1
|
Chiang W, Urban JM, Yanchik-Slade F, Stout A, Hammond JM, Nilsson BL, Gelbard HA, Krauss TD. Hybrid Amyloid Quantum Dot Nano-Bio Assemblies to Probe Neuroinflammatory Damage. ACS Chem Neurosci 2024; 15:3124-3135. [PMID: 39146244 PMCID: PMC11378299 DOI: 10.1021/acschemneuro.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Various oligomeric species of amyloid-beta have been proposed to play different immunogenic roles in the cellular pathology of Alzheimer's Disease. The dynamic interconversion between various amyloid oligomers and fibrillar assemblies makes it difficult to elucidate the role each potential aggregation state may play in driving neuroinflammatory and neurodegenerative pathology. The ability to identify the amyloid species that are key and essential drivers of these pathological hallmarks of Alzheimer's Disease is of fundamental importance for also understanding downstream events including tauopathies that mediate neuroinflammation with neurologic deficits. Here, we report the design and construction of a quantum dot mimetic for larger spherical oligomeric amyloid species as an "endogenously" fluorescent proxy for this cytotoxic assembly of amyloid to investigate its role in inducing inflammatory and stress response states in neuronal and glial cell types. The design parameters and construction protocol developed here may be adapted for developing quantum dot nano-bio assemblies for other biological systems of interest, particularly neurodegenerative diseases involving other protein aggregates.
Collapse
Affiliation(s)
- Wesley Chiang
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jennifer M Urban
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Francine Yanchik-Slade
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Angela Stout
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jennetta M Hammond
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, New York 14642, United States
- Departments of Pediatrics, Neuroscience, and Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
- The Institute of Optics, University of Rochester Medical Center, Rochester, New York 14627-0216, United States
| |
Collapse
|
2
|
Mirzahosseini G, Sinha N, Zhou L, Godse S, Kodidela S, Singh UP, Ishrat T, Kumar S. LM11A-31, a modulator of p75 neurotrophin receptor, suppresses HIV-1 replication and inflammatory response in macrophages. Exp Biol Med (Maywood) 2024; 249:10123. [PMID: 39119118 PMCID: PMC11306025 DOI: 10.3389/ebm.2024.10123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Antiretroviral drugs have made significant progress in treating HIV-1 and improving the quality of HIV-1-infected individuals. However, due to their limited permeability into the brain HIV-1 replication persists in brain reservoirs such as perivascular macrophages and microglia, which cause HIV-1-associated neurocognitive disorders. Therefore, it is highly desirable to find a novel therapy that can cross the blood-brain barrier (BBB) and target HIV-1 pathogenesis in brain reservoirs. A recently developed 2-amino-3-methylpentanoic acid [2-morpholin-4-yl-ethyl]-amide (LM11A-31), which is a p75 neutrotrophin receptor (p75NTR) modulator, can cross the BBB. In this study, we examined whether LM11A-31 treatment can suppress HIV-1 replication, oxidative stress, cytotoxicity, and inflammatory response in macrophages. Our results showed that LM11A-31 (100 nM) alone and/or in combination with positive control darunavir (5.5 µM) significantly suppresses viral replication and reduces cytotoxicity. Moreover, the HIV-1 suppression by LM11A-31 was comparable to the HIV-1 suppression by darunavir. Although p75NTR was upregulated in HIV-1-infected macrophages compared to uninfected macrophages, LM11A-31 did not significantly reduce the p75NTR expression in macrophages. Furthermore, our study illustrated that LM11A-31 alone and/or in combination with darunavir significantly suppress pro-inflammatory cytokines including IL-1β, IL-8, IL-18, and TNF-α and chemokines MCP-1 in HIV-induced macrophages. The suppression of these cytokines and chemokines by LM11A-31 was comparable to darunavir. In contrast, LM11A-31 did not significantly alter oxidative stress, expression of antioxidant enzymes, or autophagy marker proteins in U1 macrophages. The results suggest that LM11A-31, which can cross the BBB, has therapeutic potential in suppressing HIV-1 and inflammatory response in brain reservoirs, especially in macrophages.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lina Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sandip Godse
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tauheed Ishrat
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
3
|
Van Staden ADP, Visser JG, Powrie YSL, Smith C. Harnessing Microbial Effectors for Macrophage-Mediated Drug Delivery. ACS OMEGA 2024; 9:18260-18272. [PMID: 38680365 PMCID: PMC11044259 DOI: 10.1021/acsomega.3c10519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024]
Abstract
Macrophage-based drug delivery systems are promising, but their development is still in its infancy, with many limitations remaining to be addressed. Our aim was to design a system harnessing microbial effectors to facilitate controlled drug cargo expulsion from macrophages to enable the use of more toxic drugs without adding to the risk of off-target detrimental effects. The pore forming and actin polymerizing Listeria monocytogenes effectors listeriolysin-O (LLO) and actin assembly-inducing protein (ActA) were synthesized using a novel green fluorescent protein (GFP)-linked heterologous expression system. These effectors were coated onto polystyrene beads to generate "synthetic cargo" before loading into primary M1 macrophages. Bead uptake and release from macrophages were evaluated by using high-throughput quantitative imaging flow cytometry and confocal microscopy. In vitro results confirmed appropriate activity of synthesized effectors. Coating of these effector proteins onto polystyrene beads (simulated drug cargo) resulted in changes in cellular morphology, bead content, and intracellular bead localization, which may support an interpretation of the induced release of these beads from the cells. This forms the basis for further investigation to fully elucidate any potential release mechanisms. Bacterial effectors ActA and LLO successfully effectuated actin polarization and protrusions from cell membranes similar to those seen in cells infected with Listeria spp., illustrating the potential of using these effectors and production methods for the development of an endogenous drug delivery system capable of low-risk, targeted release of high potency drugs.
Collapse
Affiliation(s)
- Anton Du Preez Van Staden
- Department
of Microbiology, Science Faculty, Stellenbosch
University, Stellenbosch 7600, South Africa
- Experimental
Medicine Research Group, Department of Medicine, Faculty of Medicine
and Health Sciences, Stellenbosch University, Parow 7505, South Africa
| | - Johan G. Visser
- Department
of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Yigael S. L. Powrie
- Experimental
Medicine Research Group, Department of Medicine, Faculty of Medicine
and Health Sciences, Stellenbosch University, Parow 7505, South Africa
- Division
of Neurosurgery, University of Cape Twon, Cape Town 7925, South Africa
| | - Carine Smith
- Experimental
Medicine Research Group, Department of Medicine, Faculty of Medicine
and Health Sciences, Stellenbosch University, Parow 7505, South Africa
| |
Collapse
|
4
|
Chiang W, Urban JM, Yanchik-Slade F, Stout A, Nilsson BL, Gelbard HA, Krauss TD. Hybrid Amyloid Quantum Dot Nanoassemblies to Probe Neuroinflammatory Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555592. [PMID: 37693630 PMCID: PMC10491264 DOI: 10.1101/2023.08.30.555592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Various oligomeric species of amyloid-beta have been proposed to play different immunogenic roles in the cellular pathology of Alzheimer's Disease. However, investigating the role of a homogenous single oligomeric species has been difficult due to highly dynamic oligomerization and fibril formation kinetics that convert between many species. Here we report the design and construction of a quantum dot mimetic for larger spherical oligomeric amyloid species as an "endogenously" fluorescent proxy for this cytotoxic species to investigate its role in inducing inflammatory and stress response states in neuronal and glial cell types.
