis of tumor progression. This study aimed to investigate the frequency of T cell subsets at both blood and tumor tissue, regulatory T(Treg), regulatory B cells (Breg) and proinflammatory cytokines in S. haematobium-related BCa patients in Egypt. METHODOLOGY/PRINCIPAL FINDINGS The frequency of T cell subsets at both blood and tumor tissue, regulatory T(Treg), regulatory B cells (Breg) were studied by flow cytometry and proinflammatory cytokines by ELISA in S. haematobium-related BCa patients in Egypt. The results indicated a significant increase in the activity of T-cell populations, particularly CD3+, CD4+, and regulatory T cells (Tregs), and a decrease in cytotoxic CD8+ T cells in the patient group. An increased proportion of CD19+CD24+CD38+ Bregs and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) was also observed. However, T-cell subpopulations in the tumor microenvironment showed a significant reduction in cancer patients compared to controls. Moreover, positive correlations were observed between the frequencies of Bregs and Tregs, suggesting the promotion of cancer progression besides their relation to the intensity of schistosomal infection. CONCLUSIONS/SIGNIFICANCE Trapped Schistosoma haematobium eggs in bladder tissue might lead to persistent inflammation that contributes to immunomodulation and promotes tumor progression, as evidenced by the increase in peripheral T helper, Tregs, Bregs and serum tumor-promoting cytokines. Considering the role and integrated functions of specific immune responses in BCa could help future diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Sara Abdelal Mohammed
- Department of Parasitology, Faculty of veterinary medicine, Assiut University, Assiut, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut Egypt
| | - Mohammed E M Tolba
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Rasha A H Attia
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hosny M Behnsawy
- Department of Urology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour, Egypt
| | - Ahmed Qasem Mohammed
- Department of Gastroenterology, Hepatology and infectious diseases, Al-Azhar University, Assuit, Egypt
| | | |
Collapse
|
45
|
Wang ZL, Zheng JR, Yang RF, Huang LX, Chen HS, Feng B. An Ideal Hallmark Closest to Complete Cure of Chronic Hepatitis B Patients: High-sensitivity Quantitative HBsAg Loss. J Clin Transl Hepatol 2023; 11:197-206. [PMID: 36406318 PMCID: PMC9647097 DOI: 10.14218/jcth.2022.00289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
In the era of antiviral therapy, the main goal of treatment has shifted from the persistent inhibition of hepatitis B virus (HBV) replication to the pursuit of serological clearance of HBs surface antigen (HBsAg). Based on the life cycle of HBV, HBsAg originates from covalently closed circular DNA (cccDNA) and integrated HBV DNA, thus reflecting their transcriptional activity. Complete HBsAg loss may mean elimination or persistent inactivity of the HBV genome including cccDNA and integrated HBV DNA. HBsAg loss improves the recovery of abnormal immune function, which in turn, may further promote the clearance of residual viruses. Combined with functional cure and the great improvement of clinical outcomes, the continuous seroclearance of high-sensitivity quantitative HBsAg may represent the complete cure of chronic hepatitis B (CHB). For many other risk factors besides HBV itself, patients with HBsAg loss still need regular monitoring. In this review, we summarized the evolution of CHB treatment, the origin of serum HBsAg, the pattern of HBsAg seroclearance, and the effect of HBsAg loss on immune function and disease outcomes. In addition, we discuss the significance of high-sensitivity HBsAg detection and its possibility as a surrogate of complete cure.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Feng
- Correspondence to: Bo Feng, Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, 11 Xizhimen South Street, Xicheng District, Beijing 100044, China. ORCID: https://orcid.org/0000-0001-5084-6715. Tel: +1-381-025-4109, Fax: +86-10-66515490, E-mail:
| |
Collapse
|
46
|
Abdulla ZA, Al-Bashir SM, Alzoubi H, Al-Salih NS, Aldamen AA, Abdulazeez AZ. The Role of Immunity in the Pathogenesis of SARS-CoV-2 Infection and in the Protection Generated by COVID-19 Vaccines in Different Age Groups. Pathogens 2023; 12:329. [PMID: 36839601 PMCID: PMC9967364 DOI: 10.3390/pathogens12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
This study aims to review the available data regarding the central role of immunity in combating SARS-CoV-2 infection and in the generation of protection by vaccination against COVID-19 in different age groups. Physiologically, the immune response and the components involved in it are variable, both functionally and quantitatively, in neonates, infants, children, adolescents, and adults. These immunological differences are mirrored during COVID-19 infection and in the post-vaccination period. The outcome of SARS-CoV-2 infection is greatly dependent on the reaction orchestrated by the immune system. This is clearly obvious in relation to the clinical status of COVID-19 infection, which can be symptomless, mild, moderate, or severe. Even the complications of the disease show a proportional pattern in relation to the immune response. On the contrary, the commonly used anti-COVID-19 vaccines generate protective humoral and cellular immunity. The magnitude of this immunity and the components involved in it are discussed in detail. Furthermore, many of the adverse effects of these vaccines can be explained on the basis of immune reactions against the different components of the vaccines. Regarding the appropriate choice of vaccine for different age groups, many