1
|
Rodriguez-Gil JL, Nagy PL, Francke U. Optical genome mapping with genome sequencing identifies subtelomeric Xq28 deletion and inserted 7p22.3 duplication in a male with multisystem developmental disorder. Am J Med Genet A 2024; 194:e63814. [PMID: 39011850 DOI: 10.1002/ajmg.a.63814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/24/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
We report a 17-year-old male with supravalvular stenosis, initial failure to thrive and delayed early development, short stature, acromelia, dysmorphic facial features, hypertelorism, macrocephaly, syringomyelia, hypertension, and anxiety disorder. Fluorescent in situ hybridization (FISH), chromosomal microarray analysis (CMA), and exome sequencing (ES) were nondiagnostic. Combined optical genome mapping (OGM) and genome sequencing (GS) showed a complex rearrangement including an X chromosome with a 22.5 kb deletion in band Xq28 replaced by a 61.4 kb insertion of duplicated chromosome 7p22.3 material. The deletion removes the distal 3' untranslated region (UTR) of FUNDC2, the entire CMC4 and MTCP1, and the first five exons of BRCC3. Transcriptome analysis revealed absent expression of CMC4 and MTCP1 and BRCC3 with normal transcript level of FUNDC2. The inserted duplication includes only one known gene: UNCX. Similar overlapping Xq28 deletions have been reported to be associated with Moyamoya disease (MMD), short stature, hypergonadotropic hypogonadism (HH), and facial dysmorphism. Although he has short stature, our patient does not have signs of Moyamoya arteriopathy or hypogonadism. The structurally abnormal X chromosome was present in his mother, but not in his unaffected brother, maternal uncle, or maternal grandparents. We propose that the combination of his absent Xq28 and duplicated 7p22.3 genomic material is responsible for his phenotype. This case highlights the potential of combined OGM and GS for detecting complex structural variants compared with standard of care genetic testing such as CMA and ES.
Collapse
Affiliation(s)
- Jorge L Rodriguez-Gil
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, California, USA
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University, Stanford, California, USA
| | | | - Uta Francke
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Jiang S, Jiang D, Lian Z, Huang X, Li T, Zhang Y. THSD7A as a Promising Biomarker for Membranous Nephrosis. Mol Biotechnol 2024; 66:3117-3135. [PMID: 37884765 DOI: 10.1007/s12033-023-00934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Membranous nephropathy (MN) is an autoimmune disease of the kidney glomerulus and one of the leading causes of nephrotic syndrome. The disease exhibits heterogeneous outcomes with approximately 30% of cases progressing to end-stage renal disease. Traditionally, the standard approach of diagnosing MN involves performing a kidney biopsy. Nevertheless, kidney biopsy is an invasive procedure that poses risks for the patient including bleeding and pain, and bears greater costs for the health system. The clinical management of MN has steadily advanced owing to the identification of autoantibodies to the phospholipase A2 receptor (PLA2R) in 2009 and thrombospondin domain-containing 7A (THSD7A) in 2014 on the podocyte surface. At present, serum anti-PLA2R antibody detection and glomerular PLA2R antigen staining have been used for clinical diagnosis and prognosis, but the related detection of THSD7A has not been widely used in clinical practice. Here, we summarized the emerging knowledge regarding the roles THSD7A plays in MN and its clinical implications as diagnostic, prognostic, and therapeutic response as well as Methods for detecting serum THSD7A antibodies.
Collapse
Affiliation(s)
- Shuiqing Jiang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| | - Dehua Jiang
- Kangrun Biotech LTD, Guangzhou, 511400, Guangdong, China
| | - Zhiyuan Lian
- Kangrun Biotech LTD, Guangzhou, 511400, Guangdong, China
| | - Xiaohong Huang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Ting Li
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Yinan Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350117, Fujian, China
| |
Collapse
|
3
|
Luo C, Wei C, He Z, Feng R. Overview of Immunological Response in Urological Membranous Nephropathy: Focus on Cytokine and Treatment Options. J Interferon Cytokine Res 2024. [PMID: 39453643 DOI: 10.1089/jir.2024.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Membranous nephropathy (MN) is an autoimmune disease that is caused by the production of autoantibody against glomerular podocyte antigens by immune cells due to the lack of self-tolerance mechanisms. Similar to many autoimmune diseases, the pathogenesis of MN is still vague and many experiments are being conducted to detect the antigens and genetic reasons for MN illness. Recently, new antigens, such as exotosin 1/exotosin 2, neural EGF-like-1, semaphorin 3B, and protocadherin 7 have been identified in MN patients who did not have presence of antiphospholipase A2 receptor antigen. What is more, cytokines, which are molecules that regulate immune responses, have been found to have harmful effects in various autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and MN. The role of cytokines and treatment strategies in MN patients is discussed in this article. As the understanding of the disease improves, targeted therapies that focus on specific antigens or cytokines may be developed to effectively manage MN.
Collapse
Affiliation(s)
- Chao Luo
- Urology Surgery, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Chengcheng Wei
- Urology Surgery, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Zhaoxian He
- Urology Surgery, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Renlei Feng
- Department of Geriatrics, Chongqing General Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Pan Y, Chen S, Wu L, Xing C, Mao H, Liang H, Yuan Y. Animal models of membranous nephropathy: more choices and higher similarity. Front Immunol 2024; 15:1412826. [PMID: 39497816 PMCID: PMC11532550 DOI: 10.3389/fimmu.2024.1412826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/20/2024] [Indexed: 11/07/2024] Open
Abstract
Membranous nephropathy (MN) is an antibody-mediated autoimmune glomerular disease in which PLA2R1 is the main autoantibody. It has become the most common cause of adult nephrotic syndrome, and about one-third of patients can progress to end-stage kidney disease, but its pathogenesis is still unclear. Animal models can be used as suitable tools to study the pathogenesis and treatment of MN. The previous Heymann nephritis rat model and C-BSA animal model are widely used to study the pathogenesis of MN. However, the lack of target antigen expression in podocytes of model animals (especially rodents) restricts the application. In recent years, researchers constructed animal models of antigen-specific MN, such as THSD7A, PLA2R1, which more truly simulate the pathogenesis and pathological features of MN and provide more choices for the follow-up researchers. When selecting these MN models, we need to consider many aspects, including cost, difficulty of model preparation, labor force, and whether the final model can answer the research questions. This review is to comprehensively evaluate the mechanism, advantages and disadvantages and feasibility of existing animal models, and provide new reference for the pathogenesis and treatment of MN.
Collapse
Affiliation(s)
- Ying Pan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Si Chen
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Lin Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Huijuan Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Hongwei Liang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Wendt R, Sobhani A, Diefenhardt P, Trappe M, Völker LA. An Updated Comprehensive Review on Diseases Associated with Nephrotic Syndromes. Biomedicines 2024; 12:2259. [PMID: 39457572 PMCID: PMC11504437 DOI: 10.3390/biomedicines12102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
There have been exciting advances in our knowledge of primary glomerular diseases and nephrotic syndromes in recent years. Beyond the histological pattern from renal biopsy, more precise phenotyping of the diseases and the use of modern nephrogenetics helps to improve treatment decisions and sometimes also avoid unnecessary exposure to potentially toxic immunosuppression. New biomarkers have led to easier and more accurate diagnoses and more targeted therapeutic decisions. The treatment landscape is becoming wider with a pipeline of promising new therapeutic agents with more sophisticated approaches. This review focuses on all aspects of entities that are associated with nephrotic syndromes with updated information on recent advances in each field. This includes podocytopathies (focal segmental glomerulosclerosis and minimal-change disease), membranous nephropathy, membranoproliferative glomerulonephritis, IgA nephropathy, fibrillary glomerulonephritis, amyloidosis, and monoclonal gammopathy of renal significance in the context of the nephrotic syndrome, but also renal involvement in systemic diseases, diabetic nephropathy, and drugs that are associated with nephrotic syndromes.
Collapse
Affiliation(s)
- Ralph Wendt
- Department of Nephrology, Hospital St. Georg Leipzig, Delitzscher Str. 141, 04129 Leipzig, Germany
| | - Alina Sobhani
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (A.S.); (P.D.); (M.T.); (L.A.V.)
| | - Paul Diefenhardt
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (A.S.); (P.D.); (M.T.); (L.A.V.)
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases, 50923 Cologne, Germany
| | - Moritz Trappe
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (A.S.); (P.D.); (M.T.); (L.A.V.)
| | - Linus Alexander Völker
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (A.S.); (P.D.); (M.T.); (L.A.V.)
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases, 50923 Cologne, Germany
| |
Collapse
|
6
|
Tomas NM. Therapeutic targets in membranous nephropathy: plasma cells and complement. Clin Kidney J 2024; 17:sfae243. [PMID: 39239361 PMCID: PMC11375337 DOI: 10.1093/ckj/sfae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Indexed: 09/07/2024] Open
Abstract
Membranous nephropathy (MN) is an antibody-mediated autoimmune disease and the most common cause of nephrotic syndrome in adults. The discovery of phospholipase A2 receptor 1 (PLA2R1) as the first target antigen in patients with MN 15 years ago has led to a paradigm shift in the pathobiological understanding of this disease. Autoantibodies against PLA2R1 as well as thrombospondin type-1 domain-containing 7A, the second identified antigen in adults, were shown to be disease-causing and act through local activation of the complement system, primarily via the classical and lectin pathways. These findings indicate that both plasma cells, the main source of antibodies and autoantibodies, as well as the complement system, the main pathogenic effector mechanism in MN, are rational and pathogenesis-based treatment targets in MN. This review summarizes pathomechanistic and clinical evidence for and against plasma cell- and complement-targeted treatments in MN.
Collapse
Affiliation(s)
- Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Xu J, Hu H, Sun Y, Zhao Z, Zhang D, Yang L, Lu Q. The fate of immune complexes in membranous nephropathy. Front Immunol 2024; 15:1441017. [PMID: 39185424 PMCID: PMC11342396 DOI: 10.3389/fimmu.2024.1441017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The most characteristic feature of membranous nephropathy (MN) is the presence of subepithelial electron dense deposits and the consequential thickening of the glomerular basement membrane. There have been great advances in the understanding of the destiny of immune complexes in MN by the benefit of experimental models represented by Heymann nephritis. Subepithelial immune complexes are formed in situ by autoantibodies targeting native autoantigens or exogenous planted antigens such as the phospholipase A2 receptor (PLA2R) and cationic BSA respectively. The nascent immune complexes would not be pathogenic until they develop into immune deposits. Podocytes are the major source of autoantigens in idiopathic membranous nephropathy. They also participate in the modulation and removal of the immune complexes to a large extent. The balance between deposition and clearance is regulated by a wide range of factors such as the composition and physicochemical properties of the immune complexes and the complement system. Complement components such as C3 and C1q have been reported to be precipitated with the deposits whereas a complement regulatory protein CR1 expressed by podocytes is involved in the phagocytosis of immune complexes by podocytes. Podocytes regulate the dynamic change of immune complexes which is disturbed in membranous nephropathy. To elucidate the precise fate of the immune complexes is essential for developing more rational and novel therapies for membranous nephropathy.