Collapse
Affiliation(s)
- Wesley Chiang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642
| | - Jennifer M. Urban
- Department of Chemistry, Rochester, New York 14627-0216, United States
| | | | - Angela Stout
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, NY, 14642
| | | | - Harris A. Gelbard
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, NY, 14642
- Departments of Pediatrics, Neuroscience, and Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642
| | - Todd D. Krauss
- Department of Chemistry, Rochester, New York 14627-0216, United States
- The Institute of Optics, Rochester, New York 14627-0216, United States
| |
Collapse
|
5
|
Chien ST, Suydam IT, Woodrow KA. Prodrug approaches for the development of a long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 198:114860. [PMID: 37160248 PMCID: PMC10498988 DOI: 10.1016/j.addr.2023.114860] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Long-acting formulations are designed to reduce dosing frequency and simplify dosing schedules by providing an extended duration of action. One approach to obtain long-acting formulations is to combine long-acting prodrugs (LA-prodrug) with existing or emerging drug delivery technologies (DDS). The design criteria for long-acting prodrugs are distinct from conventional prodrug strategies that alter absorption, distribution, metabolism, and excretion (ADME) parameters. Our review focuses on long-acting prodrug delivery systems (LA-prodrug DDS), which is a subcategory of long-acting formulations where prodrug design enables DDS formulation to achieve an extended duration of action that is greater than the parent drug. Here, we define LA-prodrugs as the conjugation of an active pharmaceutical ingredient (API) to a promoiety group via a cleavable covalent linker, where both the promoiety and linker are selected to enable formulation and administration from a drug delivery system (DDS) to achieve an extended duration of action. These LA-prodrug DDS results in an extended interval where the API is within a therapeutic range without necessarily altering ADME as is typical of conventional prodrugs. The conversion of the LA-prodrug to the API is dependent on linker cleavage, which can occur before or after release from the DDS. The requirement for linker cleavage provides an additional tool to prolong release from these LA-prodrug DDS. In addition, the physicochemical properties of drugs can be tuned by promoiety selection for a particular DDS. Conjugation with promoieties that are carriers or amenable to assembly into carriers can also provide access to formulations designed for extending duration of action. LA-prodrugs have been applied to a wide variety of drug delivery strategies and are categorized in this review by promoiety size and complexity. Small molecule promoieties (typically MW < 1000 Da) have been used to improve encapsulation or partitioning as well as broaden APIs for use with traditional long-acting formulations such as solid drug dispersions. Macromolecular promoieties (typically MW > 1000 Da) have been applied to hydrogels, nanoparticles, micelles, dendrimers, and polymerized prodrug monomers. The resulting LA-prodrug DDS enable extended duration of action for active pharmaceuticals across a wide range of applications, with target release timescales spanning days to years.
Collapse
Affiliation(s)
- Shin-Tian Chien
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Ian T Suydam
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
6
|
Rachel G, Vembuli H, Kumar C P G, Hanna LE. Immune cell cross talk in the establishment of HIV-1 latency. AIDS Res Hum Retroviruses 2023. [PMID: 36825522 DOI: 10.1089/aid.2022.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Revolutionary progress in combinational antiretroviral therapy (cART) has transformed Human Immunodeficiency Virus (HIV) infection into a chronic manageable disease; yet there exists an uneasy truce between the virus and the immune cells, where inflammation is limited but infection continues to fester from latent reservoirs of the virus. Clinical studies have identified the major immune cell types that constitute the latent HIV-1 reservoirs as monocytes/macrophages and CD4+ T cells. Latency probing approaches have thrown some light on the interaction between the virus and the reservoir cells from the time of onset of infection. However, research combining latency reversal strategies and immunotherapies face daunting obstacles in clinical trials because of the lack of in-depth knowledge on viral pathogenesis and mechanisms of viral evasion, leaving us behind in the battle for HIV cure. This article reviews existing knowledge on the cells and mechanisms that contribute to the establishment and survival of HIV reservoirs in infected individuals.
Collapse
Affiliation(s)
- Gladys Rachel
- National Institute of Epidemiology, 29893, Laboratory Division, TNHB Colony, ICMR-NIE, Chennai, Tamil Nadu, India, 600077;
| | - Hemanathan Vembuli
- ICMR-National Institute for Research in Tuberculosis, 29888, Department of HIV/AIDS, Chennai, Tamil Nadu, India;
| | - Girish Kumar C P
- National Institute of Epidemiology, 29893, Laboratory Division, Chennai, Tamil Nadu, India;
| | - Luke Elizabeth Hanna
- ICMR-National Institute for Research in Tuberculosis, 29888, Department of HIV/AIDS, Chennai, Tamil Nadu, India;
| |
Collapse
|
7
|
Dai C, Zhu J, Huang H. 混合谱系激酶3在心血管疾病中的研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Mahajan K, Rojekar S, Desai D, Kulkarni S, Bapat G, Zinjarde S, Vavia P. Layer-by-Layer Assembled Nanostructured Lipid Carriers for CD-44 Receptor-Based Targeting in HIV-Infected Macrophages for Efficient HIV-1 Inhibition. AAPS PharmSciTech 2021; 22:171. [PMID: 34100170 DOI: 10.1208/s12249-021-01981-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/04/2021] [Indexed: 02/01/2023] Open
Abstract
Macrophages act as a cellular reservoir in HIV infection. Elimination of HIV from macrophages has been an unfulfilled dream due to the failure of drugs to reach them. To address this, we developed CD44 receptor-targeted, novel hyaluronic acid (HA)-coated nanostructured lipid carriers (NLCs) of efavirenz via washless layer-by-layer (LbL) assembly of HA and polyallylamine hydrochloride (PAH). NLCs were subjected to TEM analysis, size and zeta potential, in vitro release and encapsulation efficiency studies. The uptake of NLCs in THP-1 cells was studied using fluorescence microscopy and flow cytometry. The anti-HIV efficacy was evaluated using p24 antigen inhibition assay. NLCs were found to be spherical in shape with anionic zeta potential (-23.66 ± 0.87 mV) and 241.83 ± 5.38 nm particle size. NLCs exhibited prolonged release of efavirenz during in vitro drug release studies. Flow cytometry revealed 1.73-fold higher uptake of HA-coated NLCs in THP-1 cells. Cytotoxicity studies showed no significant change in cell viability in presence of NLCs as compared with the control. HA-coated NLCs distributed throughout the cell including cytoplasm, plasma membrane and nucleus, as observed during fluorescence microscopy. HA-coated NLCs demonstrated consistent and significantly higher inhibition (81.26 ± 1.70%) of p24 antigen which was 2.08-fold higher than plain NLCs. The obtained results suggested preferential uptake of HA-coated NLCs via CD44-mediated uptake. The present finding demonstrates that HA-based CD44 receptor targeting in HIV infection is an attractive strategy for maximising the drug delivery to macrophages and achieve effective viral inhibition.
Collapse
|
9
|
Dash PK, Gorantla S, Poluektova L, Hasan M, Waight E, Zhang C, Markovic M, Edagwa B, Machhi J, Olson KE, Wang X, Mosley RL, Kevadiya B, Gendelman HE. Humanized Mice for Infectious and Neurodegenerative disorders. Retrovirology 2021; 18:13. [PMID: 34090462 PMCID: PMC8179712 DOI: 10.1186/s12977-021-00557-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
Humanized mice model human disease and as such are used commonly for research studies of infectious, degenerative and cancer disorders. Recent models also reflect hematopoiesis, natural immunity, neurobiology, and molecular pathways that influence disease pathobiology. A spectrum of immunodeficient mouse strains permit long-lived human progenitor cell engraftments. The presence of both innate and adaptive immunity enables high levels of human hematolymphoid reconstitution with cell susceptibility to a broad range of microbial infections. These mice also facilitate investigations of human pathobiology, natural disease processes and therapeutic efficacy in a broad spectrum of human disorders. However, a bridge between humans and mice requires a complete understanding of pathogen dose, co-morbidities, disease progression, environment, and genetics which can be mirrored in these mice. These must be considered for understanding of microbial susceptibility, prevention, and disease progression. With known common limitations for access to human tissues, evaluation of metabolic and physiological changes and limitations in large animal numbers, studies in mice prove important in planning human clinical trials. To these ends, this review serves to outline how humanized mice can be used in viral and pharmacologic research emphasizing both current and future studies of viral and neurodegenerative diseases. In all, humanized mouse provides cost-effective, high throughput studies of infection or degeneration in natural pathogen host cells, and the ability to test transmission and eradication of disease.
Collapse
Affiliation(s)
- Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Larisa Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Emiko Waight
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chen Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xinglong Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bhavesh Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Cheney L, Barbaro JM, Berman JW. Antiretroviral Drugs Impact Autophagy with Toxic Outcomes. Cells 2021; 10:909. [PMID: 33920955 PMCID: PMC8071244 DOI: 10.3390/cells10040909] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/18/2023] Open
Abstract
Antiretroviral drugs have dramatically improved the morbidity and mortality of people living with HIV (PLWH). While current antiretroviral therapy (ART) regimens are generally well-tolerated, risks for side effects and toxicity remain as PLWH must take life-long medications. Antiretroviral drugs impact autophagy, an intracellular proteolytic process that eliminates debris and foreign material, provides nutrients for metabolism, and performs quality control to maintain cell homeostasis. Toxicity and adverse events associated with antiretrovirals may be due, in part, to their impacts on autophagy. A more complete understanding of the effects on autophagy is essential for developing antiretroviral drugs with decreased off target effects, meaning those unrelated to viral suppression, to minimize toxicity for PLWH. This review summarizes the findings and highlights the gaps in our knowledge of the impacts of antiretroviral drugs on autophagy.