factors have to be considered. This is a cornerstone, particularly in the following age groups: 1 day to 5 years, 6 to 11 years, and 12 to 17 years. Many factors are involved in deciding the route, doses, and schedule of vaccination for children. Another important issue in this dilemma is the hesitancy of families in making the decision about whether to vaccinate their children. Added to these difficulties is the choice by health authorities and governments concerning whether to make children's vaccination compulsory. In this respect, although rare and limited, adverse effects of vaccines in children have been detected, some of which, unfortunately, have been serious or even fatal. However, to achieve comprehensive control over COVID-19 in communities, both children and adults have to be vaccinated, as the former group represents a reservoir for viral transmission. The understanding of the various immunological mechanisms involved in SARS-CoV-2 infection and in the preparation and application of its vaccines has given the sciences a great opportunity to further deepen and expand immunological knowledge. This will hopefully be reflected positively on other diseases through gaining an immunological background that may aid in diagnosis and therapy. Humanity is still in continuous conflict with SARS-CoV-2 infection and will be for a while, but the future is expected to be in favor of the prevention and control of this disease.
Collapse
Affiliation(s)
| | - Sharaf M. Al-Bashir
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Hiba Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Noor S. Al-Salih
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Ala A. Aldamen
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | | |
Collapse
|
47
|
Abstract
SIGNIFICANCE As a redox-sensitive protein, high-mobility group box 1 (HMGB1) is implicated in regulating stress responses to oxidative damage and cell death, which are closely related to the pathology of inflammatory diseases, including cancer. RECENT ADVANCES HMGB1 is a non-histone nuclear protein that acts as a DNA chaperone to control chromosomal structure and function. HMGB1 can also be released into the extracellular space and function as a damage-associated molecular pattern protein during cell death, including during apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, alkaliptosis, and cuproptosis. Once released, HMGB1 binds to membrane receptors to shape immune and metabolic responses. In addition to subcellular localization, the function and activity of HMGB1 also depends on its redox state and protein posttranslational modifications. Abnormal HMGB1 plays a dual role in tumorigenesis and anticancer therapy (e.g., chemotherapy, radiation therapy, and immunotherapy) depending on tumor types and stages. CRITICAL ISSUES A comprehensive understanding of the role of HMGB1 in cellular redox homeostasis is important for deciphering normal cellular functions and pathological manifestations. In this review, we discuss compartmental-defined roles of HMGB1 in regulating cell death and cancer. Understanding these advances may help us develop potential HMGB1-targeting drugs or approaches to treat oxidative stress-related diseases or pathological conditions. FUTURE DIRECTIONS Further studies are required to dissect the mechanism by which HMGB1 maintains redox homeostasis under different stress conditions. A multidisciplinary effort is also required to evaluate the potential applications of precisely targeting the HMGB1 pathway in human health and disease.
Collapse
Affiliation(s)
- Ruochan Chen
- Central South University, 12570, Changsha, Hunan, China;
| | - Ju Zou
- Central South University, 12570, Changsha, Hunan, China;
| | - Rui Kang
- UTSW, 12334, Dallas, Texas, United States;
| | - Doalin Tang
- UTSW, 12334, Surgery, 5323 Harry Hines Blvd, Dallas, Texas, United States, 75390-9096;
| |
Collapse
|
48
|
Nikolova-Ganeva K, Vasilev V, Kerezieva S, Tchorbanov A. Impact of folic acid on regulatory B lymphocytes from patients with systemic lupus erythematosus in vitro. Int J Rheum Dis 2023; 26:298-304. [PMID: 36385742 DOI: 10.1111/1756-185x.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Epigenetic modifications of genomes are of particular interest as numerous studies indicate the correlation between DNA methylation and the development of systemic lupus. As a major methyl group donor, folic acid is an important participant in this process. The aim of this study is to determine the effect of low or high dose folate co-culturing with peripheral blood mononuclear cells (PBMCs) on the secretion of interleukin (IL)10 from regulatory cells from lupus patients or from healthy volunteers. METHODS PBMCs from lupus patients and healthy volunteers were isolated and separated CD19+ B cell populations were cultured in the presence of 4 μg/mL or of 16 μg/mL of folic acid and the DNA methylation level as well as the percentages of B lymphocytes were measured. In another experiment, PBMCs were stimulated in vitro for IL10 production with 1 μg/mL recombinant human CD40L and with 2.5 μg/mL unmethylated CpG dinucleotides and cultured in the presence of 4 μg/mL or of 16 μg/mL of folic acid. RESULTS Although co-culturing with low or high folic acid concentrations had no effect on the methylation level of B lymphocytes, particular patients showed an increase in the population of CD19+ IL10+ as well as of CD19- IL10+ cells. CONCLUSION The observed increase may be a consequence of additional indirect or direct methylation of DNA in specific loci of the targeted cells. However, further analysis would clarify the exact mechanism of action of folate and would reveal its immunomodulating potential in this autoimmune disease.
