1
|
Bi C, Liu B, Gao P, Wang C, Fang S, Huo Z, Song Q, Dong D, Wu X, Li G. RAGE deficiency ameliorates abdominal aortic aneurysm progression. Inflamm Res 2025; 74:63. [PMID: 40244438 DOI: 10.1007/s00011-025-02027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a vascular disease characterized by inflammation and arterial wall degradation. The receptor for advanced glycation end products (RAGE) plays a pivotal role in regulating inflammatory pathways, but its specific contribution to AAA pathogenesis remains unclear. PURPOSE This study aimed to investigate the role of RAGE in AAA development by examining its expression in human and mice AAA tissues and exploring the effects of RAGE deficiency on aneurysm progression, macrophage polarization, and inflammatory responses. METHODS RAGE expression was analyzed in human AAA samples and porcine pancreatic elastase (PPE) induced AAA mouse models using Western blotting, immunohistochemistry, and immunofluorescence. In vivo RAGE-deficient (RAGE-/-) mice were generated to assess the impact of RAGE knockout on AAA progression. In vitro experiments utilized RAW264.7 transfected with RAGE-targeting siRNA to study macrophage polarization and NF-κB signaling. RESULTS RAGE expression was elevated in AAA tissues, particularly in macrophages. RAGE-/- mice exhibited reduced AAA incidence, mortality, and aortic dilation compared to wild-type mice. Histological analysis showed preserved elastic fibers and smooth muscle layers, along with decreased inflammatory cell infiltration and MMP2/MMP9 expression. RAGE deficiency inhibited M1-like macrophage polarization and pro-inflammatory cytokine secretion, mediated through suppression of the NF-κB pathway. CONCLUSIONS RAGE deficiency mitigates AAA progression by modulating macrophage polarization and reducing inflammation via the NF-κB pathway. These findings highlight RAGE as a potential therapeutic target for AAA treatment.
Collapse
Affiliation(s)
- Cong Bi
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Bingqi Liu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Peixian Gao
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chuanle Wang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Sheng Fang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Zhengkun Huo
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Qingpeng Song
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Dianning Dong
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Pedreañez A, Mosquera-Sulbaran JA, Tene D. Role of the receptor for advanced glycation end products in the severity of SARS-CoV-2 infection in diabetic patients. Diabetol Int 2024; 15:732-744. [PMID: 39469543 PMCID: PMC11512988 DOI: 10.1007/s13340-024-00746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/17/2024] [Indexed: 10/30/2024]
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a severe disease in older adults and in individuals with associated comorbidities such as diabetes mellitus. Patients with diabetes infected with SARS-CoV-2 are more likely to develop severe pneumonia, hospitalization, and mortality compared with infected non-diabetic patients. During diabetes, hyperglycemia contributes to the maintenance of a low-grade inflammatory state which has been implicated in the microvascular and macrovascular complications associated with this pathology. The receptor for advanced glycation end products (RAGE) is a multi-ligand pattern recognition receptor, expressed on a wide variety of cells, which participates as an important mediator of inflammatory responses in many diseases, including lung diseases. This review highlights the role of RAGE in the pathophysiology of COVID-19 with special emphasis on diabetic patients. These data could explain the severity of the disease, positioning it as a key therapeutic target in the clinical management of this infection.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Apartado Postal: 23, Maracaibo 4001-A, Maracaibo, Zulia Venezuela
| | - Jesús A. Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas “Dr. Américo Negrette”, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Diego Tene
- Universidad Nacional del Chimborazo, Facultad de Ciencias de la Salud, Riobamba, Ecuador
| |
Collapse
|
3
|
Hernandez R, Li X, Shi J, Dave TR, Zhou T, Chen Q, Zhou C. Paternal hypercholesterolemia elicits sex-specific exacerbation of atherosclerosis in offspring. JCI Insight 2024; 9:e179291. [PMID: 39253968 PMCID: PMC11385100 DOI: 10.1172/jci.insight.179291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Emerging studies suggest that various parental exposures affect offspring cardiovascular health, yet the specific mechanisms, particularly the influence of paternal cardiovascular disease (CVD) risk factors on offspring cardiovascular health, remain elusive. The present study explores how paternal hypercholesterolemia affects offspring atherosclerosis development using the LDL receptor-deficient (LDLR-/-) mouse model. We found that paternal high-cholesterol diet feeding led to significantly increased atherosclerosis in F1 female, but not male, LDLR-/- offspring. Transcriptomic analysis highlighted that paternal hypercholesterolemia stimulated proatherogenic genes, including Ccn1 and Ccn2, in the intima of female offspring. Sperm small noncoding RNAs (sncRNAs), particularly transfer RNA-derived (tRNA-derived) small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs), contribute to the intergenerational transmission of paternally acquired metabolic phenotypes. Using a newly developed PANDORA-Seq method, we identified that high-cholesterol feeding elicited changes in sperm tsRNA/rsRNA profiles that were undetectable by traditional RNA-Seq, and these altered sperm sncRNAs were potentially key factors mediating paternal hypercholesterolemia-elicited atherogenesis in offspring. Interestingly, high-cholesterol feeding altered sncRNA biogenesis-related gene expression in the epididymis but not testis of LDLR-/- sires; this may have led to the modified sperm sncRNA landscape. Our results underscore the sex-specific intergenerational effect of paternal hypercholesterolemia on offspring cardiovascular health and contribute to the understanding of chronic disease etiology originating from parental exposures.
Collapse
Affiliation(s)
- Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
- Molecular Medicine Program, Department of Human Genetics, and
- Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Tejasvi R. Dave
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and
- Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| |
Collapse
|
4
|
Apte M, Zambre S, Pisar P, Roy B, Tupe R. Decoding the role of aldosterone in glycation-induced diabetic complications. Biochem Biophys Res Commun 2024; 721:150107. [PMID: 38781658 DOI: 10.1016/j.bbrc.2024.150107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Diabetes-mediated development of micro and macro-vascular complications is a global concern. One of the factors is hyperglycemia induced the non-enzymatic formation of advanced glycation end products (AGEs). Accumulated AGEs bind with receptor of AGEs (RAGE) causing inflammation, oxidative stress and extracellular matrix proteins (ECM) modifications responsible for fibrosis, cell damage and tissue remodeling. Moreover, during hyperglycemia, aldosterone (Aldo) secretion increases, and its interaction with mineralocorticoid receptor (MR) through genomic and non-genomic pathways leads to inflammation and fibrosis. Extensive research on individual involvement of AGEs-RAGE and Aldo-MR pathways in the development of diabetic nephropathy (DN), cardiovascular diseases (CVDs), and impaired immune system has led to the discovery of therapeutic drugs. Despite mutual repercussions, the cross-talk between AGEs-RAGE and Aldo-MR pathways remains unresolved. Hence, this review focuses on the possible interaction of Aldo and glycation in DN and CVDs, considering the clinical significance of mutual molecular targets.
Collapse
Affiliation(s)
- Mayura Apte
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Saee Zambre
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Pratiksha Pisar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Rashmi Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
5
|
Gasparotto J, Somensi N, Girardi CS, Bittencourt RR, de Oliveira LM, Hoefel LP, Scheibel IM, Peixoto DO, Moreira JCF, Outeiro TF, Gelain DP. Is it all the RAGE? Defining the role of the receptor for advanced glycation end products in Parkinson's disease. J Neurochem 2024; 168:1608-1624. [PMID: 37381043 DOI: 10.1111/jnc.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is a transmembrane receptor that belongs to the immunoglobulin superfamily and is extensively associated with chronic inflammation in non-transmissible diseases. As chronic inflammation is consistently present in neurodegenerative diseases, it was largely assumed that RAGE could act as a critical modulator of neuroinflammation in Parkinson's disease (PD), similar to what was reported for Alzheimer's disease (AD), where RAGE is postulated to mediate pro-inflammatory signaling in microglia by binding to amyloid-β peptide. However, accumulating evidence from studies of RAGE in PD models suggests a less obvious scenario. Here, we review physiological aspects of RAGE and address the current questions about the potential involvement of this receptor in the cellular events that may be critical for the development and progression of PD, exploring possible mechanisms beyond the classical view of the microglial activation/neuroinflammation/neurodegeneration axis that is widely assumed to be the general mechanism of RAGE action in the adult brain.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Nauana Somensi
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carolina Saibro Girardi
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Reykla Ramon Bittencourt
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Martinewski de Oliveira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Piloneto Hoefel
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ingrid Matsubara Scheibel
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Oppermann Peixoto
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Daniel Pens Gelain
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Seizer P, von Ungern-Sternberg SNI, Haug V, Dicenta V, Rosa A, Butt E, Nöthel M, Rohlfing AK, Sigle M, Nawroth PP, Nussbaum C, Sperandio M, Kusch C, Meub M, Sauer M, Münzer P, Bieber K, Stanger A, Mack AF, Huber R, Brand K, Lehners M, Feil R, Poso A, Krutzke K, Schäffer TE, Nieswandt B, Borst O, May AE, Zernecke A, Gawaz M, Heinzmann D. Cyclophilin A is a ligand for RAGE in thrombo-inflammation. Cardiovasc Res 2024; 120:385-402. [PMID: 38175781 DOI: 10.1093/cvr/cvad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 01/06/2024] Open
Abstract
AIMS Cyclophilin A (CyPA) induces leucocyte recruitment and platelet activation upon release into the extracellular space. Extracellular CyPA therefore plays a critical role in immuno-inflammatory responses in tissue injury and thrombosis upon platelet activation. To date, CD147 (EMMPRIN) has been described as the primary receptor mediating extracellular effects of CyPA in platelets and leucocytes. The receptor for advanced glycation end products (RAGE) shares inflammatory and prothrombotic properties and has also been found to have similar ligands as CD147. In this study, we investigated the role of RAGE as a previously unknown interaction partner for CyPA. METHODS AND RESULTS Confocal imaging, proximity ligation, co-immunoprecipitation, and atomic force microscopy were performed and demonstrated an interaction of CyPA with RAGE on the cell surface. Static and dynamic cell adhesion and chemotaxis assays towards extracellular CyPA using human leucocytes and leucocytes from RAGE-deficient Ager-/- mice were conducted. Inhibition of RAGE abrogated CyPA-induced effects on leucocyte adhesion and chemotaxis in vitro. Accordingly, Ager-/- mice showed reduced leucocyte recruitment and endothelial adhesion towards CyPA in vivo. In wild-type mice, we observed a downregulation of RAGE on leucocytes when endogenous extracellular CyPA was reduced. We furthermore evaluated the role of RAGE for platelet activation and thrombus formation upon CyPA stimulation. CyPA-induced activation of platelets was found to be dependent on RAGE, as inhibition of RAGE, as well as platelets from Ager-/- mice showed a diminished activation and thrombus formation upon CyPA stimulation. CyPA-induced signalling through RAGE was found to involve central signalling pathways including the adaptor protein MyD88, intracellular Ca2+ signalling, and NF-κB activation. CONCLUSION We propose RAGE as a hitherto unknown receptor for CyPA mediating leucocyte as well as platelet activation. The CyPA-RAGE interaction thus represents a novel mechanism in thrombo-inflammation.