Collapse
Affiliation(s)
- Laura Cheney
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - John M. Barbaro
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; (J.M.B.); (J.W.B.)
| | - Joan W. Berman
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; (J.M.B.); (J.W.B.)
- Department of Microbiology and Immunology, Montefiore Medical Center and Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Mahajan K, Rojekar S, Desai D, Kulkarni S, Vavia P. Efavirenz Loaded Nanostructured Lipid Carriers for Efficient and Prolonged Viral Inhibition in HIV-Infected Macrophages. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: The clinical outcome of anti-HIV therapy is poor due to the inherent fallouts ofanti-HIV therapy. It is further worsened due to the presence of viral reservoirs in immune cellslike the macrophages. An ideal anti-HIV therapy must reach, deliver the drug and exert itsaction inside macrophages. To address this, we developed novel cationic nanostructured lipidcarriers of efavirenz (cationic EFV-NLC). Methods: The developed cationic EFV NLCs were evaluated for particle size, zeta potential,encapsulation efficiency, in-vitro drug release, DSC, XRD, TEM, cytotoxicity, cellular uptakestudies and anti-HIV efficacy in a monocyte-derived macrophage cell line (THP-1). Results: Cationic EFV-NLCs showed high encapsulation efficiency (90.54 ± 1.7%), uniformparticle size distribution (PDI 0.3-0.5 range) and high colloidal stability with positive zetapotential (+23.86 ± 0.49 mV). DSC and XRD studies confirmed the encapsulation of EFVwithin NLCs. Cytotoxicity studies (MTT assay) revealed excellent cytocompatibility (CC5013.23 ± 0.54 μg/mL). Fluorescence microscopy confirmed the efficient uptake of cationic EFVNLCs,while flow cytometry revealed time and concentration dependant uptake within THP-1cells. Cationic EFV-NLCs showed higher retention and sustained release with 2.32-fold higherpercent inhibition of HIV-1 in infected macrophages as compared to EFV solution at equimolarconcentrations. Interestingly, they demonstrated 1.23-fold superior anti-HIV efficacy over EFVloadedNLCs at equimolar concentrations. Conclusion: Cationic NLCs were capable of inhibiting the viral replication at higher limitsconsistently for 6 days suggesting successful prevention of HIV-1 replication in infectedmacrophages and thus can prove to be an attractive tool for promising anti-HIV therapy.
Collapse
Affiliation(s)
- Ketan Mahajan
- Centre for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga (E), Mumbai – 400 019, India
| | - Satish Rojekar
- Centre for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga (E), Mumbai – 400 019, India
| | - Dipen Desai
- Department of Virology, National AIDS Research Institute, Plot No 73, G-block, M I D C, Bhosari, Pune, Maharashtra 411 026, India
| | - Smita Kulkarni
- Department of Virology, National AIDS Research Institute, Plot No 73, G-block, M I D C, Bhosari, Pune, Maharashtra 411 026, India
| | - Pradeep Vavia
- Centre for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga (E), Mumbai – 400 019, India
| |
Collapse
|
12
|
Olwenyi OA, Dyavar SR, Acharya A, Podany AT, Fletcher CV, Ng CL, Reid SP, Byrareddy SN. Immuno-epidemiology and pathophysiology of coronavirus disease 2019 (COVID-19). J Mol Med (Berl) 2020; 98:1369-1383. [PMID: 32808094 PMCID: PMC7431311 DOI: 10.1007/s00109-020-01961-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Occasional zoonotic viral attacks on immunologically naive populations result in massive death tolls that are capable of threatening human survival. Currently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the infectious agent that causes coronavirus disease (COVID-19), has spread from its epicenter in Wuhan China to all parts of the globe. Real-time mapping of new infections across the globe has revealed that variable transmission patterns and pathogenicity are associated with differences in SARS-CoV-2 lineages, clades, and strains. Thus, we reviewed how changes in the SARS-CoV-2 genome and its structural architecture affect viral replication, immune evasion, and transmission within different human populations. We also looked at which immune dominant regions of SARS-CoV-2 and other coronaviruses are recognized by Major Histocompatibility Complex (MHC)/Human Leukocyte Antigens (HLA) genes and how this could impact on subsequent disease pathogenesis. Efforts were also placed on understanding immunological changes that occur when exposed individuals either remain asymptomatic or fail to control the virus and later develop systemic complications. Published autopsy studies that reveal alterations in the lung immune microenvironment, morphological, and pathological changes are also explored within the context of the review. Understanding the true correlates of protection and determining how constant virus evolution impacts on host-pathogen interactions could help identify which populations are at high risk and later inform future vaccine and therapeutic interventions.
Collapse
Affiliation(s)
- Omalla A Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shetty Ravi Dyavar
- Antiviral Pharmacology Laboratory, Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anthony T Podany
- Antiviral Pharmacology Laboratory, Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Caroline L Ng
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - St Patrick Reid
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
13
|
Cobb DA, Smith NA, Edagwa BJ, McMillan JM. Long-acting approaches for delivery of antiretroviral drugs for prevention and treatment of HIV: a review of recent research. Expert Opin Drug Deliv 2020; 17:1227-1238. [PMID: 32552187 PMCID: PMC7442675 DOI: 10.1080/17425247.2020.1783233] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/12/2020] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Despite significant advances in treatment and prevention of HIV-1 infection, poor adherence to daily combination antiretroviral therapy (ART) regimens remains a major obstacle toward achieving sustained viral suppression and prevention. Adherence to ART could also be compromised by adverse drug reactions and societal factors that limit access to therapy. Therefore, medicines that aim to improve adherence by limiting ART side effects, frequency of dosing and socially acceptable regimens are becoming more attractive. AREAS COVERED This review highlights recent advances and challenges in the development of long-acting drug delivery strategies for HIV prevention and treatment. Approaches for extended oral and transdermal deliveries, microbicides, broadly neutralizing antibodies, and long-acting implantable and injectable deliveries are reviewed. EXPERT OPINION Emerging approaches on long-acting antiretroviral therapies and broadly neutralizing antibody technologies are currently at various stages of development. Such efforts, if successful and become broadly accepted by clinicians and users, will provide newer and simpler options for prevention and treatment of HIV infection.
Collapse
Affiliation(s)
- Denise A. Cobb
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center; Omaha, NE, USA
| | - Nathan A. Smith
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center; Omaha, NE, USA
| | - Benson J. Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center; Omaha, NE, USA
| | - JoEllyn M. McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center; Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health; University of Nebraska Medical Center; Omaha, NE, USA
| |
Collapse
|
14
|
Raj EN, Lin Y, Chen C, Liu K, Chao J. Selective Autophagy Pathway of Nanoparticles and Nanodrugs: Drug Delivery and Pathophysiological Effects. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Emmanuel Naveen Raj
- Institute of Molecular Medicine and Bioengineering National Chiao Tung University Hsinchu 30068 Taiwan
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Yu‐Wei Lin
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Chien‐Hung Chen
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Kuang‐Kai Liu
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Jui‐I Chao
- Institute of Molecular Medicine and Bioengineering National Chiao Tung University Hsinchu 30068 Taiwan
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
- Center For Intelligent Drug Systems and Smart Bio‐devices National Chiao Tung University Hsinchu 30068 Taiwan
| |
Collapse
|
15
|
Khan T, Mayuresh Patkar M, Momin M, Omri A. Macrophage targeted nanocarrier delivery systems in HIV therapeutics. Expert Opin Drug Deliv 2020; 17:903-918. [PMID: 32347124 DOI: 10.1080/17425247.2020.1762565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Human immunodeficiency virus (HIV) targets and modulates the immune system increasing the risk of other associated infections. Highly active antiretroviral therapy (HAART) has significantly improved AIDS-associated morbidity, but has limitations of adverse effects, frequent dosing regimen leading to medical non-adherence. Drug delivery systems that target HIV reservoirs could potentially reduce dose-dependent toxicity and the duration of treatment. The major cellular HIV reservoirs are macrophages and CD4+ T cells with macrophages being responsible for carrying and spreading the virus. The crucial involvement of macrophages in the pathogenesis of HIV infection has led to development of macrophage targeted nanocarrier delivery systems. AREAS COVERED Eradication of viral reservoirs like HIV-infected macrophages has emerged to be a fundamental barrier and challenge for complete eradication of HIV from the immune system. Literature reports several macrophage targeted nanocarrier delivery systems developed as either functionalized or non-functionalized formulations such as liposomes, ethosomes, polymeric nanoparticles, dendrimers, and solid lipid nanoparticles showcasing superior efficacy over the conventional antiretroviral delivery systems. EXPERT OPINION The development of fixed dose combination of antiretroviral drugs into macrophage targeted delivery systems should factor in the inherent plasticity and heterogeneity of macrophages that is dependent on their microenvironment. A rational selection of nanocarriers will facilitate selectivity and enhanced efficacy of antiretroviral drugs accompanied by reduced dosing and toxicity. Such macrophage targeted delivery systems would positively impact the therapeutic outcomes in the management of HIV infection.
