1
|
Immonen TT, Fennessey CM, Lipkey L, Newman L, Macairan A, Bosche M, Waltz N, Del Prete GQ, Lifson JD, Keele BF. No evidence for ongoing replication on ART in SIV-infected macaques. Nat Commun 2024; 15:5093. [PMID: 38877003 PMCID: PMC11178840 DOI: 10.1038/s41467-024-49369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
The capacity of HIV-1 to replicate during optimal antiretroviral therapy (ART) is challenging to assess directly. To gain greater sensitivity to detect evolution on ART, we used a nonhuman primate (NHP) model providing precise control over the level of pre-ART evolution and more comprehensive analyses than are possible with clinical samples. We infected 21 rhesus macaques (RMs) with the barcoded virus SIVmac239M and initiated ART early to minimize baseline genetic diversity. RMs were treated for 285-1200 days. We used several tests of molecular evolution to compare 1352 near-full-length (nFL) SIV DNA single genome sequences from PBMCs, lymph nodes, and spleen obtained near the time of ART initiation and those present after long-term ART, none of which showed significant changes to the SIV DNA population during ART in any animal. To investigate the possibility of ongoing replication in unsampled putative tissue sanctuaries during ART, we discontinued treatment in four animals and confirmed that none of the 336 nFL SIV RNA sequences obtained from rebound plasma viremia showed evidence of evolution. The rigorous nature of our analyses reinforced the emerging consensus of a lack of appreciable ongoing replication on effective ART and validates the relevance of this NHP model for cure studies.
Collapse
Affiliation(s)
- Taina T Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Leslie Lipkey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Laura Newman
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Agatha Macairan
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Marjorie Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nora Waltz
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
2
|
Lee SK, Sondgeroth A, Xu Y, Warren J, Zhou S, Gilleece M, Hauser BM, Gay CL, Kuruc JD, Archin NM, Eron JJ, Margolis DM, Goonetilleke N, Swanstrom R. Sequence Analysis of Inducible, Replication-Competent Virus Reveals No Evidence of HIV-1 Evolution During Suppressive Antiviral Therapy, Indicating a Lack of Ongoing Viral Replication. Open Forum Infect Dis 2024; 11:ofae212. [PMID: 38756763 PMCID: PMC11097118 DOI: 10.1093/ofid/ofae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 05/18/2024] Open
Abstract
Background Persistence of HIV-1 in reservoirs necessitates life-long antiretroviral therapy (ART). There are conflicting data using genetic analysis on whether persistence includes an actively replicating reservoir with strong evidence arguing against replication. Methods We investigated the possibility of ongoing viral evolution during suppressive therapy by comparing near full-length viral genomic sequences using phylogenetic analysis of viral RNA in plasma before therapy initiation early after infection and from virus induced to grow from the latent reservoir after a period of suppressive ART. We also focused our analysis on evidence of selective pressure by drugs in the treatment regimen and at sites of selective pressure by the adaptive immune response. Results Viral genomes induced to grow from the latent reservoir from 10 participants with up to 9 years on suppressive ART were highly similar to the nearly homogeneous sequences in plasma taken early after infection at ART initiation. This finding was consistent across the entire genome and when the analysis focused on sites targeted by the drug regimen and by host selective pressure of antibody and cytotoxic T cells. The lack of viral evolution away from pretherapy sequences in spite of demonstrated selective pressure is most consistent with a lack of viral replication during reservoir persistence. Conclusions These results do not support ongoing viral replication as a mechanism of HIV-1 persistence during suppressive ART.
Collapse
Affiliation(s)
- Sook-Kyung Lee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amy Sondgeroth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yinyan Xu
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joanna Warren
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maria Gilleece
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Blake M Hauser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Cynthia L Gay
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - JoAnn D Kuruc
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nancie M Archin
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nilu Goonetilleke
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
VanderVeen LA, Selzer L, Moldt B, Parvangada A, Li J, Ananworanich J, Crowell TA, Eron JJ, Daar ES, Haubrich R, Geleziunas R, Cyktor J, Mellors JW, Callebaut C. HIV-1 envelope diversity and sensitivity to broadly neutralizing antibodies across stages of acute HIV-1 infection. AIDS 2024; 38:607-610. [PMID: 38416554 PMCID: PMC10906214 DOI: 10.1097/qad.0000000000003792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 02/29/2024]
Abstract
We studied the relationship between viral diversity and susceptibility to broadly neutralizing antibodies (bNAbs) in longitudinal plasma and peripheral blood mononuclear cells from 89 people with HIV who initiated antiretroviral therapy (ART) during acute and early HIV-1 infection (AEHI). HIV-1 diversity and predicted bNAb susceptibility were comparable across AEHI. Diversity evolution was not observed during ART, suggesting (pro)viruses at initiation or during treatment may identify individuals with susceptible virus for bNAb interventional trials.
Collapse
Affiliation(s)
| | | | - Brian Moldt
- Gilead Sciences, Inc., Foster City, CA, USA
- GSK Vaccines, Rixensart, Belgium (Current)
| | | | - Jiani Li
- Gilead Sciences, Inc., Foster City, CA, USA
| | - Jintanat Ananworanich
- Amsterdam University Medical Centers, and Department of Global Health, Amsterdam Institute for Global Health & Development, Amsterdam, Netherlands
| | - Trevor A. Crowell
- U.S. Military HIV Research Program at Walter Reed Army Institute of Research, Silver Spring, and The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | | | - Eric S. Daar
- The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA
| | | | | | | | | | | |
Collapse
|
4
|
Gärtner K, Domínguez-Rodríguez S, Heaney J, Gkouleli T, Grant P, Dorgham K, Sauce D, Soulie C, Busby EJ, O'Sullivan DM, Spyer M, Botha JC, Muñoz-Fernandez MA, Tagarro A, Cotugno N, Huggett JF, Klein N, Palma P, Rojo Conejo P, Foster C, Giaquinto C, Rossi P, Persaud D, De Rossi A, Marcelin AG, Nastouli E. Low unspliced cell-associated HIV RNA in early treated adolescents living with HIV on long suppressive ART. Front Immunol 2024; 15:1334236. [PMID: 38444847 PMCID: PMC10912947 DOI: 10.3389/fimmu.2024.1334236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Initiation of antiretroviral treatment (ART) in patients early after HIV-infection and long-term suppression leads to low or undetectable levels of HIV RNA and cell-associated (CA) HIV DNA and RNA. Both CA-DNA and CA-RNA, overestimate the size of the HIV reservoir but CA-RNA as well as p24/cell-free viral RNA can be indicators of residual viral replication. This study describes HIV RNA amounts and levels of cytokines/soluble markers in 40 well-suppressed adolescents who initiated ART early in life and investigated which viral markers may be informative as endpoints in cure clinical trials within this population. Methods Forty adolescents perinatally infected with HIV on suppressive ART for >5 years were enrolled in the CARMA study. HIV DNA and total or unspliced CA-RNA in PBMCs were analyzed by qPCR/RT-qPCR and dPCR/RT-dPCR. Cell-free HIV was determined using an ultrasensitive viral load (US-VL) assay. Plasma markers and p24 were analyzed by digital ELISA and correlations between total and unspliced HIV RNA and clinical markers, including age at ART, Western Blot score, levels of cytokines/inflammation markers or HIV CA-DNA, were tested. Results CA-RNA was detected in two thirds of the participants and was comparable in RT-qPCR and RT-dPCR. Adolescents with undetectable CA-RNA showed significantly lower HIV DNA compared to individuals with detectable CA-RNA. Undetectable unspliced CA-RNA was positively associated with age at ART initiation and Western Blot score. We found that a higher concentration of TNF-α was predictive of higher CA-DNA and CA-RNA. Other clinical characteristics like US-VL, time to suppression, or percent CD4+ T-lymphocytes were not predictive of the CA-RNA in this cross-sectional study. Conclusions Low CA-DNA after long-term suppressive ART is associated with lower CA-RNA, in concordance with other reports. Patients with low CA-RNA levels in combination with low CA-DNA and low Western Blot scores should be further investigated to characterize candidates for treatment interruption trials. Unspliced CA-RNA warrants further investigation as a marker that can be prioritized in paediatric clinical trials where the sample volume can be a significant limitation.
Collapse
Affiliation(s)
- Kathleen Gärtner
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sara Domínguez-Rodríguez
- Fundación de Investigación Biomédica Hospital 12 de Octubre, Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | - Judith Heaney
- Advanced Pathogen Diagnostic Unit, University College London Hospitals (UCLH), London, United Kingdom
| | - Triantafylia Gkouleli
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Haematology Department, Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
| | - Paul Grant
- Advanced Pathogen Diagnostic Unit, University College London Hospitals (UCLH), London, United Kingdom
| | - Karim Dorgham
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Delphine Sauce
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Cathia Soulie
- Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Inserm, AP HP, Hôpitaux Universtaires Pitié Salpêtrière - Charles Foix, Laboratoire de Virologie, Paris, France
| | - Eloise J Busby
- National Measurement Laboratory (NML), LGC Group, Teddington, United Kingdom
| | - Denise M O'Sullivan
- National Measurement Laboratory (NML), LGC Group, Teddington, United Kingdom
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, Istituto di RicerCa a Carattere Scientifico (IRCCS), Rome, Italy
| | - Moira Spyer
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Johannes C Botha
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Advanced Pathogen Diagnostic Unit, University College London Hospitals (UCLH), London, United Kingdom
| | | | - Alfredo Tagarro
- Fundación de Investigación Biomédica Hospital 12 de Octubre, Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
- Department of Pediatrics, Infanta Sofía University Hospital, Fundación para la Investigación Biomédica e Innovación Hospital Universitario Infanta Sofía y Hospital del Henares (FIIB HUIS HHEN), Madrid, Spain
| | - Nicola Cotugno
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, Istituto di RicerCa a Carattere Scientifico (IRCCS), Rome, Italy
- Academic Department of Pediatrics, Research Unit in Congenital and Perinatal Infections, Bambino Gesu Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Jim F Huggett
- National Measurement Laboratory (NML), LGC Group, Teddington, United Kingdom
- School of Biosciences & Medicine, University of Surrey, Guildford, United Kingdom
| | - Nigel Klein
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Paolo Palma
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, Istituto di RicerCa a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Pablo Rojo Conejo
- Fundación de Investigación Biomédica Hospital 12 de Octubre, Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
| | - Caroline Foster
- Department of Paediatrics, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Carlo Giaquinto
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Paolo Rossi
- Academic Department of Pediatrics, Research Unit in Congenital and Perinatal Infections, Bambino Gesu Children's Hospital, Rome, Italy
| | - Deborah Persaud
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anita De Rossi
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Anne-Geneviève Marcelin
- Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Inserm, AP HP, Hôpitaux Universtaires Pitié Salpêtrière - Charles Foix, Laboratoire de Virologie, Paris, France
| | - Eleni Nastouli
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Advanced Pathogen Diagnostic Unit, University College London Hospitals (UCLH), London, United Kingdom
| |
Collapse
|
5
|
Dubé M, Tastet O, Dufour C, Sannier G, Brassard N, Delgado GG, Pagliuzza A, Richard C, Nayrac M, Routy JP, Prat A, Estes JD, Fromentin R, Chomont N, Kaufmann DE. Spontaneous HIV expression during suppressive ART is associated with the magnitude and function of HIV-specific CD4 + and CD8 + T cells. Cell Host Microbe 2023; 31:1507-1522.e5. [PMID: 37708853 PMCID: PMC10542967 DOI: 10.1016/j.chom.2023.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/01/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
Spontaneous transcription and translation of HIV can persist during suppressive antiretroviral therapy (ART). The quantity, phenotype, and biological relevance of this spontaneously "active" reservoir remain unclear. Using multiplexed single-cell RNAflow-fluorescence in situ hybridization (FISH), we detect active HIV transcription in 14/18 people with HIV on suppressive ART, with a median of 28/million CD4+ T cells. While these cells predominantly exhibit abortive transcription, p24-expressing cells are evident in 39% of participants. Phenotypically diverse, active reservoirs are enriched in central memory T cells and CCR6- and activation-marker-expressing cells. The magnitude of the active reservoir positively correlates with total HIV-specific CD4+ and CD8+ T cell responses and with multiple HIV-specific T cell clusters identified by unsupervised analysis. These associations are particularly strong with p24-expressing active reservoir cells. Single-cell vDNA sequencing shows that active reservoirs are largely dominated by defective proviruses. Our data suggest that these reservoirs maintain HIV-specific CD4+ and CD8+ T responses during suppressive ART.
