1
|
Disselhoff V, Jakab A, Latal B, Schnider B, Wehrle FM, Hagmann CF. Inhibition abilities and functional brain connectivity in school-aged term-born and preterm-born children. Pediatr Res 2025; 97:315-324. [PMID: 38898110 PMCID: PMC11798846 DOI: 10.1038/s41390-024-03241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/09/2024] [Accepted: 03/01/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Inhibition abilities are known to have impact on self-regulation, behavior, and academic success, and they are frequently impaired in children born preterm. We investigated the possible contributions of resting-state functional brain connectivity to inhibition following preterm birth. METHODS Forty-four preterm and 59 term-born participants aged 8-13 years were administered two inhibition tasks and resting-state functional MRI was performed. Functional connectivity (FC) networks were compared between groups using network-based statistics. Associations of FCNs and inhibition abilities were investigated through multivariate linear regression models accounting for the interaction between birth status and inhibition. RESULTS NBS revealed weaker FC in children born preterm compared to term-born peers in connections between motor and supplementary motor regions, frontal lobe, precuneus, and insula. Irrespective of birth status, connections between the cerebellum, frontal, and occipital lobes and inter-lobar, subcortical, intra-hemispheric long-range connections were positively correlated with one of the two inhibition tasks. CONCLUSIONS Preterm birth results in long-term alterations of FC at network level but these FCN alterations do not specifically account for inhibition problems in children born very preterm. IMPACT Irrespective of birth status, significant associations were found between the subdomain of response inhibition and functional connectivity in some subnetworks. A group comparisons of functional brain connectivity measured by rsfMRI in school-aged children born very preterm and at term. The investigation of network-level functional connectivity at rest does not appear adequate to explain differences in inhibition abilities between children born very preterm and at term, hence other imaging techniques might be more suited to explore the underlying neural mechanisms of inhibition abilities in school-aged children born very preterm.
Collapse
Affiliation(s)
- Vera Disselhoff
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andras Jakab
- Centre for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Beatrice Latal
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Barbara Schnider
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Flavia M Wehrle
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Cornelia F Hagmann
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Schwarzlose RF, Filippi CA, Myers MJ, Harper J, Camacho MC, Smyser TA, Rogers CE, Shimony JS, Warner BB, Luby JL, Barch DM, Pine DS, Smyser CD, Fox NA, Sylvester CM. Neonatal neural responses to novelty related to behavioral inhibition at 1 year. Dev Psychol 2024; 60:2062-2070. [PMID: 37971828 PMCID: PMC11096262 DOI: 10.1037/dev0001654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Behavioral inhibition (BI), an early-life temperament characterized by vigilant responses to novelty, is a risk factor for anxiety disorders. In this study, we investigated whether differences in neonatal brain responses to infrequent auditory stimuli relate to children's BI at 1 year of age. Using functional magnetic resonance imaging (fMRI), we collected blood-oxygen-level-dependent (BOLD) data from N = 45 full-term, sleeping neonates during an adapted auditory oddball paradigm and measured BI from n = 27 of these children 1 year later using an observational assessment. Whole-brain analyses corrected for multiple comparisons identified 46 neonatal brain regions producing novelty-evoked BOLD responses associated with children's BI scores at 1 year of age. More than half of these regions (n = 24, 52%) were in prefrontal cortex, falling primarily within regions of the default mode or frontoparietal networks or in ventromedial/orbitofrontal regions without network assignments. Hierarchical clustering of the regions based on their patterns of association with BI resulted in two groups with distinct anatomical, network, and response-timing profiles. The first group, located primarily in subcortical and temporal regions, tended to produce larger early oddball responses among infants with lower subsequent BI. The second group, located primarily in prefrontal cortex, produced larger early oddball responses among infants with higher subsequent BI. These results provide preliminary insights into brain regions engaged by novelty in infants that may relate to later BI. The findings may inform understanding of anxiety disorders and guide future research. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Courtney A Filippi
- Department of Child and Adolescent Psychiatry, New York University School of Medicine
| | - Michael J Myers
- Department of Psychiatry, Washington University School of Medicine in St. Louis
| | - Jennifer Harper