Collapse
Affiliation(s)
- Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai, Maharashtra, India
| | - Mayuresh Mayuresh Patkar
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai, Maharashtra, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai, Maharashtra, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University , Sudbury, ON, Canada
| |
Collapse
|
16
|
Bowen A, Sweeney EE, Fernandes R. Nanoparticle-Based Immunoengineered Approaches for Combating HIV. Front Immunol 2020; 11:789. [PMID: 32425949 PMCID: PMC7212361 DOI: 10.3389/fimmu.2020.00789] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) serves as an effective strategy to combat HIV infections by suppressing viral replication in patients with HIV/AIDS. However, HAART does not provide HIV/AIDS patients with a sterilizing or functional cure, and introduces several deleterious comorbidities. Moreover, the virus is able to persist within latent reservoirs, both undetected by the immune system and unaffected by HAART, increasing the risk of a viral rebound. The field of immunoengineering, which utilizes varied bioengineering approaches to interact with the immune system and potentiate its therapeutic effects against HIV, is being increasingly investigated in HIV cure research. In particular, nanoparticle-based immunoengineered approaches are especially attractive because they offer advantages including the improved delivery and functionality of classical HIV drugs such as antiretrovirals and experimental drugs such as latency-reversing agents (LRAs), among others. Here, we present and discuss the current state of the field in nanoparticle-based immunoengineering approaches for an HIV cure. Specifically, we discuss nanoparticle-based methods for improving HAART as well as latency reversal, developing vaccines, targeting viral fusion, enhancing gene editing approaches, improving adoptively transferred immune-cell mediated reservoir clearance, and other therapeutic and prevention approaches. Although nanoparticle-based immunoengineered approaches are currently at the stage of preclinical testing, the promising findings obtained in these studies demonstrate the potential of this emerging field for developing an HIV cure.
Collapse
Affiliation(s)
- Allan Bowen
- The George Washington Cancer Center, The George Washington University, Washington, DC, United States
| | - Elizabeth E. Sweeney
- The George Washington Cancer Center, The George Washington University, Washington, DC, United States
| | - Rohan Fernandes
- The George Washington Cancer Center, The George Washington University, Washington, DC, United States
- Department of Medicine, The George Washington University, Washington, DC, United States
| |
Collapse
|
17
|
Banoub MG, Bade AN, Lin Z, Cobb D, Gautam N, Dyavar Shetty BL, Wojtkiewicz M, Alnouti Y, McMillan J, Gendelman HE, Edagwa B. Synthesis and Characterization of Long-Acting Darunavir Prodrugs. Mol Pharm 2019; 17:155-166. [PMID: 31742407 DOI: 10.1021/acs.molpharmaceut.9b00871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antiretroviral therapy (ART) has improved the quality of life in patients infected with HIV-1. However, complete viral suppression within anatomical compartments remains unattainable. This is complicated by adverse side effects and poor adherence to lifelong therapy leading to the emergence of viral drug resistance. Thus, there is an immediate need for cellular and tissue-targeted long-acting (LA) ART formulations. Herein, we describe two LA prodrug formulations of darunavir (DRV), a potent antiretroviral protease inhibitor. Two classes of DRV prodrugs, M1DRV and M2DRV, were synthesized as lipophilic and hydrophobic prodrugs and stabilized into aqueous suspensions designated NM1DRV and NM2DRV. The formulations demonstrated enhanced intracellular prodrug levels with sustained drug retention and antiretroviral activities for 15 and 30 days compared to native DRV formulation in human monocyte-derived macrophages. Pharmacokinetics tests of NM1DRV and NM2DRV administered to mice demonstrated sustained drug levels in blood and tissues for 30 days. These data, taken together, support the idea that LA DRV with sustained antiretroviral responses through prodrug nanoformulations is achievable.
Collapse
|
18
|
Smith N, Bade AN, Soni D, Gautam N, Alnouti Y, Herskovitz J, Ibrahim IM, Wojtkiewicz MS, Dyavar Shetty BL, McMillan J, Gendelman HE, Edagwa B. A long acting nanoformulated lamivudine ProTide. Biomaterials 2019; 223:119476. [PMID: 31525692 DOI: 10.1016/j.biomaterials.2019.119476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 01/15/2023]
Abstract
A long acting (LA) hydrophobic and lipophilic lamivudine (3TC) was created as a phosphoramidate pronucleotide (designated M23TC). M23TC improved intracellular delivery of active triphosphate metabolites and enhanced antiretroviral and pharmacokinetic (PK) profiles over the native drug. A single treatment of human monocyte derived macrophages (MDM) with nanoformulated M23TC (NM23TC) improved drug uptake, retention, intracellular 3TC triphosphates and antiretroviral activities in MDM and CD4+ T cells. PK tests of NM23TC administered to Sprague Dawley rats demonstrated sustained prodrug and drug triphosphate levels in blood and tissues for 30 days. The development of NM23TC remains a substantive step forward in producing LA slow effective release antiretrovirals for future clinical translation.
Collapse
Affiliation(s)
- Nathan Smith
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dhruvkumar Soni
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ibrahim M Ibrahim
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Melinda S Wojtkiewicz
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bhagya Laxmi Dyavar Shetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
19
|
Ma L, Cheng Y, Zeng J. MLK3 silence induces cervical cancer cell apoptosis via the Notch-1/autophagy network. Clin Exp Pharmacol Physiol 2019; 46:854-860. [PMID: 31192472 DOI: 10.1111/1440-1681.13123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022]
Abstract
Mixed-lineage kinase 3 (MLK3), the mitogen-activated protein kinase kinase kinase (MAP3K), has been recognized as a player in tumorigenesis and oncogenic signalling, yet its detailed functions and signalling in cervical cancer have not been fully elucidated. Here, we identify that cervical cancer cells display higher mRNA and protein levels of MLK3 than normal cervical epithelial squamous cells. In HeLa and SiHa cell, MLK3 knockdown using siRNA remarkably suppressed cell survival and promoted cell apoptosis, with increased expression of the apoptosis-related protein Bax and reduced Bcl-2. Moreover, MLK3 knockdown promoted cell autophagy, demonstrated by increased ratio of autophagy-related proteins LC3II/LC3I and decreased p62 expression in MLK3 depletion cells. Furthermore, MLK3 knockdown remarkably abolished Notch-1 expression in cervical cancer cells. By co-treating Hela cells with MLK3 specific siRNA and pcDNA3.1-Notch-1 overexpression plasmid or autophagy inhibitor 3-MA, we found that MLK3 played its role in cervical cancer cells via the Notch-1/autophagy network. Our results demonstrate the importance of MLK3 in cervical cancer progression via modulating the Notch-1/autophagy network, and suggest that MLK3 is a promising therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Liya Ma
- Clinical Skills Training Center of the Academic Affairs Department, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yongchong Cheng
- Anesthesiology Department, The Third PLA Hospital, Baoji, China
| | - Jingjie Zeng
- Department of Obstetrics, Xi'an Gaoxin Hospital, Xi'an, China
| |
Collapse
|
20
|
Soni D, Bade AN, Gautam N, Herskovitz J, Ibrahim IM, Smith N, Wojtkiewicz MS, Dyavar Shetty BL, Alnouti Y, McMillan J, Gendelman HE, Edagwa BJ. Synthesis of a long acting nanoformulated emtricitabine ProTide. Biomaterials 2019; 222:119441. [PMID: 31472458 DOI: 10.1016/j.biomaterials.2019.119441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/04/2019] [Accepted: 08/19/2019] [Indexed: 01/20/2023]
Abstract
While antiretroviral therapy (ART) has revolutionized treatment and prevention of human immunodeficiency virus type one (HIV-1) infection, regimen adherence, viral mutations, drug toxicities and access stigma and fatigue are treatment limitations. These have led to new opportunities for the development of long acting (LA) ART including implantable devices and chemical drug modifications. Herein, medicinal and formulation chemistry were used to develop LA prodrug nanoformulations of emtricitabine (FTC). A potent lipophilic FTC phosphoramidate prodrug (M2FTC) was synthesized then encapsulated into a poloxamer surfactant (NM2FTC). These modifications extended the biology, apparent drug half-life and antiretroviral activities of the formulations. NM2FTC demonstrated a >30-fold increase in macrophage and CD4+ T cell drug uptake with efficient conversion to triphosphates (FTC-TP). Intracellular FTC-TP protected macrophages against an HIV-1 challenge for 30 days. A single intramuscular injection of NM2FTC, at 45 mg/kg native drug equivalents, into Sprague Dawley rats resulted in sustained prodrug levels in blood, liver, spleen and lymph nodes and FTC-TP in lymph node and spleen cells at one month. In contrast, native FTC-TPs was present for one day. These results are an advance in the transformation of FTC into a LA agent.