Collapse
Affiliation(s)
- Peter Seizer
- Department of Cardiology and Angiology, Universitätsklinikum Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Department of Cardiology and Angiology, Ostalbklinikum Aalen, Aalen, Germany
| | - Saskia N I von Ungern-Sternberg
- Department of Cardiology and Angiology, Universitätsklinikum Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Verena Haug
- Department of Cardiology and Angiology, Universitätsklinikum Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Valerie Dicenta
- Department of Cardiology and Angiology, Universitätsklinikum Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Annabelle Rosa
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Elke Butt
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Moritz Nöthel
- Department of Internal Medicine II, Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, Universitätsklinikum Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Manuel Sigle
- Department of Cardiology and Angiology, Universitätsklinikum Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Peter P Nawroth
- Department of Internal Medicine 1 and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Joint Heidelberg-ICD Translational Diabetes Program, Helmholtz-Zentrum, Munich, Germany
| | - Claudia Nussbaum
- Division of Neonatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
| | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians University Munich, Munich, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Munich Heart Alliance Partner Site, Munich, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Mara Meub
- Department of Biotechnology und Biophysics, Julius-Maximilians University, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology und Biophysics, Julius-Maximilians University, Würzburg, Germany
| | - Patrick Münzer
- Department of Cardiology and Angiology, Universitätsklinikum Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Tübingen, Germany
| | - Kristin Bieber
- Department of Hematology, Oncology, Immunology und Pulmonology, Universitätsklinikum Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anna Stanger
- Department of Hematology, Oncology, Immunology und Pulmonology, Universitätsklinikum Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analytics, Eberhard Karls University Tübingen, Tübingen, Germany
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Moritz Lehners
- Interfakultäres Institut für Biochemie, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Antti Poso
- Department of Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Tübingen, Germany
- Excellence Cluster 'Controlling Microbes to Fight Infections' (CMFI), Tübingen, Germany
| | - Konstantin Krutzke
- Institute of Applied Physics, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, Universitätsklinikum Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Tübingen, Germany
| | - Andreas E May
- Department of Cardiology, Innere Medizin I, Klinikum Memmingen, Memmingen, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, Universitätsklinikum Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - David Heinzmann
- Department of Cardiology and Angiology, Universitätsklinikum Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Rojas A, Lindner C, Schneider I, Gonzalez I, Uribarri J. The RAGE Axis: A Relevant Inflammatory Hub in Human Diseases. Biomolecules 2024; 14:412. [PMID: 38672429 PMCID: PMC11048448 DOI: 10.3390/biom14040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
In 1992, a transcendental report suggested that the receptor of advanced glycation end-products (RAGE) functions as a cell surface receptor for a wide and diverse group of compounds, commonly referred to as advanced glycation end-products (AGEs), resulting from the non-enzymatic glycation of lipids and proteins in response to hyperglycemia. The interaction of these compounds with RAGE represents an essential element in triggering the cellular response to proteins or lipids that become glycated. Although initially demonstrated for diabetes complications, a growing body of evidence clearly supports RAGE's role in human diseases. Moreover, the recognizing capacities of this receptor have been extended to a plethora of structurally diverse ligands. As a result, it has been acknowledged as a pattern recognition receptor (PRR) and functionally categorized as the RAGE axis. The ligation to RAGE leads the initiation of a complex signaling cascade and thus triggering crucial cellular events in the pathophysiology of many human diseases. In the present review, we intend to summarize basic features of the RAGE axis biology as well as its contribution to some relevant human diseases such as metabolic diseases, neurodegenerative, cardiovascular, autoimmune, and chronic airways diseases, and cancer as a result of exposure to AGEs, as well as many other ligands.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile;
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile;
| | - Ileana Gonzalez
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Jaime Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| |
Collapse
|
8
|
Pasupulati AK, Nagati V, Paturi ASV, Reddy GB. Non-enzymatic glycation and diabetic kidney disease. VITAMINS AND HORMONES 2024; 125:251-285. [PMID: 38997166 DOI: 10.1016/bs.vh.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Chronic diabetes leads to various complications including diabetic kidney disease (DKD). DKD is a major microvascular complication and the leading cause of morbidity and mortality in diabetic patients. Varying degrees of proteinuria and reduced glomerular filtration rate are the cardinal clinical manifestations of DKD that eventually progress into end-stage renal disease. Histopathologically, DKD is characterized by renal hypertrophy, mesangial expansion, podocyte injury, glomerulosclerosis, and tubulointerstitial fibrosis, ultimately leading to renal replacement therapy. Amongst the many mechanisms, hyperglycemia contributes to the pathogenesis of DKD via a mechanism known as non-enzymatic glycation (NEG). NEG is the irreversible conjugation of reducing sugars onto a free amino group of proteins by a series of events, resulting in the formation of initial Schiff's base and an Amadori product and to a variety of advanced glycation end products (AGEs). AGEs interact with cognate receptors and evoke aberrant signaling cascades that execute adverse events such as oxidative stress, inflammation, phenotypic switch, complement activation, and cell death in different kidney cells. Elevated levels of AGEs and their receptors were associated with clinical and morphological manifestations of DKD. In this chapter, we discussed the mechanism of AGEs accumulation, AGEs-induced cellular and molecular events in the kidney and their impact on the pathogenesis of DKD. We have also reflected upon the possible options to curtail the AGEs accumulation and approaches to prevent AGEs mediated adverse renal outcomes.
Collapse
Affiliation(s)
- Anil K Pasupulati
- Department of Biochemistry, University of Hyderabad, Hyderabad, India.
| | - Veerababu Nagati
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | - Atreya S V Paturi
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | - G Bhanuprakash Reddy
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
9
|
Katsoulis O, Guo R, Singanayagam A. When It Comes to COVID-19, Inflammation Is All the RAGE. Am J Respir Cell Mol Biol 2023; 69:489-490. [PMID: 37489933 PMCID: PMC10633835 DOI: 10.1165/rcmb.2023-0227ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Affiliation(s)
- Orestis Katsoulis
- Department of Infectious Disease Imperial College London London, United Kingdom
| | - Rui Guo
- Department of Critical Care Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing, China
| | - Aran Singanayagam
- Department of Infectious Disease Imperial College London London, United Kingdom
| |
Collapse
|
10
|
Xia J, Wang J, Ying L, Huang R, Zhang K, Zhang R, Tang W, Xu Q, Lai D, Zhang Y, Hu Y, Zhang X, Zang R, Fan J, Shu Q, Xu J. RAGE Is a Receptor for SARS-CoV-2 N Protein and Mediates N Protein-induced Acute Lung Injury. Am J Respir Cell Mol Biol 2023; 69:508-520. [PMID: 37478333 PMCID: PMC10633841 DOI: 10.1165/rcmb.2022-0351oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N-protein) increases early in body fluids during infection and has recently been identified as a direct inducer for lung injury. However, the signal mechanism of N-protein in the lung inflammatory response remains poorly understood. The goal of this study was to determine whether RAGE (receptor for advanced glycation endproducts) participated in N-protein-induced acute lung injury. The binding between N-protein and RAGE was examined via assays for protein-protein interaction. To determine the signaling mechanism in vitro, cells were treated with recombinant N-protein and assayed for the activation of the RAGE/MAPK (mitogen-activated protein kinase)/NF-ĸB pathway. RAGE deficiency mice and antagonist were used to study N-protein-induced acute lung injury in vivo. Binding between N-protein and RAGE was confirmed via flow cytometry-based binding assay, surface plasmon resonance, and ELISA. Pull-down and coimmunoprecipitation assays revealed that N-protein bound RAGE via both N-terminal and C-terminal domains. In vitro, N-protein activated the RAGE-ERK1/2-NF-ĸB signaling pathway and induced a proinflammatory response. RAGE deficiency subdued N-protein-induced proinflammatory signaling and response. In vivo, RAGE was upregulated in the BAL and lung tissue after recombinant N-protein insult. RAGE deficiency and small molecule antagonist partially protected mice from N-protein-induced acute lung injury. Our study demonstrated that RAGE is a receptor for N-protein. RAGE is partially responsible for N-protein-induced acute lung injury and has the potential to become a therapeutic target for treating coronavirus disease.
Collapse
Affiliation(s)
- Jie Xia
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiangmei Wang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Liyang Ying
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruoqiong Huang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Kai Zhang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; and
| | - Ruoyang Zhang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Wenqi Tang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Qi Xu
- Hangzhou Medical College, Hangzhou, China
| | - Dengming Lai
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Zhang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Yaoqin Hu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaodie Zhang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruoxi Zang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiajie Fan
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianguo Xu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
11
|
Xiao Z, Li Y, Xiong L, Liao J, Gao Y, Luo Y, Wang Y, Chen T, Yu D, Wang T, Zhang C, Chen Z. Recent Advances in Anti-Atherosclerosis and Potential Therapeutic Targets for Nanomaterial-Derived Drug Formulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302918. [PMID: 37698552 PMCID: PMC10582432 DOI: 10.1002/advs.202302918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Indexed: 09/13/2023]
Abstract
Atherosclerosis, the leading cause of death worldwide, is responsible for ≈17.6 million deaths globally each year. Most therapeutic drugs for atherosclerosis have low delivery efficiencies and significant side effects, and this has hampered the development of effective treatment strategies. Diversified nanomaterials can improve drug properties and are considered to be key for the development of improved treatment strategies for atherosclerosis. The pathological mechanisms underlying atherosclerosis is summarized, rationally designed nanoparticle-mediated therapeutic strategies, and potential future therapeutic targets for nanodelivery. The content of this study reveals the potential and challenges of nanoparticle use for the treatment of atherosclerosis and highlights new effective design ideas.
Collapse
Affiliation(s)
- Zhicheng Xiao
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yi Li
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Jun Liao
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yijun Gao
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yunchun Luo
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Ting Chen
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Dahai Yu
- Weihai Medical Area970 Hospital of Joint Logistic Support Force of PLAWeihai264200China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Chuan Zhang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityNew York11439USA
| |
Collapse
|
12
|
Zhang I, Liu S, Zhang L, Liang R, Fang Q, Zhao J, Ren L, Medina E, Filippov A, Bonjoc KJ, Chaudhry A, Dayyani M, Bild A, Badie B. RAGE ablation attenuates glioma progression and enhances tumor immune responses by suppressing galectin-3 expression. Neuro Oncol 2023; 25:886-898. [PMID: 36394567 PMCID: PMC10158202 DOI: 10.1093/neuonc/noac250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Malignant gliomas consist of heterogeneous cellular components that have adopted multiple overlapping escape mechanisms that overcome both targeted and immune-based therapies. The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily that is activated by diverse proinflammatory ligands present in the tumor microenvironment. Activation of RAGE by its ligands stimulates multiple signaling pathways that are important in tumor growth and invasion. However, treatment strategies that only target the interaction of RAGE with its ligands are ineffective as cancer therapies due to the abundance and diversity of exogenous RAGE ligands in gliomas. METHODS As an alternative approach to RAGE ligand inhibition, we evaluated the genetic ablation of RAGE on the tumorigenicity of 2 syngeneic murine glioma models. RAGE expression was inhibited in the GL261 and K-Luc gliomas by shRNA and CRSPR/Cas9 techniques prior to intracranial implantation. Tumor growth, invasion, and inflammatory responses were examined by histology, survival, Nanostring, and flow cytometry. RESULTS Intracellular RAGE ablation abrogated glioma growth and invasion by suppressing AKT and ERK1/2 activities and by downregulating MMP9 expression. Interestingly, RAGE inhibition in both glioma models enhanced tumor inflammatory responses by downregulating the expression of galectin-3 and potentiated immunotherapy responses to immune checkpoint blockade. CONCLUSIONS We demonstrated that intracellular RAGE ablation suppresses multiple cellular pathways that are important in glioma progression, invasion, and immune escape. These findings strongly support the development of RAGE ablation as a treatment strategy for malignant gliomas.