Collapse
Affiliation(s)
- Mathieu Dubé
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada.
| | - Olivier Tastet
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Caroline Dufour
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Gérémy Sannier
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Nathalie Brassard
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Gloria-Gabrielle Delgado
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Amélie Pagliuzza
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Corentin Richard
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Manon Nayrac
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre (CUSM), Montreal, QC H4A 3J1, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Alexandre Prat
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Rémi Fromentin
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Nicolas Chomont
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Daniel E Kaufmann
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
6
|
Yiryuo L, Osman W, Kpekura S. A phenomenological study of the beliefs of family caregivers of children living with HIV/AIDS on adherence to antiretroviral therapy. Nurs Open 2023; 10:6117-6124. [PMID: 37209366 PMCID: PMC10416031 DOI: 10.1002/nop2.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/01/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023] Open
Abstract
AIM To explore the beliefs of family caregivers on adherence to Anti-Retroviral Therapy (ART) among children living with HIV/AIDS that received care at St. Joseph's Hospital, Jirapa, Ghana. DESIGN A qualitative phenomenological design was employed for this study. METHOD Data was gathered using a semi-structured in-depth interview guide from 13 family caregivers of children with HIV/AIDS on ART. Analysis was done using the reflexive thematic analysis approach. RESULTS Three major themes were generated during the analysis: "Beliefs regarding the effectiveness of ART"; "Beliefs regarding taking ART"; and "Beliefs regarding other treatments for HIV/AIDS". Most caregivers believed that the ARTs were effective and improved their children's health, especially when adhered to strictly. Some, however, believed in praying to God for healing, and the use of local/herbal to augment ARTs. CONCLUSION Family caregivers generally hold positive beliefs about ARTs and its effectiveness for their children. Some, however, believe in spirits, prayers, and herbal/local treatment in addition to ARTs.
Collapse
Affiliation(s)
- Lilian Yiryuo
- St. Joseph's HospitalGhana Health ServiceJirapaGhana
- Faculty of Paediatric NursingGhana College of Nurses and Midwives (GCNM)AccraGhana
| | - Wahab Osman
- Faculty of Paediatric NursingGhana College of Nurses and Midwives (GCNM)AccraGhana
- Department of Advanced Nursing Practice, School of Nursing and MidwiferyUniversity for Development StudiesTamaleGhana
| | - Stephen Kpekura
- School of Nursing and MidwiferyC.K. Tedam University of Technology and Applied SciencesNavrongoGhana
| |
Collapse
|
7
|
Botha JC, Demirov D, Gordijn C, Katusiime MG, Bale MJ, Wu X, Wells D, Hughes SH, Cotton MF, Mellors JW, Kearney MF, van Zyl GU. The largest HIV-1-infected T cell clones in children on long-term combination antiretroviral therapy contain solo LTRs. mBio 2023; 14:e0111623. [PMID: 37530525 PMCID: PMC10470503 DOI: 10.1128/mbio.01116-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Combination antiretroviral therapy (cART) suppresses viral replication but does not cure HIV infection because a reservoir of infectious (intact) HIV proviruses persists in long-lived CD4+T cells. However, a large majority (>95%) of HIV-infected cells that persist on effective cART carry defective (non-infectious) proviruses. Defective proviruses consisting of only a single LTR (solo long terminal repeat) are commonly found as endogenous retroviruses in many animal species, but the frequency of solo-LTR HIV proviruses has not been well defined. Here we show that, in five pediatric donors whose viremia was suppressed on cART for at least 5 years, the proviruses in the nine largest clones of HIV-infected cells were solo LTRs. The sizes of five of these clones were assayed longitudinally by integration site-specific quantitative PCR. Minor waxing and waning of the clones was observed, suggesting that these clones are generally stable over time. Our findings show that solo LTRs comprise a large fraction of the proviruses in infected cell clones that persist in children on long-term cART. IMPORTANCE This work highlights that severely deleted HIV-1 proviruses comprise a significant proportion of the proviral landscape and are often overlooked.
Collapse
Affiliation(s)
| | - Dimiter Demirov
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Mary Grace Katusiime
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Michael J. Bale
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Xiaolin Wu
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Daria Wells
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | | | - John W. Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | | |
Collapse
|
8
|
Jones BR, Joy JB. Inferring Human Immunodeficiency Virus 1 Proviral Integration Dates With Bayesian Inference. Mol Biol Evol 2023; 40:msad156. [PMID: 37421655 PMCID: PMC10411489 DOI: 10.1093/molbev/msad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV) proviruses archived in the persistent reservoir currently pose the greatest obstacle to HIV cure due to their evasion of combined antiretroviral therapy and ability to reseed HIV infection. Understanding the dynamics of the HIV persistent reservoir is imperative for discovering a durable HIV cure. Here, we explore Bayesian methods using the software BEAST2 to estimate HIV proviral integration dates. We started with within-host longitudinal HIV sequences collected prior to therapy, along with sequences collected from the persistent reservoir during suppressive therapy. We built a BEAST2 model to estimate integration dates of proviral sequences collected during suppressive therapy, implementing a tip date random walker to adjust the sequence tip dates and a latency-specific prior to inform the dates. To validate our method, we implemented it on both simulated and empirical data sets. Consistent with previous studies, we found that proviral integration dates were spread throughout active infection. Path sampling to select an alternative prior for date estimation in place of the latency-specific prior produced unrealistic results in one empirical data set, whereas on another data set, the latency-specific prior was selected as best fitting. Our Bayesian method outperforms current date estimation techniques with a root mean squared error of 0.89 years on simulated data relative to 1.23-1.89 years with previously developed methods. Bayesian methods offer an adaptable framework for inferring proviral integration dates.
Collapse
Affiliation(s)
- Bradley R Jones
- Molecular Epidemiology and Evolutionary Genetics, B.C. Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, Canada
| | - Jeffrey B Joy
- Molecular Epidemiology and Evolutionary Genetics, B.C. Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, Canada
- Deparment of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Pasternak AO, Berkhout B. HIV persistence: silence or resistance? Curr Opin Virol 2023; 59:101301. [PMID: 36805974 DOI: 10.1016/j.coviro.2023.101301] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 02/19/2023]
Abstract
Despite decades of suppressive antiretroviral therapy, human immunodeficiency virus (HIV) reservoirs in infected individuals persist and fuel viral rebound once therapy is interrupted. The persistence of viral reservoirs is the main obstacle to achieving HIV eradication or a long-term remission. The last decade has seen a profound change in our understanding of the mechanisms behind HIV persistence, which appears to be much more complex than originally assumed. In addition to the persistence of transcriptionally silent proviruses in a stable latent reservoir that is invisible to the immune system, HIV is increasingly recognized to persist by resistance to the immune clearance, which appears to play a surprisingly prominent role in shaping the reservoir. In this review, we discuss some emerging insights into the mechanisms of HIV persistence, as well as their implications for the development of strategies towards an HIV cure.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
10
|
Yu T, Zhang M, Zhang H, Zheng J, Shen C, Jiang N, Zou L, Wang J, Yu Y, Zhang Q, Yu S, Huang Y, Huang Y, Zhang J, Qiu C, Zhang W, Meng Z. Evidence of Residual Ongoing Viral Replication in Chronic Hepatitis B Patients Successfully Treated With Nucleos(t)ide Analogues. J Infect Dis 2023; 227:675-685. [PMID: 36546708 DOI: 10.1093/infdis/jiac493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chronic hepatitis B is usually treated with nucleos(t)ide analogues (NAs). However, a cure is rarely achieved, even with years of treatment. Here, we investigated whether viral replication is completely halted and how long covalently closed circular DNA (cccDNA) persists in patients successfully treated with NAs. METHODS A series of longitudinal serum samples and a collection of cross-sectional liver biopsies were obtained from patients successfully treated with NAs. Viral variants in serum HBV RNA were enumerated by deep sequencing. Viral replication intermediates in hepatocytes were directly visualized by in situ hybridization. The apparent half-life of each cccDNA was estimated. RESULTS Three of 6 successfully treated patients demonstrated clear evidence of a small proportion of virus evolution, although the overwhelming proportion of variants were identical or possessed a similar degree of divergence through time. The apparent half-life of variants was estimated to be from approximately 7.42 weeks to infinite. Hepatocytes remained positive for cytoplasmic nucleocapsids-associated relaxed circular DNA in 4 of 7 liver needle biopsies. CONCLUSIONS We conclude that even after prolonged treatment, a small proportion of the cccDNA reservoir is constantly replenished by continued low-level HBV replication, whereas a large proportion of the cccDNA reservoir persists over time.
Collapse
Affiliation(s)
- Tong Yu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Miaoqu Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Hanyue Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Jianming Zheng
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan Shen
- Department of Infectious Disease, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
- Clinical Research Center for Infectious Disease of Hebei Province, Shijiazhuang, China
| | - Ning Jiang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Zou
- Department of Infectious Disease, Yancheng Second People's Hospital, Yancheng, China
| | - Jing Wang
- Department of Infectious Disease, Jingan District Central Hospital of Shanghai, Shanghai, China
| | - Yiqi Yu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Qiran Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Shuili Yu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Yanfang Huang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxian Huang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Jiming Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Qiu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Zhefeng Meng
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
de Gea-Grela A, Moreno S. Controversies in the Design of Strategies for the Cure of HIV Infection. Pathogens 2023; 12:322. [PMID: 36839593 PMCID: PMC9961067 DOI: 10.3390/pathogens12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The cure for chronic human immunodeficiency virus (HIV) infections has been a goal pursued since the antiretroviral therapy that improved the clinical conditions of patients became available. However, the exclusive use of these drugs is not enough to achieve a cure, since the viral load rebounds when the treatment is discontinued, leading to disease progression. There are several theories and hypotheses about the biological foundations that prevent a cure. The main obstacle appears to be the existence of a latent viral reservoir that cannot be eliminated pharmacologically. This concept is the basis of the new strategies that seek a cure, known as kick and kill. However, there are other lines of study that recognize mechanisms of persistent viral replication in patients under effective treatment, and that would modify the current lines of research on the cure of HIV. Given the importance of these concepts, in this work, we propose to review the most recent evidence on these hypotheses, covering both the evidence that is positioned in favor and against, trying to expose what are some of the challenges that remain to be resolved in this field of research.
Collapse
Affiliation(s)
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Alcalá University, 28034 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28034 Madrid, Spain
| |
Collapse
|
12
|
Abstract
OBJECTIVES Despite suppressive antiretroviral therapy (ART), HIV can persist in a diverse range of CD4+ T-cell subsets. Through longitudinal env sampling from people with HIV (PWH) on ART, we characterized the persistence and phenotypic properties of HIV envs over two time-points (T1 and T2). METHODS Longitudinal blood and lymphoid tissue samples were obtained from eight PWH on suppressive ART. Single genome amplification (SGA) was performed on env to understand the genetic diversity and degree of clonal expansions over time. A subset of envs were used to generate pseudovirus particles to assess sensitivity to autologous plasma IgG and broadly neutralizing antibodies (bNAbs). RESULTS Identical env sequences indicating clonal expansion persisted between T1 and T2 and within multiple T-cell subsets. At both time-points, CXCR4-tropic (X4) Envs were more prevalent in naive and central memory cells; the proportion of X4 Envs did not significantly change in each subset between T1 and T2. Autologous purified plasma IgG showed variable neutralization of Envs, with no significant difference in neutralization between R5 and X4 Envs. X4 Envs were more sensitive to neutralization with clinical bNAbs, with CD4-binding site bNAbs demonstrating high breadth and potency against Envs. CONCLUSION Our data suggest the viral reservoir in PWH on ART was predominantly maintained over time through proliferation and potentially differentiation of infected cells. We found the humoral immune response to Envs within the latent reservoir was variable between PWH. Finally, we identified coreceptor usage can influence bNAb sensitivity and may need to be considered for future bNAb immunotherapy approaches.