- Department of Psychiatry, Washington University School of Medicine in St. Louis
| | - M Catalina Camacho
- Department of Psychiatry, Washington University School of Medicine in St. Louis
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine in St. Louis
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine in St. Louis
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine in St. Louis
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine in St. Louis
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine in St. Louis
| | - Daniel S Pine
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health
| | | | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland
| | - Chad M Sylvester
- Department of Psychiatry, Washington University School of Medicine in St. Louis
| |
Collapse
|
3
|
Argyropoulou MI, Xydis VG, Astrakas LG. Functional connectivity of the pediatric brain. Neuroradiology 2024; 66:2071-2082. [PMID: 39230715 DOI: 10.1007/s00234-024-03453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE This review highlights the importance of functional connectivity in pediatric neuroscience, focusing on its role in understanding neurodevelopment and potential applications in clinical practice. It discusses various techniques for analyzing brain connectivity and their implications for clinical interventions in neurodevelopmental disorders. METHODS The principles and applications of independent component analysis and seed-based connectivity analysis in pediatric brain studies are outlined. Additionally, the use of graph analysis to enhance understanding of network organization and topology is reviewed, providing a comprehensive overview of connectivity methods across developmental stages, from fetuses to adolescents. RESULTS Findings from the reviewed studies reveal that functional connectivity research has uncovered significant insights into the early formation of brain circuits in fetuses and neonates, particularly the prenatal origins of cognitive and sensory systems. Longitudinal research across childhood and adolescence demonstrates dynamic changes in brain connectivity, identifying critical periods of development and maturation that are essential for understanding neurodevelopmental trajectories and disorders. CONCLUSION Functional connectivity methods are crucial for advancing pediatric neuroscience. Techniques such as independent component analysis, seed-based connectivity analysis, and graph analysis offer valuable perspectives on brain development, creating new opportunities for early diagnosis and targeted interventions in neurodevelopmental disorders, thereby paving the way for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Maria I Argyropoulou
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece.
| | - Vasileios G Xydis
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece
| | - Loukas G Astrakas
- Medical Physics Laboratory, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece
| |
Collapse
|
4
|
Labonte AK, Camacho MC, Moser J, Koirala S, Laumann TO, Marek S, Fair D, Sylvester CM. Precision Functional Mapping to Advance Developmental Psychiatry Research. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100370. [PMID: 39309212 PMCID: PMC11416589 DOI: 10.1016/j.bpsgos.2024.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/25/2024] Open
Abstract
Many psychiatric conditions have their roots in early development. Individual differences in prenatal brain function (which is influenced by a combination of genetic risk and the prenatal environment) likely interact with individual differences in postnatal experience, resulting in substantial variation in brain functional organization and development in infancy. Neuroimaging has been a powerful tool for understanding typical and atypical brain function and holds promise for uncovering the neurodevelopmental basis of psychiatric illness; however, its clinical utility has been relatively limited thus far. A substantial challenge in this endeavor is the traditional approach of averaging brain data across groups despite individuals varying in their brain organization, which likely obscures important clinically relevant individual variation. Precision functional mapping (PFM) is a neuroimaging technique that allows the capture of individual-specific and highly reliable functional brain properties. Here, we discuss how PFM, through its focus on individuals, has provided novel insights for understanding brain organization across the life span and its promise in elucidating the neural basis of psychiatric disorders. We first summarize the extant literature on PFM in normative populations, followed by its limited utilization in studying psychiatric conditions in adults. We conclude by discussing the potential for infant PFM in advancing developmental precision psychiatry applications, given that many psychiatric disorders start during early infancy and are associated with changes in individual-specific functional neuroanatomy. By exploring the intersection of PFM, development, and psychiatric research, this article underscores the importance of individualized approaches in unraveling the complexities of brain function and improving clinical outcomes across development.