Collapse
Affiliation(s)
- Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haikun Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhe Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Danyuan Zhang
- Qi Huang of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Yang
- Department of Nephropathy, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Liu J, Malhotra D, Ge Y, Gunning W, Dworkin L, Gong R. THSD7A-associated membranous nephropathy involves both complement-mediated and autonomous podocyte injury. Front Pharmacol 2024; 15:1430451. [PMID: 39086386 PMCID: PMC11288966 DOI: 10.3389/fphar.2024.1430451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Membranous nephropathy (MN) continues to be a leading cause of nephrotic syndrome in non-diabetic adults. As a unique subtype in the serology-based classification of MN, thrombospondin type 1 domain containing 7A (THSD7A)-associated MN has attracted increasing interest, because, unlike other autoantigens, THSD7A is also expressed in preclinical species, facilitating the study of its role in MN. A heterologous mouse model of THSD7A-associated MN was previously established using a proprietary in-house antibody that was unfortunately not available to the research community. Here, we developed a mouse model of THSD7A-associated MN by administering a commercially available antibody targeting the most N-terminal part of THSD7A. Our model was characterized by heavy proteinuria and pathological features of human MN without sex differences. Complement depletion with cobra venom factor only partially attenuated proteinuria and glomerular injury in this model, entailing that complement-independent pathomechanisms also contribute. Consistently, in vitro in primary podocytes, exposure to the anti-THSD7A antibody caused evident podocytopathic changes, including disruption of actin cytoskeleton integrity, podocyte hypermobility, oxidative stress, and apoptotic cell death. These signs of podocytopathy were preserved, albeit to a lesser extent, after complement inactivation, indicating autonomous podocyte injury. Furthermore, as the first FDA-approved treatment for primary MN, adrenocorticotropic hormone therapy with repository corticotropin injection (Purified Cortrophin Gel®) appeared to be beneficial and significantly attenuated proteinuria and glomerular injury, suggesting that this model may be useful for developing novel treatments or understanding the pathogenesis of MN. Collectively, our model, based on the use of a commercially available anti-THSD7A antibody, will be an important tool for MN research.
Collapse
Affiliation(s)
- Jing Liu
- Division of Nephrology, Department of Medicine, Toledo, OH, United States
| | - Deepak Malhotra
- Division of Nephrology, Department of Medicine, Toledo, OH, United States
| | - Yan Ge
- Division of Nephrology, Department of Medicine, Toledo, OH, United States
| | - William Gunning
- Department of Pathology, The University of Toledo College of Medicine, Toledo, OH, United States
| | - Lance Dworkin
- Division of Nephrology, Department of Medicine, Toledo, OH, United States
| | - Rujun Gong
- Division of Nephrology, Department of Medicine, Toledo, OH, United States
| |
Collapse
|
9
|
Flockerzi FA, Hohneck J, Langer F, Tränkenschuh W, Stahl PR. The Role of SCARA5 as a Potential Biomarker in Squamous Cell Carcinoma of the Lung. Int J Mol Sci 2024; 25:7355. [PMID: 39000462 PMCID: PMC11242384 DOI: 10.3390/ijms25137355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in the western world. Squamous cell carcinoma is one of the most common histological subtypes of this malignancy. For squamous cell carcinoma of the lung (LSCC), prognostic and predictive markers still are largely missing. In a previous study, we were able to show that the expression of THSD7A shows an association with unfavorable prognostic parameters in prostate cancer. There is also a link to a high expression of FAK. There is incidence that SCARA5 might be the downstream gene of THSD7A. Furthermore, there is evidence that SCARA5 interacts with FAK. We were interested in the role of SCARA5 as a potential biomarker in LSCC. Furthermore, we wanted to know whether SCARA5 expression is linked to THSD7A positivity and to the expression level of FAK. For this reason, we analyzed 101 LSCC tumors by immunohistochemistry. Tissue microarrays were utilized. No significant association was found between SCARA5 expression and overall survival or clinicopathological parameters. There was also no significant association between THSD7A positivity and SCARA5 expression level. Moreover, no significant association was found between FAK expression level and SCARA5 expression level. SCARA5 seems not to play a major role as a biomarker in squamous cell carcinoma of the lung.
Collapse
Affiliation(s)
| | - Johannes Hohneck
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Frank Langer
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| | | | - Phillip Rolf Stahl
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
- Department of Pathology, Medical School Berlin, 14197 Berlin, Germany
| |
Collapse
|
10
|
Gu Q, Wen Y, Cheng X, Qi Y, Cao X, Gao X, Mao X, Shang W, Wei L, Jia J, Yan T, Cai Z. Integrative profiling of untreated primary membranous nephropathy at the single-cell transcriptome level. Clin Kidney J 2024; 17:sfae168. [PMID: 39027416 PMCID: PMC11255483 DOI: 10.1093/ckj/sfae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 07/20/2024] Open
Abstract
Background Primary membranous nephropathy (PMN) is an autoimmune kidney disease. Despite the identification of certain autoantigens, the etiology and pathophysiology of PMN are still largely unknown. Methods Five patients with biopsy-proven PMN were enrolled in this study. Their blood, kidney and urine samples were collected respectively to profile cellular, molecular and immunological alterations by using single-cell RNA sequencing (scRNA-seq). Experimental verifications were also implemented in kidney tissue. Results In the peripheral blood mononuclear cell (PBMC) samples, portions of B cells and plasma cells were increased in PMN patients. Cell-cell communication analysis suggests that APRIL (a proliferation-inducing ligand from B cells) might be a potential molecule that regulates the activity of plasma cells. In the kidney samples, scRNA-seq analysis showed that the infiltration of T cells, as well as the myeloid cells, appears abundant compared with healthy controls, suggesting that immune cells are actively recruited to kidney. Furthermore, we observed an enhanced interaction between inflammatory cells and podocytes, which might contribute to kidney injury. Accordingly, scRNA-seq analysis of urinary samples is partially reminiscent of the kidney cell landscape, especially T cells and myeloid cells, suggesting monitoring urinary samples is a promising method to monitor PMN development. Additionally, integrative analysis across the blood, kidney and urine identified LTB, HERP1, ANXA1, IL1RN and ICAM1 as common regulators of PMN. Finally, immune repertoire in PBMC also showed an elevated diversity of clonal type, implying the existence of autoreactive T-cell receptor/B-cell receptor. Conclusion Our study comprehensively profiled the transcriptomic landscapes of blood, kidney and urine in patients with PMN using scRNA-seq. We depicted the alterations including cell compositions and cell-cell communication in PMN. These results offer important clues with regard to the diagnosis and pathogenesis of PMN and potential intervention of PMN progression.
Collapse
Affiliation(s)
- Qiuhua Gu
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuchen Wen
- National Key Laboratory of Experimental Hematology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Xi Cheng
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Qi
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Cao
- Department of Nephrology, Tianjin Medical University General Hospital-Airport Hospital, Tianjin, China
| | - Xiqian Gao
- Department of Nephrology, Tianjin Medical University General Hospital-Airport Hospital, Tianjin, China
| | - Xiaoming Mao
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenya Shang
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Wei
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Junya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tiekun Yan
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhigang Cai
- National Key Laboratory of Experimental Hematology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Tianjin, China
| |
Collapse
|
11
|
Bharati J, Waguespack DR, Beck LH. Membranous Nephropathy: Updates on Management. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:299-308. [PMID: 39084755 DOI: 10.1053/j.akdh.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 08/02/2024]
Abstract
Membranous nephropathy is a major etiology of nephrotic syndrome in adults and less frequently in children. Circulating antibodies to intrinsic podocyte antigens, such as M-type phospholipase A2 receptor, or to extrinsic proteins accumulate beneath the podocyte to cause damage via complement activation and/or other mechanisms. The availability of clinical testing for autoantibodies to M-type phospholipase A2 receptor has allowed noninvasive diagnosis of this form of membranous nephropathy and a means to monitor immunologic activity to guide immunosuppressive therapy. Treatment of membranous nephropathy includes optimal supportive care with renin-angiotensin-system blockers, lipid-lowering agents, diuretics, lifestyle changes, and additional immunosuppressive therapy in patients with an increased risk of progression to kidney failure. Rituximab has been recognized as a first-line immunosuppressive therapy for most membranous nephropathy patients with an increased risk of progressive disease, except those with life-threatening nephrotic syndrome or rapidly deteriorating kidney function from membranous nephropathy. This article discusses the major and minor antigens described in membranous nephropathy, the natural history of the disease, and guidelines for clinical management and immunosuppressive treatment.
Collapse
Affiliation(s)
- Joyita Bharati
- Nephrology Section, Department of Medicine, Boston Medical Center, Boston, MA
| | - Dia Rose Waguespack
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston, TX
| | - Laurence H Beck
- Nephrology Section, Department of Medicine, Boston Medical Center, Boston, MA; Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA.
| |
Collapse
|
12
|
Wang M, Yang J, Fang X, Lin W, Yang Y. Membranous nephropathy: pathogenesis and treatments. MedComm (Beijing) 2024; 5:e614. [PMID: 38948114 PMCID: PMC11214595 DOI: 10.1002/mco2.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Membranous nephropathy (MN), an autoimmune disease, can manifest at any age and is among the most common causes of nephrotic syndrome in adults. In 80% of cases, the specific etiology of MN remains unknown, while the remaining cases are linked to drug use or underlying conditions like systemic lupus erythematosus, hepatitis B virus, or malignancy. Although about one-third of patients may achieve spontaneous complete or partial remission with conservative management, another third face an elevated risk of disease progression, potentially leading to end-stage renal disease within 10 years. The identification of phospholipase A2 receptor as the primary target antigen in MN has brought about a significant shift in disease management and monitoring. This review explores recent advancements in the pathophysiology of MN, encompassing pathogenesis, clinical presentations, diagnostic criteria, treatment options, and prognosis, with a focus on emerging developments in pathogenesis and therapeutic strategies aimed at halting disease progression. By synthesizing the latest research findings and clinical insights, this review seeks to contribute to the ongoing efforts to enhance our understanding and management of this challenging autoimmune disorder.
Collapse
Affiliation(s)
- Mengqiong Wang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Jingjuan Yang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Xin Fang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Weiqiang Lin
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Yi Yang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| |
Collapse
|
13
|
Bruschi M, Angeletti A, Prunotto M, Meroni PL, Ghiggeri GM, Moroni G, Sinico RA, Franceschini F, Fredi M, Vaglio A, Cavalli A, Scapozza L, Patel JJ, Tan JC, Lo KC, Cavagna L, Petretto A, Pratesi F, Migliorini P, Locatelli F, Pazzola G, Pesce G, Giannese D, Manfredi A, Ramirez GA, Esposito P, Murdaca G, Negrini S, Bui F, Trezzi B, Emmi G, Cavazzana I, Binda V, Fenaroli P, Pisan I, Montecucco C, Santoro D, Scolari F, Mescia F, Volpi S, Mosca M, Tincani A, Ravelli A, Murtas C, Candiano G, Caridi G, La Porta E, Verrina E. A critical view on autoantibodies in lupus nephritis: Concrete knowledge based on evidence. Autoimmun Rev 2024; 23:103535. [PMID: 38552995 DOI: 10.1016/j.autrev.2024.103535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Deposition of autoantibodies in glomeruli is a key factor in the development of lupus nephritis (LN). For a long time, anti-dsDNA and anti-C1q antibodies were thought to be the main cause of the kidney damage. However, recent studies have shown that the list of autoantibidies that have renal tropism and deposit in the kidney in LN is increasing and the link between anti-dsDNA and renal pathology is weak due to potential confounders. Aspecific bindings of dsDNA with cationic antibodies and of anti-dsDNA with several renal antigens such as actinin, laminin, entactin, and annexinA2 raised doubts about the specific target of these antibodies in the kidney. Moreover, the isotype of anti-dsDNA in SLE and LN has never received adequate interest until the recent observation that IgG2 are preponderant over IgG1, IgG3 and IgG4. Based on the above background, recent studies investigated the involvement of anti-dsDNA IgG2 and of other antibodies in LN. It was concluded that circulating anti-dsDNA IgG2 levels do not distinguish between LN versus non-renal SLE, and, in patients with LN, their levels do not change over time. Circulating levels of other antibodies such as anti-ENO1 and anti-H2 IgG2 were, instead, higher in LN vs non-renal SLE at the time of diagnosis and decreased following therapies. Finally, new classes of renal antibodies that potentially modify the anti-inflammatory response in the kidney are emerging as new co-actors in the pathogenetic scenario. They have been defined as 'second wave antibodies' for the link with detoxifying mechanisms limiting the oxidative stress in glomeruli that are classically stimulated in a second phase of inflammation. These findings have important clinical implications that may modify the laboratory approach to LN. Serum levels of anti-ENO1 and anti-H2 IgG2 should be measured in the follow up of patients for designing the length of therapies and identify those patients who respond to treatments. Anti-SOD2 could help to monitor and potentiate the anti-inflammatory response in the kidney.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Angeletti
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano-Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy.