Collapse
Affiliation(s)
- Ian Y Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Shunan Liu
- Department of Pharmacology, The Pharmacy School of Jilin University, Changchun, Jilin Province, P.R. China
| | - Leying Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Rongrui Liang
- Department of Oncology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Qingxiao Fang
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Zhao
- Tianjin Union Medicine Center, Tianjin, 300123, P.R. China
| | - Lyuzhi Ren
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Eric F Medina
- Graduate Education Progr-BRI, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Aleksandr Filippov
- Graduate Education Progr-BRI, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Kimberley-Jane Bonjoc
- Imaging Administration, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Ammar Chaudhry
- Diagnostic Radiology, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Mojtaba Dayyani
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Andrea H Bild
- Medical Oncology, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Behnam Badie
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, USA
| |
Collapse
|
13
|
Hernandez R, Shi J, Liu J, Li X, Wu J, Zhao L, Zhou T, Chen Q, Zhou C. PANDORA-Seq unveils the hidden small noncoding RNA landscape in atherosclerosis of LDL receptor-deficient mice. J Lipid Res 2023; 64:100352. [PMID: 36871792 PMCID: PMC10119612 DOI: 10.1016/j.jlr.2023.100352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Small noncoding RNAs (sncRNAs) play diverse roles in numerous biological processes. While the widely used RNA sequencing (RNA-Seq) method has advanced sncRNA discovery, RNA modifications can interfere with the complementary DNA library construction process, preventing the discovery of highly modified sncRNAs including transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) that may have important functions in disease development. To address this technical obstacle, we recently developed a novel PANDORA-Seq (Panoramic RNA Display by Overcoming RNA Modification Aborted Sequencing) method to overcome RNA modification-elicited sequence interferences. To identify novel sncRNAs associated with atherosclerosis development, LDL receptor-deficient (LDLR-/-) mice were fed a low-cholesterol diet or high-cholesterol diet (HCD) for 9 weeks. Total RNAs isolated from the intima were subjected to PANDORA-Seq and traditional RNA-Seq. By overcoming RNA modification-elicited limitations, PANDORA-Seq unveiled an rsRNA/tsRNA-enriched sncRNA landscape in the atherosclerotic intima of LDLR-/- mice, which was strikingly different from that detected by traditional RNA-Seq. While microRNAs were the dominant sncRNAs detected by traditional RNA-Seq, PANDORA-Seq substantially increased the reads of rsRNAs and tsRNAs. PANDORA-Seq also detected 1,383 differentially expressed sncRNAs induced by HCD feeding, including 1,160 rsRNAs and 195 tsRNAs. One of HCD-induced intimal tsRNAs, tsRNA-Arg-CCG, may contribute to atherosclerosis development by regulating the proatherogenic gene expression in endothelial cells. Overall, PANDORA-Seq revealed a hidden rsRNA and tsRNA population associated with atherosclerosis development. These understudied tsRNAs and rsRNAs, which are much more abundant than microRNAs in the atherosclerotic intima of LDLR-/- mice, warrant further investigations.
Collapse
Affiliation(s)
- Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jake Wu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Molecular Medicine Program, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|
14
|
Taguchi K, Fukami K. RAGE signaling regulates the progression of diabetic complications. Front Pharmacol 2023; 14:1128872. [PMID: 37007029 PMCID: PMC10060566 DOI: 10.3389/fphar.2023.1128872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes, the ninth leading cause of death globally, is expected to affect 642 million people by 2040. With the advancement of an aging society, the number of patients with diabetes having multiple underlying diseases, such as hypertension, obesity, and chronic inflammation, is increasing. Thus, the concept of diabetic kidney disease (DKD) has been accepted worldwide, and comprehensive treatment of patients with diabetes is required. Receptor for advanced glycation endproducts (RAGE), a multiligand receptor, belonging to the immunoglobulin superfamily is extensively expressed throughout the body. Various types of ligands, including advanced glycation endproducts (AGEs), high mobility group box 1, S100/calgranulins, and nucleic acids, bind to RAGE, and then induces signal transduction to amplify the inflammatory response and promote migration, invasion, and proliferation of cells. Furthermore, the expression level of RAGE is upregulated in patients with diabetes, hypertension, obesity, and chronic inflammation, suggesting that activation of RAGE is a common denominator in the context of DKD. Considering that ligand–and RAGE–targeting compounds have been developed, RAGE and its ligands can be potent therapeutic targets for inhibiting the progression of DKD and its complications. Here, we aimed to review recent literature on various signaling pathways mediated by RAGE in the pathogenesis of diabetic complications. Our findings highlight the possibility of using RAGE–or ligand–targeted therapy for treating DKD and its complications.
Collapse
|
15
|
Demirer B, Samur G. Possible effects of dietary advanced glycation end products on maternal and fetal health: a review. Nutr Rev 2022:6762058. [PMID: 36250798 DOI: 10.1093/nutrit/nuac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Excessive accumulation of advanced glycation end products (AGEs) in the body has been associated with many adverse health conditions. The common point of the pathologies associated at this point is oxidative stress and inflammation. Pregnancy is an important period in which many physiological, psychological, and biological changes are experienced. Along with the physiological changes that occur during this period, the mother maintaining an AGE-rich diet may cause an increase in the body's AGE pool and may increase oxidative stress and inflammation, as seen in healthy individuals. Studies have reported the negative effects of maternal AGE levels on maternal and fetal health during pregnancy. Although gestational diabetes, preeclampsia, endothelial dysfunction, and pelvic diseases constitute maternal complications, a number of pathological conditions such as intrauterine growth retardation, premature birth, neural tube defect, neurobehavioral developmental disorders, fetal death, and neonatal asphyxia constitute fetal complications. It is thought that the mechanisms of these complications have not been confirmed yet and more clinical studies are needed on this subject. The possible effects of dietary AGE levels during pregnancy on maternal and fetal health are examined in this review.
Collapse
Affiliation(s)
- Büşra Demirer
- Nutrition and Dietetics, Karabuk University, Karabuk, Turkey
| | - Gülhan Samur
- Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
16
|
Aerobic Exercise Training Reduces Atherogenesis Induced by Low-Sodium Diet in LDL Receptor Knockout Mice. Antioxidants (Basel) 2022; 11:antiox11102023. [PMID: 36290746 PMCID: PMC9598599 DOI: 10.3390/antiox11102023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
This study investigated the efficacy of aerobic exercise training (AET) in the prevention of dyslipidemia, insulin resistance (IR), and atherogenesis induced by severe low-sodium (LS) diet. LDL receptor knockout (LDLR KO) mice were fed a low-sodium (LS) (0.15% NaCl) or normal-sodium (NS; 1.27% NaCl) diet, submitted to AET in a treadmill, 5 times/week, 60 min/day, 15 m/min, for 90 days, or kept sedentary. Blood pressure (BP), plasma total cholesterol (TC) and triglyceride (TG) concentrations, lipoprotein profile, and insulin sensitivity were evaluated at the end of the AET protocol. Lipid infiltration, angiotensin II type 1 receptor (AT1), receptor for advanced glycation end products (RAGE), carboxymethyllysine (CML), and 4-hydroxynonenal (4-HNE) contents as well as gene expression were determined in the brachiocephalic trunk. BP and TC and gene expression were similar among groups. Compared to the NS diet, the LS diet increased vascular lipid infiltration, CML, RAGE, 4-HNE, plasma TG, LDL-cholesterol, and VLDL-TG. Conversely, the LS diet reduced vascular AT1 receptor, insulin sensitivity, HDL-cholesterol, and HDL-TG. AET prevented arterial lipid infiltration; increases in CML, RAGE, and 4-HNE contents; and reduced AT1 levels and improved LS-induced peripheral IR. The current study showed that AET counteracted the deleterious effects of chronic LS diet in an atherogenesis-prone model by ameliorating peripheral IR, lipid infiltration, CML, RAGE, 4-HNE, and AT1 receptor in the intima-media of the brachiocephalic trunk. These events occurred independently of the amelioration of plasma-lipid profile, which was negatively affected by the severe dietary-sodium restriction.
Collapse
|
17
|
Scavello F, Piacentini L, Castiglione S, Zeni F, Macrì F, Casaburo M, Vinci MC, Colombo GI, Raucci A. Effects of RAGE Deletion on the Cardiac Transcriptome during Aging. Int J Mol Sci 2022; 23:ijms231911130. [PMID: 36232442 PMCID: PMC9569842 DOI: 10.3390/ijms231911130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiac aging is characterized by increased cardiomyocyte hypertrophy, myocardial stiffness, and fibrosis, which enhance cardiovascular risk. The receptor for advanced glycation end-products (RAGE) is involved in several age-related diseases. RAGE knockout (Rage−/−) mice show an acceleration of cardiac dimension changes and interstitial fibrosis with aging. This study identifies the age-associated cardiac gene expression signature induced by RAGE deletion. We analyzed the left ventricle transcriptome of 2.5-(Young), 12-(Middle age, MA), and 21-(Old) months-old female Rage−/− and C57BL/6N (WT) mice. By comparing Young, MA, and Old Rage−/− versus age-matched WT mice, we identified 122, 192, and 12 differently expressed genes, respectively. Functional inference analysis showed that RAGE deletion is associated with: (i) down-regulation of genes involved in antigen processing and presentation of exogenous antigen, adaptive immune response, and cellular responses to interferon beta and gamma in Young animals; (ii) up-regulation of genes related to fatty acid oxidation, cardiac structure remodeling and cellular response to hypoxia in MA mice; (iii) up-regulation of few genes belonging to complement activation and triglyceride biosynthetic process in Old animals. Our findings show that the age-dependent cardiac phenotype of Rage−/− mice is associated with alterations of genes related to adaptive immunity and cardiac stress pathways.
Collapse
Affiliation(s)
- Francesco Scavello
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Luca Piacentini
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Stefania Castiglione
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Filippo Zeni
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Federica Macrì
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Manuel Casaburo
- Animal Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Maria Cristina Vinci
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Gualtiero I. Colombo
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Correspondence: (G.I.C.); (A.R.); Tel.: +39-025-800-2464 (G.I.C.); +39-025-800-2802 (A.R.); Fax: +39-025-800-2342 (G.I.C. & A.R.)
| | - Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Animal Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Correspondence: (G.I.C.); (A.R.); Tel.: +39-025-800-2464 (G.I.C.); +39-025-800-2802 (A.R.); Fax: +39-025-800-2342 (G.I.C. & A.R.)
| |
Collapse
|
18
|
Curran CS, Kopp JB. RAGE pathway activation and function in chronic kidney disease and COVID-19. Front Med (Lausanne) 2022; 9:970423. [PMID: 36017003 PMCID: PMC9395689 DOI: 10.3389/fmed.2022.970423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 12/23/2022] Open
Abstract
The multi-ligand receptor for advanced glycation end-products (RAGE) and its ligands are contributing factors in autoimmunity, cancers, and infectious disease. RAGE activation is increased in chronic kidney disease (CKD) and coronavirus disease 2019 (COVID-19). CKD may increase the risk of COVID-19 severity and may also develop in the form of long COVID. RAGE is expressed in essentially all kidney cell types. Increased production of RAGE isoforms and RAGE ligands during CKD and COVID-19 promotes RAGE activity. The downstream effects include cellular dysfunction, tissue injury, fibrosis, and inflammation, which in turn contribute to a decline in kidney function, hypertension, thrombotic disorders, and cognitive impairment. In this review, we discuss the forms and mechanisms of RAGE and RAGE ligands in the kidney and COVID-19. Because various small molecules antagonize RAGE activity in animal models, targeting RAGE, its co-receptors, or its ligands may offer novel therapeutic approaches to slowing or halting progressive kidney disease, for which current therapies are often inadequate.