Collapse
Affiliation(s)
- Dhruvkumar Soni
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ibrahim M Ibrahim
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nathan Smith
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Melinda S Wojtkiewicz
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhagya Laxmi Dyavar Shetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Benson J Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
21
|
Kline EM, Butkovich LM, Bradner JM, Chang J, Gelbard H, Goodfellow V, Caudle WM, Tansey MG. The second generation mixed lineage kinase-3 (MLK3) inhibitor CLFB-1134 protects against neurotoxin-induced nigral dopaminergic neuron loss. Exp Neurol 2019; 318:157-164. [PMID: 31077715 PMCID: PMC6592621 DOI: 10.1016/j.expneurol.2019.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 11/29/2022]
Abstract
Dopaminergic neurons express mixed lineage kinases which regulate the expression of cell death genes. In Parkinson's disease, cell death via apoptosis is prevalent, and previous work testing mixed lineage kinase inhibitors in animal models suggested the inhibitors had some neuroprotective potential. CLFB-1134 is a new, brain-penetrant inhibitor specific for MLK3, tested here in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of dopaminergic depletion and nigral neuron death in mice. After ensuring that treatment with CLFB-1134 did not alter conversion of MPTP to MPP+, we demonstrated CLFB-1134's inhibition of MLK3 and neuroprotective efficacy. Specifically we evaluated the integrity of the nigrostriatal dopamine system following MPTP by assessing protein expression, high performance liquid chromatography, and immunohistology with stereology. We found that CLFB-1134 achieves protection of striatal dopaminergic terminals and nigral cell bodies when dosed simultaneously or following MPTP treatment. By preventing phosphorylation of JNK and other downstream targets of MLK3, CLFB-1134 protects against the neurotoxin MPTP. Inhibition of MLK3 may be a valid target for future work investigating treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Elizabeth M Kline
- Emory University, 615 Michael St, Atlanta, GA 30322, United States of America.
| | - Laura M Butkovich
- Emory University, 615 Michael St, Atlanta, GA 30322, United States of America.
| | - Joshua M Bradner
- Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, United States of America.
| | - Jianjun Chang
- Emory University, 615 Michael St, Atlanta, GA 30322, United States of America.
| | - Harris Gelbard
- University of Rochester Medical Center, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, United States of America.
| | - Val Goodfellow
- Califia Bio Inc., San Diego, CA, United States of America.
| | - W Michael Caudle
- Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, United States of America.
| | - Malú G Tansey
- Emory University, 615 Michael St, Atlanta, GA 30322, United States of America.
| |
Collapse
|
22
|
Dash PK, Kaminski R, Bella R, Su H, Mathews S, Ahooyi TM, Chen C, Mancuso P, Sariyer R, Ferrante P, Donadoni M, Robinson JA, Sillman B, Lin Z, Hilaire JR, Banoub M, Elango M, Gautam N, Mosley RL, Poluektova LY, McMillan J, Bade AN, Gorantla S, Sariyer IK, Burdo TH, Young WB, Amini S, Gordon J, Jacobson JM, Edagwa B, Khalili K, Gendelman HE. Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice. Nat Commun 2019; 10:2753. [PMID: 31266936 PMCID: PMC6606613 DOI: 10.1038/s41467-019-10366-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/22/2019] [Indexed: 01/09/2023] Open
Abstract
Elimination of HIV-1 requires clearance and removal of integrated proviral DNA from infected cells and tissues. Here, sequential long-acting slow-effective release antiviral therapy (LASER ART) and CRISPR-Cas9 demonstrate viral clearance in latent infectious reservoirs in HIV-1 infected humanized mice. HIV-1 subgenomic DNA fragments, spanning the long terminal repeats and the Gag gene, are excised in vivo, resulting in elimination of integrated proviral DNA; virus is not detected in blood, lymphoid tissue, bone marrow and brain by nested and digital-droplet PCR as well as RNAscope tests. No CRISPR-Cas9 mediated off-target effects are detected. Adoptive transfer of human immunocytes from dual treated, virus-free animals to uninfected humanized mice fails to produce infectious progeny virus. In contrast, HIV-1 is readily detected following sole LASER ART or CRISPR-Cas9 treatment. These data provide proof-of-concept that permanent viral elimination is possible.
Collapse
Affiliation(s)
- Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Rafal Kaminski
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Ramona Bella
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Hang Su
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Taha M Ahooyi
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Chen Chen
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Pietro Mancuso
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Rahsan Sariyer
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Pasquale Ferrante
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Martina Donadoni
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Jake A Robinson
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Zhiyi Lin
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - James R Hilaire
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Mary Banoub
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Monalisha Elango
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ilker K Sariyer
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Tricia H Burdo
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Won-Bin Young
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Shohreh Amini
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Jennifer Gordon
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Jeffrey M Jacobson
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Kamel Khalili
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
23
|
Gendelman HE, McMillan J, Bade AN, Edagwa B, Kevadiya BD. The Promise of Long-Acting Antiretroviral Therapies: From Need to Manufacture. Trends Microbiol 2019; 27:593-606. [PMID: 30981593 DOI: 10.1016/j.tim.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
Abstract
Antiretroviral therapy has transformed human immunodeficiency virus infections from certain death to a manageable chronic disease. Achieving strict adherence to drug regimens that limit toxicities and viral resistance is an achievable goal. Success is defined by halting viral transmission and by continuous viral restriction. A step towards improving treatment outcomes is in long-acting antiretrovirals. While early results remain encouraging there remain opportunities for improvement. These rest, in part, on the required large drug dosing volumes, local injection-site reactions, and frequency of injections. Thus, implantable devices and long-acting parenteral prodrugs have emerged which may provide more effective clinical outcomes. The recent successes in transforming native antiretrovirals into lipophilic and hydrophobic prodrugs stabilized into biocompatible surfactants can positively affect both. Formulating antiretroviral prodrugs demonstrates improvements in cell and tissue targeting, in drug-dosing intervals, and in the administered volumes of nanosuspensions. As such, the newer formulations also hold the potential to suppress viral loads beyond more conventional therapies with the ultimate goal of HIV-1 elimination when combined with other modalities.
Collapse
Affiliation(s)
- Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
24
|
Saminathan P, Kevadiya BD, Marker DF, Gendelman HE, Gorantla S, Gelbard HA. Broad Spectrum Mixed Lineage Kinase Type 3 Inhibition and HIV-1 Persistence in Macrophages. J Neuroimmune Pharmacol 2019; 14:44-51. [PMID: 30617749 PMCID: PMC6391203 DOI: 10.1007/s11481-018-09829-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023]
Abstract
Mixed lineage kinases (MLKs) are a group of serine-threonine kinases that evolved in part to respond to endogenous and exogenous insults that result in oxidative stress and pro-inflammatory responses from innate immune cells. Human immunodeficiency virus type 1 (HIV-1) thrives in these conditions and is associated with the development of associated neurocognitive disorders (HAND). As part of a drug discovery program to identify new therapeutic strategies for HAND, we created a library of broad spectrum MLK inhibitors with drug-like properties. Serendipitously, the lead compound, URMC-099 has proved useful not only in reversing damage to synaptic architecture in models of HAND, but also serves to restore autophagy as a protective response when given in concert with nanoformulated antiretroviral therapy (nanoART) in persistently infected macrophages. These findings are reviewed in the context of MLK3 biology and cellular signaling pathways relevant to new HIV-1 therapies. Graphical abstract.