| | - Gian Marco Ghiggeri
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Gabriella Moroni
- Department of Biomedical Sciences, Humanitas University and IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Franco Franceschini
- Rheumatology and Clinical Immunology, ASST SpedaliCivili and Università of Brescia, Italy
| | - Micaela Fredi
- Rheumatology and Clinical Immunology, ASST SpedaliCivili and Università of Brescia, Italy
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, and Nephrology and Dialysis Unit, Meyer Children's Hospital, Firenze, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Leonardo Scapozza
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | | | | | - Ken C Lo
- Nimble Therapeutics, Madison, WI, USA
| | - Lorenzo Cavagna
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Francesco Locatelli
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Giulia Pazzola
- Nephrology and Dialysis, Arciospedale Santa Maria nuova, Reggio Emilia, Italy
| | - Giampaola Pesce
- Nephrology and Dialysis, Arciospedale Santa Maria nuova, Reggio Emilia, Italy
| | | | - Angelo Manfredi
- Unit of Internal Medicine and Immunology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Giuseppe A Ramirez
- Unit of Internal Medicine and Immunology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Pasquale Esposito
- Division of Nephrology, University of Genoa and Policlinico San Martino, Genova, Italy
| | | | - Simone Negrini
- Department of Internal Medicine, University of Genoa, Italy
| | - Federica Bui
- Division of Nephrology, University of Genoa and Policlinico San Martino, Genova, Italy
| | - Barbara Trezzi
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Giacomo Emmi
- Lupus Clinic Department of biomedicine, University of Florence, University Hospital Careggi, Florence, Italy
| | - Ilaria Cavazzana
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Valentina Binda
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, and Nephrology and Dialysis Unit, Meyer Children's Hospital, Firenze, Italy
| | - Paride Fenaroli
- Nephrology Unit, University Hospital, University of Parma, Parma, Italy
| | - Isabella Pisan
- Nephrology Unit, University Hospital, University of Parma, Parma, Italy
| | | | - Domenico Santoro
- Nephrology and Dialysis Unit, University of Messina and G Martino Hospital, Messina, Italy
| | - Francesco Scolari
- Division of Nephrology and Dialysis, ASST SpedaliCivili and Università of Brescia, Brescia, Italy
| | - Federica Mescia
- Division of Nephrology and Dialysis, ASST SpedaliCivili and Università of Brescia, Brescia, Italy
| | - Stefano Volpi
- Division of Paediatric Rheumatology and Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Mosca
- Rheumatologu Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Angela Tincani
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Angelo Ravelli
- Division of Paediatric Rheumatology and Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Corrado Murtas
- Nephrology and Dialysis Unit, Ospedale Belcolle, 01100 Viterbo, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Caridi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Edoardo La Porta
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Enrico Verrina
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
14
|
Koehler S, Hengel FE, Dumoulin B, Damashek L, Holzman LB, Susztak K, Huber TB. The 14th International Podocyte Conference 2023: from podocyte biology to glomerular medicine. Kidney Int 2024; 105:935-952. [PMID: 38447880 DOI: 10.1016/j.kint.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024]
Abstract
The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felicitas E Hengel
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bernhard Dumoulin
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurel Damashek
- International Society of Glomerular Disease, Florence, Massachusetts, USA
| | - Lawrence B Holzman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tobias B Huber
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; International Society of Glomerular Disease, Florence, Massachusetts, USA.
| |
Collapse
|
15
|
Seifert L, Riecken K, Zahner G, Hambach J, Hagenstein J, Dubberke G, Huber TB, Koch-Nolte F, Fehse B, Tomas NM. An antigen-specific chimeric autoantibody receptor (CAAR) NK cell strategy for the elimination of anti-PLA2R1 and anti-THSD7A antibody-secreting cells. Kidney Int 2024; 105:886-889. [PMID: 38309682 DOI: 10.1016/j.kint.2024.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Affiliation(s)
- Larissa Seifert
- III: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hagenstein
- III: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gudrun Dubberke
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M Tomas
- III: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
16
|
Huang B, Zhang Z, Sui W, Zhao L, Li Y, Feng L, Yang D, Zhou Y. Effectiveness of a novel rat model of off-target PLA2R1 knockout to renal impairment. Genomics 2024; 116:110796. [PMID: 38237745 DOI: 10.1016/j.ygeno.2024.110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Phospholipase A2 receptor 1 (PLA2R1) plays a crucial role in various diseases, including membranous nephropathy. However, the precise implications of PLA2R1 deficiency remain poorly understood. In this study, we created PLA2R1 knockout rats to explore potential consequences resulting from the loss of the PLA2R1 gene. Unexpectedly, our PLA2R1 knockout rats exhibited symptoms resembling those of chronic kidney disease after an 8-week observation period. Notably, several rats developed persistent proteinuria, a hallmark of renal dysfunction. Immunohistochemical and immunofluorescence analyses revealed insignificant glomerular fibrosis, reduced podocyte count, and augmented glomerular expression of complement C3 (C3) compared to immunoglobin A (IgA) and immunoglobin G(IgG) in the rat model. These findings suggest that the loss of PLA2R1 may contribute to the pathogenesis of membranous nephropathy and related conditions. Our knockout rat model provides a valuable tool for investigating the underlying pathology of PLA2R1-associated diseases, and may facilitate the development of targeted therapies for membranous nephropathy and other related disorders.
Collapse
Affiliation(s)
- Bo Huang
- Shanxi Genetic Engineering Center for Experimental Animal Models, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, Shanxi 030012, China; Laboratory Animal Center, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China; Nephrology Key Laboratory of Shanxi Province, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China; Hospital of integrated traditional Chinese and Western medicine in Shanxi province, Taiyuan, Shanxi 030012, China.
| | - Zitong Zhang
- Shanxi Genetic Engineering Center for Experimental Animal Models, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, Shanxi 030012, China; Laboratory Animal Center, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China; Hospital of integrated traditional Chinese and Western medicine in Shanxi province, Taiyuan, Shanxi 030012, China
| | - Wendong Sui
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lu Zhao
- Laboratory Animal Center, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Yinyin Li
- Laboratory Animal Center, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Li Feng
- Laboratory Animal Center, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Daihe Yang
- Department of Anesthesiology, the Affiliated Second People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Yun Zhou
- Shanxi Genetic Engineering Center for Experimental Animal Models, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, Shanxi 030012, China; Hospital of integrated traditional Chinese and Western medicine in Shanxi province, Taiyuan, Shanxi 030012, China.
| |
Collapse
|
17
|
Kistler AD, Salant DJ. Complement activation and effector pathways in membranous nephropathy. Kidney Int 2024; 105:473-483. [PMID: 38142037 DOI: 10.1016/j.kint.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 12/25/2023]
Abstract
Complement activation has long been recognized as a central feature of membranous nephropathy (MN). Evidence for its role has been derived from the detection of complement products in biopsy tissue and urine from patients with MN and from mechanistic studies primarily based on the passive Heymann nephritis model. Only recently, more detailed insights into the exact mechanisms of complement activation and effector pathways have been gained from patient data, animal models, and in vitro models based on specific target antigens relevant to the human disease. These data are of clinical relevance, as they parallel the recent development of numerous specific complement therapeutics for clinical use. Despite efficient B-cell depletion, many patients with MN achieve only partial remission of proteinuria, which may be explained by the persistence of subepithelial immune complexes and ongoing complement-mediated podocyte injury. Targeting complement, therefore, represents an attractive adjunct treatment for MN, but it will need to be tailored to the specific complement pathways relevant to MN. This review summarizes the different lines of evidence for a central role of complement in MN and for the relevance of distinct complement activation and effector pathways, with a focus on recent developments.
Collapse
Affiliation(s)
- Andreas D Kistler
- Department of Medicine, Cantonal Hospital Frauenfeld, Spital Thurgau AG, Frauenfeld, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| | - David J Salant
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Avasare R, Andeen N, Beck L. Novel Antigens and Clinical Updates in Membranous Nephropathy. Annu Rev Med 2024; 75:219-332. [PMID: 37552894 DOI: 10.1146/annurev-med-050522-034537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Membranous nephropathy (MN), an autoimmune kidney disease and leading cause of nephrotic syndrome, leads to kidney failure in up to one-third of affected individuals. Most MN cases are due to an autoimmune reaction against the phospholipase A2 receptor (PLA2R) located on kidney podocytes. Serum PLA2R antibody quantification is now part of routine clinical practice because antibody titers correlate with disease activity and treatment response. Recent advances in target antigen detection have led to the discovery of more than 20 other podocyte antigens, yet the clinical impact of additional antigen detection remains unknown and is under active investigation. Here we review recent findings and hypothesize how current research will inform future care of patients with MN.
Collapse
Affiliation(s)
- Rupali Avasare
- Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon, USA;
| | - Nicole Andeen
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA;
| | - Laurence Beck
- Section of Nephrology, Department of Medicine, Boston Medical Center, Boston, Massachusetts, USA
- Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Zhang Q, Bin S, Budge K, Petrosyan A, Villani V, Aguiari P, Vink C, Wetzels J, Soloyan H, La Manna G, Podestà MA, Molinari P, Sedrakyan S, Lemley KV, De Filippo RE, Perin L, Cravedi P, Da Sacco S. C3aR-initiated signaling is a critical mechanism of podocyte injury in membranous nephropathy. JCI Insight 2024; 9:e172976. [PMID: 38227377 PMCID: PMC11143932 DOI: 10.1172/jci.insight.172976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
The deposition of antipodocyte autoantibodies in the glomerular subepithelial space induces primary membranous nephropathy (MN), the leading cause of nephrotic syndrome worldwide. Taking advantage of the glomerulus-on-a-chip system, we modeled human primary MN induced by anti-PLA2R antibodies. Here we show that exposure of primary human podocytes expressing PLA2R to MN serum results in IgG deposition and complement activation on their surface, leading to loss of the chip permselectivity to albumin. C3a receptor (C3aR) antagonists as well as C3AR gene silencing in podocytes reduced oxidative stress induced by MN serum and prevented albumin leakage. In contrast, inhibition of the formation of the membrane-attack-complex (MAC), previously thought to play a major role in MN pathogenesis, did not affect permselectivity to albumin. In addition, treatment with a C3aR antagonist effectively prevented proteinuria in a mouse model of MN, substantiating the chip findings. In conclusion, using a combination of pathophysiologically relevant in vitro and in vivo models, we established that C3a/C3aR signaling plays a critical role in complement-mediated MN pathogenesis, indicating an alternative therapeutic target for MN.
Collapse
Affiliation(s)
- Qi Zhang
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
| | - Sofia Bin
- Translational Transplant Research Center and Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Kelly Budge
- Translational Transplant Research Center and Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Valentina Villani
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
| | - Paola Aguiari
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
| | - Coralien Vink
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack Wetzels
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hasmik Soloyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Manuel Alfredo Podestà
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Molinari
- Translational Transplant Research Center and Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kevin V. Lemley
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Roger E. De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Paolo Cravedi
- Translational Transplant Research Center and Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
20
|
Tang X, Dai H, Hu Y, Liu W, Zhao Q, Jiang H, Feng Z, Zhang N, Rui H, Liu B. Experimental models for elderly patients with membranous nephropathy: Application and advancements. Exp Gerontol 2024; 185:112341. [PMID: 38042380 DOI: 10.1016/j.exger.2023.112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Membranous nephropathy (MN) occurs predominantly in middle-aged and elderly individuals and ranks among the most prevalent etiologies of elderly nephrotic syndrome. As an autoimmune glomerular disorder characterized by glomerular basement membrane thickening and immune complex deposition, conventional MN animal models, including the Heymann nephritis rat model and the c-BSA mouse model, have laid a foundation for MN pathogenesis research. However, differences in target antigens between rodents and humans have impeded this work. In recent years, researchers have created antigen-specific MN animal models, primarily centered on PLA2R1 and THSD7A, employing diverse techniques that provide innovative in vivo research platforms for MN. Furthermore, significant advancements have been made in the development of in vitro podocyte models relevant to MN. This review compiles recent antigen-specific MN animal models and podocyte models, elucidates their immune responses and pathological characteristics, and offers insights into the future of MN experimental model development. Our aim is to provide a comprehensive resource for research into the pathogenesis of MN and the development of targeted therapies for older patients with MN to prolong lifespan and improve quality of life.