Collapse
Affiliation(s)
- Kalina Nikolova-Ganeva
- Department of Immunology, Laboratory of Experimental Immunology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Vasil Vasilev
- Department of Nephrology, University Hospital "Tsaritsa Yoanna - ISUL", Medical University - Sofia, Sofia, Bulgaria
| | - Simona Kerezieva
- Department of Nephrology, University Hospital "Tsaritsa Yoanna - ISUL", Medical University - Sofia, Sofia, Bulgaria
| | - Andrey Tchorbanov
- Department of Immunology, Laboratory of Experimental Immunology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
49
|
Huang J, Wu T, Zhong Y, Huang J, Kang Z, Zhou B, Zhao H, Liu D. Effect of curcumin on regulatory B cells in chronic colitis mice involving TLR/MyD88 signaling pathway. Phytother Res 2023; 37:731-742. [PMID: 36196887 DOI: 10.1002/ptr.7656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Curcumin (Cur) is a natural active phenolic compound extracted from the root of Curcuma Longa L. It has anti-inflammatory, anti-tumor and other pharmacological activities, and is commonly used to treat ulcerative colitis (UC). However, it is not clear whether curcumin regulates the function and differentiation of Breg cells to treat UC. In this study, mice with chronic colitis were induced by dextran sulfate sodium (DSS), and treated with curcumin for 12 days. Curcumin effectively improved the body weight, colonic weight, colonic length, decreased colonic weight index and pathological injury score under colonoscopy in mice with chronic colitis, and significantly inhibited the production of IL-1β, IL-6, IL-33, CCL-2, IFN-γ, TNF-α, and promoted the secretion of IL-4, IL-10, IL-13 and IgA. Importantly, curcumin markedly upregulated CD3- CD19+ CD1d+ , CD3- CD19+ CD25+ , CD3- CD19+ Foxp3+ Breg cells level and significantly down-regulated CD3- CD19+ PD-L1+ , CD3- CD19+ tim-1+ , CD3- CD19+ CD27+ Breg cells level. In addition, our results also showed that curcumin observably inhibited TLR2, TLR4, TLR5, MyD88, IRAK4, p-IRAK4, NF-κB P65, IRAK1, TRAF6, TAB1, TAB2, TAK1, MKK3, MKK6, p38MAPK, p-p38MAPK and CREB expression in TLR/MyD88 signaling pathway. These results suggest that curcumin can regulate the differentiation and function of Breg cell to alleviate DSS-induced colitis, which may be realized by inhibiting TLR/MyD88 pathway.
Collapse
Affiliation(s)
- Jie Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Tiantian Wu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Youbao Zhong
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China.,Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Zengping Kang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Bugao Zhou
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
50
|
Huda R. Inflammation and autoimmune myasthenia gravis. Front Immunol 2023; 14:1110499. [PMID: 36793733 PMCID: PMC9923104 DOI: 10.3389/fimmu.2023.1110499] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Myasthenia gravis (MG) is a neuromuscular autoimmune disorder characterized by chronic but intermittent fatigue of the eye- and general body muscles. Muscle weakness is caused primarily by the binding of an autoantibody to the acetylcholine receptors, resulting in blockage of normal neuromuscular signal transmission. Studies revealed substantial contributions of different proinflammatory or inflammatory mediators in the pathogenesis of MG. Despite these findings, compared to therapeutic approaches that target autoantibody and complements, only a few therapeutics against key inflammatory molecules have been designed or tested in MG clinical trials. Recent research focuses largely on identifying unknown molecular pathways and novel targets involved in inflammation associated with MG. A well-designed combination or adjunct treatment utilizing one or more selective and validated promising biomarkers of inflammation as a component of targeted therapy may yield better treatment outcomes. This review briefly discusses some preclinical and clinical findings of inflammation associated with MG and current therapy approaches and suggest the potential of targeting important inflammatory marker(s) along with current monoclonal antibody or antibody fragment based targeted therapies directed to a variety of cell surface receptors.
Collapse
|