Collapse
Affiliation(s)
- Priyanka Saminathan
- Center for Neurotherapeutics Discovery and Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daniel F Marker
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, Departments of Neurology, Pediatrics, Neuroscience and Microbiology and Immunology, University of Rochester Medical Center, Box 645, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
25
|
Visser JG, Van Staden ADP, Smith C. Harnessing Macrophages for Controlled-Release Drug Delivery: Lessons From Microbes. Front Pharmacol 2019; 10:22. [PMID: 30740053 PMCID: PMC6355695 DOI: 10.3389/fphar.2019.00022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/09/2019] [Indexed: 01/15/2023] Open
Abstract
With the effectiveness of therapeutic agents ever decreasing and the increased incidence of multi-drug resistant pathogens, there is a clear need for administration of more potent, potentially more toxic, drugs. Alternatively, biopharmaceuticals may hold potential but require specialized protection from premature in vivo degradation. Thus, a paralleled need for specialized drug delivery systems has arisen. Although cell-mediated drug delivery is not a completely novel concept, the few applications described to date are not yet ready for in vivo application, for various reasons such as drug-induced carrier cell death, limited control over the site and timing of drug release and/or drug degradation by the host immune system. Here, we present our hypothesis for a new drug delivery system, which aims to negate these limitations. We propose transport of nanoparticle-encapsulated drugs inside autologous macrophages polarized to M1 phenotype for high mobility and treated to induce transient phagosome maturation arrest. In addition, we propose a significant shift of existing paradigms in the study of host-microbe interactions, in order to study microbial host immune evasion and dissemination patterns for their therapeutic utilization in the context of drug delivery. We describe a system in which microbial strategies may be adopted to facilitate absolute control over drug delivery, and without sacrificing the host carrier cells. We provide a comprehensive summary of the lessons we can learn from microbes in the context of drug delivery and discuss their feasibility for in vivo therapeutic application. We then describe our proposed "synthetic microbe drug delivery system" in detail. In our opinion, this multidisciplinary approach may hold the solution to effective, controlled drug delivery.
Collapse
Affiliation(s)
- Johan Georg Visser
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| | | | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
26
|
Ottemann BM, Helmink AJ, Zhang W, Mukadam I, Woldstad C, Hilaire JR, Liu Y, McMillan JM, Edagwa BJ, Mosley RL, Garrison JC, Kevadiya BD, Gendelman HE. Bioimaging predictors of rilpivirine biodistribution and antiretroviral activities. Biomaterials 2018; 185:174-193. [PMID: 30245386 PMCID: PMC6556898 DOI: 10.1016/j.biomaterials.2018.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022]
Abstract
Antiretroviral therapy (ART) has changed the outcome of human immunodeficiency virus type one (HIV-1) infection from certain death to a life free of disease co-morbidities. However, infected people must remain on life-long daily ART. ART reduces but fails to eliminate the viral reservoir. In order to improve upon current treatment regimens, our laboratory created long acting slow effective release (LASER) ART nanoformulated prodrugs from native medicines. LASER ART enables antiretroviral drugs (ARVs) to better reach target sites of HIV-1 infection while, at the same time, improve ART's half-life and potency. However, novel ARV design has been slowed by prolonged pharmacokinetic testing requirements. To such ends, tri-modal theranostic nanoparticles were created with single-photon emission computed tomography (SPECT/CT), magnetic resonance imaging (MRI) and fluorescence capabilities to predict LASER ART biodistribution. The created theranostic ARV probes were then employed to monitor drug tissue distribution and potency. Intrinsically 111Indium (111In) radiolabeled, europium doped cobalt-ferrite particles and rilpivirine were encased in a polycaprolactone core surrounded by a lipid shell (111InEuCF-RPV). Particle cell and tissue distribution, and antiretroviral activities were sustained in macrophage tissue depots. 111InEuCF-PCL/RPV particles injected into mice demonstrated co-registration of MRI and SPECT/CT tissue signals with RPV and cobalt. Cell and animal particle biodistribution paralleled ARV activities. We posit that particle selection can predict RPV distribution and potency facilitated by multifunctional theranostic nanoparticles.
Collapse
Affiliation(s)
- Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Austin J Helmink
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - James R Hilaire
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn M McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson J Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jered C Garrison
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
27
|
Thomas MB, Gnanadhas DP, Dash PK, Machhi J, Lin Z, McMillan J, Edagwa B, Gelbard H, Gendelman HE, Gorantla S. Modulating cellular autophagy for controlled antiretroviral drug release. Nanomedicine (Lond) 2018; 13:2139-2154. [PMID: 30129397 DOI: 10.2217/nnm-2018-0224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIM Pharmacologic agents that affect autophagy were tested for their abilities to enhance macrophage nanoformulated antiretroviral drug (ARV) depots and its slow release. METHODS These agents included URMC-099, rapamycin, metformin, desmethylclomipramine, 2-hydroxy-β-cyclodextrin (HBC) and clonidine. Each was administered with nanoformulated atazanavir (ATV) nanoparticles to human monocyte-derived macrophages. ARV retention, antiretroviral activity and nanocrystal autophagosomal formation were evaluated. RESULTS URMC-099, HBC and clonidine retained ATV. HBC, URMC-099 and rapamycin improved intracellular ATV retention. URMC-099 proved superior among the group in affecting antiretroviral activities. CONCLUSION Autophagy inducing agents, notably URMC-099, facilitate nanoformulated ARV depots and lead to sustained release and improved antiretroviral responses. As such, they may be considered for development as part of long acting antiretroviral treatment regimens.
Collapse
Affiliation(s)
- Midhun B Thomas
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Divya Prakash Gnanadhas
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Prasanta K Dash
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Jatin Machhi
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Zhiyi Lin
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Benson Edagwa
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Harris Gelbard
- Department of Neurology, University of Rochester Medical Centre, Rochester, NY 14618, USA
| | - Howard E Gendelman
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| |
Collapse
|
28
|
Lin Z, Gautam N, Alnouti Y, McMillan J, Bade AN, Gendelman HE, Edagwa B. ProTide generated long-acting abacavir nanoformulations. Chem Commun (Camb) 2018; 54:8371-8374. [PMID: 29995046 PMCID: PMC6063073 DOI: 10.1039/c8cc04708a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
Abstract
Abacavir pronucleotide nanoformulations (NM3ABC) were prepared as a novel long acting slow effective release antiretroviral therapy. Single NM3ABC treatment of human monocyte-derived macrophages produced sustained intracellular carbovir-triphosphate and antiretroviral activities for up to 30 days.
Collapse
Affiliation(s)
- Zhiyi Lin
- Department of Pharmacology and Experimental Neuroscience
, University of Nebraska Medical Center
,
Omaha
, NE 68198-5880
, USA
.
;
- Department of Pharmaceutical Science
, University of Nebraska Medical Center
,
Omaha
, NE 68198-5880
, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Science
, University of Nebraska Medical Center
,
Omaha
, NE 68198-5880
, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Science
, University of Nebraska Medical Center
,
Omaha
, NE 68198-5880
, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience
, University of Nebraska Medical Center
,
Omaha
, NE 68198-5880
, USA
.
;
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience
, University of Nebraska Medical Center
,
Omaha
, NE 68198-5880
, USA
.
;
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience
, University of Nebraska Medical Center
,
Omaha
, NE 68198-5880
, USA
.
;
- Department of Pharmaceutical Science
, University of Nebraska Medical Center
,
Omaha
, NE 68198-5880
, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience
, University of Nebraska Medical Center
,
Omaha
, NE 68198-5880
, USA
.
;
| |
Collapse
|
29
|
HIV and the Macrophage: From Cell Reservoirs to Drug Delivery to Viral Eradication. J Neuroimmune Pharmacol 2018; 14:52-67. [PMID: 29572681 DOI: 10.1007/s11481-018-9785-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022]
Abstract
Macrophages serve as host cells, inflammatory disease drivers and drug runners for human immunodeficiency virus infection and treatments. Low-level viral persistence continues in these cells in the absence of macrophage death. However, the cellular microenvironment changes as a consequence of viral infection with aberrant production of pro-inflammatory factors and promotion of oxidative stress. These herald viral spread from macrophages to neighboring CD4+ T cells and end organ damage. Virus replicates in tissue reservoir sites that include the nervous, pulmonary, cardiovascular, gut, and renal organs. However, each of these events are held in check by antiretroviral therapy. A hidden and often overlooked resource of the macrophage rests in its high cytoplasmic nuclear ratios that allow the cell to sense its environment and rid it of the cellular waste products and microbial pathogens it encounters. These phagocytic and intracellular killing sensing mechanisms can also be used in service as macrophages serve as cellular carriage depots for antiretroviral nanoparticles and are able to deliver medicines to infectious disease sites with improved therapeutic outcomes. These undiscovered cellular functions can lead to reductions in persistent infection and may potentially facilitate the eradication of residual virus to eliminate disease.