Collapse
Affiliation(s)
- Xinyue Tang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Haoran Dai
- Department of Nephrology, Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Station East 5, Shunyi District, Beijing 101300, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Wenbin Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zhendong Feng
- Pinggu Hospital, Beijing Hospital of Traditional Chinese Medicine, No. 6, Pingxiang Road, Pinggu District, Beijing 101200, China
| | - Naiqian Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China; Beijing Institute of Chinese Medicine, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China.
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
21
|
Qu J, Xue X, Wang Z, Ma Z, Jia K, Li F, Zhang Y, Wu R, Zhou F, Zhao P, Li X. Si-Wu-Tang attenuates liver fibrosis via regulating lncRNA H19-dependent pathways involving cytoskeleton remodeling and ECM deposition. Chin J Nat Med 2024; 22:31-46. [PMID: 38278557 DOI: 10.1016/s1875-5364(24)60560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 01/28/2024]
Abstract
Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhixing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Piwen Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
22
|
Murtas C, Bruschi M, Spinelli S, Kajana X, Verrina EE, Angeletti A, Caridi G, Candiano G, Feriozzi S, Prunotto M, Ghiggeri GM. Novel biomarkers and pathophysiology of membranous nephropathy: PLA2R and beyond. Clin Kidney J 2024; 17:sfad228. [PMID: 38213493 PMCID: PMC10783244 DOI: 10.1093/ckj/sfad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 01/13/2024] Open
Abstract
Research on membranous nephropathy truly exploded in the last 15 years. This happened because of the application of new techniques (laser capture microdissection, mass spectrometry, protein G immunoprecipitation, arrays) to the study of its pathogenesis. After the discovery of PLA2R as the major target antigen, many other antigens were identified and others are probably ongoing. Clinical and pathophysiology rebounds of new discoveries are relevant in terms of diagnosis and prognosis and it is time to make a first assessment of the innovative issues. In terms of classification, target antigens can be divided into: 'membrane antigens' and 'second wave' antigens. The first group consists of antigens constitutionally expressed on the podocyte membrane (as PLA2R) that may become a target of an autoimmune process because of perturbation of immune-tolerance. 'Second wave' antigens are antigens neo-expressed by the podocyte or by infiltrating cells after a stressing event: this allows the immune system to produce antibodies against them that intensify and maintain glomerular damage. With this abundance of target antigens it is not possible, at the moment, to test all antibodies at the bedside. In the absence of this possibility, the role of histological evaluation is still irreplaceable.
Collapse
Affiliation(s)
- Corrado Murtas
- Nephrology and Dialysis Unit, Ospedale Belcolle, ASL Viterbo, Viterbo, Italy
| | - Maurizio Bruschi
- Department of Experimental Medicine (DIMES) University of Genoa, Italy
- Nephrology, Dialysis and Transplantation Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Sonia Spinelli
- Nephrology, Dialysis and Transplantation Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Xhuliana Kajana
- Nephrology, Dialysis and Transplantation Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Enrico E Verrina
- Nephrology, Dialysis and Transplantation Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Andrea Angeletti
- Nephrology, Dialysis and Transplantation Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gianluca Caridi
- Nephrology, Dialysis and Transplantation Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Candiano
- Nephrology, Dialysis and Transplantation Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Sandro Feriozzi
- Nephrology and Dialysis Unit, Ospedale Belcolle, ASL Viterbo, Viterbo, Italy
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Gian Marco Ghiggeri
- Nephrology, Dialysis and Transplantation Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
23
|
Pickett CJ, Gruner HN, Davidson B. Lhx3/4 initiates a cardiopharyngeal-specific transcriptional program in response to widespread FGF signaling. PLoS Biol 2024; 22:e3002169. [PMID: 38271304 PMCID: PMC10810493 DOI: 10.1371/journal.pbio.3002169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Individual signaling pathways, such as fibroblast growth factors (FGFs), can regulate a plethora of inductive events. According to current paradigms, signal-dependent transcription factors (TFs), such as FGF/MapK-activated Ets family factors, partner with lineage-determining factors to achieve regulatory specificity. However, many aspects of this model have not been rigorously investigated. One key question relates to whether lineage-determining factors dictate lineage-specific responses to inductive signals or facilitate these responses in collaboration with other inputs. We utilize the chordate model Ciona robusta to investigate mechanisms generating lineage-specific induction. Previous studies in C. robusta have shown that cardiopharyngeal progenitor cells are specified through the combined activity of FGF-activated Ets1/2.b and an inferred ATTA-binding transcriptional cofactor. Here, we show that the homeobox TF Lhx3/4 serves as the lineage-determining TF that dictates cardiopharyngeal-specific transcription in response to pleiotropic FGF signaling. Targeted knockdown of Lhx3/4 leads to loss of cardiopharyngeal gene expression. Strikingly, ectopic expression of Lhx3/4 in a neuroectodermal lineage subject to FGF-dependent specification leads to ectopic cardiopharyngeal gene expression in this lineage. Furthermore, ectopic Lhx3/4 expression disrupts neural plate morphogenesis, generating aberrant cell behaviors associated with execution of incompatible morphogenetic programs. Based on these findings, we propose that combinatorial regulation by signal-dependent and lineage-determinant factors represents a generalizable, previously uncategorized regulatory subcircuit we term "cofactor-dependent induction." Integration of this subcircuit into theoretical models will facilitate accurate predictions regarding the impact of gene regulatory network rewiring on evolutionary diversification and disease ontogeny.
Collapse
Affiliation(s)
- C. J. Pickett
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Hannah N. Gruner
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Bradley Davidson
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| |
Collapse
|
24
|
Solà-Porta E, Buxeda A, Lop J, Naranjo-Hans D, Gimeno J, Lloveras-Rubio B, Pérez-Sáez MJ, Redondo-Pachón D, Crespo M. THSD7A-positive membranous nephropathy after kidney transplantation: A case report. Nefrologia 2023; 43 Suppl 2:85-90. [PMID: 36681516 DOI: 10.1016/j.nefroe.2022.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/03/2022] [Indexed: 06/17/2023] Open
Abstract
Membranous nephropathy (MN) is a common cause of nephrotic syndrome after kidney transplantation (KT); however, scarce is known regarding post-KT thrombospondin type-1 domain-containing 7A (THSD7A)-positive MN. Herein, we report on a 72-year-old woman with end-stage kidney disease due to chronic interstitial nephritis (1996). In February 2020, she received a second deceased-donor KT, achieving optimal kidney function but presenting early post-KT proteinuria, reaching up to 1800mg/24h six months after transplantation, controlled with renin-angiotensin-aldosterone system (RAAS) blockade. In July 2021, a kidney allograft biopsy revealed features consistent with MN. Immunohistochemical stains showed diffuse and granular THSD7A and C4d deposition in glomerular capillary walls and negative PLA2R and IgG4 staining. No anti-THSD7A antibodies were detected in the serum. The pre-implantation biopsy showed no MN-associated lesions and negative THSD7A staining. Secondary triggers such as malignancy were discarded. The present report illustrates a THSD7A-positive MN in a KT recipient. Despite lacking native kidney biopsy and early presentation, a recurrent MN seemed unprovable due to documented native kidney disease and a long time span between native kidney disease and MN diagnosis. We, therefore, presumed primary de novo disease. Two years after KT, kidney function remains stable, and the patient has reached complete remission of proteinuria.
Collapse
Affiliation(s)
| | - Anna Buxeda
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Joan Lop
- Department of Pathology, Hospital del Mar, Barcelona, Spain
| | | | - Javier Gimeno
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Pathology, Hospital del Mar, Barcelona, Spain
| | | | - María José Pérez-Sáez
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Dolores Redondo-Pachón
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| |
Collapse
|
25
|
Abstract
The complement cascade comprises soluble and cell surface proteins and is an important arm of the innate immune system. Once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammatory, vasoactive and metabolic responses. Although complement is crucial to host defence and homeostasis, its inappropriate or uncontrolled activation can also drive tissue injury. For example, the complement system has been known for more than 50 years to be activated by glomerular immune complexes and to contribute to autoimmune kidney disease. Notably, the latest research shows that complement is also activated in kidney diseases that are not traditionally thought of as immune-mediated, including haemolytic-uraemic syndrome, diabetic kidney disease and focal segmental glomerulosclerosis. Several complement-targeted drugs have been approved for the treatment of kidney disease, and additional anti-complement agents are being investigated in clinical trials. These drugs are categorically different from other immunosuppressive agents and target pathological processes that are not effectively inhibited by other classes of immunosuppressants. The development of these new drugs might therefore have considerable benefits in the treatment of kidney disease.
Collapse
Affiliation(s)
- Vojtech Petr
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joshua M Thurman
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
26
|
Beck LH. The latest model has just arrived! A new experimental mouse model of PLA2R1-associated membranous nephropathy. Kidney Int 2023; 104:878-880. [PMID: 37863634 DOI: 10.1016/j.kint.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/22/2023]
Abstract
Much akin to the explosion in number of known target antigens in membranous nephropathy, there has been a rapid expansion in the availability of animal models involving the first 2 antigens discovered in adult disease, phospholipase A2 receptor and thrombospondin type 1 domain-containing 7A. In this issue, Tomas et al. describe a novel mouse model of phospholipase A2 receptor-associated membranous nephropathy that shows great promise for investigating molecular mechanisms of disease and as an experimental system for testing existing and emerging therapies.
Collapse
Affiliation(s)
- Laurence H Beck
- Nephrology Section, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA.
| |
Collapse
|
27
|
Tomas NM, Schnarre A, Dehde S, Lucas R, Hermans-Borgmeyer I, Kretz O, Koellner SMS, Wiech T, Koch-Nolte F, Seifert L, Huber TB, Zahner G. Introduction of a novel chimeric active immunization mouse model of PLA2R1-associated membranous nephropathy. Kidney Int 2023; 104:916-928. [PMID: 37598854 DOI: 10.1016/j.kint.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
The phospholipase A2 receptor 1 (PLA2R1) is the major target antigen in patients with membranous nephropathy (MN), an antibody-mediated autoimmune glomerular disease. Investigation of MN pathogenesis has been hampered by the lack of reliable animal models. Here, we overcome this issue by generating a transgenic mouse line expressing a chimeric PLA2R1 (chPLA2R1) consisting of three human PLA2R1 domains (cysteine-rich, fibronectin type-II and CTLD1) and seven murine PLA2R1 domains (CTLD2-8) specifically in podocytes. Mice expressing the chPLA2R1 were healthy at birth and showed no major glomerular alterations when compared to mice with a wild-type PLA2R1 status. Upon active immunization with human PLA2R1 (hPLA2R1), chPLA2R1-positive mice developed anti-hPLA2R1 antibodies, a nephrotic syndrome, and all major histological features of MN, including granular deposition of mouse IgG and complement components in immunofluorescence and subepithelial electron-dense deposits and podocyte foot process effacement in electron microscopy. In order to investigate the role of the complement system in this model, we further crossed chPLA2R1-positive mice with mice lacking the central complement component C3 (C3-/- mice). Upon immunization with hPLA2R1, chPLA2R1-positive C3-/- mice had substantially less severe albuminuria and nephrotic syndrome when compared to chPLA2R1-positive mice with a wild-type C3 status. In conclusion, we introduce a novel active immunization model of PLA2R1-associated MN and demonstrate a pathogenic role of the complement system in this model.