Collapse
Affiliation(s)
- Colleen S. Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
19
|
Aboolian A, Urner S, Roden M, Jha JC, Jandeleit-Dahm K. Diabetic Kidney Disease: From Pathogenesis to Novel Treatment Possibilities. Handb Exp Pharmacol 2022; 274:269-307. [PMID: 35318511 DOI: 10.1007/164_2021_576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the microvascular complications of diabetes is diabetic kidney disease (DKD), often leading to end stage renal disease (ESRD) in which patients require costly dialysis or transplantation. The silent onset and irreversible progression of DKD are characterized by a steady decline of the estimated glomerular filtration rate, with or without concomitant albuminuria. The diabetic milieu allows the complex pathophysiology of DKD to enter a vicious cycle by inducing the synthesis of excessive amounts of reactive oxygen species (ROS) causing oxidative stress, inflammation, and fibrosis. As no cure is available, intensive research is required to develop novel treatments possibilities. This chapter provides an overview of the important pathomechanisms identified in diabetic kidney disease, the currently established therapies, as well as recently developed novel therapeutic strategies in DKD.
Collapse
Affiliation(s)
- Ara Aboolian
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofia Urner
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Centre for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Jay Chandra Jha
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Karin Jandeleit-Dahm
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Department of Diabetes, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Johnson J, Jaggers RM, Gopalkrishna S, Dahdah A, Murphy AJ, Hanssen NMJ, Nagareddy PR. Oxidative Stress in Neutrophils: Implications for Diabetic Cardiovascular Complications. Antioxid Redox Signal 2022; 36:652-666. [PMID: 34148367 PMCID: PMC9057880 DOI: 10.1089/ars.2021.0116] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Neutrophil behavior and function are altered by hyperglycemia associated with diabetes. Aberrant activation by hyperglycemia causes neutrophils to respond with increased production of reactive oxidative species (ROS). Excess ROS, a signature of primed neutrophils, can intracellularly induce neutrophils to undergo NETosis, flooding surrounding tissues with ROS and damage-associated molecular patterns such as S100 calcium binding proteins (S100A8/A9). The cargo associated with NETosis also attracts more immune cells to the site and signals for increased immune cell production. This inflammatory response to diabetes can accelerate other associated conditions such as atherosclerosis and thrombosis, increasing the risk of cardiovascular disease. Recent Advances: As the prevalence of diabetes continues to grow, more attention has been focused on developing effective treatment options. Currently, glucose-lowering medications and insulin injections are the most widely utilized treatments. As the disease progresses, medications are usually stacked to maintain glucose at desired target levels, but this approach often fails and does not effectively reduce cardiovascular risk, even with the latest drugs. Critical Issues: Despite advances in treatment options, diabetes remains a progressive disease as glucose lowering alone has failed to abolish the associated cardiovascular complications. Future Directions: Significant interest is being generated in developing treatments that do not solely focus on glucose control but rather mitigate glucotoxicity. Several therapies have been proposed that target cellular dysfunction downstream of hyperglycemia, such as using antioxidants to scavenge ROS, inhibiting ROS production from NOX, and suppressing neutrophil release of S100A8/A9 proteins. Antioxid. Redox Signal. 36, 652-666.
Collapse
Affiliation(s)
- Jillian Johnson
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Robert M Jaggers
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sreejit Gopalkrishna
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Albert Dahdah
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Nordin M J Hanssen
- Amsterdam Diabetes Centrum, Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Prabhakara R Nagareddy
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
21
|
HMGB1 Promotes Lymphangiogenesis through the Activation of RAGE on M2 Macrophages in Laryngeal Squamous Cell Carcinoma. DISEASE MARKERS 2022; 2022:4487435. [PMID: 35280439 PMCID: PMC8916867 DOI: 10.1155/2022/4487435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022]
Abstract
Background. Receptor for advanced glycation end products (RAGE) is implicated in tumor biology. Released high mobility group box protein 1 (HMGB1) ligand binding to RAGE receptor in tumor cells promotes tumor progression. The mechanisms of HMGB1-RAGE signaling in M2 macrophages involved in lymphangiogenesis in laryngeal carcinoma remain poorly understood. Here, we assessed the effect of HMGB1-RAGE signaling on M2 macrophages in lymphangiogenesis. Methods. HMGB1, CD163, and D2-40 in laryngeal squamous cell carcinoma (LSCC,
), laryngeal precursor lesions (LPLs,
), and vocal polyp (VP,
) were analyzed by immunohistochemistry. THP-1 cell-expressed RAGE gene was knocked down and then polarized to M0 macrophages and M2 macrophages. IL-23, TNF-α, TGF-β, and IL-10 were measured by ELISA; IL-1β, IL-12, IL-10, and CCL-13 were evaluated by RT-qPCR, and CD206, CD163, and RAGE were evaluated by western blot to evaluate whether classical M2 macrophages were obtained. Conditioned media from RAGE+/- M0 macrophages and RAGE+/- M2 macrophages incubated in the presence or absence of HMGB1, anti-Toll-like receptor (TLR)2, anti-TLR4 antibodies, and anti-VEGF-C antibodies were collected separately for human dermal lymphatic endothelial cells (HDLEC) for proliferation, migration, lymphangiogenesis assay, and VEGF-C concentration analysis. Results. HMGB1 and M2 macrophage densities were increased in LSCC (
). HMGB1 and M2 macrophage densities were significantly correlated with lymphatic vessel density (LVD) in LSCC (
). The HMGB1 overexpression and higher M2 macrophage density were involved in lymph node metastasis (
) and poor prognosis (
). In vitro, conditioned medium from HMGB1-stimulated RAGE+ M2 macrophages activated lymphangiogenesis by upregulating the VEGF compared to controls (
). On the contrary, RAGE knockdown obviously decreased the corresponding effects of HMGB1-preconditioned M2 macrophages upon HDLEC (
). HMGB1-TLR pathway does not significantly increase HDLEC proliferation, migration, and lymphangiogenesis on M2 macrophages. Conclusions. HMGB1 promotes lymphangiogenesis by activation of RAGE on M2 macrophages. Targeting RAGE may provide an effective therapeutic strategy against M2 macrophages in LSCC patients with lymph node metastasis.
Collapse
|
22
|
Jessop F, Schwarz B, Scott D, Roberts LM, Bohrnsen E, Hoidal JR, Bosio CM. Impairing RAGE signaling promotes survival and limits disease pathogenesis following SARS-CoV-2 infection in mice. JCI Insight 2022; 7:155896. [PMID: 35076028 PMCID: PMC8855831 DOI: 10.1172/jci.insight.155896] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular and molecular mechanisms driving morbidity following SARS-CoV-2 infection have not been well defined. The receptor for advanced glycation end products (RAGE) is a central mediator of tissue injury and contributes to SARS-CoV-2 disease pathogenesis. In this study, we temporally delineated key cell and molecular events leading to lung injury in mice following SARS-CoV-2 infection and assessed efficacy of therapeutically targeting RAGE to improve survival. Early following infection, SARS-CoV-2 replicated to high titers within the lungs and evaded triggering inflammation and cell death. However, a significant necrotic cell death event in CD45– populations, corresponding with peak viral loads, was observed on day 2 after infection. Metabolic reprogramming and inflammation were initiated following this cell death event and corresponded with increased lung interstitial pneumonia, perivascular inflammation, and endothelial hyperplasia together with decreased oxygen saturation. Therapeutic treatment with the RAGE antagonist FPS-ZM1 improved survival in infected mice and limited inflammation and associated perivascular pathology. Together, these results provide critical characterization of disease pathogenesis in the mouse model and implicate a role for RAGE signaling as a therapeutic target to improve outcomes following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Forrest Jessop
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, and
| | - Benjamin Schwarz
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, and
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Lydia M. Roberts
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, and
| | - Eric Bohrnsen
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, and
| | - John R. Hoidal
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, and
| |
Collapse
|
23
|
Dale NC, Johnstone EKM, Pfleger KDG. GPCR heteromers: An overview of their classification, function and physiological relevance. Front Endocrinol (Lausanne) 2022; 13:931573. [PMID: 36111299 PMCID: PMC9468249 DOI: 10.3389/fendo.2022.931573] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are capable of interacting to form higher order structures such as homomers and heteromers. Heteromerisation in particular has implications for receptor function, with research showing receptors can attain unique expression, ligand binding, signalling and intracellular trafficking upon heteromerisation. As such, GPCR heteromers represent novel drug targets with extensive therapeutic potential. Changes to ligand affinity, efficacy and G protein coupling have all been described, with alterations to these pharmacological aspects now well accepted as common traits for heteromeric complexes. Changes in internalisation and trafficking kinetics, as well as β-arrestin interactions are also becoming more apparent, however, few studies to date have explicitly looked at the implications these factors have upon the signalling profile of a heteromer. Development of ligands to target GPCR heteromers both experimentally and therapeutically has been mostly concentrated on bivalent ligands due to difficulties in identifying and developing heteromer-specific ligands. Improving our understanding of the pharmacology and physiology of GPCR heteromers will enable further development of heteromer-specific ligands with potential to provide therapeutics with increased efficacy and decreased side effects.
Collapse
Affiliation(s)
- Natasha C. Dale
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Elizabeth K. M. Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
- *Correspondence: Kevin D. G. Pfleger, ; Elizabeth K. M. Johnstone,
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- Dimerix Limited, Nedlands, Australia
- *Correspondence: Kevin D. G. Pfleger, ; Elizabeth K. M. Johnstone,
| |
Collapse
|
24
|
Kinscherf NA, Pehar M. Role and Therapeutic Potential of RAGE Signaling in Neurodegeneration. Curr Drug Targets 2022; 23:1191-1209. [PMID: 35702767 PMCID: PMC9589927 DOI: 10.2174/1389450123666220610171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 01/03/2023]
Abstract
Activation of the receptor for advanced glycation end products (RAGE) has been shown to play an active role in the development of multiple neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Although originally identified as a receptor for advanced glycation end products, RAGE is a pattern recognition receptor able to bind multiple ligands. The final outcome of RAGE signaling is defined in a context and cell type specific manner and can exert both neurotoxic and neuroprotective functions. Contributing to the complexity of the RAGE signaling network, different RAGE isoforms with distinctive signaling capabilities have been described. Moreover, multiple RAGE ligands bind other receptors and RAGE antagonism can significantly affect their signaling. Here, we discuss the outcome of celltype specific RAGE signaling in neurodegenerative pathologies. In addition, we will review the different approaches that have been developed to target RAGE signaling and their therapeutic potential. A clear understanding of the outcome of RAGE signaling in a cell type- and disease-specific manner would contribute to advancing the development of new therapies targeting RAGE. The ability to counteract RAGE neurotoxic signaling while preserving its neuroprotective effects would be critical for the success of novel therapies targeting RAGE signaling.