Collapse
|
13
|
Genotypic and Phenotypic Diversity of the Replication-Competent HIV Reservoir in Treated Patients. Microbiol Spectr 2022; 10:e0078422. [PMID: 35770985 PMCID: PMC9431663 DOI: 10.1128/spectrum.00784-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In HIV infection, viral rebound after treatment discontinuation is considered to originate predominantly from viral genomes integrated in resting CD4+ T lymphocytes. Replication-competent proviral genomes represent a minority of the total HIV DNA. While the quantification of the HIV reservoir has been extensively studied, the diversity of genomes that compose the reservoir was less explored. Here, we measured the genotypic and phenotypic diversity in eight patients with different treatment histories. Between 4 and 14 (mean, 8) individual viral isolates per patient were obtained using a virus outgrowth assay, and their near-full-length genomes were sequenced. The mean pairwise distance (MPD) observed in different patients correlated with the time before undetectable viremia was achieved (r = 0.864, P = 0.0194), suggesting that the complexity of the replication-competent reservoir mirrors that present at treatment initiation. No correlation was instead observed between MPD and the duration of successful treatment (mean, 8 years; range, 2 to 21 years). For 5 of the 8 patients, genotypically identical viral isolates were observed in independent wells, suggesting clonal expansion of infected cells. Identical viruses represented between 25 and 60% of the isolates (mean, 48%). The proportion of identical viral isolates correlated with the duration of treatment (r = 0.822, P = 0.0190), suggesting progressive clonal expansion of infected cells during ART. A broader range of infectivity was also observed among isolates from patients with delayed viremia control (r = 0.79, P = 0.025). This work unveiled differences in the genotypic and phenotypic features of the replication-competent reservoir from treated patients and suggests that delaying treatment results in increased diversity of the reservoir. IMPORTANCE In HIV-infected and effectively treated individuals, integrated proviral genomes may persist for decades. The vast majority of the genomes, however, are defective, and only the replication-competent fraction represents a threat of viral reemergence. The quantification of the reservoir has been thoroughly explored, while the diversity of the genomes has been insufficiently studied. Its characterization, however, is relevant for the design of strategies aiming the reduction of the reservoir. Here, we explored the replication-competent near-full-length HIV genomes of eight patients who experienced differences in the delay before viremia control and in treatment duration. We found that delayed effective treatment was associated with increased genetic diversity of the reservoir. The duration of treatment did not impact the diversity but was associated with higher frequency of clonally expanded sequences. Thus, early treatment initiation has the double advantage of reducing both the size and the diversity of the reservoir.
Collapse
|
14
|
Brattgård H, Björkman P, Nowak P, Treutiger CJ, Gisslén M, Elvstam O. Factors associated with low-level viraemia in people with HIV starting antiretroviral therapy: A Swedish observational study. PLoS One 2022; 17:e0268540. [PMID: 35580115 PMCID: PMC9113572 DOI: 10.1371/journal.pone.0268540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022] Open
Abstract
Objective
Low-level viraemia (LLV) occurs in some people with HIV (PWH) receiving antiretroviral therapy (ART) and has been linked to inferior treatment outcomes. We investigated factors associated with LLV in a nationwide cohort of Swedish PWH starting ART.
Methods
Participants were identified from the InfCareHIV register, with the following inclusion criteria: ART initiation 2006–2017, age >15 years, ≥4 viral load (VL) results available and no documented treatment interruptions or virologic failure (≥2 consecutive VL ≥200 copies/ml) during follow-up. Starting from 6 months after ART initiation, participants were followed for 24 months and categorised as viral suppression (VS; VL <50 copies/ml) or LLV (≥2 consecutive VL 50–199 copies/ml). We analysed the association between the following factors and LLV using multivariable logistic regression: sex, age, pre-ART VL and CD4 count, ART regimen, country of birth, HIV-1 subtype and transmission category.
Results
Among 3383 participants, 3132 (92.6%) had VS and 251 (7.4%) had LLV. In univariable analyses, factors associated with LLV were male sex, higher age, lower pre-ART CD4 count, higher pre-ART VL and ART regimen. After adjustment, the following factors were associated with LLV (adjusted odds ratio; 95% confidence interval): male sex (1.6; 1.1–2.3), higher pre-ART VL (2.7; 2.2–3.3), pre-ART CD4 count <200 cells/μl (1.6; 1.2–2.2), protease inhibitor (PI)-based regimen (1.5; 1.1–2.1), non-standard ART (2.4; 1.0–5.5) and injecting drug use (2.0; 1.1–3.7).
Conclusion
Among Swedish PWH, LLV during ART was associated with markers of HIV disease severity before starting ART, male sex, injecting drug use and use of PI-based or non-standard ART regimens.
Collapse
Affiliation(s)
- Hanna Brattgård
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Per Björkman
- Department of Translational Medicine, Lund University, Malmö, Sweden
- Department of Infectious Diseases, Skåne University Hospital, Malmö, Sweden
| | - Piotr Nowak
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Carl Johan Treutiger
- Department of Infectious Diseases/Venhälsan, South General Hospital, Stockholm, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Olof Elvstam
- Department of Translational Medicine, Lund University, Malmö, Sweden
- Department of Infectious Diseases, Växjö Central Hospital, Växjö, Sweden
- * E-mail:
| |
Collapse
|
15
|
Duette G, Hiener B, Morgan H, Mazur FG, Mathivanan V, Horsburgh BA, Fisher K, Tong O, Lee E, Ahn H, Shaik A, Fromentin R, Hoh R, Bacchus-Souffan C, Nasr N, Cunningham AL, Hunt PW, Chomont N, Turville SG, Deeks SG, Kelleher AD, Schlub TE, Palmer S. The HIV-1 proviral landscape reveals that Nef contributes to HIV-1 persistence in effector memory CD4+ T cells. J Clin Invest 2022; 132:154422. [PMID: 35133986 PMCID: PMC8970682 DOI: 10.1172/jci154422] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Despite long-term antiretroviral therapy (ART), HIV-1 persists within a reservoir of CD4+ T cells that contribute to viral rebound if treatment is interrupted. Identifying the cellular populations that contribute to the HIV-1 reservoir and understanding the mechanisms of viral persistence are necessary to achieve an effective cure. In this regard, through Full-Length Individual Proviral Sequencing, we observed that the HIV-1 proviral landscape was different and changed with time on ART across naive and memory CD4+ T cell subsets isolated from 24 participants. We found that the proportion of genetically intact HIV-1 proviruses was higher and persisted over time in effector memory CD4+ T cells when compared with naive, central, and transitional memory CD4+ T cells. Interestingly, we found that escape mutations remained stable over time within effector memory T cells during therapy. Finally, we provided evidence that Nef plays a role in the persistence of genetically intact HIV-1. These findings posit effector memory T cells as a key component of the HIV-1 reservoir and suggest Nef as an attractive therapeutic target.
Collapse
Affiliation(s)
- Gabriel Duette
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Bonnie Hiener
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Morgan
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Fernando G. Mazur
- Post-graduation Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, Brazil
| | - Vennila Mathivanan
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Bethany A. Horsburgh
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Katie Fisher
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Haelee Ahn
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ansari Shaik
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Charline Bacchus-Souffan
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Stuart G. Turville
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Anthony D. Kelleher
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Timothy E. Schlub
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Bai R, Lv S, Wu H, Dai L. Low-level viremia in treated HIV-1 infected patients: advances and challenges. Curr HIV Res 2022; 20:111-119. [PMID: 35170410 DOI: 10.2174/1570162x20666220216102943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
Antiretroviral therapy (ART) can effectively suppress HIV-1 replication, improving quality of life and restoring the lifespan of persons living with HIV (PLWH) to near normal levels. However, after standardized ART, a low level of HIV-1 RNA, i.e., low-level viremia (LLV), may still be identified in 3% to 10% of the patients. LLV is capable of impacting the immunological and clinical outcome of patients and serves as a risk factor for transmission. The underlying mechanism of LLV is not yet certain, and the effects of LLV on patient outcomes remain under evaluation. Understanding LLV will allow effective prevention and control strategies to be designed for the benefit of PLWH.
Collapse
Affiliation(s)
- Ruojing Bai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shiyun Lv
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lili Dai
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Moraka NO, Garcia-Broncano P, Hu Z, Ajibola G, Bareng OT, Pretorius-Holme M, Maswabi K, Maphorisa C, Mohammed T, Gaseitsiwe S, VanZyl GU, Kuritzkes DR, Lichterfeld M, Moyo S, Shapiro RL. Patterns of pretreatment drug resistance mutations of very early diagnosed and treated infants in Botswana. AIDS 2021; 35:2413-2421. [PMID: 34324451 PMCID: PMC8631156 DOI: 10.1097/qad.0000000000003041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To describe the occurrence of HIV drug resistance mutations (DRMs) in both intact and defective HIV-1 cell-associated DNA (HIV-1 CAD) among early-treated infants. DESIGN The Botswana EIT Study (ClinicalTrials.gov NCT02369406) initiated antiretroviral therapy (ART) in the first week of life and evaluated HIV-1 in plasma and peripheral blood mononuclear cells (PBMCs). METHODOLOGY We analyzed 257 near-HIV-1 full-length sequences (nFLS) obtained by Illumina next-generation sequencing from infants near birth. Sanger sequencing of pol was performed for mothers at delivery and children with clinical failure through 96 weeks. DRMs were identified using the Stanford HIV Drug Resistance Database. RESULTS In 27 infants, median PBMC HIV-1 proviral load was 492 copies/ml [IQR: 78-1246 copies/ml] at a median of 2 days (range 1-32); 18 (66.7%) had no DRMs detected; six (22.2%) had DRMs detected in defective DNA only, and three (11.1%) had DRMs in both defective and intact DNA (P = 0.09). A total of 60 of 151 (37.7%) defective sequences had at least one DRM: 31.8% NNRTI, 15.2% NRTI, 5.3% protease inhibitor, and 15.5% INSTI-associated mutations. In intact sequences, 33 of 106 (31.1%) had at least 1 DRM: 29.2% NNRTI, 7.5% NRTI, 0.9% protease inhibitor, and no INSTI-associated mutations. For all three infants with intact sequence DRMs, corresponding DRMs occurred in maternal plasma at delivery. Archived DRMs were detectable at a later clinical rebound on only one occasion. CONCLUSION Defective HIV-1 cell-associated DNA sequences may overestimate the prevalence of drug resistance among early-treated children. The impact of DRMs from intact proviruses on long-term treatment outcomes warrants further investigation.