Collapse
Affiliation(s)
- Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Annabel Schnarre
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silke Dehde
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renke Lucas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah M S Koellner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Larissa Seifert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
28
|
Shen K, Chen B, Yang L, Gao W. Integrated analysis of single-cell and bulk RNA-sequencing data reveals the prognostic value and molecular function of THSD7A in gastric cancer. Aging (Albany NY) 2023; 15:11940-11969. [PMID: 37905960 PMCID: PMC10683630 DOI: 10.18632/aging.205158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
The biological role and prognostic value of thrombospondin domain-containing 7A (THSD7A) in gastric cancer remain unclear. Our purpose was to determine the molecular mechanisms underlying the functioning of THSD7A and its prognostic value in gastric cancer. Gastric cancer-associated single cell and bulk RNA sequencing data obtained from two databases, were analyzed. We used bulk RNA sequencing to examine the differential expression of THSD7A in gastric cancer and normal gastric tissues and explored the relationship between THSD7A expression and clinicopathological characteristics. Kaplan-Meier survival and Cox analyses revealed the prognostic value of THSD7A. Gene set enrichment and immune infiltration analyses were used to determine the cancer-promoting mechanisms of THSD7A and its effect on the immune microenvironment. We explored the relationship between THSD7A expression and sensitivity of anti-tumor drugs and immune checkpoint levels. Biological functions of THSD7A were validated at single-cell and in vitro levels. THSD7A expression was significantly increased in gastric cancer samples. High THSD7A expression was associated with poor clinical phenotypes and prognoses. Cox analysis showed that THSD7A was an independent risk factor for patients with gastric cancer. Enrichment analysis suggested that epithelial-mesenchymal transition and inflammatory responses may be potential pro-cancer mechanisms of THSD7A. Upregulation of THSD7A promoted infiltration by M2 macrophages and regulatory T cells. High THSD7A expression suppressed the sensitivity of patients with gastric cancer to drugs, such as 5-fluorouracil, bleomycin, and cisplatin, and upregulated immune checkpoints, such as HAVCR2, PDCD1LG2, TIGIT, and CTLA4. At the single cell level, THSD7A was an endothelial cell-associated gene and endothelial cells overexpressing THSD7A showed unique pro-oncogenic effects. In vitro experiments confirmed that THSD7A was overexpressed in gastric cancer samples and cells, and that knocking out THSD7A significantly inhibited gastric cancer cell proliferation and invasion. THSD7A overexpression may be a unique prognostic marker and therapeutic target in gastric cancer. Therefore, our study provides a new perspective on the precise treatment of gastric cancer.
Collapse
Affiliation(s)
- Kaiyu Shen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Binyu Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liu Yang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wencang Gao
- Department of Oncology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310005, China
| |
Collapse
|
29
|
Kakhsurueva PA, Kamyshova ES, Bobkova IN, Stavrovskaya EV, Rudenko TE, Andreeva EY. [Clinical significance of the determination of antibodies to thrombospondin type 1 containing domain 7A (THSD7A) in membranous nephropathy]. TERAPEVT ARKH 2023; 95:462-467. [PMID: 38158964 DOI: 10.26442/00403660.2023.06.202268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Membranous nephropathy (MN) is an immunocomplex glomerular disease, which is the most common cause of nephrotic syndrome in adults. Numerous studies have established that autoantibodies against the target podocyte autoantigens, including the thrombospondin type 1 domain containing 7A (THSD7A), play a leading role in the development of idiopathic MN. AIM To evaluate the prevalence of anti-THSD7A autoantibodies (anti-THSD7A AB) in a group of Russian patients with MN. MATERIALS AND METHODS Serum titers of anti-THSD7A AB were tested in 61 patients with biopsy-proven MN and 12 healthy controls. RESULTS The prevalence of anti-THSD7A AB was not differing significantly in patients with MN and in the control group (110.9 [71.63; 210.62] and 159.25 [125.64; 231.97] pg/ml, respectively; p=0.111). When comparing subgroups of anti-PLA2R-negative patients and patients who did not receive immunosuppressive therapy with the control group, there were also no statistically significant differences in the Anti-THSD7A AB levels (p>0.05). In the MN group, 1 (1.6%) patient was anti-THSD7A-positive: a 60-year-old man with anti-PLA2R-negative MN and the presence of hormonally inactive adenomas of both adrenal glands and colon polyps (villous adenoma with focal moderate dysplasia, tubulo-villous and tubular adenoma with focal moderate severe dysplasia). CONCLUSION THSD7-associated MN is a rare variant of MN and is usually detected in PLA2R-negative patients. Screening for malignancies in THSD7A-positive MN patients is proposed.
Collapse
Affiliation(s)
- P A Kakhsurueva
- Sechenov First Moscow State Medical University (Sechenov University)
| | - E S Kamyshova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - I N Bobkova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - E V Stavrovskaya
- Sechenov First Moscow State Medical University (Sechenov University)
| | - T E Rudenko
- Sechenov First Moscow State Medical University (Sechenov University)
| | - E Y Andreeva
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
30
|
Flockerzi FA, Hohneck J, Langer F, Bohle RM, Stahl PR. THSD7A Positivity Predicts Poor Survival and Is Linked to High FAK Expression and FGFR1-Wildtype in Female Patients with Squamous Cell Carcinoma of the Lung. Int J Mol Sci 2023; 24:10639. [PMID: 37445817 DOI: 10.3390/ijms241310639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in the western world, with squamous cell carcinoma being one of the most common histological subtypes. Prognostic and predictive markers are still largely missing for squamous cell carcinoma of the lung (LSCC). Several studies indicate that THSD7A might at least play a role in the prognosis of different tumors. FAK seems to play an important role in lung cancer and is discussed as a potential therapeutic target. In addition, there is evidence that FAK-dependent signaling pathways might be affected by THSD7A. For that reason, we investigated the role of THSD7A as a potential tumor marker in LSCC and whether THSD7A expression has an impact on the expression level of FAK. A total of 101 LSCCs were analyzed by immunohistochemistry using tissue microarrays. THSD7A positivity was associated with poor overall survival in female patients and showed a relation to high FAK expression in this subgroup. To our knowledge, we are the first to report these correlations in lung cancer. The results might be proof of the assumed activation of FAK-dependent signaling pathways by THSD7A and that as a membrane-associated protein, THSD7A might serve as a putative therapeutic target in LSCC.
Collapse
Affiliation(s)
| | - Johannes Hohneck
- Department of Pathology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Frank Langer
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, 66424 Homburg, Germany
| | - Rainer Maria Bohle
- Department of Pathology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Phillip Rolf Stahl
- Department of Pathology, Saarland University Medical Center, 66424 Homburg, Germany
| |
Collapse
|
31
|
Angeletti A, Bruschi M, Kajana X, Spinelli S, Verrina E, Lugani F, Caridi G, Murtas C, Candiano G, Prunotto M, Ghiggeri GM. Mechanisms Limiting Renal Tissue Protection and Repair in Glomerulonephritis. Int J Mol Sci 2023; 24:ijms24098318. [PMID: 37176025 PMCID: PMC10179029 DOI: 10.3390/ijms24098318] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Glomerulonephritis are renal disorders resulting from different pathogenic mechanisms (i.e., autoimmunity, complement, inflammatory activation, etc.). Clarifying details of the pathogenic cascade is basic to limit the progression from starting inflammation to degenerative stages. The balance between tissue injury, activation of protective systems and renal tissue repair determines the final outcome. Induction of an oxidative stress is part of glomerular inflammation and activation of protective antioxidant systems has a crucial role in reducing tissue effects. The generation of highly reactive oxygen species can be evaluated in vivo by tracing the inner-layer content of phosphatidyl ethanolamine and phosphatidyl serine in cell membranes. Albumin is the major antioxidant in serum and the level of oxidized albumin is another indirect sign of oxidative stress. Studies performed in Gn, specifically in FSGS, showed a high degree of oxidation in most contexts. High levels of circulating anti-SOD2 antibodies, limiting the detoxyfing activity of SOD2, have been detected in autoimmune Gn(lupus nephritis and membranous nephropathy) in association with persistence of proteinuria and worsening of renal function. In renal transplant, high levels of circulating anti-Glutathione S-transferase antibodies have been correlated with chronic antibody rejection and progressive loss of renal function. Annexins, mainly ANXA1 and ANXA2, play a general anti-inflammatory effect by inhibiting neutrophil functions. Cytosolic ANXA1 is decreased in apoptotic neutrophils of patients with glomerular polyangitis in association with delayed apoptosis that is considered the mechanism for polyangitis. High circulating levels of anti-ANXA1 and anti-ANXA2 antibodies characterize lupus nephritis implying a reduced anti-inflammatory effect. High circulating levels of antibodies targeting Macrophages (anti-FMNL1) have been detected in Gn in association with proteinuria. They potentially modify the intra-glomerular presence of protective macrophages (M2a, M2c) thus acting on the composition of renal infiltrate and on tissue repair.
Collapse
Affiliation(s)
- Andrea Angeletti
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Maurizio Bruschi
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy
| | - Xuliana Kajana
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Sonia Spinelli
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Enrico Verrina
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Francesca Lugani
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Gialuca Caridi
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Corrado Murtas
- Nephrology and Dialysis Unit, Ospedale Belcolle, 01100 Viterbo, Italy
| | - Giovanni Candiano
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Gian Marco Ghiggeri
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| |
Collapse
|
32
|
Miller P, Caza T. The expanding spectrum and utility of antigens in membranous nephropathy. Curr Opin Nephrol Hypertens 2023; 32:232-240. [PMID: 36811646 DOI: 10.1097/mnh.0000000000000876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW Multiple antigenic targets were discovered in membranous nephropathy, representing distinct autoimmune diseases with a similar morphologic pattern of injury. An overview of recent developments, including antigen types, clinical associations, serologic monitoring, and advancements in understanding disease pathogenesis are provided. RECENT FINDINGS Several new antigenic targets have defined subtypes of membranous nephropathy, including Neural epidermal growth factor-like 1, protocadherin 7, HTRA1, FAT1, SEMA3B, NTNG1, NCAM1, exostosin 1/2, transforming growth factor beta receptor 3, CNTN1, proprotein convertase subtilisin/kexin type 6, and neuron-derived neurotrophic factor. Autoantigens in membranous nephropathy may demonstrate unique clinical associations, assisting the nephrologist to identify potential disease etiologies and triggers, such as autoimmune disease, cancer, medications, and infections. SUMMARY We are entering an exciting era for which an antigen-based approach will further define subtypes of membranous nephropathy, allow for development of noninvasive diagnostics, and improve care for patients.
Collapse
Affiliation(s)
- Paul Miller
- Arkana Laboratories, Little Rock, Arkansas, USA
| | | |
Collapse
|
33
|
Reichelt J, Sachs W, Frömbling S, Fehlert J, Studencka-Turski M, Betz A, Loreth D, Blume L, Witt S, Pohl S, Brand J, Czesla M, Knop J, Florea BI, Zielinski S, Sachs M, Hoxha E, Hermans-Borgmeyer I, Zahner G, Wiech T, Krüger E, Meyer-Schwesinger C. Non-functional ubiquitin C-terminal hydrolase L1 drives podocyte injury through impairing proteasomes in autoimmune glomerulonephritis. Nat Commun 2023; 14:2114. [PMID: 37055432 PMCID: PMC10102022 DOI: 10.1038/s41467-023-37836-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Little is known about the mechanistic significance of the ubiquitin proteasome system (UPS) in a kidney autoimmune environment. In membranous nephropathy (MN), autoantibodies target podocytes of the glomerular filter resulting in proteinuria. Converging biochemical, structural, mouse pathomechanistic, and clinical information we report that the deubiquitinase Ubiquitin C-terminal hydrolase L1 (UCH-L1) is induced by oxidative stress in podocytes and is directly involved in proteasome substrate accumulation. Mechanistically, this toxic gain-of-function is mediated by non-functional UCH-L1, which interacts with and thereby impairs proteasomes. In experimental MN, UCH-L1 becomes non-functional and MN patients with poor outcome exhibit autoantibodies with preferential reactivity to non-functional UCH-L1. Podocyte-specific deletion of UCH-L1 protects from experimental MN, whereas overexpression of non-functional UCH-L1 impairs podocyte proteostasis and drives injury in mice. In conclusion, the UPS is pathomechanistically linked to podocyte disease by aberrant proteasomal interactions of non-functional UCH-L1.