Collapse
Affiliation(s)
- Noah Alexander Kinscherf
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, USA
| |
Collapse
|
25
|
Profiling novel pharmacology of receptor complexes using Receptor-HIT. Biochem Soc Trans 2021; 49:1555-1565. [PMID: 34436548 PMCID: PMC8421044 DOI: 10.1042/bst20201110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
Many receptors are able to undergo heteromerisation, leading to the formation of receptor complexes that may have pharmacological profiles distinct from those of the individual receptors. As a consequence of this, receptor heteromers can be classed as new drug targets, with the potential for achieving greater specificity and selectivity over targeting their constituent receptors. We have developed the Receptor-Heteromer Investigation Technology (Receptor-HIT), which enables the detection of receptor heteromers using a proximity-based reporter system such as bioluminescence resonance energy transfer (BRET). Receptor-HIT detects heteromers in live cells and in real time, by utilising ligand-induced signals that arise from altered interactions with specific biomolecules, such as ligands or proteins. Furthermore, monitoring the interaction between the receptors and the specific biomolecules generates functional information about the heteromer that can be pharmacologically quantified. This review will discuss various applications of Receptor-HIT, including its use with different classes of receptors (e.g. G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and others), its use to monitor receptor interactions both intracellularly and extracellularly, and also its use with genome-edited endogenous proteins.
Collapse
|
26
|
Garay-Sevilla ME, Rojas A, Portero-Otin M, Uribarri J. Dietary AGEs as Exogenous Boosters of Inflammation. Nutrients 2021; 13:nu13082802. [PMID: 34444961 PMCID: PMC8401706 DOI: 10.3390/nu13082802] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Most chronic modern non-transmissible diseases seem to begin as the result of low-grade inflammation extending over prolonged periods of time. The importance of diet as a source of many pro-inflammatory compounds that could create and sustain such a low-grade inflammatory state cannot be ignored, particularly since we are constantly exposed to them during the day. The focus of this review is on specific components of the diet associated with inflammation, specifically advanced glycation end products (AGEs) that form during thermal processing of food. AGEs are also generated in the body in normal physiology and are widely recognized as increased in diabetes, but many people are unaware of the potential importance of exogenous AGEs ingested in food. We review experimental models, epidemiologic data, and small clinical trials that suggest an important association between dietary intake of these compounds and development of an inflammatory and pro-oxidative state that is conducive to chronic diseases. We compare dietary intake of AGEs with other widely known dietary patterns, such as the Mediterranean and the Dietary Approaches to Stop Hypertension (DASH) diets, as well as the Dietary Inflammation Index (DII). Finally, we delineate in detail the pathophysiological mechanisms induced by dietary AGEs, both direct (i.e., non-receptor-mediated) and indirect (receptor-mediated).
Collapse
Affiliation(s)
| | - Armando Rojas
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Catolica del Maule, Talca 3480005, Chile;
| | - Manuel Portero-Otin
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad de Lleida, 25196 Lleida, Spain;
| | - Jaime Uribarri
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: ; Tel.: +1-212-241-1887
| |
Collapse
|
27
|
You L, Cui H, Zhao F, Sun H, Zhong H, Zhou G, Chen X. Inhibition of HMGB1/RAGE axis suppressed the lipopolysaccharide (LPS)-induced vicious transformation of cervical epithelial cells. Bioengineered 2021; 12:4995-5003. [PMID: 34369271 PMCID: PMC8806497 DOI: 10.1080/21655979.2021.1957750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The chronic inflammation operates as one of the critical causes of cervical cancer. Activation of HMGB1/RAGE axis could induce the inflammation and lead to multiple types of cancer. However, whether the HMGB1/RAGE axis could affect the development of cervical cancer by regulating the inflammation is unclear. Here, we stimulated normal cervical epithelial cells with lipopolysaccharide (LPS). Next, the expression of RAGE in these cells was suppressed by the RAGE inhibitor. CCK-8 and wound healing assays were performed to detect the proliferation and invasion. To determine how inflammatory factors (IL-1β, IL-6 and TNF-α) expressed in supernatant of these cells, ELISA was conducted. Western blotting was used for the detection of the expression of pyroptosis-related proteins (NLRP3 and caspase4). It was found that stimulation of LPS enhanced the proliferation and invasion of normal cervical epithelial cells. The expression of inflammatory factors (IL-1β, IL-6 and TNF-α) in these cells was promoted as well. Application of RAGE inhibitor abolished the efficacy of LPS on these cells. Furthermore, LPS promoted the expression of NLRP3 and caspase4 in these cells while RAGE inhibitor exerted suppressive effects on the expression of these proteins. In summary, LPS-induced inflammation of normal cervical epithelial cells resulted in the malignant transformation of these cells by activating HMGB1/RAGE axis.
Collapse
Affiliation(s)
- Lifang You
- Department of Gynecology, First People's Hospital of Yuhang District, Hangzhou, China
| | - Hongyin Cui
- Department of Gynecology, First People's Hospital of Yuhang District, Hangzhou, China
| | - Fen Zhao
- Department of Gynecology, First People's Hospital of Yuhang District, Hangzhou, China
| | - Huier Sun
- Department of Gynecology, First People's Hospital of Yuhang District, Hangzhou, China
| | - Huanxin Zhong
- Department of Gynecology, First People's Hospital of Yuhang District, Hangzhou, China
| | - Guoli Zhou
- Laboratory Department, First People's Hospital of Yuhang District, Hangzhou, China
| | - Xuejun Chen
- Department of Gynecology, First People's Hospital of Yuhang District, Hangzhou, China
| |
Collapse
|
28
|
Wu XQ, Zhang DD, Wang YN, Tan YQ, Yu XY, Zhao YY. AGE/RAGE in diabetic kidney disease and ageing kidney. Free Radic Biol Med 2021; 171:260-271. [PMID: 34019934 DOI: 10.1016/j.freeradbiomed.2021.05.025] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is the primary cause of chronic kidney disease that inevitably progress to end-stage kidney disease. Intervention strategies such as blood glucose control is effective for preventing DKD, but many patients with DKD still reach end-stage kidney disease. Although comprehensive mechanisms shed light on the progression of DKD, the most compelling evidence has highlighted that hyperglycemia-related advanced glycation end products (AGEs) formation plays a central role in the pathogenesis of DKD. Pathologically, accumulation of AGEs-mediated receptor for AGEs (RAGE) triggers oxidative stress and inflammation, which is the major deleterious effect of AGEs in host and intestinal microenvironment of diabetic and ageing conditions. The activation of AGEs-mediated RAGE could evoke nicotinamide adenine dinucleotide phosphate oxidase-induced reactive oxygen and nitrogen species production and subsequently give rise to oxidative stress in DKD and ageing kidney. Therefore, targeting RAGE with its ligands mediated oxidative stress and chronic inflammation is considered as an additional intervention strategy for DKD and ageing kidney. In this review, we summarize AGEs/RAGE-mediated oxidative stress and inflammation signaling pathways in DKD and ageing kidney, discussing opportunities and challenges of targeting at AGEs/RAGE-induced oxidative stress that could hold the promising potential approach for improving DKD and ageing kidney.
Collapse
Affiliation(s)
- Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Dan Zhang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yue-Qi Tan
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, No. 2 Xihuamen, Xi'an, Shaanxi, 710003, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
29
|
Choi JSY, de Haan JB, Sharma A. Animal models of diabetes-associated vascular diseases: an update on available models and experimental analysis. Br J Pharmacol 2021; 179:748-769. [PMID: 34131901 DOI: 10.1111/bph.15591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/08/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a chronic metabolic disorder associated with the accelerated development of macrovascular (atherosclerosis and coronary artery disease) and microvascular complications (nephropathy, retinopathy and neuropathy), which remain the principal cause of mortality and morbidity in this population. Current understanding of cellular and molecular pathways of diabetes-driven vascular complications, as well as therapeutic interventions has arisen from studying disease pathogenesis in animal models. Diabetes-associated vascular complications are multi-faceted, involving the interaction between various cellular and molecular pathways. Thus, the choice of an appropriate animal model to study vascular pathogenesis is important in our quest to identify innovative and mechanism-based targeted therapies to reduce the burden of diabetic complications. Herein, we provide up-to-date information on available mouse models of both Type 1 and Type 2 diabetic vascular complications as well as experimental analysis and research outputs.
Collapse
Affiliation(s)
- Judy S Y Choi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Judy B de Haan
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.,Faculty of Science, Engineering and Technology, Swinburne University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Arpeeta Sharma
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes, Monash University, Central Clinical School, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Chiappalupi S, Salvadori L, Donato R, Riuzzi F, Sorci G. Hyperactivated RAGE in Comorbidities as a Risk Factor for Severe COVID-19-The Role of RAGE-RAS Crosstalk. Biomolecules 2021; 11:biom11060876. [PMID: 34204735 PMCID: PMC8231494 DOI: 10.3390/biom11060876] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The receptor for advanced glycation-end products (RAGE) is a multiligand receptor with a role in inflammatory and pulmonary pathologies. Hyperactivation of RAGE by its ligands has been reported to sustain inflammation and oxidative stress in common comorbidities of severe COVID-19. RAGE is essential to the deleterious effects of the renin-angiotensin system (RAS), which participates in infection and multiorgan injury in COVID-19 patients. Thus, RAGE might be a major player in severe COVID-19, and appears to be a useful therapeutic molecular target in infections by SARS-CoV-2. The role of RAGE gene polymorphisms in predisposing patients to severe COVID-19 is discussed. .
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (F.R.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
| | - Laura Salvadori
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Rosario Donato
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Correspondence: (R.D.); (G.S.); Tel.: +39-075-585-8258 (G.S.)
| | - Francesca Riuzzi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (F.R.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (F.R.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
- Centro Universitario di Ricerca Sulla Genomica Funzionale (CURGeF), University of Perugia, 06132 Perugia, Italy
- Correspondence: (R.D.); (G.S.); Tel.: +39-075-585-8258 (G.S.)
| |
Collapse
|
31
|
Scavello F, Zeni F, Milano G, Macrì F, Castiglione S, Zuccolo E, Scopece A, Pezone G, Tedesco CC, Nigro P, Degani G, Gambini E, Veglia F, Popolo L, Pompilio G, Colombo GI, Bianchi ME, Raucci A. Soluble Receptor for Advanced Glycation End-products regulates age-associated Cardiac Fibrosis. Int J Biol Sci 2021; 17:2399-2416. [PMID: 34326683 PMCID: PMC8315019 DOI: 10.7150/ijbs.56379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/20/2021] [Indexed: 12/21/2022] Open
Abstract
Myocardial aging increases the cardiovascular risk in the elderly. The Receptor for Advanced Glycation End-products (RAGE) is involved in age-related disorders. The soluble isoform (sRAGE) acts as a scavenger blocking the membrane-bound receptor activation. This study aims at investigating RAGE contribution to age-related cardiac remodeling. We analyzed the cardiac function of three different age groups of female Rage-/- and C57BL/6N (WT) mice: 2.5- (Young), 12- (Middle-age, MA) and 21-months (Old) old. While aging, Rage-/- mice displayed an increase in left ventricle (LV) dimensions compared to age-matched WT animals, with the main differences observed in the MA groups. Rage-/- mice showed higher fibrosis and a larger number of α-Smooth Muscle Actin (SMA)+ cells with age, along with increased expression of pro-fibrotic Transforming Growth Factor (TGF)-β1 pathway components. RAGE isoforms were undetectable in LV of WT mice, nevertheless, circulating sRAGE declined with aging and inversely associated with LV diastolic dimensions. Human cardiac fibroblasts stimulated with sRAGE exhibited a reduction in proliferation, pro-fibrotic proteins and TGF-beta Receptor 1 (TGFbR1) expression and Smad2-3 activation. Finally, sRAGE administration to MA WT animals reduced cardiac fibrosis. Hence, our work shows that RAGE associates with age-dependent myocardial changes and indicates sRAGE as an inhibitor of cardiac fibroblasts differentiation and age-dependent cardiac fibrosis.