Collapse
Affiliation(s)
- Natasha Onalenna Moraka
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Division of Medical Virology, Stellenbosch University Tygerberg, Cape Town, South Africa
| | | | - Zixin Hu
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School
| | | | | | - Molly Pretorius-Holme
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health
| | - Kenneth Maswabi
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | | | | | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health
| | - Gert U. VanZyl
- Division of Medical Virology, Stellenbosch University Tygerberg, Cape Town, South Africa
| | - Daniel R. Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health
| | - Roger L. Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health
| |
Collapse
|
18
|
Siliciano JD, Siliciano RF. In Vivo Dynamics of the Latent Reservoir for HIV-1: New Insights and Implications for Cure. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:271-294. [PMID: 34736342 DOI: 10.1146/annurev-pathol-050520-112001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although antiretroviral therapy (ART) can reduce viremia to below the limit of detection and allow persons living with HIV-1 (PLWH) to lead relatively normal lives, viremia rebounds when treatment is interrupted. Rebound reflects viral persistence in a stable latent reservoir in resting CD4+ T cells. This reservoir is now recognized as the major barrier to cure and is the focus of intense international research efforts. Strategies to cure HIV-1 infection include interventions to eliminate this reservoir, to prevent viral rebound from the reservoir, or to enhance immune responses such that viral replication is effectively controlled. Here we consider recent developments in understanding the composition of the reservoir and how it can be measured in clinical studies. We also discuss exciting new insights into the in vivo dynamics of the reservoir and the reasons for its remarkable stability. Finally we discuss recent discoveries on the complex processes that govern viral rebound. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; .,Howard Hughes Medical Institute, Baltimore, Maryland 21205, USA
| |
Collapse
|
19
|
Payne H, Chan MK, Watters SA, Otwombe K, Hsiao NY, Babiker A, Violari A, Cotton MF, Gibb DM, Klein NJ. Early ART-initiation and longer ART duration reduces HIV-1 proviral DNA levels in children from the CHER trial. AIDS Res Ther 2021; 18:63. [PMID: 34587974 PMCID: PMC8482761 DOI: 10.1186/s12981-021-00389-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
Background Reduction of the reservoir of latent HIV-infected cells might increase the possibility of long-term remission in individuals living with HIV. We investigated factors associated with HIV-1 proviral DNA levels in children receiving different antiretroviral therapy (ART) strategies in the children with HIV early antiretroviral therapy (CHER) trial. Methods Infants with HIV < 12 weeks old with CD4% ≥ 25% were randomized in the CHER trial to early limited ART for 40 or 96 weeks (ART-40 W, ART-96 W), or deferred ART (ART-Def). For ART-Def infants or following ART interruption in ART-40 W/ART-96 W, ART was started/re-started for clinical progression or CD4% < 25%. In 229 participants, HIV-1 proviral DNA was quantified by PCR from stored peripheral blood mononuclear cells from children who had received ≥ 24 weeks ART and two consecutive undetectable HIV-1 RNA 12–24 weeks apart. HIV-1 proviral DNA was compared between ART-Def and ART-96 W at week 96, and in all arms at week 248. Factors associated with HIV-1 proviral DNA levels were evaluated using linear regression. Findings Longer duration of ART was significantly associated with lower HIV-1 proviral DNA at both 96 (p = 0.0003) and 248 weeks (p = 0.0011). Higher total CD8 count at ART initiation was associated with lower HIV-1 proviral DNA at both 96 (p = 0.0225) and 248 weeks (p = 0.0398). Week 248 HIV-1 proviral DNA was significantly higher in those with positive HIV-1 serology at week 84 than those with negative serology (p = 0.0042). Intepretation Longer ART duration is key to HIV-1 proviral DNA reduction. Further understanding is needed of the effects of “immune-attenuation” through early HIV-1 exposure. Funding Wellcome Trust, National Institutes of Health, Medical Research Council.
Collapse
|
20
|
Simonetti FR, Zhang H, Soroosh GP, Duan J, Rhodehouse K, Hill AL, Beg SA, McCormick K, Raymond HE, Nobles CL, Everett JK, Kwon KJ, White JA, Lai J, Margolick JB, Hoh R, Deeks SG, Bushman FD, Siliciano JD, Siliciano RF. Antigen-driven clonal selection shapes the persistence of HIV-1-infected CD4+ T cells in vivo. J Clin Invest 2021; 131:145254. [PMID: 33301425 DOI: 10.1172/jci145254] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Clonal expansion of infected CD4+ T cells is a major mechanism of HIV-1 persistence and a barrier to achieving a cure. Potential causes are homeostatic proliferation, effects of HIV-1 integration, and interaction with antigens. Here, we show that it is possible to link antigen responsiveness, the full proviral sequence, the integration site, and the T cell receptor β-chain (TCRβ) sequence to examine the role of recurrent antigenic exposure in maintaining the HIV-1 reservoir. We isolated CMV- and Gag-responding CD4+ T cells from 10 treated individuals. Proviral populations in CMV-responding cells were dominated by large clones, including clones harboring replication-competent proviruses. TCRβ repertoires showed high clonality driven by converging adaptive responses. Although some proviruses were in genes linked to HIV-1 persistence (BACH2, STAT5B, MKL1), the proliferation of infected cells under antigenic stimulation occurred regardless of the site of integration. Paired TCRβ and integration site analysis showed that infection could occur early or late in the course of a clone's response to antigen and could generate infected cell populations too large to be explained solely by homeostatic proliferation. Together, these findings implicate antigen-driven clonal selection as a major factor in HIV-1 persistence, a finding that will be a difficult challenge to eradication efforts.
Collapse
Affiliation(s)
- Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Garshasb P Soroosh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiayi Duan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyle Rhodehouse
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alison L Hill
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Subul A Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin McCormick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hayley E Raymond
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christopher L Nobles
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer A White
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, California, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, California, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Ensoli B, Moretti S, Borsetti A, Maggiorella MT, Buttò S, Picconi O, Tripiciano A, Sgadari C, Monini P, Cafaro A. New insights into pathogenesis point to HIV-1 Tat as a key vaccine target. Arch Virol 2021; 166:2955-2974. [PMID: 34390393 PMCID: PMC8363864 DOI: 10.1007/s00705-021-05158-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
Despite over 30 years of enormous effort and progress in the field, no preventative and/or therapeutic vaccines against human immunodeficiency virus (HIV) are available. Here, we briefly summarize the vaccine strategies and vaccine candidates that in recent years advanced to efficacy trials with mostly unsatisfactory results. Next, we discuss a novel and somewhat contrarian approach based on biological and epidemiological evidence, which led us to choose the HIV protein Tat for the development of preventive and therapeutic HIV vaccines. Toward this goal, we review here the role of Tat in the virus life cycle as well as experimental and epidemiological evidence supporting its key role in the natural history of HIV infection and comorbidities. We then discuss the preclinical and clinical development of a Tat therapeutic vaccine, which, by improving the functionality and homeostasis of the immune system and by reducing the viral reservoir in virologically suppressed vaccinees, helps to establish key determinants for intensification of combination antiretroviral therapy (cART) and a functional cure. Future developments and potential applications of the Tat therapeutic vaccine are also discussed, as well as the rationale for its use in preventative strategies. We hope this contribution will lead to a reconsideration of the current paradigms for the development of HIV/AIDS vaccines, with a focus on targeting of viral proteins with key roles in HIV pathogenesis.
Collapse
Affiliation(s)
- Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Teresa Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
22
|
Pasternak AO, Vroom J, Kootstra NA, Wit FW, de Bruin M, De Francesco D, Bakker M, Sabin CA, Winston A, Prins JM, Reiss P, Berkhout B. Non-nucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy is associated with lower cell-associated HIV RNA and DNA levels as compared with therapy based on protease inhibitors. eLife 2021; 10:68174. [PMID: 34387543 PMCID: PMC8460250 DOI: 10.7554/elife.68174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/07/2021] [Indexed: 11/28/2022] Open
Abstract
Background: It remains unclear whether combination antiretroviral therapy (ART) regimens differ in their ability to fully suppress human immunodeficiency virus (HIV) replication. Here, we report the results of two cross-sectional studies that compared levels of cell-associated (CA) HIV markers between individuals receiving suppressive ART containing either a non-nucleoside reverse transcriptase inhibitor (NNRTI) or a protease inhibitor (PI). Methods: CA HIV unspliced RNA and total HIV DNA were quantified in two cohorts (n = 100, n = 124) of individuals treated with triple ART regimens consisting of two nucleoside reverse transcriptase inhibitors (NRTIs) plus either an NNRTI or a PI. To compare CA HIV RNA and DNA levels between the regimens, we built multivariable models adjusting for age, gender, current and nadir CD4+ count, plasma viral load zenith, duration of virological suppression, NRTI backbone composition, low-level plasma HIV RNA detectability, and electronically measured adherence to ART. Results: In both cohorts, levels of CA HIV RNA and DNA strongly correlated (rho = 0.70 and rho = 0.54) and both markers were lower in NNRTI-treated than in PI-treated individuals. In the multivariable analysis, CA RNA in both cohorts remained significantly reduced in NNRTI-treated individuals (padj = 0.02 in both cohorts), with a similar but weaker association between the ART regimen and total HIV DNA (padj = 0.048 and padj = 0.10). No differences in CA HIV RNA or DNA levels were observed between individual NNRTIs or individual PIs, but CA HIV RNA was lower in individuals treated with either nevirapine or efavirenz, compared to PI-treated individuals. Conclusions: All current classes of antiretroviral drugs only prevent infection of new cells but do not inhibit HIV RNA transcription in long-lived reservoir cells. Therefore, these differences in CA HIV RNA and DNA levels by treatment regimen suggest that NNRTIs are more potent in suppressing HIV residual replication than PIs, which may result in a smaller viral reservoir size. Funding: This work was supported by ZonMw (09120011910035) and FP7 Health (305522).
Collapse
Affiliation(s)
- Alexander O Pasternak
- Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jelmer Vroom
- Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ferdinand Wnm Wit
- Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marijn de Bruin
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Davide De Francesco
- Institute for Global Health, University College London, London, United Kingdom
| | - Margreet Bakker
- Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Caroline A Sabin
- Institute for Global Health, University College London, London, United Kingdom
| | - Alan Winston
- Medicine, Imperial College London, London, United Kingdom
| | - Jan M Prins
- Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, New Caledonia
| | - Peter Reiss
- Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ben Berkhout
- Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
23
|
Katusiime MG, Van Zyl GU, Cotton MF, Kearney MF. HIV-1 Persistence in Children during Suppressive ART. Viruses 2021; 13:v13061134. [PMID: 34204740 PMCID: PMC8231535 DOI: 10.3390/v13061134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
There is a growing number of perinatally HIV-1-infected children worldwide who must maintain life-long ART. In early life, HIV-1 infection is established in an immunologically inexperienced environment in which maternal ART and immune dynamics during pregnancy play a role in reservoir establishment. Children that initiated early antiretroviral therapy (ART) and maintained long-term suppression of viremia have smaller and less diverse HIV reservoirs than adults, although their proviral landscape during ART is reported to be similar to that of adults. The ability of these early infected cells to persist long-term through clonal expansion poses a major barrier to finding a cure. Furthermore, the effects of life-long HIV persistence and ART are yet to be understood, but growing evidence suggests that these individuals are at an increased risk for developing non-AIDS-related comorbidities, which underscores the need for an HIV cure.
Collapse
Affiliation(s)
- Mary Grace Katusiime
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, MD 21702, USA;
- Correspondence:
| | - Gert U. Van Zyl
- Division of Medical Virology, Stellenbosch University and National Health Laboratory Service Tygerberg, Cape Town 8000, South Africa;
| | - Mark F. Cotton
- Department of Pediatrics and Child Health, Tygerberg Children’s Hospital and Family Center for Research with Ubuntu, Stellenbosch University, Cape Town 7505, South Africa;
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, MD 21702, USA;
| |
Collapse
|
24
|
Millar JR, Bengu N, Vieira VA, Adland E, Roider J, Muenchhoff M, Fillis R, Sprenger K, Ntlantsana V, Fatti I, Archary M, Groll A, Ismail N, García-Guerrero MC, Matthews PC, Ndung'u T, Puertas MC, Martinez-Picado J, Goulder P. Early initiation of antiretroviral therapy following in utero HIV infection is associated with low viral reservoirs but other factors determine subsequent plasma viral rebound. J Infect Dis 2021; 224:1925-1934. [PMID: 33963757 PMCID: PMC8643423 DOI: 10.1093/infdis/jiab223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background Early HIV diagnosis allows combination antiretroviral therapy (cART) initiation in the first days of life following in utero (IU) infection. The impact of early cART initiation on infant viral reservoir size in the setting of high-frequency cART nonadherence is unknown. Methods Peripheral blood total HIV DNA from 164 early treated (day 0–21 of life) IU HIV-infected South African infants was measured using droplet digital PCR at birth and following suppressive cART. We evaluated the impact of cART initiation timing on HIV reservoir size and decay, and on the risk of subsequent plasma viremia in cART-suppressed infants. Results Baseline HIV DNA (median 2.8 log10 copies/million peripheral blood mononuclear cells, range 0.7–4.8) did not correlate with age at cART initiation (0–21 days) but instead with maternal antenatal cART use. In 98 infants with plasma viral suppression on cART, HIV DNA half-life was 28 days. However, the probability of maintenance of plasma aviremia was low (0.46 at 12 months) and not influenced by HIV DNA load. Unexpectedly, longer time to viral suppression was associated with protection against subsequent viral rebound. Conclusions With effective prophylaxis against mother-to-child transmission, cART initiation timing in the first 3 weeks of life is not critical to reservoir size.