Collapse
Affiliation(s)
- Alyssa K. Labonte
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, Missouri
| | - M. Catalina Camacho
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Julia Moser
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | - Sanju Koirala
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
| | - Timothy O. Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Scott Marek
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Damien Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Chad M. Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
5
|
Filippi CA, Winkler AM, Kanel D, Elison JT, Hardiman H, Sylvester C, Pine DS, Fox NA. Neural Correlates of Novelty-Evoked Distress in 4-Month-Old Infants: A Synthetic Cohort Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:905-914. [PMID: 38641209 PMCID: PMC11381178 DOI: 10.1016/j.bpsc.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Observational assessments of infant temperament have provided unparalleled insight into prediction of risk for social anxiety. However, it is challenging to administer and score these assessments alongside high-quality infant neuroimaging data. In the current study, we aimed to identify infant resting-state functional connectivity associated with both parent report and observed behavioral estimates of infant novelty-evoked distress. METHODS Using data from the OIT (Origins of Infant Temperament) study, which includes deep phenotyping of infant temperament, we identified parent-report measures that were associated with observed novelty-evoked distress. These parent-report measures were then summarized into a composite score used for imaging analysis. Our infant magnetic resonance imaging sample was a synthetic cohort, harmonizing data from 2 functional magnetic resonance imaging studies of 4-month-old infants (OIT and BCP [Baby Connectome Project]; n = 101), both of which included measures of parent-reported temperament. Brain-behavior associations were evaluated using enrichment, a statistical approach that quantifies the clustering of brain-behavior associations within network pairs. RESULTS Results demonstrated that parent-report composites of novelty-evoked distress were significantly associated with 3 network pairs: dorsal attention-salience/ventral attention, dorsal attention-default mode, and dorsal attention-control. These network pairs demonstrated negative associations with novelty-evoked distress, indicating that less connectivity between these network pairs was associated with greater novelty-evoked distress. Additional analyses demonstrated that dorsal attention-control network connectivity was associated with observed novelty-evoked distress in the OIT sample (n = 38). CONCLUSIONS Overall, this work is broadly consistent with existing work and implicates dorsal attention network connectivity in novelty-evoked distress. This study provides novel data on the neural basis of infant novelty-evoked distress.
Collapse
Affiliation(s)
- Courtney A Filippi
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, New York.
| | - Anderson M Winkler
- Division of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Dana Kanel
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, Maryland; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland
| | - Jed T Elison
- Institute of Child Development, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
| | - Hannah Hardiman
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, Maryland; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland
| | - Chad Sylvester
- Departments of Psychiatry, Radiology, and the Taylor Family Institute for Innovative Research, Washington University, St. Louis, Missouri
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland
| |
Collapse
|
6
|
Myers MJ, Labonte AK, Gordon EM, Laumann TO, Tu JC, Wheelock MD, Nielsen AN, Schwarzlose RF, Camacho MC, Alexopoulos D, Warner BB, Raghuraman N, Luby JL, Barch DM, Fair DA, Petersen SE, Rogers CE, Smyser CD, Sylvester CM. Functional parcellation of the neonatal cortical surface. Cereb Cortex 2024; 34:bhae047. [PMID: 38372292 PMCID: PMC10875653 DOI: 10.1093/cercor/bhae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
The cerebral cortex is organized into distinct but interconnected cortical areas, which can be defined by abrupt differences in patterns of resting state functional connectivity (FC) across the cortical surface. Such parcellations of the cortex have been derived in adults and older infants, but there is no widely used surface parcellation available for the neonatal brain. Here, we first demonstrate that existing parcellations, including surface-based parcels derived from older samples as well as volume-based neonatal parcels, are a poor fit for neonatal surface data. We next derive a set of 283 cortical surface parcels from a sample of n = 261 neonates. These parcels have highly homogenous FC patterns and are validated using three external neonatal datasets. The Infomap algorithm is used to assign functional network identities to each parcel, and derived networks are consistent with prior work in neonates. The proposed parcellation may represent neonatal cortical areas and provides a powerful tool for neonatal neuroimaging studies.