Collapse
|
30
|
Zhou T, Lin Z, Puligujja P, Palandri D, Hilaire J, Araínga M, Smith N, Gautam N, McMillan J, Alnouti Y, Liu X, Edagwa B, Gendelman HE. Optimizing the preparation and stability of decorated antiretroviral drug nanocrystals. Nanomedicine (Lond) 2018; 13:871-885. [PMID: 29553879 PMCID: PMC5992566 DOI: 10.2217/nnm-2017-0381] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aim: While the therapeutic potential for current long-acting (LA) antiretroviral therapy (ART) is undeniable, ligand-decorated nanoformulated LA-ART could optimize drug delivery to viral reservoirs. The development of decorated ART hinges, however, on formulation processes and manufacture efficiencies. To this end, we compared manufacture and purification techniques for ligand-decorated antiretroviral drug nanocrystals. Materials & methods: Ligand-decorated nanoparticle manufacturing was tested using folic acid (FA) nanoformulated cabotegravir. Results: Direct manufacturing of FA-cabotegravir resulted in stable particles with high drug loading and monocyte–macrophage targeting. A one step ‘direct’ scheme proved superior over differential centrifugation or tangential flow filtration facilitating particle stability and preparation simplicity and efficiency. Conclusion: Direct manufacturing of FA nanoparticles provides a path toward large-scale clinical grade manufacturing of cell-targeted LA-ART.
Folic acid (FA) decoration on the surface of nanocrystals can be achieved by mixing FA conjugated poloxamer 407 (FA-P407) and native P407 in varied ratios followed by size reduction by homogenization and differential centrifugation or tangential flow filtration to remove excess unbound polymers. The optimized manufacturing scheme is by direct homogenization with predetermined quantity of FA conjugated P407. Direct manufacturing method yields stable homogenous nanoparticles with high drug loading.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhiyi Lin
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pavan Puligujja
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Diana Palandri
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James Hilaire
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mariluz Araínga
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nathan Smith
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yazen Alnouti
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xinming Liu
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benson Edagwa
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
31
|
Sillman B, Bade AN, Dash PK, Bhargavan B, Kocher T, Mathews S, Su H, Kanmogne GD, Poluektova LY, Gorantla S, McMillan J, Gautam N, Alnouti Y, Edagwa B, Gendelman HE. Creation of a long-acting nanoformulated dolutegravir. Nat Commun 2018; 9:443. [PMID: 29402886 PMCID: PMC5799307 DOI: 10.1038/s41467-018-02885-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
Potent antiretroviral activities and a barrier to viral resistance characterize the human immunodeficiency virus type one (HIV-1) integrase strand transfer inhibitor dolutegravir (DTG). Herein, a long-acting parenteral DTG was created through chemical modification to improve treatment outcomes. A hydrophobic and lipophilic modified DTG prodrug is encapsulated into poloxamer nanoformulations (NMDTG) and characterized by size, shape, polydispersity, and stability. Retained intracytoplasmic NMDTG particles release drug from macrophages and attenuate viral replication and spread of virus to CD4+ T cells. Pharmacokinetic tests in Balb/cJ mice show blood DTG levels at, or above, its inhibitory concentration90 of 64 ng/mL for 56 days, and tissue DTG levels for 28 days. NMDTG protects humanized mice from parenteral challenge of the HIV-1ADA strain for two weeks. These results are a first step towards producing a long-acting DTG for human use by affecting drug apparent half-life, cell and tissue drug penetration, and antiretroviral potency.
Collapse
Affiliation(s)
- Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Biju Bhargavan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ted Kocher
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hang Su
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Georgette D Kanmogne
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
32
|
Edagwa BJ, Gendelman HE. Antimicrobials: Broad-spectrum antivirals. NATURE MATERIALS 2018; 17:114-116. [PMID: 29358769 DOI: 10.1038/nmat5064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Benson J Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| |
Collapse
|
33
|
Kevadiya BD, Woldstad C, Ottemann BM, Dash P, Sajja BR, Lamberty B, Morsey B, Kocher T, Dutta R, Bade AN, Liu Y, Callen SE, Fox HS, Byrareddy SN, McMillan JM, Bronich TK, Edagwa BJ, Boska MD, Gendelman HE. Multimodal Theranostic Nanoformulations Permit Magnetic Resonance Bioimaging of Antiretroviral Drug Particle Tissue-Cell Biodistribution. Theranostics 2018; 8:256-276. [PMID: 29290806 PMCID: PMC5743473 DOI: 10.7150/thno.22764] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/06/2017] [Indexed: 01/23/2023] Open
Abstract
RATIONALE Long-acting slow effective release antiretroviral therapy (LASER ART) was developed to improve patient regimen adherence, prevent new infections, and facilitate drug delivery to human immunodeficiency virus cell and tissue reservoirs. In an effort to facilitate LASER ART development, "multimodal imaging theranostic nanoprobes" were created. These allow combined bioimaging, drug pharmacokinetics and tissue biodistribution tests in animal models. METHODS Europium (Eu3+)- doped cobalt ferrite (CF) dolutegravir (DTG)- loaded (EuCF-DTG) nanoparticles were synthesized then fully characterized based on their size, shape and stability. These were then used as platforms for nanoformulated drug biodistribution. RESULTS Folic acid (FA) decoration of EuCF-DTG (FA-EuCF-DTG) nanoparticles facilitated macrophage targeting and sped drug entry across cell barriers. Macrophage uptake was higher for FA-EuCF-DTG than EuCF-DTG nanoparticles with relaxivities of r2 = 546 mM-1s-1 and r2 = 564 mM-1s-1 in saline, and r2 = 850 mM-1s-1 and r2 = 876 mM-1s-1 in cells, respectively. The values were ten or more times higher than what was observed for ultrasmall superparamagnetic iron oxide particles (r2 = 31.15 mM-1s-1 in saline) using identical iron concentrations. Drug particles were detected in macrophage Rab compartments by dual fluorescence labeling. Replicate particles elicited sustained antiretroviral responses. After parenteral injection of FA-EuCF-DTG and EuCF-DTG into rats and rhesus macaques, drug, iron and cobalt levels, measured by LC-MS/MS, magnetic resonance imaging, and ICP-MS were coordinate. CONCLUSION We posit that these theranostic nanoprobes can assess LASER ART drug delivery and be used as part of a precision nanomedicine therapeutic strategy.
Collapse
Affiliation(s)
- Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Brendan M. Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prasanta Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Benjamin Lamberty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ted Kocher
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rinku Dutta
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon E. Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn M. McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K. Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson J. Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael D. Boska
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
34
|
Pharmacokinetics of a Long-Acting Nanoformulated Dolutegravir Prodrug in Rhesus Macaques. Antimicrob Agents Chemother 2017; 62:AAC.01316-17. [PMID: 29061742 PMCID: PMC5740312 DOI: 10.1128/aac.01316-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/28/2017] [Indexed: 01/24/2023] Open
Abstract
A nanoformulated myristoylated dolutegravir prodrug (NMDTG) was prepared using good laboratory practice protocols. Intramuscular injection of NMDTG (118 ± 8 mg/ml, 25.5 mg of DTG equivalents/kg of body weight) to three rhesus macaques led to plasma DTG levels of 86 ± 12 and 28 ± 1 ng/ml on days 35 and 91, respectively. The NMDTG platform showed no significant adverse events. Further modification may further extend the drug's apparent half-life for human use.
Collapse
|
35
|
Chamanza R, Darville N, van Heerden M, De Jonghe S. Comparison of the Local Tolerability to 5 Long-acting Drug Nanosuspensions with Different Stabilizing Excipients, Following a Single Intramuscular Administration in the Rat. Toxicol Pathol 2017; 46:85-100. [DOI: 10.1177/0192623317737295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To investigate the effects of common nanosuspension-stabilizing excipients on the nature and temporal evolution of histopathological changes at intramuscular (i.m.) administration sites, 5 groups of 39 male rats per group received a single injection of 1 of the 5 analogous crystalline drug nanosuspensions containing 200 mg/ml of an antiviral compound with particle sizes of ±200 nm and identical vehicle compositions, except for the type of nanosuspension stabilizer. The investigated stabilizers were poloxamer 338, poloxamer 407, d-α-tocopherol polyethylene glycol 1,000-succinate (TPGS), polysorbate 80, and polysorbate 80 combined with egg phosphatidylglycerol. Histopathology and immunohistochemistry revealed progressive inflammatory changes at the i.m. administration sites and the draining lymph nodes that differed according to the time point of sacrifice and the type of stabilizer. Although the overall time course of inflammatory changes was similar across the groups, differences in the nature, severity, and timing of the inflammatory response were observed between animals injected with poloxamer- or TPGS-containing nanosuspensions and those injected with formulations containing polysorbate 80. A more severe and prolonged active inflammatory phase, the presence of multinucleate giant cells, prolonged macrophage infiltration of the formulation depot, and more persistent histiocytic infiltrates in the lymph nodes were observed in the polysorbate 80–containing nanosuspension groups. Such vehicle-mediated effects could influence the overall tolerability profile of long-acting nanosuspensions.