Collapse
Affiliation(s)
- Jane R Millar
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Department of Paediatrics, University of Oxford, Oxford, UK
| | - Nomonde Bengu
- Umkhuseli Innovation and Research Management, Pietermaritzburg, South Africa
| | | | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Julia Roider
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Department of Paediatrics, University of Oxford, Oxford, UK.,Africa Health Research Institute (AHRI), Durban, South Africa.,German Center for Infection Research (DZIF), Partner site Munich, Germany.,Department of Infectious Diseases, Ludwig-Maximilians-University, Munich
| | - Maximilian Muenchhoff
- German Center for Infection Research (DZIF), Partner site Munich, Germany.,Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Rowena Fillis
- Umkhuseli Innovation and Research Management, Pietermaritzburg, South Africa
| | - Kenneth Sprenger
- Umkhuseli Innovation and Research Management, Pietermaritzburg, South Africa
| | - Vuyokazi Ntlantsana
- School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Isabella Fatti
- Umkhuseli Innovation and Research Management, Pietermaritzburg, South Africa
| | - Moherndran Archary
- Department of Paediatrics, King Edward VIII Hospital/University of KwaZulu-Natal, Durban, South Africa
| | - Andreas Groll
- TU Dortmund University, Department of Statistics, Vogelpothsweg, Dortmund
| | - Nasreen Ismail
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | - Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Oxford BRC, John Radcliffe Hospital, Oxford, UK
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute (AHRI), Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA.,Max Planck Institute for Infection Biology, Berlin, Germany.,Division of Infection and Immunity, University College London, London, UK
| | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Philip Goulder
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Department of Paediatrics, University of Oxford, Oxford, UK.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
CpG Methylation Profiles of HIV-1 Pro-Viral DNA in Individuals on ART. Viruses 2021; 13:v13050799. [PMID: 33946976 PMCID: PMC8146454 DOI: 10.3390/v13050799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 11/17/2022] Open
Abstract
The latent HIV-1 reservoir is comprised of stably integrated and intact proviruses with limited to no viral transcription. It has been proposed that latent infection may be maintained by methylation of pro-viral DNA. Here, for the first time, we investigate the cytosine methylation of a replication competent provirus (AMBI-1) found in a T cell clone in a donor on antiretroviral therapy (ART). Methylation profiles of the AMBI-1 provirus were compared to other proviruses in the same donor and in samples from three other individuals on ART, including proviruses isolated from lymph node mononuclear cells (LNMCs) and peripheral blood mononuclear cells (PBMCs). We also evaluated the apparent methylation of cytosines outside of CpG (i.e., CpH) motifs. We found no evidence for methylation in AMBI-1 or any other provirus tested within the 5' LTR promoter. In contrast, CpG methylation was observed in the env-tat-rev overlapping reading frame. In addition, we found evidence for differential provirus methylation in cells isolated from LNMCs vs. PBMCs in some individuals, possibly from the expansion of infected cell clones. Finally, we determined that apparent low-level methylation of CpH cytosines is consistent with occasional bisulfite reaction failures. In conclusion, our data do not support the proposition that latent HIV infection is associated with methylation of the HIV 5' LTR promoter.
Collapse
|
26
|
Abstract
HIV-1 integrates its genome into the DNA of host cells. Consequently, HIV-1 genomes are copied with the host cell DNA during cellular division. Little is known about the emergence and persistence of human immunodeficiency virus (HIV)-infected T-cell clones in perinatally infected children. We analyzed peripheral blood mononuclear cells (PBMCs) for clonal expansion in 11 children who initiated antiretroviral therapy (ART) between 1.8 and 17.4 months of age and with viremia suppressed for 6 to 9 years. We obtained 8,662 HIV type 1 (HIV-1) integration sites from pre-ART samples and 1,861 sites from on-ART samples. Expanded clones of infected cells were detected pre-ART in 10/11 children. In 8 children, infected cell clones detected pre-ART persisted for 6 to 9 years on ART. A comparison of integration sites in the samples obtained on ART with healthy donor PBMCs infected ex vivo showed selection for cells with proviruses integrated in BACH2 and STAT5B. Our analyses indicate that, despite marked differences in T-cell composition and dynamics between children and adults, HIV-infected cell clones are established early in children, persist for up to 9 years on ART, and can be driven by proviral integration in proto-oncogenes.
Collapse
|
27
|
Integration in oncogenes plays only a minor role in determining the in vivo distribution of HIV integration sites before or during suppressive antiretroviral therapy. PLoS Pathog 2021; 17:e1009141. [PMID: 33826675 PMCID: PMC8055010 DOI: 10.1371/journal.ppat.1009141] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/19/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
HIV persists during antiretroviral therapy (ART) as integrated proviruses in cells descended from a small fraction of the CD4+ T cells infected prior to the initiation of ART. To better understand what controls HIV persistence and the distribution of integration sites (IS), we compared about 15,000 and 54,000 IS from individuals pre-ART and on ART, respectively, with approximately 395,000 IS from PBMC infected in vitro. The distribution of IS in vivo is quite similar to the distribution in PBMC, but modified by selection against proviruses in expressed genes, by selection for proviruses integrated into one of 7 specific genes, and by clonal expansion. Clones in which a provirus integrated in an oncogene contributed to cell survival comprised only a small fraction of the clones persisting in on ART. Mechanisms that do not involve the provirus, or its location in the host genome, are more important in determining which clones expand and persist. In HIV-infected individuals, a small fraction of the infected cells persist and divide. This reservoir persists during fully suppressive ART and can rekindle the infection if ART is discontinued. Because the number of possible sites of HIV DNA integration is very large, each infected cell, and all of its descendants, can be identified by the site where the provirus is integrated (IS). To understand the selective forces that determine the fates of infected cells in vivo, we compared the distribution of HIV IS in freshly-infected cells to cells from HIV-infected donors sampled both before and during ART. We found that, as previously reported, integration favors highly-expressed genes. However, over time, the fraction of cells with proviruses integrated in highly-expressed genes decreases, implying that they grow less well. There are exceptions to this broad negative selection. When a provirus is integrated in a specific region in one of seven genes, the proviruses affect the expression of the target gene, promoting growth and/or survival of the cell. Although this effect is striking, it is only a minor component of the forces that promote the growth and survival of the population of infected cells during ART.
Collapse
|
28
|
Ferreira RC, Prodger JL, Redd AD, Poon AFY. Quantifying the clonality and dynamics of the within-host HIV-1 latent reservoir. Virus Evol 2021; 7:veaa104. [PMID: 33505711 PMCID: PMC7816690 DOI: 10.1093/ve/veaa104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Among people living with human immunodeficiency virus type 1 (HIV-1), the long-term persistence of a population of cells carrying transcriptionally silent integrated viral DNA (provirus) remains the primary barrier to developing an effective cure. Ongoing cell division via proliferation is generally considered to be the driving force behind the persistence of this latent HIV-1 reservoir. The contribution of this mechanism (clonal expansion) is supported by the observation that proviral sequences sampled from the reservoir are often identical. This outcome is quantified as the ‘clonality’ of the sample population, e.g. the fraction of provirus sequences observed more than once. However, clonality as a quantitative measure is inconsistently defined and its statistical properties are not well understood. In this Reflections article, we use mathematical and phylogenetic frameworks to formally examine the inherent problems of using clonality to characterize the dynamics and proviral composition of the reservoir. We describe how clonality is not adequate for this task due to the inherent complexity of how infected cells are ‘labeled’ by proviral sequences—the outcome of a sampling process from the evolutionary history of active viral replication before treatment—as well as variation in cell birth and death rates among lineages and over time. Lastly, we outline potential directions in statistical and phylogenetic research to address these issues.
Collapse
Affiliation(s)
- Roux-Cil Ferreira
- Department of Pathology and Laboratory Medicine, Western University, 1151 Richmond Street London, ON, Canada
| | - Jessica L Prodger
- Department of Microbiology and Immunology, Western University, 1151 Richmond Street London, ON, Canada
| | - Andrew D Redd
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane Rockville, MD 20852, USA.,Department of Medicine, Johns Hopkins School of Medicine, 600 N. Wolfe Street Baltimore, MD 21205-2196, USA
| | - Art F Y Poon
- Department of Pathology and Laboratory Medicine, Western University, 1151 Richmond Street London, ON, Canada
| |
Collapse
|
29
|
Fromentin R, Chomont N. HIV persistence in subsets of CD4+ T cells: 50 shades of reservoirs. Semin Immunol 2021; 51:101438. [PMID: 33272901 PMCID: PMC8164644 DOI: 10.1016/j.smim.2020.101438] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
Antiretroviral therapy controls HIV replication but does not eliminate the virus from the infected host. The persistence of a small pool of cells harboring integrated and replication-competent HIV genomes impedes viral eradication efforts. The HIV reservoir was originally described as a relatively homogeneous pool of resting memory CD4+ T cells. Over the past 20 years, the identification of multiple cellular subsets of CD4+ T cells endowed with distinct biological properties shed new lights on the heterogeneity of HIV reservoirs. It is now clear that HIV persists in a large variety of CD4+ T cells, which contribute to HIV persistence through different mechanisms. In this review, we summarize recent findings indicating that specific biological features of well-characterized subsets of CD4+ T cells individually contribute to the persistence of HIV. These include an increased sensitivity to HIV infection, specific tissue locations, enhanced survival and heightened capacity to proliferate. We also discuss the relative abilities of these cellular reservoirs to contribute to viral rebound upon ART interruption. Together, these findings reveal that the HIV reservoir is not homogeneous and should be viewed as a mosaic of multiple cell types that all contribute to HIV persistence through different mechanisms.
Collapse
Affiliation(s)
- Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
30
|
Warren JA, Zhou S, Xu Y, Moeser MJ, MacMillan DR, Council O, Kirchherr J, Sung JM, Roan NR, Adimora AA, Joseph S, Kuruc JD, Gay CL, Margolis DM, Archin N, Brumme ZL, Swanstrom R, Goonetilleke N. The HIV-1 latent reservoir is largely sensitive to circulating T cells. eLife 2020; 9:57246. [PMID: 33021198 PMCID: PMC7593086 DOI: 10.7554/elife.57246] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
HIV-1-specific CD8+ T cells are an important component of HIV-1 curative strategies. Viral variants in the HIV-1 reservoir may limit the capacity of T cells to detect and clear virus-infected cells. We investigated the patterns of T cell escape variants in the replication-competent reservoir of 25 persons living with HIV-1 (PLWH) durably suppressed on antiretroviral therapy (ART). We identified all reactive T cell epitopes in the HIV-1 proteome for each participant and sequenced HIV-1 outgrowth viruses from resting CD4+ T cells. All non-synonymous mutations in reactive T cell epitopes were tested for their effect on the size of the T cell response, with a≥50% loss defined as an escape mutation. The majority (68%) of T cell epitopes harbored no detectable escape mutations. These findings suggest that circulating T cells in PLWH on ART could contribute to control of rebound and could be targeted for boosting in curative strategies.