Collapse
Affiliation(s)
- Michael J Myers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Alyssa K Labonte
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Evan M Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Timothy O Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Jiaxin C Tu
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Ashley N Nielsen
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Rebecca F Schwarzlose
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - M Catalina Camacho
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Nandini Raghuraman
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, United States
| | - Steven E Petersen
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Christopher D Smyser
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, United States
| |
Collapse
|
7
|
Sylvester CM, Luby JL, Pine DS. Novel mechanism-based treatments for pediatric anxiety and depressive disorders. Neuropsychopharmacology 2024; 49:262-275. [PMID: 37608220 PMCID: PMC10700626 DOI: 10.1038/s41386-023-01709-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
Pediatric anxiety and depressive disorders are common, can be highly impairing, and can persist despite the best available treatments. Here, we review research into novel treatments for childhood anxiety and depressive disorders designed to target underlying cognitive, emotional, and neural circuit mechanisms. We highlight three novel treatments lying along a continuum relating to clinical impact of the disorder and the intensity of clinical management required. We review cognitive training, which involves the lowest risk and may be applicable for problems with mild to moderate impact; psychotherapy, which includes a higher level of clinical involvement and may be sufficient for problems with moderate impact; and brain stimulation, which has the highest potential risks and is therefore most appropriate for problems with high impact. For each treatment, we review the specific underlying cognitive, emotional, and brain circuit mechanisms that are being targeted, whether treatments modify those underlying mechanisms, and efficacy in reducing symptoms. We conclude by highlighting future directions, including the importance of work that leverages developmental windows of high brain plasticity to time interventions to the specific epochs in childhood that have the largest and most enduring life-long impact.
Collapse
Affiliation(s)
- Chad M Sylvester
- Washington University Department of Psychiatry, St. Louis, MO, USA.
- Washington University Department of Radiology, St. Louis, MO, USA.
| | - Joan L Luby
- Washington University Department of Psychiatry, St. Louis, MO, USA
| | - Daniel S Pine
- National Institute of Mental Health, Emotion and Development Branch, St. Louis, MO, USA
| |
Collapse
|
8
|
Myers MJ, Labonte AK, Gordon EM, Laumann TO, Tu JC, Wheelock MD, Nielsen AN, Schwarzlose R, Camacho MC, Warner BB, Raghuraman N, Luby JL, Barch DM, Fair DA, Petersen SE, Rogers CE, Smyser CD, Sylvester CM. Functional parcellation of the neonatal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566629. [PMID: 37986902 PMCID: PMC10659431 DOI: 10.1101/2023.11.10.566629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The cerebral cortex is organized into distinct but interconnected cortical areas, which can be defined by abrupt differences in patterns of resting state functional connectivity (FC) across the cortical surface. Such parcellations of the cortex have been derived in adults and older infants, but there is no widely used surface parcellation available for the neonatal brain. Here, we first demonstrate that adult- and older infant-derived parcels are a poor fit with neonatal data, emphasizing the need for neonatal-specific parcels. We next derive a set of 283 cortical surface parcels from a sample of n=261 neonates. These parcels have highly homogenous FC patterns and are validated using three external neonatal datasets. The Infomap algorithm is used to assign functional network identities to each parcel, and derived networks are consistent with prior work in neonates. The proposed parcellation may represent neonatal cortical areas and provides a powerful tool for neonatal neuroimaging studies.
Collapse
Affiliation(s)
- Michael J Myers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Alyssa K Labonte
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, MO USA
| | - Evan M Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Jiaxin Cindy Tu
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, MO USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
| | - Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
| | - Ashley N Nielsen
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Rebecca Schwarzlose
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - M Catalina Camacho
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Nandini Raghuraman
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Steven E Petersen
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Christopher D Smyser
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
9
|
Ravi S, Catalina Camacho M, Fleming B, Scudder MR, Humphreys KL. Concurrent and prospective associations between infant frontoparietal and default mode network connectivity and negative affectivity. Biol Psychol 2023; 184:108717. [PMID: 37924936 PMCID: PMC10762930 DOI: 10.1016/j.biopsycho.2023.108717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Emotion dysregulation is linked to differences in frontoparietal (FPN) and default mode (DMN) brain network functioning. These differences may be identifiable early in development. Temperamental negative affectivity has been identified as a precursor to later emotion dysregulation, though the underlying neurodevelopmental mechanism is unknown. The present study explores concurrent and prospective associations between FPN and DMN connectivity in infants and measures of negative affectivity. 72 infants underwent 5.03-13.28 min of resting state fMRI during natural sleep (M±SD age=4.90 ± 0.84 weeks; 54% male; usable data=9.92 ± 2.15 min). FPN and DMN intra- and internetwork connectivity were computed using adult network assignments. Crying was obtained from both parent-report and day-long audio recordings. Temperamental negative affectivity was obtained from a parent-report questionnaire. In this preregistered study, based on analyses conducted with a subset of this data (N = 32), we hypothesized that greater functional connectivity within and between FPN and DMN would be associated with greater negative affectivity. In the full sample we did not find support for these hypotheses. Instead, greater DMN intranetwork connectivity at age one month was associated with lower concurrent parent-reported crying and temperamental negative affectivity at age six months (ßs>-0.35, ps<.025), but not crying at age six months. DMN intranetwork connectivity was also negatively associated with internalizing symptoms at age eighteen-months (ß=-0.58, p = .012). FPN intra- and internetwork connectivity was not associated with negative affectivity measures after accounting for covariates. This work furthers a neurodevelopmental model of emotion dysregulation by suggesting that infant functional connectivity at rest is associated with later emotional functioning.