Collapse
Affiliation(s)
- Julia Reichelt
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiebke Sachs
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Frömbling
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Fehlert
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Studencka-Turski
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Hamburg, Germany
| | - Anna Betz
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Desiree Loreth
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Blume
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Witt
- Protein production Core Facility, Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Sandra Pohl
- Skeletal Pathobiochemistry, Department of Osteology and Biomechanics, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Brand
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maire Czesla
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Knop
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bogdan I Florea
- Bio-organic synthesis group, Leiden University, Leiden, The Netherlands
| | - Stephanie Zielinski
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Sachs
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elion Hoxha
- III Medical Clinic and Polyclinic, Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animal Service Group, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III Medical Clinic and Polyclinic, Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
34
|
Jao TM, Wu CZ, Cheng CW, Guo CH, Bai CY, Chang LC, Fang TC, Chen JS. uPA deficiency aggravates cBSA-induced membranous nephropathy through Th2-prone immune response in mice. J Transl Med 2023; 103:100146. [PMID: 37004912 DOI: 10.1016/j.labinv.2023.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023] Open
Abstract
Urokinase plasminogen activator (uPA) is a crucial activator of the fibrinolytic system that modulates tissue remodeling, cancer progression, and inflammation. However, its role in membranous nephropathy (MN) remains unclear. To clarify this issue, an established mouse model mimicking human MN induced by cationic bovine serum albumin (cBSA) in BALB/c mice was used, which have a Th2-prone genetic background. To induce MN, cBSA was injected into Plau knockout (Plau-/-) and wild-type (WT) mice. The blood and urine samples were collected to measure biochemical parameters, including serum concentrations of IgG1 and IgG2a, using enzyme-linked immunoassay. The kidneys were histologically examined for the presence of glomerular polyanions, reactive oxygen species (ROS), and apoptosis, and transmission electron microscopy was used to examine subepithelial deposits. Lymphocyte subsets were determined by flow cytometry. Four weeks post-cBSA administration, Plau-/- mice exhibited a significantly high urine protein/creatine ratio, hypoalbuminemia, and hypercholesterolemia compared with WT mice. Histologically, compared with WT mice, Plau-/- mice showed more severe glomerular basement thickening, mesangial expansion, IgG granular deposition, intensified podocyte effacement, irregular thickening of glomerular basement membrane and subepithelial deposits, and abolishment of the glycocalyx. Moreover, increased renal ROS and apoptosis were observed in Plau-/- mice with MN. B lymphocyte subsets and the IgG1/IgG2a ratio were significantly higher in Plau-/- mice after MN induction. Thus, uPA deficiency induces a Th2-dominant immune response, leading to increased subepithelial deposits, ROS, and apoptosis in the kidneys, subsequently exacerbating MN progression in mice. This study provides a novel insight into the role of uPA in MN progression.
Collapse
|
35
|
Claudio P. Primary membranous nephropathy: an endless story. J Nephrol 2023; 36:563-574. [PMID: 36251213 DOI: 10.1007/s40620-022-01461-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/29/2022] [Indexed: 10/24/2022]
Abstract
Primary membranous nephropathy (PMN) is an autoimmune disease caused by the attack of autoantibodies against podocyte antigens leading to the in situ production of immune complexes. However, the etiology is unknown and the pathogenesis is still far from being completely elucidated. MN is prevalently idiopathic or primary, but in about 20-30% of cases it is secondary to chronic infections, systemic diseases, exposure to drugs, or malignancy. The differentiation between primary and secondary MN may be difficult, particularly when MN precedes signs and symptoms of the original disease, as in some cases of cancer or systemic lupus erythematosus. The natural course of PMN is variable, but in the long term 40-60% of patients with nephrotic syndrome progress to end-stage renal disease (ESRD) or die from thrombotic or cardiovascular events. PMN is a treatable disease. Patients with asymptomatic proteinuria should receive supportive care. Immunosuppressive treatments should be given to patients with nephrotic syndrome or risk of progression. The most frequently adopted treatments rely on cyclical therapy alternating steroids with a cytotoxic agent every other month, i.e., rituximab at different doses, or calcineurin inhibitors plus low-dose steroids. A good rate of response may be obtained but relapses can occur. Randomized controlled trials, with adequate size, long-term follow-up, and fair definition of endpoints are needed to identify treatment with the best therapeutic index.
Collapse
|
36
|
Reinhard L, Wiech T, Reitmeier A, Lassé M, Machalitza M, Heumann A, Ferru N, Loreth D, Schröder ML, Hutzfeldt A, Stahl FR, Peine S, Gröne HJ, Meyer-Schwesinger C, Rinschen MM, Stahl RA, Hoxha E. Pathogenicity of Human Anti-PLA 2 R1 Antibodies in Minipigs: A Pilot Study. J Am Soc Nephrol 2023; 34:369-373. [PMID: 36735391 PMCID: PMC10103200 DOI: 10.1681/asn.0000000000000068] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 02/04/2023] Open
Abstract
SIGNIFICANCE STATEMENT Membranous nephropathy (MN) is an autoimmune kidney disease characterized by immune deposits in the glomerular basement membrane. Circulating anti-phospholipase A 2 receptor 1 (PLA 2 R1) antibodies are detectable in 70%-80% of patients with MN, but experimental evidence of pathogenicity has been lacking. This study demonstrates the pathogenicity of human anti-PLA 2 R1 antibodies in minipigs, a model for MN that intrinsically expresses PLA 2 R1 on podocytes. After passive transfer of human anti-PLA 2 R1 antibody-containing plasma from patients with PLA 2 R1-associated MN to minipigs, antibodies were detected in the minipig glomeruli, but not in response to plasma from healthy controls. The minipigs developed histomorphological characteristics of MN, local complement activation in the glomeruli, and low-level proteinuria within 7 days, showing that human anti-PLA 2 R1 antibodies are pathogenic. BACKGROUND Primary membranous nephropathy (MN) is an autoimmune kidney disease in which immune complexes are deposited beneath the epithelium in the glomeruli. The condition introduces a high risk for end-stage kidney disease. Seventy percent to 80% of patients with MN have circulating antibodies against phospholipase A 2 receptor 1 (PLA 2 R1), and levels correlate with treatment response and prognosis. However, experimental evidence that human anti-PLA 2 R1 antibodies induce MN has been elusive. METHODS In passive transfer experiments, minipigs received plasma or purified IgG from patients with PLA 2 R1-associated MN or from healthy controls. Anti-PLA 2 R1 antibodies and proteinuria were monitored using Western blot, ELISA, and Coomassie staining. Kidney tissues were analyzed using immunohistochemistry, immunofluorescence, electron microscopy, and proteomic analyses. RESULTS Minipigs, like humans, express PLA 2 R1 on podocytes. Human anti-PLA 2 R1 antibodies bound to minipig PLA 2 R1 in vitro and in vivo . Passive transfer of human anti-PLA 2 R1 antibodies from patients with PLA 2 R1-associated MN to minipigs led to histological characteristics of human early-stage MN, activation of components of the complement cascade, and low levels of proteinuria. We observed development of an autologous, later phase of disease. CONCLUSIONS A translational approach from humans to minipigs showed that human anti-PLA 2 R1 antibodies are pathogenic in MN, although in the heterologous phase of disease only low-level proteinuria developed.
Collapse
Affiliation(s)
- Linda Reinhard
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Aline Reitmeier
- Department of Laboratory Animal Science, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Lassé
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maya Machalitza
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Asmus Heumann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicoletta Ferru
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Desiree Loreth
- Institute for Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie-Luise Schröder
- Department of Laboratory Animal Science, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arvid Hutzfeldt
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix R. Stahl
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann-Josef Gröne
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pharmacology, Philipps-University Marburg, Marburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute for Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus M. Rinschen
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Biomedicine and Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Rolf A.K. Stahl
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
37
|
Tomas NM, Zahner G. The authors reply. Kidney Int 2023; 103:639-641. [PMID: 36822756 DOI: 10.1016/j.kint.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 02/25/2023]
Affiliation(s)
- Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Gunther Zahner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
38
|
Tomas NM, Dehde S, Meyer-Schwesinger C, Huang M, Hermans-Borgmeyer I, Maybaum J, Lucas R, von der Heide JL, Kretz O, Köllner SMS, Seifert L, Huber TB, Zahner G. Podocyte expression of human phospholipase A2 receptor 1 causes immune-mediated membranous nephropathy in mice. Kidney Int 2023; 103:297-303. [PMID: 36191868 DOI: 10.1016/j.kint.2022.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 01/27/2023]
Abstract
Antibody-mediated autoimmune pathologies like membranous nephropathy are difficult to model, particularly in the absence of local target antigen expression in model organisms such as mice and rats; as is the case for phospholipase A2 receptor 1 (PLA2R1), the major autoantigen in membranous nephropathy. Here, we generated a transgenic mouse line expressing the full-length human PLA2R1 in podocytes, which has no kidney impairment after birth. Beginning from the age of three weeks, these mice spontaneously developed anti-human PLA2R1 antibodies, a nephrotic syndrome with progressive albuminuria and hyperlipidemia, and the typical morphological signs of membranous nephropathy with granular glomerular deposition of murine IgG in immunofluorescence and subepithelial electron-dense deposits by electron microscopy. Importantly, human PLA2R1-expressing Rag2-/- mice, which lack mature and functioning B and T lymphocytes, developed neither anti-PLA2R1 antibodies nor proteinuria. Thus, our work demonstrates that podocyte expression of human PLA2R1 can induce membranous nephropathy with an underlying antibody-mediated pathogenesis in mice. Importantly, this antibody-mediated model enables proof-of-concept evaluations of antigen-specific treatment strategies, e.g., targeting autoantibodies or autoantibody-producing cells, and may further help understand the autoimmune pathogenesis of membranous nephropathy.