Collapse
Affiliation(s)
- Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States
| | - Yinyan Xu
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States
| | - Matthew J Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States
| | | | - Olivia Council
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States
| | - Jennifer Kirchherr
- Department of Medicine, University of North Carolina, Chapel Hill, United States
| | - Julia M Sung
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Nadia R Roan
- Department of Urology, University of California San Francisco, San Francisco, United States.,Gladstone Institute of Virology and Immunology, San Francisco, United States
| | - Adaora A Adimora
- Department of Medicine, University of North Carolina, Chapel Hill, United States
| | - Sarah Joseph
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - JoAnn D Kuruc
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Cynthia L Gay
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States.,Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Nancie Archin
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Zabrina L Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada.,Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Ronald Swanstrom
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| |
Collapse
|
31
|
No HIV-1 molecular evolution on long-term antiretroviral therapy initiated during primary HIV-1 infection. AIDS 2020; 34:1745-1753. [PMID: 32694418 DOI: 10.1097/qad.0000000000002629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Most studies about HIV-1 molecular evolution have shown the lack of viral evolution on effective antiretroviral therapy (ART), although controversial results have been documented. We therefore aimed to look for evidence of HIV-1 evolution in patients who initiated ART at the time of primary HIV-1 infection (PHI). DESIGN We included retrospectively 20 patients diagnosed at PHI, treated at the time of acute infection and with subsequent effective long-term suppressive ART (HIV viral load <20 copies/ml during at least 5 years without any blips). METHODS Longitudinal blood samples were deep sequenced using Illumina Miseq. Drug-resistance-associated mutations were retained at 2% cutoff and interpreted using the latest Agence Nationale de Recherches sur le Sida et les Hépatites Virales resistance algorithm. Viral evolution was established when temporal structure on maximum-likelihood phylogenetic tree and significant change over time of HIV-1 genetic diversity measured as the average pairwise distance was observed. RESULTS Emergences or disappearances of drug-resistance-associated mutations were detected in the blood cells during follow-up despite sustained virological control. In all patients, tree topologies showed an absence of segregation between sequences and blood viral populations from all time-points were intermingled. Comparison of the average pairwise distance showed the absence of significant viral diversity at the time of primary infection and afterwards during 5 years of full virological control under ART. CONCLUSION Despite a slight variation of minority resistance-associated mutation variants, there was no clear evidence of viral evolution during a prolonged period of time in this population of highly controlled adult patients treated at time of PHI.
Collapse
|
32
|
Abrahams MR, Joseph SB, Garrett N, Tyers L, Moeser M, Archin N, Council OD, Matten D, Zhou S, Doolabh D, Anthony C, Goonetilleke N, Karim SA, Margolis DM, Pond SK, Williamson C, Swanstrom R. The replication-competent HIV-1 latent reservoir is primarily established near the time of therapy initiation. Sci Transl Med 2020; 11:11/513/eaaw5589. [PMID: 31597754 DOI: 10.1126/scitranslmed.aaw5589] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
Although antiretroviral therapy (ART) is highly effective at suppressing HIV-1 replication, the virus persists as a latent reservoir in resting CD4+ T cells during therapy. This reservoir forms even when ART is initiated early after infection, but the dynamics of its formation are largely unknown. The viral reservoirs of individuals who initiate ART during chronic infection are generally larger and genetically more diverse than those of individuals who initiate therapy during acute infection, consistent with the hypothesis that the reservoir is formed continuously throughout untreated infection. To determine when viruses enter the latent reservoir, we compared sequences of replication-competent viruses from resting peripheral CD4+ T cells from nine HIV-positive women on therapy to viral sequences circulating in blood collected longitudinally before therapy. We found that, on average, 71% of the unique viruses induced from the post-therapy latent reservoir were most genetically similar to viruses replicating just before ART initiation. This proportion is far greater than would be expected if the reservoir formed continuously and was always long lived. We conclude that ART alters the host environment in a way that allows the formation or stabilization of most of the long-lived latent HIV-1 reservoir, which points to new strategies targeted at limiting the formation of the reservoir around the time of therapy initiation.
Collapse
Affiliation(s)
- Melissa-Rose Abrahams
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Sarah B Joseph
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu- Natal, Durban 4013, South Africa
| | - Lynn Tyers
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Matthew Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nancie Archin
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olivia D Council
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David Matten
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deelan Doolabh
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Colin Anthony
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu- Natal, Durban 4013, South Africa.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sergei Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa. .,National Health Laboratory Services of South Africa, University of Cape Town, Cape Town 7925, South Africa
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
33
|
Joseph SB, Kincer LP, Bowman NM, Evans C, Vinikoor MJ, Lippincott CK, Gisslén M, Spudich S, Menezes P, Robertson K, Archin N, Kashuba A, Eron JJ, Price RW, Swanstrom R. Human Immunodeficiency Virus Type 1 RNA Detected in the Central Nervous System (CNS) After Years of Suppressive Antiretroviral Therapy Can Originate from a Replicating CNS Reservoir or Clonally Expanded Cells. Clin Infect Dis 2020; 69:1345-1352. [PMID: 30561541 DOI: 10.1093/cid/ciy1066] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/12/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) populations are detected in cerebrospinal fluid (CSF) of some people on suppressive antiretroviral therapy (ART). Detailed analysis of these populations may reveal whether they are produced by central nervous system (CNS) reservoirs. METHODS We performed a study of 101 asymptomatic participants on stable ART. HIV-1 RNA concentrations were cross-sectionally measured in CSF and plasma. In participants with CSF HIV-1 RNA concentrations sufficient for analysis, viral populations were genetically and phenotypically characterized over multiple time points. RESULTS For 6% of participants (6 of 101), the concentration of HIV-1 RNA in their CSF was ≥0.5 log copies/mL above that of plasma (ie, CSF escape). We generated viral envelope sequences from CSF of 3 participants. One had a persistent CSF escape population that was macrophage-tropic, partially drug resistant, genetically diverse, and closely related to a minor macrophage-tropic lineage present in the blood prior to viral suppression and enriched for after ART. Two participants (1 suppressed and 1 not) had transient CSF escape populations that were R5 T cell-tropic with little genetic diversity. CONCLUSIONS Extensive analysis of viral populations in 1 participant revealed that CSF escape was from a persistently replicating population, likely in macrophages/microglia, present in the CNS over 3 years of ART. CSF escape in 2 other participants was likely produced by trafficking and transient expansion of infected T cells in the CNS. Our results show that CNS reservoirs can persist during ART and that CSF escape is not exclusively produced by replicating CNS reservoirs.
Collapse
Affiliation(s)
- Sarah B Joseph
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Maryland
| | - Laura P Kincer
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Maryland
| | - Natalie M Bowman
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Maryland
| | - Chris Evans
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Maryland
| | - Michael J Vinikoor
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Maryland
| | - Christopher K Lippincott
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Magnus Gisslén
- Department of Infectious Diseases, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Prema Menezes
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Maryland.,University of North Carolina Center for AIDS Research, University of North Carolina at Chapel Hill, San Francisco
| | - Kevin Robertson
- Department of Neurology, University of North Carolina at Chapel Hill, San Francisco
| | - Nancie Archin
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Maryland
| | - Angela Kashuba
- University of North Carolina Center for AIDS Research, University of North Carolina at Chapel Hill, San Francisco.,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, San Francisco
| | - Joseph J Eron
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Maryland.,University of North Carolina Center for AIDS Research, University of North Carolina at Chapel Hill, San Francisco
| | - Richard W Price
- Department of Neurology, University of California, San Francisco
| | - Ronald Swanstrom
- University of North Carolina Center for AIDS Research, University of North Carolina at Chapel Hill, San Francisco.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill
| |
Collapse
|
34
|
Differences in HIV Markers between Infected Individuals Treated with Different ART Regimens: Implications for the Persistence of Viral Reservoirs. Viruses 2020; 12:v12050489. [PMID: 32349381 PMCID: PMC7290301 DOI: 10.3390/v12050489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
In adherent individuals, antiretroviral therapy (ART) suppresses HIV replication, restores immune function, and prevents the development of AIDS. However, ART is not curative and has to be followed lifelong. Persistence of viral reservoirs forms the major obstacle to an HIV cure. HIV latent reservoirs persist primarily by cell longevity and proliferation, but replenishment by residual virus replication despite ART has been proposed as another potential mechanism of HIV persistence. It is a matter of debate whether different ART regimens are equally potent in suppressing HIV replication. Here, we summarized the current knowledge on the role of ART regimens in HIV persistence, focusing on differences in residual plasma viremia and other virological markers of the HIV reservoir between infected individuals treated with combination ART composed of different antiretroviral drug classes.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Studies of HIV-1 genetic diversity can provide clues on the effect of antiretroviral therapy (ART) on viral replication, the mechanisms for viral persistence, and the efficacy of new interventions. This article reviews methods for interrogating intrahost HIV-1 diversity, addresses the ongoing debate regarding HIV-1 compartmentalization and replication during ART, and summarizes recent findings on the effects of curative strategies on HIV-1 populations. RECENT FINDINGS HIV-1 replication in the blood is virtually halted upon the initiation of ART. However, proliferation of cells infected prior to ART provides a self-renewing reservoir for infection during ART. Current evidence supports that proliferation of infected cells is a mechanism for HIV-1 persistence in both the blood and the tissues. However, more studies are required to determine if tissue sanctuaries exist that may also allow viral replication during ART. Recent studies investigating potential curative interventions show little effect on the genetic landscape of HIV-1 infection and highlight the need to develop strategies targeting the proliferation of infected cells. SUMMARY Using phylogeny to characterize HIV-1 genetic diversity and evolution during ART has demonstrated a lack of viral replication, the proliferation of infected cells, and provides one metric to measure the effect of new interventions aimed at achieving a functional cure for HIV-1.
Collapse
|
36
|
Thomas J, Ruggiero A, Paxton WA, Pollakis G. Measuring the Success of HIV-1 Cure Strategies. Front Cell Infect Microbiol 2020; 10:134. [PMID: 32318356 PMCID: PMC7154081 DOI: 10.3389/fcimb.2020.00134] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
HIV-1 eradication strategies aim to achieve viral remission in the absence of antiretroviral therapy (ART). The development of an HIV-1 cure remains challenging due to the latent reservoir (LR): long-lived CD4 T cells that harbor transcriptionally silent HIV-1 provirus. The LR is stable despite years of suppressive ART and is the source of rebound viremia following therapy interruption. Cure strategies such as "shock and kill" aim to eliminate or reduce the LR by reversing latency, exposing the infected cells to clearance via the immune response or the viral cytopathic effect. Alternative strategies include therapeutic vaccination, which aims to prime the immune response to facilitate control of the virus in the absence of ART. Despite promising advances, these strategies have been unable to significantly reduce the LR or increase the time to viral rebound but have provided invaluable insight in the field of HIV-1 eradication. The development and assessment of an HIV-1 cure requires robust assays that can measure the LR with sufficient sensitivity to detect changes that may occur following treatment. The viral outgrowth assay (VOA) is considered the gold standard method for LR quantification due to its ability to distinguish intact and defective provirus. However, the VOA is time consuming and resource intensive, therefore several alternative assays have been developed to bridge the gap between practicality and accuracy. Whilst a cure for HIV-1 infection remains elusive, recent advances in our understanding of the LR and methods for its eradication have offered renewed hope regarding achieving ART free viral remission.