Collapse
Affiliation(s)
- Ronnie Chamanza
- Preclinical Development and Safety, Janssen Research & Development, Janssen Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium
- Authors contributed equally to the manuscript
| | - Nicolas Darville
- Preclinical Development and Safety, Janssen Research & Development, Janssen Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium
- Authors contributed equally to the manuscript
| | - Marjolein van Heerden
- Preclinical Development and Safety, Janssen Research & Development, Janssen Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium
| | - Sandra De Jonghe
- Preclinical Development and Safety, Janssen Research & Development, Janssen Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium
| |
Collapse
|
36
|
Zhou T, Su H, Dash P, Lin Z, Dyavar Shetty BL, Kocher T, Szlachetka A, Lamberty B, Fox HS, Poluektova L, Gorantla S, McMillan J, Gautam N, Mosley RL, Alnouti Y, Edagwa B, Gendelman HE. Creation of a nanoformulated cabotegravir prodrug with improved antiretroviral profiles. Biomaterials 2017; 151:53-65. [PMID: 29059541 PMCID: PMC5926202 DOI: 10.1016/j.biomaterials.2017.10.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 01/24/2023]
Abstract
Long-acting parenteral (LAP) antiretroviral drugs have generated considerable interest for treatment and prevention of HIV-1 infection. One new LAP is cabotegravir (CAB), a highly potent integrase inhibitor, with a half-life of up to 54 days, allowing for every other month parenteral administrations. Despite this excellent profile, high volume dosing, injection site reactions and low body fluid drug concentrations affect broad use for virus infected and susceptible people. To improve the drug delivery profile, we created a myristoylated CAB prodrug (MCAB). MCAB formed crystals that were formulated into nanoparticles (NMCAB) of stable size and shape facilitating avid monocyte-macrophage entry, retention and reticuloendothelial system depot formulation. Drug release kinetics paralleled sustained protection against HIV-1 challenge. After a single 45 mg/kg intramuscular injection to BALB/cJ mice, the NMCAB pharmacokinetic profiles was 4-times greater than that recorded for CAB LAP. These observations paralleled replicate measurements in rhesus macaques. The results coupled with improved viral restriction in human adult lymphocyte reconstituted NOD/SCID/IL2Rγc-/- mice led us to conclude that NMCAB can improve biodistribution and viral clearance profiles upon current CAB LAP formulations.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hang Su
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prasanta Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhiyi Lin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhagya Laxmi Dyavar Shetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ted Kocher
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adam Szlachetka
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; Nebraska Nanomedicine Production Plant, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin Lamberty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
37
|
Advances in nanomedicine drug delivery applications for HIV therapy. Future Sci OA 2017; 4:FSO230. [PMID: 29255619 PMCID: PMC5729605 DOI: 10.4155/fsoa-2017-0069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/07/2017] [Indexed: 01/05/2023] Open
|
38
|
Tomita K, Kohli R, MacLaurin BL, Hirsova P, Guo Q, Sanchez LHG, Gelbard HA, Blaxall BC, Ibrahim SH. Mixed-lineage kinase 3 pharmacological inhibition attenuates murine nonalcoholic steatohepatitis. JCI Insight 2017; 2:94488. [PMID: 28768902 DOI: 10.1172/jci.insight.94488] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022] Open
Abstract
With the increase in obesity worldwide, its associated comorbidities, including nonalcoholic steatohepatitis (NASH), have become a public health problem that still lacks effective therapy. We have previously reported that mixed-lineage kinase 3-deficient (MLK3-deficient) mice are protected against diet-induced NASH. Given the critical need to identify new therapeutic agents, we sought to examine whether the small-molecule MLK3 inhibitor URMC099 would be effective in reversing diet-induced murine NASH. C57BL/6J mice were fed either a diet high in saturated fat, fructose, and cholesterol (FFC), or a chow diet for 24 weeks. Mice were treated with either URMC099 (10 mg/kg) twice daily by intraperitoneal injection or its vehicle during the last 2 weeks of the feeding study. FFC-fed mice receiving URMC099 had similar body weight, caloric intake, homeostatic model assessment of insulin resistance, metabolic phenotype, and hepatic steatosis compared with vehicle-treated mice. Furthermore, FFC-fed mice treated with URMC099 had less hepatic macrophage infiltration, activation, and proinflammatory polarization, as well as less liver injury and fibrosis when compared with vehicle-treated mice. In conclusion, URMC099 is well tolerated in mice without obvious toxicities and appears to be efficacious in reversing diet-induced NASH. Hence, URMC099 may serve as a therapeutic agent in human NASH.
Collapse
Affiliation(s)
- Kyoko Tomita
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rohit Kohli
- Division of Pediatric Gastroenterology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Brittany L MacLaurin
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Qianqian Guo
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Harris A Gelbard
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Burns C Blaxall
- Department of Pediatrics, University of Cincinnati, Cincinnati Ohio, USA
| | - Samar H Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.,Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
39
|
Ojha CR, Lapierre J, Rodriguez M, Dever SM, Zadeh MA, DeMarino C, Pleet ML, Kashanchi F, El-Hage N. Interplay between Autophagy, Exosomes and HIV-1 Associated Neurological Disorders: New Insights for Diagnosis and Therapeutic Applications. Viruses 2017; 9:v9070176. [PMID: 28684681 PMCID: PMC5537668 DOI: 10.3390/v9070176] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023] Open
Abstract
The autophagy–lysosomal pathway mediates a degradative process critical in the maintenance of cellular homeostasis as well as the preservation of proper organelle function by selective removal of damaged proteins and organelles. In some situations, cells remove unwanted or damaged proteins and RNAs through the release to the extracellular environment of exosomes. Since exosomes can be transferred from one cell to another, secretion of unwanted material to the extracellular environment in exosomes may have an impact, which can be beneficial or detrimental, in neighboring cells. Exosome secretion is under the influence of the autophagic system, and stimulation of autophagy can inhibit exosomal release and vice versa. Neurons are particularly vulnerable to degeneration, especially as the brain ages, and studies indicate that imbalances in genes regulating autophagy are a common feature of many neurodegenerative diseases. Cognitive and motor disease associated with severe dementia and neuronal damage is well-documented in the brains of HIV-infected individuals. Neurodegeneration seen in the brain in HIV-1 infection is associated with dysregulation of neuronal autophagy. In this paradigm, we herein provide an overview on the role of autophagy in HIV-associated neurodegenerative disease, focusing particularly on the effect of autophagy modulation on exosomal release of HIV particles and how this interplay impacts HIV infection in the brain. Specific autophagy–regulating agents are being considered for therapeutic treatment and prevention of a broad range of human diseases. Various therapeutic strategies for modulating specific stages of autophagy and the current state of drug development for this purpose are also evaluated.
Collapse
Affiliation(s)
- Chet Raj Ojha
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Jessica Lapierre
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Myosotys Rodriguez
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Seth M Dever
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Mohammad Asad Zadeh
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
40
|
Edagwa B, McMillan J, Sillman B, Gendelman HE. Long-acting slow effective release antiretroviral therapy. Expert Opin Drug Deliv 2017; 14:1281-1291. [PMID: 28128004 DOI: 10.1080/17425247.2017.1288212] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Advances in long-acting antiretroviral therapy (ART) can revolutionize current HIV/AIDS treatments. We coined the term 'long-acting slow effective release ART' (LASER ART) to highlight the required formulation properties of slow drug dissolution, poor water-solubility, bioavailability, little-to-no off-target toxicities and improved regimen adherence. Drug carrier technologies characterized by high antiretroviral drug (ARV) payloads in a single carrier improve the pharmacokinetic and pharmacodynamic profiles. The surface modifications of ARV carriers target monocyte-macrophages and facilitate drug transport across physiological barriers and to virus-susceptible CD4 + T cells. Areas covered: The review highlights developments of reservoir-targeted LASER ART for improved therapeutic outcomes. Such nanoART delivery platforms include decorated multifunctional nano- and micro-particles, prodrugs and polymer conjugates. Therapeutic strategies such as gene-editing technologies boost ART effectiveness. Expert opinion: The persistence of HIV-1 in lymphoid, gut and nervous system reservoirs poses a challenge to viral eradication. Emerging slow-release drug carriers can target intracellular pathogens, activate antiviral immunity, promote genome editing, sustain drug depots and combine therapeutics with image contrast agents, and can meet unmet clinical needs for HIV-infected patients. Such efforts will bring the medicines to reservoir sites and accelerate viral clearance.
Collapse
Affiliation(s)
- Benson Edagwa
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - JoEllyn McMillan
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Brady Sillman
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Howard E Gendelman
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA.,b Departments of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|