Collapse
Affiliation(s)
- Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Silke Dehde
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ming Huang
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Maybaum
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renke Lucas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennie L von der Heide
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah M S Köllner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Larissa Seifert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
39
|
Caza TN, Larsen CP. Serologic Studies in Membranous Nephropathy: Novel Strategies and Strengthened Associations. KIDNEY360 2023; 4:128-130. [PMID: 36821602 PMCID: PMC10103315 DOI: 10.34067/kid.0000000000000065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
40
|
Seifert L, Zahner G, Meyer-Schwesinger C, Hickstein N, Dehde S, Wulf S, Köllner SMS, Lucas R, Kylies D, Froembling S, Zielinski S, Kretz O, Borodovsky A, Biniaminov S, Wang Y, Cheng H, Koch-Nolte F, Zipfel PF, Hopfer H, Puelles VG, Panzer U, Huber TB, Wiech T, Tomas NM. The classical pathway triggers pathogenic complement activation in membranous nephropathy. Nat Commun 2023; 14:473. [PMID: 36709213 PMCID: PMC9884226 DOI: 10.1038/s41467-023-36068-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/13/2023] [Indexed: 01/29/2023] Open
Abstract
Membranous nephropathy (MN) is an antibody-mediated autoimmune disease characterized by glomerular immune complexes containing complement components. However, both the initiation pathways and the pathogenic significance of complement activation in MN are poorly understood. Here, we show that components from all three complement pathways (alternative, classical and lectin) are found in renal biopsies from patients with MN. Proximity ligation assays to directly visualize complement assembly in the tissue reveal dominant activation via the classical pathway, with a close correlation to the degree of glomerular C1q-binding IgG subclasses. In an antigen-specific autoimmune mouse model of MN, glomerular damage and proteinuria are reduced in complement-deficient mice compared with wild-type littermates. Severe disease with progressive ascites, accompanied by extensive loss of the integral podocyte slit diaphragm proteins, nephrin and neph1, only occur in wild-type animals. Finally, targeted silencing of C3 using RNA interference after the onset of proteinuria significantly attenuates disease. Our study shows that, in MN, complement is primarily activated via the classical pathway and targeting complement components such as C3 may represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Larissa Seifert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Naemi Hickstein
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silke Dehde
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonia Wulf
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah M S Köllner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renke Lucas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Froembling
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Zielinski
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Yanyan Wang
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong Cheng
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Helmut Hopfer
- Department of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
41
|
Flockerzi FA, Hohneck J, Saar M, Bohle RM, Stahl PR. THSD7A Positivity Is Associated with High Expression of FAK in Prostate Cancer. Diagnostics (Basel) 2023; 13:diagnostics13020221. [PMID: 36673031 PMCID: PMC9857569 DOI: 10.3390/diagnostics13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Prostate cancer is one of the most common malignancies, and there are a wide range of treatment options after diagnosis. Most prostate cancers behave in an indolent manner. However, a given sub-group has been shown to exhibit aggressive behavior; therefore, it is desirable to find novel prognostic and predictive (molecular) markers. THSD7A expression is significantly associated with unfavorable prognostic parameters in prostate cancer. FAK is overexpressed in several tumor types and is believed to play a role in tumor progression and metastasis. Furthermore, there is evidence that THSD7A might affect FAK-dependent signaling pathways. To examine whether THSD7A expression has an impact on the expression level of FAK in its unphosphorylated form, a total of 461 prostate cancers were analyzed by immunohistochemistry using tissue microarrays. THSD7A positivity and low FAK expression were associated with adverse pathological features. THSD7A positivity was significantly associated with high FAK expression. To our knowledge we are the first to show that THSD7A positivity is associated with high FAK expression in prostate cancer. This might be proof of the actual involvement of THSD7A in FAK-dependent signaling pathways. This is of special importance because THSD7A might also serve as a putative therapeutic target in cancer therapy.
Collapse
Affiliation(s)
| | - Johannes Hohneck
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Matthias Saar
- Department of Urology, University Hospital, 52074 Aachen, Germany
| | - Rainer Maria Bohle
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Phillip Rolf Stahl
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
- Correspondence:
| |
Collapse
|
42
|
Abstract
Dysregulation and accelerated activation of the alternative pathway (AP) of complement is known to cause or accentuate several pathologic conditions in which kidney injury leads to the appearance of hematuria and proteinuria and ultimately to the development of chronic renal failure. Multiple genetic and acquired defects involving plasma- and membrane-associated proteins are probably necessary to impair the protection of host tissues and to confer a significant predisposition to AP-mediated kidney diseases. This review aims to explore how our current understanding will make it possible to identify the mechanisms that underlie AP-mediated kidney diseases and to discuss the available clinical evidence that supports complement-directed therapies. Although the value of limiting uncontrolled complement activation has long been recognized, incorporating complement-targeted treatments into clinical use has proved challenging. Availability of anti-complement therapy has dramatically transformed the outcome of atypical hemolytic uremic syndrome, one of the most severe kidney diseases. Innovative drugs that directly counteract AP dysregulation have also opened new perspectives for the management of other kidney diseases in which complement activation is involved. However, gained experience indicates that the choice of drug should be tailored to each patient's characteristics, including clinical, histologic, genetic, and biochemical parameters. Successfully treating patients requires further research in the field and close collaboration between clinicians and researchers who have special expertise in the complement system.
Collapse
Affiliation(s)
- Erica Daina
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
43
|
Al-Rabadi LF, Beck LH. Neuronal Proteins as Antigenic Targets in Membranous Nephropathy. Nephron Clin Pract 2022; 147:451-457. [PMID: 36580905 DOI: 10.1159/000528078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/25/2022] [Indexed: 12/30/2022] Open
Abstract
CONTEXT The discovery of new target antigens in membranous nephropathy (MN) has revealed new disease phenotypes and, in some cases, has suggested mechanisms of disease shared by two concurrent autoimmune diseases. Subject of Review: Several recent reports and an accompanying editorial describe the association of anti-contactin-1 (CNTN1) autoantibodies of the IgG4 subclass with a novel subtype of MN that co-occurs with a form of chronic inflammatory demyelinating polyradiculoneuropathy caused by anti-CNTN1 antibodies. CNTN1, the cellular source of which is still undetermined, is identified as the target antigen in the kidney since it is present within glomerular subepithelial deposits and anti-CNTN1 IgG4 antibodies can be eluted from the corresponding kidney biopsy tissue. Second Opinion: These new reports reinforce recent findings that many proteins targeted in several other types of primary and secondary MN are proteins whose expression is shared by podocytes and neurons. While complement-mediated podocyte damage represents a well-established paradigm in the pathogenesis of MN, interference with the normal functions of these shared proteins by autoantibodies should be considered as another potential mechanism of glomerular injury to be explored in future research.
Collapse
Affiliation(s)
- Laith Farah Al-Rabadi
- Department of Internal Medicine (Nephrology and Hypertension), University of Utah Health, Salt Lake City, Utah, USA
| | - Laurence H Beck
- Department of Medicine (Nephrology), Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Li X, Shen X, Wang Z, Jiang H, Ma Z, Yu P, Yu Z, Qian X, Liu J. Gene expression profiling in nucleus pulposus of human ruptured lumbar disc herniation. Front Pharmacol 2022; 13:892594. [PMID: 36506585 PMCID: PMC9732013 DOI: 10.3389/fphar.2022.892594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose: To examine the differences in gene expression between ruptured and non-ruptured nucleus pulposus tissues of the intervertebral discs using gene chip technology. Methods: A total of 8 patients with nucleus pulposus from a lumbar disc herniation (LDH) undergoing discectomy in our hospital were selected, including 4 ruptured and 4 non-ruptured herniated nucleus pulposus cases. Total RNA was extracted from cells by using TRIzol reagent. Nucleus pulposus cDNA probes of the two groups were obtained by the single marker method and hybridized with a human gene expression profiling chip (Agilent). The fluorescence signal images were scanned by a laser, and the obtained genes were analyzed by bioinformatics. Results: There were 75 differentially expressed genes with more than 2-fold-changes, of which 56 were up-regulated and 19 were down-regulated. The differential expression of THSD7A, which was up-regulated 18 times, was the most significant, followed by CCL5, AQP3 and SDC4. Conclusion: THSD7A can be used as a characteristic differentially expressed gene in human ruptured nucleus pulposus. Moreover, CCL5, AQP3 and SDC4 may improve the chemotaxis of stem cell migration for self-healing of damaged disc tissue, increase water uptake by nucleus accumbens cells, and inhibit the inflammatory response, thus delaying the process of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Xiaochun Li
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xueqiang Shen
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zhiqiang Wang
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Hong Jiang
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zhijia Ma
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Pengfei Yu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zhenhan Yu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xiang Qian
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Jintao Liu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China,*Correspondence: Jintao Liu,
| |
Collapse
|
45
|
Chung EYM, Wang YM, Keung K, Hu M, McCarthy H, Wong G, Kairaitis L, Bose B, Harris DCH, Alexander SI. Membranous nephropathy: Clearer pathology and mechanisms identify potential strategies for treatment. Front Immunol 2022; 13:1036249. [PMID: 36405681 PMCID: PMC9667740 DOI: 10.3389/fimmu.2022.1036249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Primary membranous nephropathy (PMN) is one of the common causes of adult-onset nephrotic syndrome and is characterized by autoantibodies against podocyte antigens causing in situ immune complex deposition. Much of our understanding of the disease mechanisms underpinning this kidney-limited autoimmune disease originally came from studies of Heymann nephritis, a rat model of PMN, where autoantibodies against megalin produced a similar disease phenotype though megalin is not implicated in human disease. In PMN, the major target antigen was identified to be M-type phospholipase A2 receptor 1 (PLA2R) in 2009. Further utilization of mass spectrometry on immunoprecipitated glomerular extracts and laser micro dissected glomeruli has allowed the rapid discovery of other antigens (thrombospondin type-1 domain-containing protein 7A, neural epidermal growth factor-like 1 protein, semaphorin 3B, protocadherin 7, high temperature requirement A serine peptidase 1, netrin G1) targeted by autoantibodies in PMN. Despite these major advances in our understanding of the pathophysiology of PMN, treatments remain non-specific, often ineffective, or toxic. In this review, we summarize our current understanding of the immune mechanisms driving PMN from animal models and clinical studies, and the implications on the development of future targeted therapeutic strategies.
Collapse
Affiliation(s)
- Edmund Y. M. Chung
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Yuan M. Wang
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Karen Keung
- Department of Nephrology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Min Hu
- The Centre for Transplant and Renal Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - Hugh McCarthy
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Germaine Wong
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, Westmead Hospital, Westmead, NSW, Australia
| | - Lukas Kairaitis
- Department of Nephrology, Blacktown Hospital, Blacktown, NSW, Australia
| | - Bhadran Bose
- Department of Nephrology, Nepean Hospital, Kingswood, NSW, Australia
| | - David C. H. Harris
- The Centre for Transplant and Renal Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
- Department of Nephrology, Westmead Hospital, Westmead, NSW, Australia
| | - Stephen I. Alexander
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
46
|
Cremoni M, Agbekodo S, Teisseyre M, Zorzi K, Brglez V, Benzaken S, Esnault V, Planchard JH, Seitz-Polski B. Toxic Occupational Exposures and Membranous Nephropathy. Clin J Am Soc Nephrol 2022; 17:1609-1619. [PMID: 36283759 PMCID: PMC9718038 DOI: 10.2215/cjn.02930322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Membranous nephropathy is a rare autoimmune kidney disease whose increasing prevalence in industrialized countries pleads for the involvement of an environmental factor in the development of the disease. In addition, the predominance of men in membranous nephropathy, classically attributed to biologic or genetic differences between men and women, could also be due to different occupational exposures. To support this hypothesis, we sought to describe the toxic occupational exposures of patients with membranous nephropathy. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS In this observational epidemiologic study, we compared the occupations and toxic occupational exposures of 100 patients with membranous nephropathy with those of the general population, consisting of two cohorts of 26,734,000 and 26,500 French workers. We then compared the characteristics of patients exposed to an occupational toxic substance with those of unexposed patients. RESULTS Patients with membranous nephropathy worked more frequently in the construction sector than the general population (33% versus 7%, P<0.001). This difference remained significant by age and sex. They were also more frequently exposed to toxic substances, such as asbestos (16% versus 5%, P<0.001), lead (9% versus 1%, P<0.001), or organic solvents (37% versus 15%, P<0.001), than the general population. The predominance of men in the subgroup of patients occupationally exposed to toxic substances was not observed in unexposed individuals (organic solvents: 80% men versus 41%, P<0.001; asbestos: 90% men versus 55%, P=0.004). In addition, patients with phospholipase A2 receptor 1 (PLA2R1) epitope spreading were more frequently exposed to asbestos and organic solvents than patients without epitope spreading (32% versus 7%, P=0.02 and 74% versus 43%, P=0.02, respectively), with a dose-dependent effect. CONCLUSIONS Patients with membranous nephropathy were more frequently exposed to certain occupational toxic substances, such as asbestos and organic solvents, than the general population. This occupational exposure was more frequent in men and in patients with PLA2R1 epitope spreading. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Immunopathological Analysis in a French National Cohort of Membranous Nephropathy (IHMN), NCT04326218. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_10_25_CJN02930322.mp3.