Collapse
Affiliation(s)
- Francesco Scavello
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Filippo Zeni
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Giuseppina Milano
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Federica Macrì
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Stefania Castiglione
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Estella Zuccolo
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Alessandro Scopece
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Giovanni Pezone
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | | | - Patrizia Nigro
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Genny Degani
- Department of Biosciences, University of Milan, Milan, Italy
| | - Elisa Gambini
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Fabrizio Veglia
- Unit of Biostatistics, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Laura Popolo
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Gualtiero I. Colombo
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Marco E. Bianchi
- Chromatin Dynamics Unit, San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| |
Collapse
|
32
|
Rojas A, Schneider I, Lindner C, Gonzàlez I, Morales MA. Receptor for advanced glycation end-products axis and coronavirus disease 2019 in inflammatory bowel diseases: A dangerous liaison? World J Gastroenterol 2021; 27:2270-2280. [PMID: 34040321 PMCID: PMC8130044 DOI: 10.3748/wjg.v27.i19.2270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/22/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Compelling evidence supports the crucial role of the receptor for advanced glycation end-products (RAGE) axis activation in many clinical entities. Since the beginning of the coronavirus disease 2019 pandemic, there is an increasing concern about the risk and handling of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in inflammatory gastrointestinal disorders, such as inflammatory bowel diseases (IBD). However, clinical data raised during pandemic suggests that IBD patients do not have an increased risk of contracting SARS-CoV-2 infection or develop a more severe course of infection. In the present review, we intend to highlight how two potentially important contributors to the inflammatory response to SARS-CoV-2 infection in IBD patients, the RAGE axis activation as well as the cross-talk with the renin-angiotensin system, are dampened by the high expression of soluble forms of both RAGE and the angiotensin-converting enzyme (ACE) 2. The soluble form of RAGE functions as a decoy for its ligands, and soluble ACE2 seems to be an additionally attenuating contributor to RAGE axis activation, particularly by avoiding the transactivation of the RAGE axis that can be produced by the virus-mediated imbalance of the ACE/angiotensin II/angiotensin II receptor type 1 pathway.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3634000, Chile
| | - Iván Schneider
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3634000, Chile
| | - Cristian Lindner
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3634000, Chile
| | - Ileana Gonzàlez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3634000, Chile
| | - Miguel Angel Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| |
Collapse
|
33
|
Rojas A, Lindner C, Gonzàlez I, Morales MA. Advanced-glycation end-products axis: A contributor to the risk of severe illness from COVID-19 in diabetes patients. World J Diabetes 2021; 12:590-602. [PMID: 33995847 PMCID: PMC8107984 DOI: 10.4239/wjd.v12.i5.590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Compelling pieces of evidence derived from both clinical and experimental research has demonstrated the crucial role of the receptor for advanced-glycation end-products (RAGE) in orchestrating a plethora of proinflammatory cellular responses leading to many of the complications and end-organ damages reported in patients with diabetes mellitus (DM). During the coronavirus disease 2019 (COVID-19) pandemic, many clinical reports have pointed out that DM increases the risk of COVID-19 complications, hospitalization requirements, as well as the overall severe acute respiratory syndrome coronavirus 2 case-fatality rate. In the present review, we intend to focus on how the basal activation state of the RAGE axis in common preexisting conditions in DM patients such as endothelial dysfunction and hyperglycemia-related prothrombotic phenotype, as well as the contribution of RAGE signaling in lung inflammation, may then lead to the increased mortality risk of COVID-19 in these patients. Additionally, the cross-talk between the RAGE axis with either another severe acute respiratory syndrome coronavirus 2 receptor molecule different of angiotensin-converting enzyme 2 or the renin-angiotensin system imbalance produced by viral infection, as well as the role of this multi-ligand receptor on the obesity-associated low-grade inflammation in the higher risk for severe illness reported in diabetes patients with COVID-19, are also discussed.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3460000, Chile
| | - Cristian Lindner
- Medicine Faculty, Catholic University of Maule, Talca 3460000, Chile
| | - Ileana Gonzàlez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3460000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| |
Collapse
|
34
|
Chiappalupi S, Salvadori L, Vukasinovic A, Donato R, Sorci G, Riuzzi F. Targeting RAGE to prevent SARS-CoV-2-mediated multiple organ failure: Hypotheses and perspectives. Life Sci 2021; 272:119251. [PMID: 33636175 PMCID: PMC7900755 DOI: 10.1016/j.lfs.2021.119251] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
A novel infectious disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was detected in December 2019 and declared as a global pandemic by the World Health. Approximately 15% of patients with COVID-19 progress to severe pneumonia and eventually develop acute respiratory distress syndrome (ARDS), septic shock and/or multiple organ failure with high morbidity and mortality. Evidence points towards a determinant pathogenic role of members of the renin-angiotensin system (RAS) in mediating the susceptibility, infection, inflammatory response and parenchymal injury in lungs and other organs of COVID-19 patients. The receptor for advanced glycation end-products (RAGE), a member of the immunoglobulin superfamily, has important roles in pulmonary pathological states, including fibrosis, pneumonia and ARDS. RAGE overexpression/hyperactivation is essential to the deleterious effects of RAS in several pathological processes, including hypertension, chronic kidney and cardiovascular diseases, and diabetes, all of which are major comorbidities of SARS-CoV-2 infection. We propose RAGE as an additional molecular target in COVID-19 patients for ameliorating the multi-organ pathology induced by the virus and improving survival, also in the perspective of future infections by other coronaviruses.
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Laura Salvadori
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy
| | - Aleksandra Vukasinovic
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Rosario Donato
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia 06132, Italy
| | - Francesca Riuzzi
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy.
| |
Collapse
|
35
|
Hang W, Chen C, Zhang XA, Wang DW. Endothelial dysfunction in COVID-19 calls for immediate attention: the emerging roles of the endothelium in inflammation caused by SARS-CoV-2. Front Med 2021; 15:638-643. [PMID: 33748924 PMCID: PMC7982315 DOI: 10.1007/s11684-021-0831-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
The COVID-19 pandemic has caused numerous deaths around the world. A growing body of evidence points to the important role of overwhelming inflammatory responses in the pathogenesis of COVID-19 and the effectiveness of anti-inflammation therapy against COVID-19 is emerging. In addition to affecting the lungs, COVID-19 can be a severe systemic inflammatory disease that is related to endothelial dysfunction. We are calling for closer attention to endothelial dysfunction in COVID-19 not only for fully revealing the pathogenic mechanism of COVID-19 but also for properly adjusting the strategy of clinical intervention.
Collapse
Affiliation(s)
- Weijian Hang
- Division of Cardiology, Department of Internal Medicine, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
36
|
Johnstone EKM, Abhayawardana RS, See HB, Seeber RM, O'Brien SL, Thomas WG, Pfleger KDG. Complex interactions between the angiotensin II type 1 receptor, the epidermal growth factor receptor and TRIO-dependent signaling partners. Biochem Pharmacol 2021; 188:114521. [PMID: 33741329 DOI: 10.1016/j.bcp.2021.114521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Transactivation of the epidermal growth factor receptor (EGFR) by the angiotensin II (AngII) type 1 (AT1) receptor is involved in AT1 receptor-dependent growth effects and cardiovascular pathologies, however the mechanisms underpinning this transactivation are yet to be fully elucidated. Recently, a potential intermediate of this process was identified following the discovery that a kinase called TRIO was involved in AngII/AT1 receptor-mediated transactivation of EGFR. To investigate the mechanisms by which TRIO acts as an intermediate in AngII/AT1 receptor-mediated EGFR transactivation we used bioluminescence resonance energy transfer (BRET) assays to investigate proximity between the AT1 receptor, EGFR, TRIO and other proteins of interest. We found that AngII/AT1 receptor activation caused a Gαq-dependent increase in proximity of TRIO with Gγ2 and the AT1-EGFR heteromer, as well as trafficking of TRIO towards the Kras plasma membrane marker and into early, late and recycling endosomes. In contrast, we found that AngII/AT1 receptor activation caused a Gαq-independent increase in proximity of TRIO with Grb2, GRK2 and PKCζ, as well as trafficking of TRIO up to the plasma membrane from the Golgi. Furthermore, we confirmed the proximity between the AT1 receptor and the EGFR using the Receptor-Heteromer Investigation Technology, which showed AngII-induced recruitment of Grb2, GRK2, PKCζ, Gγ2 and TRIO to the EGFR upon AT1 coexpression. In summary, our results provide further evidence for the existence of the AT1-EGFR heteromer and reveal potential mechanisms by which TRIO contributes to the transactivation process.
Collapse
Affiliation(s)
- Elizabeth K M Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Rekhati S Abhayawardana
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Heng B See
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Ruth M Seeber
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Shannon L O'Brien
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia; Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Walter G Thomas
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia; Dimerix Limited, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
37
|
Yokoyama S, Kawai T, Yamamoto K, Yibin H, Yamamoto H, Kakino A, Takeshita H, Nozato Y, Fujimoto T, Hongyo K, Takahashi T, Nakagami F, Akasaka H, Takami Y, Takeya Y, Sugimoto K, Sawamura T, Rakugi H. RAGE ligands stimulate angiotensin II type I receptor (AT1) via RAGE/AT1 complex on the cell membrane. Sci Rep 2021; 11:5759. [PMID: 33707701 PMCID: PMC7952713 DOI: 10.1038/s41598-021-85312-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) and the G protein-coupled angiotensin II (AngII) type I receptor (AT1) play a central role in cardiovascular diseases. It was recently reported that RAGE modifies AngII-mediated AT1 activation via the membrane oligomeric complex of the two receptors. In this study, we investigated the presence of the different directional crosstalk in this phenomenon, that is, the RAGE/AT1 complex plays a role in the signal transduction pathway of RAGE ligands. We generated Chinese hamster ovary (CHO) cells stably expressing RAGE and AT1, mutated AT1, or AT2 receptor. The activation of two types of G protein α-subunit, Gq and Gi, was estimated through the accumulation of inositol monophosphate and the inhibition of forskolin-induced cAMP production, respectively. Rat kidney epithelial cells were used to assess RAGE ligand-induced cellular responses. We determined that RAGE ligands activated Gi, but not Gq, only in cells expressing RAGE and wildtype AT1. The activation was inhibited by an AT1 blocker (ARB) as well as a RAGE inhibitor. ARBs inhibited RAGE ligand-induced ERK phosphorylation, NF-κB activation, and epithelial-mesenchymal transition of rat renal epithelial cells. Our findings suggest that the activation of AT1 plays a central role in RAGE-mediated cellular responses and elucidate the role of a novel molecular mechanism in the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Serina Yokoyama
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Tatsuo Kawai
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan.