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Immune and Infectious Disease Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Rome, Italy
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
37
|
Anderson EM, Simonetti FR, Gorelick RJ, Hill S, Gouzoulis MA, Bell J, Rehm C, Pérez L, Boritz E, Wu X, Wells D, Hughes SH, Rao V, Coffin JM, Kearney MF, Maldarelli F. Dynamic Shifts in the HIV Proviral Landscape During Long Term Combination Antiretroviral Therapy: Implications for Persistence and Control of HIV Infections. Viruses 2020; 12:v12020136. [PMID: 31991737 PMCID: PMC7077288 DOI: 10.3390/v12020136] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Combination antiretroviral therapy (cART) controls but does not eradicate HIV infection; HIV persistence is the principal obstacle to curing infections. The proportion of defective proviruses increases during cART, but the dynamics of this process are not well understood, and a quantitative analysis of how the proviral landscape is reshaped after cART is initiated is critical to understanding how HIV persists. Here, we studied longitudinal samples from HIV infected individuals undergoing long term cART using multiplexed Droplet Digital PCR (ddPCR) approaches to quantify the proportion of deleted proviruses in lymphocytes. In most individuals undergoing cART, HIV proviruses that contain gag are lost more quickly than those that lack gag. Increases in the fraction of gag-deleted proviruses occurred only after 1–2 years of therapy, suggesting that the immune system, and/or toxicity of viral re-activation helps to gradually shape the proviral landscape. After 10–15 years on therapy, there were as many as 3.5–5 times more proviruses in which gag was deleted or highly defective than those containing intact gag. We developed a provirus-specific ddPCR approach to quantify individual clones. Investigation of a clone of cells containing a deleted HIV provirus integrated in the HORMAD2 gene revealed that the cells underwent a massive expansion shortly after cART was initiated until the clone, which was primarily in effector memory cells, dominated the population of proviruses for over 6 years. The expansion of this HIV-infected clone had substantial effects on the overall proviral population.
Collapse
Affiliation(s)
- Elizabeth M. Anderson
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD 21702, USA; (E.M.A.); (F.R.S.); (S.H.); (M.A.G.); (S.H.H.); (M.F.K.)
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA;
| | - Francesco R. Simonetti
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD 21702, USA; (E.M.A.); (F.R.S.); (S.H.); (M.A.G.); (S.H.H.); (M.F.K.)
| | - Robert J. Gorelick
- Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (R.J.G.); (J.B.)
| | - Shawn Hill
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD 21702, USA; (E.M.A.); (F.R.S.); (S.H.); (M.A.G.); (S.H.H.); (M.F.K.)
| | - Monica A. Gouzoulis
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD 21702, USA; (E.M.A.); (F.R.S.); (S.H.); (M.A.G.); (S.H.H.); (M.F.K.)
| | - Jennifer Bell
- Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (R.J.G.); (J.B.)
| | - Catherine Rehm
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20814, USA;
| | - Liliana Pérez
- Virus Persistence and Dynamics Section, VRC, NIAID, NIH, Bethesda, MD 20814, USA; (L.P.); (E.B.)
| | - Eli Boritz
- Virus Persistence and Dynamics Section, VRC, NIAID, NIH, Bethesda, MD 20814, USA; (L.P.); (E.B.)
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (X.W.); (D.W.)
| | - Daria Wells
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (X.W.); (D.W.)
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD 21702, USA; (E.M.A.); (F.R.S.); (S.H.); (M.A.G.); (S.H.H.); (M.F.K.)
| | - Venigalla Rao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA;
| | - John M. Coffin
- Department of Biology, Tufts University, Boston, MA 02155, USA;
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD 21702, USA; (E.M.A.); (F.R.S.); (S.H.); (M.A.G.); (S.H.H.); (M.F.K.)
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD 21702, USA; (E.M.A.); (F.R.S.); (S.H.); (M.A.G.); (S.H.H.); (M.F.K.)
- Correspondence: ; Tel.: +01-301-846-5611
| |
Collapse
|
38
|
Despite early antiretroviral therapy effector memory and follicular helper CD4 T cells are major reservoirs in visceral lymphoid tissues of SIV-infected macaques. Mucosal Immunol 2020; 13:149-160. [PMID: 31723251 PMCID: PMC6914669 DOI: 10.1038/s41385-019-0221-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023]
Abstract
Whereas antiretroviral therapy (ART) suppresses viral replication, ART discontinuation results in viral rebound, indicating the presence of viral reservoirs (VRs) established within lymphoid tissues. Herein, by sorting CD4 T-cell subsets from the spleen, mesenteric and peripheral lymph nodes (LNs) of SIVmac251-infected rhesus macaques (RMs), we demonstrate that effector memory (TEM) and follicular helper (TFH) CD4+ T cells harbor the highest frequency of viral DNA and RNA, as well of early R-U5 transcripts in ART-naïve RMs. Furthermore, our results highlight that these two CD4 T cells subsets harbor viral DNA and early R-U5 transcripts in the spleen and mesenteric LNs (but not in peripheral LN) of RMs treated with ART at day 4 post infection suggesting that these two anatomical sites are important for viral persistence. Finally, after ART interruption, we demonstrate the rapid and, compared to peripheral LNs, earlier seeding of SIV in spleen and mesenteric LNs, thereby emphasizing the importance of these two anatomical sites for viral replication dynamics. Altogether our results advance understanding of early viral seeding in which visceral lymphoid tissues are crucial in maintaining TEM and TFH VRs.
Collapse
|
39
|
Li J. Advances toward a cure for HIV: getting beyond n=2. TOPICS IN ANTIVIRAL MEDICINE 2020; 27:91-95. [PMID: 32224499 PMCID: PMC7162679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Achieving a cure for HIV remains a priority in HIV research. Two cases of 'sterilizing cure' have been observed-in Timothy Ray Brown and the "London" patient; both patients received allogeneic hematopoietic stem cell transplantation (HSCT) from donors homozygous for the CCR5-delta 32 deletion, which impairs function of an HIV coreceptor on host cells. Other strategies that have been evaluated for achieving sterilizing cure or functional cure--ie, sustained virologic remission in the absence of antiretroviral therapy (ART)-include: HSCT with wild-type CC chemokine receptor (CCR5); early ART to limit size of the HIV latent reservoir; shock and kill strategies using latency reversing agents and/or anti-HIV broadly neutralizing antibodies; and gene therapy, including attempts to modify CCR5 genes, HIV proviruses in autologous host cells, or enhanced T cells. This article summarizes a presentation by Jonathan Li, MD, MMSc, at the International Antiviral Society-USA (IAS-USA) continuing education program held in Atlanta, Georgia, in March 2019.
Collapse
Affiliation(s)
- Jonathan Li
- Brigham and Women's Hospital at Harvard Medical School in Boston, MA, USA
| |
Collapse
|
40
|
Abstract
The Berlin patient, a famous example for human immunodeficiency virus (HIV) cure, had received a bone marrow transplantation with an HIV resistance mutation. The authors describe his case and others that had shown HIV control, like the Mississippi baby who was started on antiretroviral therapy very early after birth, and posttreatment controllers, like the VISCONTI cohort. Moreover, the authors outline various strategies, oftentimes informed by these individuals, that have been tried in vitro, in animal models, or in human trials, to deplete the latent reservoir, which is considered the basis of HIV persistence and the obstacle to cure.
Collapse
Affiliation(s)
- Nikolaus Jilg
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jonathan Z Li
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Jacobs JL, Halvas EK, Tosiano MA, Mellors JW. Persistent HIV-1 Viremia on Antiretroviral Therapy: Measurement and Mechanisms. Front Microbiol 2019; 10:2383. [PMID: 31681237 PMCID: PMC6804636 DOI: 10.3389/fmicb.2019.02383] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/01/2019] [Indexed: 12/28/2022] Open
Abstract
HIV-1 viremia persists at low-levels despite clinically effective antiretroviral therapy (ART). Here we review new methods to quantify and characterize persistent viremia at the single genome level, and discuss the mechanisms of persistence including clonal expansion of infected cells and tissue origins of viremia. A deeper understanding of how viremia persists on ART is critically important to the design of therapies to eliminate viremia and achieve a functional cure for HIV-1.
Collapse
Affiliation(s)
- Jana L Jacobs
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Elias K Halvas
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Melissa A Tosiano
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
42
|
Bozzi G, Simonetti FR, Watters SA, Anderson EM, Gouzoulis M, Kearney MF, Rote P, Lange C, Shao W, Gorelick R, Fullmer B, Kumar S, Wank S, Hewitt S, Kleiner DE, Hattori J, Bale MJ, Hill S, Bell J, Rehm C, Grossman Z, Yarchoan R, Uldrick T, Maldarelli F. No evidence of ongoing HIV replication or compartmentalization in tissues during combination antiretroviral therapy: Implications for HIV eradication. SCIENCE ADVANCES 2019; 5:eaav2045. [PMID: 31579817 PMCID: PMC6760922 DOI: 10.1126/sciadv.aav2045] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 08/29/2019] [Indexed: 05/28/2023]
Abstract
HIV persistence during combination antiretroviral therapy (cART) is the principal obstacle to cure. Mechanisms responsible for persistence remain uncertain; infections may be maintained by persistence and clonal expansion of infected cells or by ongoing replication in anatomic locations with poor antiretroviral penetration. These mechanisms require different strategies for eradication, and determining their contributions to HIV persistence is essential. We used phylogenetic approaches to investigate, at the DNA level, HIV populations in blood, lymphoid, and other infected tissues obtained at colonoscopy or autopsy in individuals who were on cART for 8 to 16 years. We found no evidence of ongoing replication or compartmentalization of HIV; we did detect clonal expansion of infected cells that were present before cART. Long-term persistence, and not ongoing replication, is primarily responsible for maintaining HIV. HIV-infected cells present when cART is initiated represent the only identifiable source of persistence and is the appropriate focus for eradication.
Collapse
Affiliation(s)
- G. Bozzi
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
- Department of Biomedical and Clinical Sciences, L. Sacco Hospital, University of Milan, Milan, Italy
| | - F. R. Simonetti
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
- Department of Biomedical and Clinical Sciences, L. Sacco Hospital, University of Milan, Milan, Italy
| | - S. A. Watters
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
- Department of Infection and Immunity, University College London, London, UK
| | - E. M. Anderson
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - M. Gouzoulis
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - M. F. Kearney
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - P. Rote
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - C. Lange
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - W. Shao
- Advanced Biomedical Computing Center, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - R. Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - B. Fullmer
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - S. Kumar
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | - S. Wank
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | - S. Hewitt
- Laboratory of Pathology, NCI, NIH, Bethesda, MD, USA
| | - D. E. Kleiner
- Laboratory of Pathology, NCI, NIH, Bethesda, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - J. Hattori
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - M. J. Bale
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - S. Hill
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - J. Bell
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - C. Rehm
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Z. Grossman
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - R. Yarchoan
- HIV and AIDS Malignancy Branch, NCI, NIH, Bethesda, MD, USA
| | - T. Uldrick
- HIV and AIDS Malignancy Branch, NCI, NIH, Bethesda, MD, USA
| | - F. Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| |
Collapse
|
43
|
Goonetilleke N, Clutton G, Swanstrom R, Joseph SB. Blocking Formation of the Stable HIV Reservoir: A New Perspective for HIV-1 Cure. Front Immunol 2019; 10:1966. [PMID: 31507594 PMCID: PMC6714000 DOI: 10.3389/fimmu.2019.01966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Recent studies demonstrate that the stable HIV-1 reservoir in resting CD4+ T cells is mostly formed from viruses circulating when combination antiretroviral therapy (ART) is initiated. Here we explore the immunological basis for these observations. Untreated HIV-1 infection is characterized by a progressive depletion of memory CD4+ T cells which mostly express CD127, the α chain of the IL-7 receptor (IL-7R). Depletion results from both direct infection and bystander loss of memory CD4+ T cells in part attributed to dysregulated IL-7/IL-7R signaling. While IL-7/IL7R signaling is not essential for the generation of effector CD4+ T cells from naïve cells, it is essential for the further transition of effectors to memory CD4+ T cells and their subsequent homeostatic maintenance. HIV-1 infection therefore limits the transition of CD4+ T cells from an effector to long-lived memory state. With the onset of ART, virus load (VL) levels rapidly decrease and the frequency of CD127+ CD4+ memory T cells increases, indicating restoration of effector to memory transition in CD4+ T cells. Collectively these data suggest that following ART initiation, HIV-1 infected effector CD4+ T cells transition to long-lived, CD127+ CD4+ T cells forming the majority of the stable HIV-1 reservoir. We propose that combining ART initiation with inhibition of IL-7/IL-7R signaling to block CD4+ T cell memory formation will limit the generation of long-lived HIV-infected CD4+ T cells and reduce the overall size of the stable HIV-1 reservoir.