Collapse
Affiliation(s)
- Marion Cremoni
- Reference Center for Rare Diseases Idiopathic Nephrotic Syndrome, Nice University Hospital, Nice, France
- Clinical Research Unit Côte d'Azur, University Côte d'Azur, Nice, France
- Department of Nephrology Dialysis and Transplantation, Pasteur 2 Hospital, Nice University Hospital, Nice, France
| | - Sophie Agbekodo
- Department of Occupational Health, Cimiez Hospital, Nice University Hospital, Nice, France
| | - Maxime Teisseyre
- Reference Center for Rare Diseases Idiopathic Nephrotic Syndrome, Nice University Hospital, Nice, France
- Clinical Research Unit Côte d'Azur, University Côte d'Azur, Nice, France
| | - Kevin Zorzi
- Reference Center for Rare Diseases Idiopathic Nephrotic Syndrome, Nice University Hospital, Nice, France
| | - Vesna Brglez
- Reference Center for Rare Diseases Idiopathic Nephrotic Syndrome, Nice University Hospital, Nice, France
- Clinical Research Unit Côte d'Azur, University Côte d'Azur, Nice, France
| | - Sylvia Benzaken
- Immunology Laboratory, Archet 1 Hospital, Nice University Hospital, Nice, France
| | - Vincent Esnault
- Reference Center for Rare Diseases Idiopathic Nephrotic Syndrome, Nice University Hospital, Nice, France
- Department of Nephrology Dialysis and Transplantation, Pasteur 2 Hospital, Nice University Hospital, Nice, France
| | - Jo-Hanna Planchard
- Department of Occupational Health, Cimiez Hospital, Nice University Hospital, Nice, France
| | - Barbara Seitz-Polski
- Reference Center for Rare Diseases Idiopathic Nephrotic Syndrome, Nice University Hospital, Nice, France
- Clinical Research Unit Côte d'Azur, University Côte d'Azur, Nice, France
- Department of Nephrology Dialysis and Transplantation, Pasteur 2 Hospital, Nice University Hospital, Nice, France
- Immunology Laboratory, Archet 1 Hospital, Nice University Hospital, Nice, France
| |
Collapse
|
47
|
Hada I, Shimizu A, Takematsu H, Nishibori Y, Kimura T, Fukutomi T, Kudo A, Ito-Nitta N, Kiuchi Z, Patrakka J, Mikami N, Leclerc S, Akimoto Y, Hirayama Y, Mori S, Takano T, Yan K. A Novel Mouse Model of Idiopathic Nephrotic Syndrome Induced by Immunization with the Podocyte Protein Crb2. J Am Soc Nephrol 2022; 33:2008-2025. [PMID: 35985815 PMCID: PMC9678040 DOI: 10.1681/asn.2022010070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The cause of podocyte injury in idiopathic nephrotic syndrome (INS) remains unknown. Although recent evidence points to the role of B cells and autoimmunity, the lack of animal models mediated by autoimmunity limits further research. We aimed to establish a mouse model mimicking human INS by immunizing mice with Crb2, a transmembrane protein expressed at the podocyte foot process. METHODS C3H/HeN mice were immunized with the recombinant extracellular domain of mouse Crb2. Serum anti-Crb2 antibody, urine protein-to-creatinine ratio, and kidney histology were studied. For signaling studies, a Crb2-expressing mouse podocyte line was incubated with anti-Crb2 antibody. RESULTS Serum anti-Crb2 autoantibodies and significant proteinuria were detected 4 weeks after the first immunization. The proteinuria reached nephrotic range at 9-13 weeks and persisted up to 29 weeks. Initial kidney histology resembled minimal change disease in humans, and immunofluorescence staining showed delicate punctate IgG staining in the glomerulus, which colocalized with Crb2 at the podocyte foot process. A subset of mice developed features resembling FSGS after 18 weeks. In glomeruli of immunized mice and in Crb2-expressing podocytes incubated with anti-Crb2 antibody, phosphorylation of ezrin, which connects Crb2 to the cytoskeleton, increased, accompanied by altered Crb2 localization and actin distribution. CONCLUSION The results highlight the causative role of anti-Crb2 autoantibody in podocyte injury in mice. Crb2 immunization could be a useful model to study the immunologic pathogenesis of human INS, and may support the role of autoimmunity against podocyte proteins in INS.
Collapse
Affiliation(s)
- Ichiro Hada
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Hiromu Takematsu
- Department of Molecular Cell Biology, Faculty of Medical Technology, Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yukino Nishibori
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Akihiko Kudo
- Department of Microscopic Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Noriko Ito-Nitta
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Zentaro Kiuchi
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Jaakko Patrakka
- KI/AZ Integrated Cardio Metabolic Center, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Naoaki Mikami
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Simon Leclerc
- Department of Medicine, Division of Nephrology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Yoshihiro Akimoto
- Department of Microscopic Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoshiaki Hirayama
- Vaccine & Reagent, R&D Department, Denka Co., Ltd, Gosen-City, Japan
| | - Satoka Mori
- Denka Innovation Center, Denka Co., Ltd, Machida, Japan
| | - Tomoko Takano
- Department of Medicine, Division of Nephrology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kunimasa Yan
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Teisseyre M, Beyze A, Perrochia H, Szwarc I, Bourgeois A, Champion C, Chenine L, Serre JE, Broner J, Aglae C, Pernin V, Le Quintrec M. C5b-9 Glomerular Deposits Are Associated With Poor Renal Survival in Membranous Nephropathy. Kidney Int Rep 2022; 8:103-114. [PMID: 36644365 PMCID: PMC9831938 DOI: 10.1016/j.ekir.2022.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Membranous nephropathy (MN) is the first cause of nephrotic syndrome in patients without diabetes. Its prognosis is variable, and treatment remains controversial because of potential toxicity. Currently, there is no reliable prognostic marker common to all etiologies of MN and routinely available to predict the disease course and guide therapeutic management. Despite the major role of complement in the glomerular damage of MN, its prognostic impact has never been studied. We investigated the frequency and prognostic impact of glomerular deposition of C5b-9 in MN. Methods We retrospectively selected adults diagnosed with MN (primary or secondary) at Montpellier University Hospital between December 2004 and December 2015. To be included, all patients were required to have complete medical data and a kidney tissue sample for further immunohistochemistry. We performed PLA2R1, C4d, and C5b-9 staining by immunohistochemistry. Results Sixty-four adults were included: 45 with primary MN and 19 with secondary MN. C4d was positive in the glomeruli of 61 adults (95.3%). Twenty-nine adults (45.3%) had glomerular deposition of C5b-9. Patients with glomerular deposition of C5b-9 had more severe nephrotic syndrome on diagnosis and lower remission and renal survival rates than adults without. Conclusion C5b-9 glomerular staining is a powerful and easily accessible tool for stratifying adults according to their renal prognosis. The efficacy of complement inhibitors should be tested in adults with glomerular deposition of C5b-9.
Collapse
Affiliation(s)
- Maxime Teisseyre
- Department of Nephrology, Dialysis and Transplantation, Lapeyronie Hospital, Montpellier University Hospital, University of Montpellier, Montpellier, France,Institute for Regenerative Medicine and Biotherapy, Institut National de la Santé Et de la Recherche Médicale, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Anaïs Beyze
- Department of Nephrology, Dialysis and Transplantation, Lapeyronie Hospital, Montpellier University Hospital, University of Montpellier, Montpellier, France,Institute for Regenerative Medicine and Biotherapy, Institut National de la Santé Et de la Recherche Médicale, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Hélène Perrochia
- Department of Pathology, Gui de Chauliac Hospital, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Ilan Szwarc
- Department of Nephrology, Dialysis and Transplantation, Lapeyronie Hospital, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Alexis Bourgeois
- Department of Nephrology, Dialysis and Transplantation, Lapeyronie Hospital, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Coralie Champion
- Department of Nephrology, Dialysis and Transplantation, Lapeyronie Hospital, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Leila Chenine
- Department of Nephrology, Dialysis and Transplantation, Lapeyronie Hospital, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Jean-Emmanuel Serre
- Department of Nephrology, Dialysis and Transplantation, Lapeyronie Hospital, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Jonathan Broner
- Department of Internal Medicine, Caremeau Hospital, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Cédric Aglae
- Department of Nephrology, Dialysis and Transplantation, Lapeyronie Hospital, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Vincent Pernin
- Department of Nephrology, Dialysis and Transplantation, Lapeyronie Hospital, Montpellier University Hospital, University of Montpellier, Montpellier, France,Institute for Regenerative Medicine and Biotherapy, Institut National de la Santé Et de la Recherche Médicale, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Moglie Le Quintrec
- Department of Nephrology, Dialysis and Transplantation, Lapeyronie Hospital, Montpellier University Hospital, University of Montpellier, Montpellier, France,Institute for Regenerative Medicine and Biotherapy, Institut National de la Santé Et de la Recherche Médicale, Montpellier University Hospital, University of Montpellier, Montpellier, France,Correspondence: Moglie Le Quintrec, Department of Nephrology, Dialysis and Transplantation, University of Montpellier, Institute of Regenerative Medicine and Biotherapy, Institut National de la Santé Et de la Recherche Médicale U1183, Centre Hospitalier Universitaire de Montpellier–Hôpital Lapeyronie, 371, Avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France.
| |
Collapse
|
49
|
Miao H, Zhang Y, Yu X, Zou L, Zhao Y. Membranous nephropathy: Systems biology-based novel mechanism and traditional Chinese medicine therapy. Front Pharmacol 2022; 13:969930. [PMID: 36176440 PMCID: PMC9513429 DOI: 10.3389/fphar.2022.969930] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/10/2022] [Indexed: 12/05/2022] Open
Abstract
Membranous nephropathy (MN) is a renal-limited non-inflammatory autoimmune disease in the glomerulus, which is the second or third main cause of end-stage kidney diseases in patients with primary glomerulonephritis. Substantial achievements have increased our understanding of the aetiology and pathogenesis of murine and human MN. The identification of nephritogenic autoantibodies against neutral endopeptidase, phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain-containing 7A (THSD7A) antigens provide more specific concept-driven intervention strategies for treatments by specific B cell-targeting monoclonal antibodies to inhibit antibody production and antibody-antigen immune complex deposition. Furthermore, additional antibody specificities for antigens have been discovered, but their pathogenic effects are uncertain. Although anti-PLA2R and anti-THSD7A antibodies as a diagnostic marker is widely used in MN patients, many questions including autoimmune response development, antigenic epitopes, and podocyte damage signalling pathways remain unresolved. This review describes the current available evidence regarding both established and novel molecular mechanisms based on systems biology approaches (gut microbiota, long non-coding RNAs, metabolite biomarkers and DNA methylation) in MN, with an emphasis on clinical findings. This review further summarizes the applications of traditional Chinese medicines such as Tripterygium wilfordii and Astragalus membranaceus for MN treatment. Lastly, this review considers how the identification of novel antibodies/antigens and unresolved questions and future challenges reveal the pathogenesis of MN.
Collapse
Affiliation(s)
- Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yamei Zhang
- Key Laboratory of Clinical Genetics & Key Disciplines of Clinical Pharmacy, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| | - Xiaoyong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, Shaanxi, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Yingyong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Clinical Genetics & Key Disciplines of Clinical Pharmacy, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
50
|
Solà-Porta E, Buxeda A, Lop J, Naranjo-Hans D, Gimeno J, Lloveras-Rubio B, Pérez-Sáez MJ, Redondo-Pachón D, Crespo M. THSD7A-positive membranous nephropathy after kidney transplantation: A case report. Nefrologia 2022. [DOI: 10.1016/j.nefro.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|