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan.
| | - Huang Yibin
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Hiroko Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Akemi Kakino
- Department of Molecular Pathophysiology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, 390-8621, Japan
| | - Hikari Takeshita
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Yoichi Nozato
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Taku Fujimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Kazuhiro Hongyo
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Toshimasa Takahashi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Futoshi Nakagami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Yasushi Takeya
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Ken Sugimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, 390-8621, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| |
Collapse
|
38
|
Qian J, Luo W, Dai C, Wang J, Guan X, Zou C, Chattipakorn N, Wu G, Huang W, Liang G. Myeloid differentiation protein 2 mediates angiotensin II-induced inflammation and mesenchymal transition in vascular endothelium. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166043. [PMID: 33338595 DOI: 10.1016/j.bbadis.2020.166043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 11/28/2022]
Abstract
Angiotensin II (Ang II)-induced vascular inflammation and injury entails endothelial to mesenchymal transition (EndMT). Recent studies have shown that Ang II engages toll-like receptor 4 (TLR4) in the vasculature to mediate adverse effects. Here, we aimed to investigate whether myeloid differentiation protein 2 (MD2), an extracellular molecule indispensable for TLR4 activation, mediates Ang II-induced vascular injury and EndMT. We utilized MD2 knockout mice and wildtype mice treated with a specific MD2 inhibitor to decipher its role in aortas of Ang II-challenged mice. To confirm our results and to provide mechanistic insights, we exposed cultured endothelial cells to Ang II, with or without MD2 silencing. We show that Ang II causes deleterious remodeling and EndMT in aortas of mice within two weeks. These Ang II effects were largely absent in MD2 knockout mice and in wildtype mice treated with a MD2 inhibitor. MD2 silencing in cultured endothelial cells confirmed the essential role of MD2 in Ang II-induced inflammatory factor induction, and EndMT-associated phenotypic change. We also found that Ang II-MD2-EndMT axis involves the activation of nuclear factor-κB. Our studies highlight an essential role of MD2 in Ang II-induced vascular inflammation and EndMT contributing to vascular injury. These results also imply that MD2 may be targeted to dampen inflammatory cardiovascular and EndMT-associated diseases.
Collapse
Affiliation(s)
- Jinfu Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chengyi Dai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jun Wang
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325800, China
| | - Xinfu Guan
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325800, China
| | - Chunpeng Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Gaojun Wu
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weijian Huang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325800, China; Zhuji Biomedicine Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhuji, Zhejiang 311800, China.
| |
Collapse
|
39
|
Bobkova NV. The Balance between Two Branches of RAS Can Protect from Severe COVID-19 Course. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2021; 15:36-51. [PMID: 33643542 PMCID: PMC7897458 DOI: 10.1134/s1990747821010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022]
Abstract
The COVID-19 pandemic has swept the world and required the mobilization of scientists and clinicians around the world to combat this serious disease. Along with SARS-CoV-2 virology research, understanding of the fundamental physiological processes, molecular and cellular mechanisms and intracellular signaling pathways underlying the clinical manifestations of COVID-19 is important for effective therapy of this disease. The review describes in detail the interaction of the components of the renin-angiotensin system (RAS) and receptors of end-glycosylated products (RAGE), which plays a special role in normal lung physiology and in pathological conditions in COVID-19, including the development of acute respiratory distress syndrome and "cytokine storm". A separate section is devoted to the latest developments aimed at correcting the dysfunction of the RAS caused by the binding of the virus to angiotensin converting enzyme 2 (ACE2)- the central element of this system. Analysis of published theoretical, clinical, and experimental data indicates the need for a complex treatment to prevent a severe course of COVID-19 using MasR agonists, blockers of the AT1R and NF-κB signaling pathway, as well as compounds with neuroprotective and neuroregenerative effects.
Collapse
Affiliation(s)
- N. V. Bobkova
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow oblast Russia
| |
Collapse
|
40
|
Roy D, Ramasamy R, Schmidt AM. Journey to a Receptor for Advanced Glycation End Products Connection in Severe Acute Respiratory Syndrome Coronavirus 2 Infection: With Stops Along the Way in the Lung, Heart, Blood Vessels, and Adipose Tissue. Arterioscler Thromb Vasc Biol 2021; 41:614-627. [PMID: 33327744 PMCID: PMC7837689 DOI: 10.1161/atvbaha.120.315527] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide and the pandemic has yet to wane. Despite its associated significant morbidity and mortality, there are no definitive cures and no fully preventative measures to combat SARS-CoV-2. Hence, the urgency to identify the pathobiological mechanisms underlying increased risk for and the severity of SARS-CoV-2 infection is mounting. One contributing factor, the accumulation of damage-associated molecular pattern molecules, is a leading trigger for the activation of nuclear factor-kB and the IRF (interferon regulatory factors), such as IRF7. Activation of these pathways, particularly in the lung and other organs, such as the heart, contributes to a burst of cytokine release, which predisposes to significant tissue damage, loss of function, and mortality. The receptor for advanced glycation end products (RAGE) binds damage-associated molecular patterns is expressed in the lung and heart, and in priming organs, such as the blood vessels (in diabetes) and adipose tissue (in obesity), and transduces the pathological signals emitted by damage-associated molecular patterns. It is proposed that damage-associated molecular pattern-RAGE enrichment in these priming tissues, and in the lungs and heart during active infection, contributes to the widespread tissue damage induced by SARS-CoV-2. Accordingly, the RAGE axis might play seminal roles in and be a target for therapeutic intervention in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Divya Roy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine (D.R., R.R., A.M.S.)
- New York Institute of Technology College of Osteopathic Medicine, Glen Head (D.R.)
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine (D.R., R.R., A.M.S.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine (D.R., R.R., A.M.S.)
| |
Collapse
|
41
|
Johnstone EKM, See HB, Abhayawardana RS, Song A, Rosengren KJ, Hill SJ, Pfleger KDG. Investigation of Receptor Heteromers Using NanoBRET Ligand Binding. Int J Mol Sci 2021; 22:1082. [PMID: 33499147 PMCID: PMC7866079 DOI: 10.3390/ijms22031082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor heteromerization is the formation of a complex involving at least two different receptors with pharmacology that is distinct from that exhibited by its constituent receptor units. Detection of these complexes and monitoring their pharmacology is crucial for understanding how receptors function. The Receptor-Heteromer Investigation Technology (Receptor-HIT) utilizes ligand-dependent modulation of interactions between receptors and specific biomolecules for the detection and profiling of heteromer complexes. Previously, the interacting biomolecules used in Receptor-HIT assays have been intracellular proteins, however in this study we have for the first time used bioluminescence resonance energy transfer (BRET) with fluorescently-labeled ligands to investigate heteromerization of receptors on the cell surface. Using the Receptor-HIT ligand binding assay with NanoBRET, we have successfully investigated heteromers between the angiotensin II type 1 (AT1) receptor and the β2 adrenergic receptor (AT1-β2AR heteromer), as well as between the AT1 and angiotensin II type 2 receptor (AT1-AT2 heteromer).
Collapse
Affiliation(s)
- Elizabeth K. M. Johnstone
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
| | - Heng B. See
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
| | - Rekhati S. Abhayawardana
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
| | - Angela Song
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia; (A.S.); (K.J.R.)
| | - K. Johan Rosengren
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia; (A.S.); (K.J.R.)
| | - Stephen J. Hill
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Nottingham, Midlands NG7 2UH, UK
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
- Dimerix Limited, Nedlands, WA 6009, Australia
| |
Collapse
|
42
|
Zhang L, Zhang B, Yu Y, Wang J, Wu J, Su Y, Jiang H, Zou Y, Ge J. Angiotensin II Increases HMGB1 Expression in the Myocardium Through AT1 and AT2 Receptors When Under Pressure Overload. Int Heart J 2021; 62:162-170. [PMID: 33455985 DOI: 10.1536/ihj.20-384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High-mobility group box 1 (HMGB1) is increased in the myocardium under pressure overload (PO) and is involved in PO-induced cardiac remodeling. The mechanisms of the upregulation of cardiac HMGB1 expression have not been fully elucidated. In the present study, a mouse transverse aortic constriction (TAC) model was used, and an angiotensin II (Ang II) type 1 (AT1) receptor inhibitor (losartan) or Ang II type 2 (AT2) receptor inhibitor (PD123319) was administrated to mice for 14 days. Cardiac myocytes were cultured and treated with Ang II for 5 minutes to 48 hours conditionally with the blockage of the AT1 or AT2 receptor. TAC-induced cardiac hypertrophy was observed at 14 days after the operation, which was partially reversed by losartan, but not by PD123319. Similarly, the upregulated HMGB1 expression levels observed in both the serum and myocardium induced by TAC were reduced by losartan. Elevated cardiac HMGB1 protein levels, but not mRNA or serum levels, were significantly decreased by PD123319. Furthermore, HMGB1 expression levels in culture media and cardiac myocytes were increased following Ang II treatment in vitro, positively associated with the duration of treatment. Similarly, Ang II-induced upregulation of HMGB1 in vitro was inhibited by both losartan and PD123319. These results suggest that upregulation of HMGB1 in serum and myocardium under PO, which are partially derived from cardiac myocytes, may be induced by Ang II via the AT1 and AT2 receptors. Additionally, amelioration of PO-induced cardiac hypertrophy following losartan treatment may be associated with the reduction of HMGB1 expression through the AT1 receptor.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Baoli Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Ying Yu
- Department of General Practice, Zhongshan Hospital, Fudan University
| | - Jingfeng Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Jian Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Yangang Su
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Hong Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| |
Collapse
|
43
|
Soluble Receptor for Advanced Glycation End Products and Its Forms in COVID-19 Patients with and without Diabetes Mellitus: A Pilot Study on Their Role as Disease Biomarkers. J Clin Med 2020; 9:jcm9113785. [PMID: 33238596 PMCID: PMC7700384 DOI: 10.3390/jcm9113785] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE), a well-known player of diabetes mellitus (DM)-related morbidities, was supposed to be involved in coronavirus disease-19 (COVID-19), but no data exist about COVID-19, DM, and the soluble RAGE (sRAGE) forms. We quantified total sRAGE and its forms, the endogenously secretory esRAGE and the membrane-cleaved cRAGE, in COVID-19 patients with and without DM and in healthy individuals to explore how COVID-19 may affect these molecules and their potential role as biomarkers. Circulating sRAGE and esRAGE were quantified by enzyme-linked-immunosorbent assays. cRAGE was obtained by subtracting esRAGE from total sRAGE. sRAGE, esRAGE, cRAGE, and the cRAGE/esRAGE ratio did not differ between DM and non-DM patients and had the same trend when compared to healthy individuals. Levels of total sRAGE, cRAGE, and cRAGE/esRAGE ratio were upregulated, while esRAGE was downregulated. The lack of difference between DM and non-DM COVID-19 patients in the levels of sRAGE and its forms supports the hypothesis that in COVID-19 the RAGE system is modulated regardless of glycemic control. Identifying how sRAGE and its forms associate to COVID-19 prognosis and the potential of RAGE as a therapeutic target to control inflammatory burden seem of relevance to help treatment of COVID-19.