Collapse
Affiliation(s)
- Sanjana Ravi
- Vanderbilt University, 230 Appleton Place, #552, Nashville, TN 37204, USA.
| | - M Catalina Camacho
- Washington University in St. Louis, One Brookings Drive, Campus Box 1125, St. Louis, MO 63130, USA
| | - Brooke Fleming
- Vanderbilt University, 230 Appleton Place, #552, Nashville, TN 37204, USA
| | - Michael R Scudder
- Vanderbilt University, 230 Appleton Place, #552, Nashville, TN 37204, USA
| | | |
Collapse
|
10
|
Cotter DL, Campbell CE, Sukumaran K, McConnell R, Berhane K, Schwartz J, Hackman DA, Ahmadi H, Chen JC, Herting MM. Effects of ambient fine particulates, nitrogen dioxide, and ozone on maturation of functional brain networks across early adolescence. ENVIRONMENT INTERNATIONAL 2023; 177:108001. [PMID: 37307604 PMCID: PMC10353545 DOI: 10.1016/j.envint.2023.108001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/14/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Air pollution is linked to neurodevelopmental delays, but its association with longitudinal changes in brain network development has yet to be investigated. We aimed to characterize the effect of PM2.5, O3, and NO2 exposure at ages 9-10 years on changes in functional connectivity (FC) over a 2-year follow-up period, with a focus on the salience (SN), frontoparietal (FPN), and default-mode (DMN) brain networks as well as the amygdala and hippocampus given their importance in emotional and cognitive functioning. METHODS A sample of children (N = 9,497; with 1-2 scans each for a total of 13,824 scans; 45.6% with two brain scans) from the Adolescent Brain Cognitive Development (ABCD) Study® were included. Annual averages of pollutant concentrations were assigned to the child's primary residential address using an ensemble-based exposure modeling approach. Resting-state functional MRI was collected on 3T MRI scanners. First, developmental linear mixed-effect models were performed to characterize typical FC development within our sample. Next, single- and multi-pollutant linear mixed-effect models were constructed to examine the association between exposure and intra-network, inter-network, and subcortical-to-network FC change over time, adjusting for sex, race/ethnicity, income, parental education, handedness, scanner type, and motion. RESULTS Developmental profiles of FC over the 2-year follow-up included intra-network integration within the DMN and FPN as well as inter-network integration between the SN-FPN; along with intra-network segregation in the SN as well as subcortical-to-network segregation more broadly. Higher PM2.5 exposure resulted in greater inter-network and subcortical-to-network FC over time. In contrast, higher O3 concentrations resulted in greater intra-network, but less subcortical-to-network FC over time. Lastly, higher NO2 exposure led to less inter-network and subcortical-to-network FC over the 2-year follow-up period. CONCLUSION Taken together, PM2.5, O3, and NO2 exposure in childhood relate to distinct changes in patterns of network maturation over time. This is the first study to show outdoor ambient air pollution during childhood is linked to longitudinal changes in brain network connectivity development.