Collapse
Affiliation(s)
- Nilu Goonetilleke
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Genevieve Clutton
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ron Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah B. Joseph
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
44
|
Huang SH, McCann CD, Mota TM, Wang C, Lipkin SM, Jones RB. Have Cells Harboring the HIV Reservoir Been Immunoedited? Front Immunol 2019; 10:1842. [PMID: 31447850 PMCID: PMC6691121 DOI: 10.3389/fimmu.2019.01842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023] Open
Abstract
Immunoediting is an important concept in oncology, delineating the mechanisms through which tumors are selected for resistance to immune-mediated elimination. The recent emergence of immunotherapies, such as checkpoint inhibitors, as pillars of cancer therapy has intensified interest in immunoediting as a constraint limiting the efficacy of these approaches. Immunoediting manifests at a number of levels for different cancers, for example through the establishment of immunosuppressive microenvironments within solid tumors. Of particular interest to the current review, selection also occurs at the cellular level; and recent studies have revealed novel mechanisms by which tumor cells acquire intrinsic resistance to immune recognition and elimination. While the selection of escape mutations in viral epitopes by HIV-specific T cells, which is a hallmark of chronic HIV infection, can be considered a form of immunoediting, few studies have considered the possibility that HIV-infected cells themselves may parallel tumors in having differential intrinsic susceptibilities to immune-mediated elimination. Such selection, on the level of an infected cell, may not play a significant role in untreated HIV, where infection is propagated by high levels of cell-free virus produced by cells that quickly succumb to viral cytopathicity. However, it may play an unappreciated role in individuals treated with effective antiretroviral therapy where viral replication is abrogated. In this context, an "HIV reservoir" persists, comprising long-lived infected cells which undergo extensive and dynamic clonal expansion. The ability of these cells to persist in infected individuals has generally been attributed to viral latency, thought to render them invisible to immune recognition, and/or to their compartmentalization in anatomical sites that are poorly accessible to immune effectors. Recent data from ex vivo studies have led us to propose that reservoir-harboring cells may additionally have been selected for intrinsic resistance to CD8+ T cells, limiting their elimination even in the context of antigen expression. Here, we draw on knowledge from tumor immunoediting to discuss potential mechanisms by which clones of HIV reservoir-harboring cells may resist elimination by CD8+ T cells. The establishment of such parallels may provide a premise for testing therapeutics designed to sensitize tumor cells to immune-mediated elimination as novel approaches aimed at curing HIV infection.
Collapse
Affiliation(s)
- Szu-Han Huang
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Chase D. McCann
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| | - Talia M. Mota
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Chao Wang
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Steven M. Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - R. Brad Jones
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| |
Collapse
|
45
|
McManus WR, Bale MJ, Spindler J, Wiegand A, Musick A, Patro SC, Sobolewski MD, Musick VK, Anderson EM, Cyktor JC, Halvas EK, Shao W, Wells D, Wu X, Keele BF, Milush JM, Hoh R, Mellors JW, Hughes SH, Deeks SG, Coffin JM, Kearney MF. HIV-1 in lymph nodes is maintained by cellular proliferation during antiretroviral therapy. J Clin Invest 2019; 129:4629-4642. [PMID: 31361603 PMCID: PMC6819093 DOI: 10.1172/jci126714] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
To investigate the possibility that HIV-1 replication in lymph nodes sustains the reservoir during ART, we looked for evidence of viral replication in 5 donors after up to 13 years of viral suppression. We characterized proviral populations in lymph nodes and peripheral blood before and during ART, evaluated the levels of viral RNA expression in single lymph node and blood cells, and characterized the proviral integration sites in paired lymph node and blood samples. Proviruses with identical sequences, identical integration sites, and similar levels of RNA expression were found in lymph nodes and blood samples collected during ART, and no single sequence with significant divergence from the pretherapy population was present in either blood or lymph nodes. These findings show that all detectable persistent HIV-1 infection is consistent with maintenance in lymph nodes by clonal proliferation of cells infected before ART and not by ongoing viral replication during ART.
Collapse
Affiliation(s)
- William R. McManus
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Michael J. Bale
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jonathan Spindler
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Ann Wiegand
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Andrew Musick
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Sean C. Patro
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | | | - Victoria K. Musick
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Elizabeth M. Anderson
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Joshua C. Cyktor
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elias K. Halvas
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wei Shao
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Daria Wells
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Xiaolin Wu
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F. Keele
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Rebecca Hoh
- Department of Medicine, UCSF, San Francisco, California, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Steven G. Deeks
- Department of Medicine, UCSF, San Francisco, California, USA
| | - John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
46
|
Ferris AL, Wells DW, Guo S, Del Prete GQ, Swanstrom AE, Coffin JM, Wu X, Lifson JD, Hughes SH. Clonal expansion of SIV-infected cells in macaques on antiretroviral therapy is similar to that of HIV-infected cells in humans. PLoS Pathog 2019; 15:e1007869. [PMID: 31291371 PMCID: PMC6619828 DOI: 10.1371/journal.ppat.1007869] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Clonal expansion of HIV infected cells plays an important role in the formation and persistence of the reservoir that allows the virus to persist, in DNA form, despite effective antiretroviral therapy. We used integration site analysis to ask if there is a similar clonal expansion of SIV infected cells in macaques. We show that the distribution of HIV and SIV integration sites in vitro is similar and that both viruses preferentially integrate in many of the same genes. We obtained approximately 8000 integration sites from blood samples taken from SIV-infected macaques prior to the initiation of ART, and from blood, spleen, and lymph node samples taken at necropsy. Seven clones were identified in the pre-ART samples; one persisted for a year on ART. An additional 100 clones were found only in on-ART samples; a number of these clones were found in more than one tissue. The timing and extent of clonal expansion of SIV-infected cells in macaques and HIV-infected cells in humans is quite similar. This suggests that SIV-infected macaques represent a useful model of the clonal expansion of HIV infected cells in humans that can be used to evaluate strategies intended to control or eradicate the viral reservoir.
Collapse
Affiliation(s)
- Andrea L. Ferris
- HIV Dynamics and Replication Program, National Cancer Institute Frederick, National Institutes of Health, Frederick, MD, United States of America
| | - David W. Wells
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick MD, United States of America
| | - Shuang Guo
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick MD, United States of America
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Adrienne E. Swanstrom
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston MA, United States of America
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick MD, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, National Cancer Institute Frederick, National Institutes of Health, Frederick, MD, United States of America
| |
Collapse
|
47
|
Bons E, Regoes RR. Virus dynamics and phyloanatomy: Merging population dynamic and phylogenetic approaches. Immunol Rev 2019; 285:134-146. [PMID: 30129202 DOI: 10.1111/imr.12688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In evolutionary biology and epidemiology, phylodynamic methods are widely used to infer population biological characteristics, such as the rates of replication, death, migration, or, in the epidemiological context, pathogen spread. More recently, these methods have been used to elucidate the dynamics of viruses within their hosts. Especially the application of phylogeographic approaches has the potential to shed light on anatomical colonization pathways and the exchange of viruses between distinct anatomical compartments. We and others have termed this phyloanatomy. Here, we review the promise and challenges of phyloanatomy, and compare them to more classical virus dynamics and population genetic approaches. We argue that the extremely strong selection pressures that exist within the host may represent the main obstacle to reliable phyloanatomic analysis.
Collapse
Affiliation(s)
- Eva Bons
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Coffin JM, Wells DW, Zerbato JM, Kuruc JD, Guo S, Luke BT, Eron JJ, Bale M, Spindler J, Simonetti FR, Hill S, Kearney MF, Maldarelli F, Wu X, Mellors JW, Hughes SH. Clones of infected cells arise early in HIV-infected individuals. JCI Insight 2019; 4:128432. [PMID: 31217357 PMCID: PMC6629130 DOI: 10.1172/jci.insight.128432] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/16/2019] [Indexed: 01/30/2023] Open
Abstract
In HIV-infected individuals on long-term antiretroviral therapy (ART), more than 40% of the infected cells are in clones. Although most HIV proviruses present in individuals on long-term ART are defective, including those in clonally expanded cells, there is increasing evidence that clones carrying replication-competent proviruses are common in patients on long-term ART and form part of the HIV reservoir that makes it impossible to cure HIV infection with current ART alone. Given the importance of clonal expansion in HIV persistence, we determined how soon after HIV acquisition infected clones can grow large enough to be detected (clones larger than ca. 1 × 105 cells). We studied 12 individuals sampled in early HIV infection (Fiebig stage III-V/VI) and 5 who were chronically infected. The recently infected individuals were started on ART at or near the time of diagnosis. We isolated more than 6,500 independent integration sites from peripheral blood mononuclear cells before ART was initiated and after 0.5-18 years of suppressive ART. Some infected clones could be detected approximately 4 weeks after HIV infection and some of these clones persisted for years. The results help to explain how the reservoir is established early and persists for years.
Collapse
Affiliation(s)
- John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | | | - Jennifer M. Zerbato
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joann D. Kuruc
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Brian T. Luke
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick Maryland, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael Bale
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, Maryland, USA
| | - Jonathan Spindler
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, Maryland, USA
| | | | - Shawn Hill
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, Maryland, USA
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, Maryland, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, Maryland, USA
| | | | - John W. Mellors
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, Maryland, USA
| |
Collapse
|
49
|
Pitman MC, Lau JSY, McMahon JH, Lewin SR. Barriers and strategies to achieve a cure for HIV. Lancet HIV 2019; 5:e317-e328. [PMID: 29893245 DOI: 10.1016/s2352-3018(18)30039-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/14/2022]
Abstract
9 years since the report of a cure for HIV after C-C chemokine receptor type 5 Δ32 stem cell transplantation, no other case of HIV cure has been reported, despite much research. However, substantial progress has been made in understanding the biology of the latent HIV reservoir, and in measuring the amount of virus that persists after antiretroviral therapy (ART) with increasingly sophisticated approaches. This knowledge is being translated into a long pipeline of clinical trials seeking to reduce viral persistence in participants on suppressive treatment and ultimately to allow safe cessation of ART. In this Review, we discuss the main barriers preventing the development of an HIV cure, methods used to measure HIV persistence in individuals on ART, clinical strategies that aim to cure HIV, and future directions for studies in the field of HIV cure research.
Collapse
Affiliation(s)
- Matthew C Pitman
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jillian S Y Lau
- Department of Infectious Diseases, Monash University, Alfred Hospital, Melbourne, VIC, Australia
| | - James H McMahon
- Department of Infectious Diseases, Monash University, Alfred Hospital, Melbourne, VIC, Australia; Department of Infectious Diseases, Monash Medical Centre, Clayton, VIC, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, and Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Infectious Diseases, Monash University, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
50
|
Bandera A, Gori A, Clerici M, Sironi M. Phylogenies in ART: HIV reservoirs, HIV latency and drug resistance. Curr Opin Pharmacol 2019; 48:24-32. [PMID: 31029861 DOI: 10.1016/j.coph.2019.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 11/17/2022]
Abstract
Combination antiretroviral therapy (ART) has significantly reduced the morbidity and mortality resulting from HIV infection. ART is, however, unable to eradicate HIV, which persists latently in several cell types and tissues. Phylogenetic analyses suggested that the proliferation of cells infected before ART initiation is mainly responsible for residual viremia, although controversy still exists. Conversely, it is widely accepted that drug resistance mutations (DRMs) do not appear during ART in patients with suppressed viral loads. Studies based on sequence clustering have in fact indicated that, at least in developed countries, HIV-infected ART-naive patients are the major source of drug-resistant viruses. Analysis of longitudinally sampled sequences have also shown that DRMs have variable fitness costs, which are strongly influenced by the viral genetic background.
Collapse
Affiliation(s)
- Alessandra Bandera
- Infectious Diseases Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy; Department of Pathophysiology and Transplantation, School of Medicine and Surgery, University of Milan, 20090 Milan, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy; Department of Pathophysiology and Transplantation, School of Medicine and Surgery, University of Milan, 20090 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, School of Medicine and Surgery, University of Milan, 20090 Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy.
| |
Collapse
|