Collapse
|
44
|
Ray R, Jangde N, Singh SK, Sinha S, Rai V. Lysophosphatidic acid-RAGE axis promotes lung and mammary oncogenesis via protein kinase B and regulating tumor microenvironment. Cell Commun Signal 2020; 18:170. [PMID: 33109194 PMCID: PMC7592382 DOI: 10.1186/s12964-020-00666-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background Receptor for advanced glycation end products (RAGE) is a multi-ligand transmembrane receptor of the immunoglobulin superfamily. Lysophosphatidic acid (LPA) is a ligand for RAGE and is involved in physiological and pathophysiological conditions including cancer. However, RAGE-LPA axis is unexplored in lung and mammary cancer. Methods RAGE was silenced in A549, MDA MB-231 and MCF7 using RAGE shRNA. For in vitro tumorigenesis, we performed wound healing, colony formation, cell proliferation and invasion assays. Evaluation of expression of oncogenes, EMT markers and downstream signaling molecules was done by using western blot and immunohistochemistry. For subcellular expression of RAGE, immunofluorescence was done. In vivo tumorigenesis was assessed by intraperitoneal injection of cancer cells in nude mice. Results Here we show RAGE mediated profound increase in proliferation, migration and invasion of lung and mammary cancer cells via LPA in Protein kinase B (PKB) dependent manner. LPA mediated EMT transition is regulated by RAGE. In vivo xenograft results show significance of RAGE in LPA mediated lung and mammary tumor progression, angiogenesis and immune cell infiltration to tumor microenvironment. Conclusion Our results establish the significance and involvement of RAGE in LPA mediated lung and mammary tumor progression and EMT transition via RAGE. RAGE-LPA axis may be a therapeutic target in lung and mammary cancer treatment strategies. Video Abstract
Supplementary information Supplementary information accompanies this paper at 10.1186/s12964-020-00666-y.
Collapse
Affiliation(s)
- Rashmi Ray
- Laboratory of Vascular Immunology, Institute of Life Sciences, (An Autonomous Institute of Department of Biotechnology (DBT) New Delhi), Bhubaneswar, 751023, India
| | - Nitish Jangde
- Laboratory of Vascular Immunology, Institute of Life Sciences, (An Autonomous Institute of Department of Biotechnology (DBT) New Delhi), Bhubaneswar, 751023, India.,Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Satyendra Kumar Singh
- Laboratory of Vascular Immunology, Institute of Life Sciences, (An Autonomous Institute of Department of Biotechnology (DBT) New Delhi), Bhubaneswar, 751023, India
| | - Sunita Sinha
- Laboratory of Vascular Immunology, Institute of Life Sciences, (An Autonomous Institute of Department of Biotechnology (DBT) New Delhi), Bhubaneswar, 751023, India.,Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vivek Rai
- Laboratory of Vascular Immunology, Institute of Life Sciences, (An Autonomous Institute of Department of Biotechnology (DBT) New Delhi), Bhubaneswar, 751023, India.
| |
Collapse
|
45
|
Holly JMP, Biernacka K, Maskell N, Perks CM. Obesity, Diabetes and COVID-19: An Infectious Disease Spreading From the East Collides With the Consequences of an Unhealthy Western Lifestyle. Front Endocrinol (Lausanne) 2020; 11:582870. [PMID: 33042029 PMCID: PMC7527410 DOI: 10.3389/fendo.2020.582870] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023] Open
Abstract
The pandemic of COVID-19, caused by the coronavirus, SARS-CoV-2, has had a global impact not seen for an infectious disease for over a century. This acute pandemic has spread from the East and has been overlaid onto a slow pandemic of metabolic diseases of obesity and diabetes consequent from the increasing adoption of a Western-lifestyle characterized by excess calorie consumption with limited physical activity. It has become clear that these conditions predispose individuals to a more severe COVID-19 with increased morbidity and mortality. There are many features of diabetes and obesity that may accentuate the clinical response to SARS-CoV-2 infection: including an impaired immune response, an atherothrombotic state, accumulation of advanced glycation end products and a chronic inflammatory state. These could prime an exaggerated cytokine response to viral infection, predisposing to the cytokine storm that triggers progression to septic shock, acute respiratory distress syndrome, and multi-organ failure. Infection leads to an inflammatory response and tissue damage resulting in increased metabolic activity and an associated increase in the mechanisms by which cells ingest and degrade tissue debris and foreign materials. It is becoming clear that viruses have acquired an ability to exploit these mechanisms to invade cells and facilitate their own life-cycle. In obesity and diabetes these mechanisms are chronically activated due to the deteriorating metabolic state and this may provide an increased opportunity for a more profound and sustained viral infection.
Collapse
Affiliation(s)
- Jeff M. P. Holly
- Faculty of Medicine, School of Translational Health Science, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | | | | | | |
Collapse
|
46
|
Li S, Hu D, Hu S, Sun Y, Zhang Y, Li H, Chen Y, Liu H, Cui G, Wang DW. Association of rs2070600 in advanced glycosylation end-product specific receptor with prognosis of heart failure. ESC Heart Fail 2020; 7:3561-3572. [PMID: 32914565 PMCID: PMC7755010 DOI: 10.1002/ehf2.12769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 01/21/2023] Open
Abstract
Aims Our objective was to investigate the association of common variants in the coding region of advanced glycosylation end‐product specific receptor (RAGE) and the prognosis of heart failure (HF). Methods and results A total of 3394 HF patients were continuously enrolled from January 2009 to August 2018 with a median follow‐up of 20.4 months. Additionally, 2861 healthy subjects also participated in the study. By sequencing these two groups, we identified a common functional missense variant rs2070600 in the coding region of RAGE, which showed a significant association with the prognosis of HF [hazard ratio = 0.53, 95%, confidence interval (CI) = 0.30–0.94, P = 0.03], but no association with the risk of HF (odds ratio = 0.52, 95%, CI = 0.66–1.04, P = 0.106). A series of functional assays revealed that rs2070600‐A, but not ‐G allele, suppressed the expression of RAGE protein by facilitating the binding of miR‐125a‐3p. Furthermore, the RAGE messenger RNA levels of human peripheral blood lymphocytes were reduced in subjects with the rs2070600‐AA genotype compared with subjects with the rs2070600‐GG or ‐AG genotypes. Additionally, our Western blot results from human heart tissue showed increased RAGE expression in HF samples compared with that in healthy donors. Conclusions Our results demonstrate that the common missense variant rs2070600‐A allele is associated with a reduced risk of cardiovascular death and cardiac transplantation by facilitating the binding of miR‐125a‐3p.
Collapse
Affiliation(s)
- Shiyang Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China.,The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, China
| | - Dong Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Senlin Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, General Hospital of the Yangtze River Shipping, Wuhan, China
| | - Huihui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yanghui Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Guanglin Cui
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Sourris KC, Watson A, Jandeleit-Dahm K. Inhibitors of Advanced Glycation End Product (AGE) Formation and Accumulation. Handb Exp Pharmacol 2020; 264:395-423. [PMID: 32809100 DOI: 10.1007/164_2020_391] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A range of chemically different compounds are known to inhibit the formation and accumulation of advanced glycation end products (AGEs) or disrupt associated signalling pathways. There is evidence that some of these agents can provide end-organ protection in chronic diseases including diabetes. Whilst this group of therapeutics are structurally and functionally different and have a range of mechanisms of action, they ultimately reduce the deleterious actions and the tissue burden of advanced glycation end products. To date it remains unclear if this is due to the reduction in tissue AGE levels per se or the modulation of downstream signal pathways. Some of these agents either stimulate antioxidant defence or reduce the formation of reactive oxygen species (ROS), modify lipid profiles and inhibit inflammation. A number of existing treatments for glucose lowering, hypertension and hyperlipidaemia are also known to reduce AGE formation as a by-product of their action. Targeted AGE formation inhibitors or AGE cross-link breakers have been developed and have shown beneficial effects in animal models of diabetic complications as well as other chronic conditions. However, only a few of these agents have progressed to clinical development. The failure of clinical translation highlights the importance of further investigation of the advanced glycation pathway, the diverse actions of agents which interfere with AGE formation, cross-linking or AGE receptor activation and their effect on the development and progression of chronic diseases including diabetic complications. Advanced glycation end products (AGEs) are (1) proteins or lipids that become glycated as a result of exposure to sugars or (2) non-proteinaceous oxidised lipids. They are implicated in ageing and the development, or worsening, of many degenerative diseases, such as diabetes, atherosclerosis, chronic kidney and Alzheimer's disease. Several antihypertensive and antidiabetic agents and statins also indirectly lower AGEs. Direct AGE inhibitors currently investigated include pyridoxamine and epalrestat, the inhibition of the formation of reactive dicarbonyls such as methylglyoxal as an important precursor of AGEs via increased activation of the detoxifying enzyme Glo-1 and inhibitors of NOX-derived ROS to reduce the AGE/RAGE signalling.
Collapse
Affiliation(s)
- Karly C Sourris
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anna Watson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
48
|
Rojas A, Gonzalez I, Morales MA. SARS-CoV-2-mediated inflammatory response in lungs: should we look at RAGE? Inflamm Res 2020; 69:641-643. [PMID: 32372149 PMCID: PMC7200049 DOI: 10.1007/s00011-020-01353-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| | - Ileana Gonzalez
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Miguel A Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
49
|
Targeting oxidative stress and anti-oxidant defence in diabetic kidney disease. J Nephrol 2020; 33:917-929. [DOI: 10.1007/s40620-020-00749-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
|
50
|
Muñoz N, Pedreañez A, Mosquera J. Angiotensin II Induces Increased Myocardial Expression of Receptor for Advanced Glycation End Products, Monocyte/Macrophage Infiltration and Circulating Endothelin-1 in Rats With Experimental Diabetes. Can J Diabetes 2020; 44:651-656. [PMID: 32654973 DOI: 10.1016/j.jcjd.2020.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES It is known that the receptor for advanced glycation end products (RAGE) activation is involved in the pathogenesis of cardiovascular disease in diabetes. Previous studies have shown the presence of angiotensin II (Ang II) in diabetes, suggesting a role for this hormone during the disease. However, the association between RAGE and Ang II during pathologic cardiac remodelling after streptozotocin (STZ)-induced diabetes remains unclear. Because Ang II is capable of inducing pro-inflammatory events, blocking its production (enalapril), and its action on its receptor (losartan) could decrease inflammatory events in the myocardium in this experimental model of diabetes. Thus, the aim of this study was to assess the association between RAGE expression, inflammatory events and Ang II in the myocardium during STZ-induced diabetes. METHODS Diabetes was induced by intravenous injection of STZ in Sprague-Dawley rats. Myocardial expressions of RAGE, monocyte/macrophage (ED-1-positive cells) infiltration and the intercellular adhesion molecule-1 were determined by histochemical methods. Levels of circulating endothelin-1 (ET-1) were determined by enzyme-linked immunoassay. Effects of Ang II included blocking using losartan (15 mg/kg body weight per day by gastric gavage) or enalapril (18 mg/kg body weight per day by gastric gavage). RESULTS Increased expression of both RAGE and ED-1 was seen in the myocardium, but expression of myocardial vascular intercellular adhesion molecule-1 remained unchanged. Circulating levels of ET-1 in STZ rats were increased. Renin‒angiotensin system inhibition decreased expression of myocardial RAGE, ED-1 and ET-1. CONCLUSIONS The present findings suggest a role for Ang II in myocardial inflammation in STZ-induced diabetes mediated by RAGE and ET-1.
Collapse
Affiliation(s)
- Nelson Muñoz
- Facultad de Ciencias de la Salud, Universidad Nacional de Chimborazo, Carrera de Medicina, Riobamba, Ecuador
| | - Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Jesús Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette," Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| |
Collapse
|