Collapse
Affiliation(s)
- Devyn L Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Claire E Campbell
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel A Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Rogers CE, Luby J. New Directions in Child Psychiatry: Shaping Neurodevelopmental Trajectories. MISSOURI MEDICINE 2023; 120:273-276. [PMID: 37609473 PMCID: PMC10441267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Historically, the field of child psychiatry has lagged behind the field of general psychiatry in terms of research innovations and the availability of empirically supported treatment modalities. However, over the last two decades there has been increasing interest in and research focused on the developmental origins of mental disorders examining both neurobiological and psychosocial etiologies.1 This has catalyzed the field leading to advances in understanding the developmental psychopathology of mental disorders and the generation of novel early interventions that have shown significant promise.2-4 Further, catalyzing this effort is new data demonstrating the powerful impact of psychosocial forces on neurodevelopment. New methodologies and discoveries in the basic areas of early childhood developmental psychology have led to a greater appreciation for the emotional and cognitive sophistication of children in the first three years of life. Advances in methods to understand preverbal children's emotional and attentional responses (through measures of eye gaze and suck for example) as well as observational methods to glean a variety of mental health relevant behaviors early in life (e.g. behavioral inhibition, pro-social behaviors and social motivation) have further elucidated and validated these capacities. In addition, measures of neural function using electroencephalogram and evoked response potentials (EEG/ERP) and functional magnetic resonance imaging (fMRI) as early as the neonatal period, with many analysis methods developed at WUSTL, have further informed this domain providing new insight into early brain and behavioral relationships as well as how intervention impact brain function.5-7.
Collapse
Affiliation(s)
- Cynthia E Rogers
- Professor, Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Joan Luby
- Professor, Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
12
|
Li X, Chen H, Hu Y, Larsen RJ, Sutton BP, McElwain NL, Gao W. Functional neural network connectivity at 3 months predicts infant-mother dyadic flexibility during play at 6 months. Cereb Cortex 2023; 33:8321-8332. [PMID: 37020357 PMCID: PMC10321085 DOI: 10.1093/cercor/bhad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Early functioning of neural networks likely underlies the flexible switching between internal and external orientation and may be key to the infant's ability to effectively engage in social interactions. To test this hypothesis, we examined the association between infants' neural networks at 3 months and infant-mother dyadic flexibility (denoting the structural variability of their interaction dynamics) at 3, 6, and 9 months. Participants included thirty-five infants (37% girls) and their mothers (87% White). At 3 months, infants participated in a resting-state functional magnetic resonance imaging session, and functional connectivity (FC) within the default mode (DMN) and salience (SN) networks, as well as DMN-SN internetwork FC, were derived using a seed-based approach. When infants were 3, 6, and 9 months, infant-mother dyads completed the Still-Face Paradigm where their individual engagement behaviors were observed and used to quantify dyadic flexibility using state space analysis. Results revealed that greater within-DMN FC, within-SN FC, and DMN-SN anticorrelation at 3 months predicted greater dyadic flexibility at 6 months, but not at 3 and 9 months. Findings suggest that early synchronization and interaction between neural networks underlying introspection and salience detection may support infants' flexible social interactions as they become increasingly active and engaged social partners.
Collapse
Affiliation(s)
- Xiaomei Li
- Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, 905 S. Goodwin Ave, Urbana, IL 61801, United States
| | - Haitao Chen
- Department of Biomedical Sciences and Imaging, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 116 N. Robertson Blvd, Los Angeles, CA 90048, CA, United States
- David Geffen School of Medicine, University of California, Geffen Hall, 885 Tiverton Drive, Los Angeles, CA 90095, United States
| | - Yannan Hu
- Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, 905 S. Goodwin Ave, Urbana, IL 61801, United States
| | - Ryan J Larsen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL 61801, United States
| | - Bradley P Sutton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green St, Urbana, IL 61801, United States
| | - Nancy L McElwain
- Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, 905 S. Goodwin Ave, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL 61801, United States
| | - Wei Gao
- Department of Biomedical Sciences and Imaging, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 116 N. Robertson Blvd, Los Angeles, CA 90048, CA, United States
- David Geffen School of Medicine, University of California, Geffen Hall, 885 Tiverton Drive, Los Angeles, CA 90095, United States
| |
Collapse
|
13
|
Vanes L, Fenn-Moltu S, Hadaya L, Fitzgibbon S, Cordero-Grande L, Price A, Chew A, Falconer S, Arichi T, Counsell SJ, Hajnal JV, Batalle D, Edwards AD, Nosarti C. Longitudinal neonatal brain development and socio-demographic correlates of infant outcomes following preterm birth. Dev Cogn Neurosci 2023; 61:101250. [PMID: 37150083 PMCID: PMC10195853 DOI: 10.1016/j.dcn.2023.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023] Open
Abstract
Preterm birth results in premature exposure of the brain to the extrauterine environment during a critical period of neurodevelopment. Consequently, infants born preterm are at a heightened risk of adverse behavioural outcomes in later life. We characterise longitudinal development of neonatal regional brain volume and functional connectivity in the first weeks following preterm birth, sociodemographic factors, and their respective relationships to psychomotor outcomes and psychopathology in toddlerhood. We study 121 infants born preterm who underwent magnetic resonance imaging shortly after birth, at term-equivalent age, or both. Longitudinal regional brain volume and functional connectivity were modelled as a function of psychopathology and psychomotor outcomes at 18 months. Better psychomotor functioning in toddlerhood was associated with greater relative right cerebellar volume and a more rapid decrease over time of sensorimotor degree centrality in the neonatal period. In contrast, increased 18-month psychopathology was associated with a more rapid decrease in relative regional subcortical volume. Furthermore, while socio-economic deprivation was related to both psychopathology and psychomotor outcomes, cognitively stimulating parenting predicted psychopathology only. Our study highlights the importance of longitudinal imaging to better predict toddler outcomes following preterm birth, as well as disparate environmental influences on separable facets of behavioural development in this population.
Collapse
Affiliation(s)
- Lucy Vanes
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom.
| | - Sunniva Fenn-Moltu
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Laila Hadaya
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Sean Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Lucilio Cordero-Grande
- Biomedical Image Technologies, TelecomunicacionETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, ISCIII, Spain
| | - Anthony Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom; Paediatric Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
14
|
Sylvester CM, Kaplan S, Myers MJ, Gordon EM, Schwarzlose RF, Alexopoulos D, Nielsen AN, Kenley JK, Meyer D, Yu Q, Graham AM, Fair DA, Warner BB, Barch DM, Rogers CE, Luby JL, Petersen SE, Smyser CD. Network-specific selectivity of functional connections in the neonatal brain. Cereb Cortex 2023; 33:2200-2214. [PMID: 35595540 PMCID: PMC9977389 DOI: 10.1093/cercor/bhac202] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The adult human brain is organized into functional brain networks, groups of functionally connected segregated brain regions. A key feature of adult functional networks is long-range selectivity, the property that spatially distant regions from the same network have higher functional connectivity than spatially distant regions from different networks. Although it is critical to establish the status of functional networks and long-range selectivity during the neonatal period as a foundation for typical and atypical brain development, prior work in this area has been mixed. Although some studies report distributed adult-like networks, other studies suggest that neonatal networks are immature and consist primarily of spatially isolated regions. Using a large sample of neonates (n = 262), we demonstrate that neonates have long-range selective functional connections for the default mode, fronto-parietal, and dorsal attention networks. An adult-like pattern of functional brain networks is evident in neonates when network-detection algorithms are tuned to these long-range connections, when using surface-based registration (versus volume-based registration), and as per-subject data quantity increases. These results help clarify factors that have led to prior mixed results, establish that key adult-like functional network features are evident in neonates, and provide a foundation for studies of typical and atypical brain development.
Collapse
Affiliation(s)
- Chad M Sylvester
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Sydney Kaplan
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Michael J Myers
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Evan M Gordon
- Department of Radiology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Rebecca F Schwarzlose
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeanette K Kenley
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Dominique Meyer
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Qiongru Yu
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, 6363 Alvarado Court, Suite 103, San Diego, CA 92120, USA
| | - Alice M Graham
- Department of Psychiatry, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, Department of Pediatrics, and Institute of Child Development, University of Minnesota, 2025 E. River Parkway, Minneapolis, MN 55414, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Radiology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Psychological and Brain Sciences, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Steven E Petersen
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Radiology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
15
|
Enguix V, Kenley J, Luck D, Cohen-Adad J, Lodygensky GA. NeoRS: A Neonatal Resting State fMRI Data Preprocessing Pipeline. Front Neuroinform 2022; 16:843114. [PMID: 35784189 PMCID: PMC9247272 DOI: 10.3389/fninf.2022.843114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/27/2022] [Indexed: 11/20/2022] Open
Abstract
Resting state functional MRI (rsfMRI) has been shown to be a promising tool to study intrinsic brain functional connectivity and assess its integrity in cerebral development. In neonates, where functional MRI is limited to very few paradigms, rsfMRI was shown to be a relevant tool to explore regional interactions of brain networks. However, to identify the resting state networks, data needs to be carefully processed to reduce artifacts compromising the interpretation of results. Because of the non-collaborative nature of the neonates, the differences in brain size and the reversed contrast compared to adults due to myelination, neonates can’t be processed with the existing adult pipelines, as they are not adapted. Therefore, we developed NeoRS, a rsfMRI pipeline for neonates. The pipeline relies on popular neuroimaging tools (FSL, AFNI, and SPM) and is optimized for the neonatal brain. The main processing steps include image registration to an atlas, skull stripping, tissue segmentation, slice timing and head motion correction and regression of confounds which compromise functional data interpretation. To address the specificity of neonatal brain imaging, particular attention was given to registration including neonatal atlas type and parameters, such as brain size variations, and contrast differences compared to adults. Furthermore, head motion was scrutinized, and motion management optimized, as it is a major issue when processing neonatal rsfMRI data. The pipeline includes quality control using visual assessment checkpoints. To assess the effectiveness of NeoRS processing steps we used the neonatal data from the Baby Connectome Project dataset including a total of 10 neonates. NeoRS was designed to work on both multi-band and single-band acquisitions and is applicable on smaller datasets. NeoRS also includes popular functional connectivity analysis features such as seed-to-seed or seed-to-voxel correlations. Language, default mode, dorsal attention, visual, ventral attention, motor and fronto-parietal networks were evaluated. Topology found the different analyzed networks were in agreement with previously published studies in the neonate. NeoRS is coded in Matlab and allows parallel computing to reduce computational times; it is open-source and available on GitHub (https://github.com/venguix/NeoRS). NeoRS allows robust image processing of the neonatal rsfMRI data that can be readily customized to different datasets.
Collapse
Affiliation(s)
- Vicente Enguix
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Canadian Neonatal Brain Platform, Montreal, QC, Canada
- *Correspondence: Vicente Enguix,
| | - Jeanette Kenley
- Washington University School of Medicine, St. Louis, MO, United States
| | - David Luck
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
- Canadian Neonatal Brain Platform, Montreal, QC, Canada
| | - Julien Cohen-Adad
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, QC, Canada
- Mila – Quebec AI Institute, Montreal, QC, Canada
| | - Gregory Anton Lodygensky
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
- Canadian Neonatal Brain Platform, Montreal, QC, Canada
| |
Collapse
|
16
|
Filippi CA, Valadez EA, Fox NA, Pine DS. Temperamental risk for anxiety: emerging work on the infant brain and later neurocognitive development. Curr Opin Behav Sci 2022; 44:101105. [PMID: 35342779 PMCID: PMC8955382 DOI: 10.1016/j.cobeha.2022.101105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Behavioral inhibition (BI), an infant temperament characterized by distress to novelty, is amongst the strongest early risk markers for future anxiety. In this review, we highlight three ways that recent research elucidates key details about the pathophysiology of anxiety in individuals with BI. First, atypical amygdala connectivity during infancy may be related to BI. Second, developmental shifts in cognitive control may portend risk for anxiety for children with BI. Lastly, distinct cognitive control processes moderate the BI-anxiety relation in different ways. Studying the intersection of these three streams of work may inform prevention or intervention work.
Collapse
Affiliation(s)
- Courtney A Filippi
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, 20892, United States
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, 20742, United States
- Indicates shared first authorship
- Present address: Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, Maryland, 20892
| | - Emilio A Valadez
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, 20742, United States
- Indicates shared first authorship
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, 20742, United States
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, 20892, United States
| |
Collapse
|
17
|
Pollatou A, Filippi CA, Aydin E, Vaughn K, Thompson D, Korom M, Dufford AJ, Howell B, Zöllei L, Martino AD, Graham A, Scheinost D, Spann MN. An ode to fetal, infant, and toddler neuroimaging: Chronicling early clinical to research applications with MRI, and an introduction to an academic society connecting the field. Dev Cogn Neurosci 2022; 54:101083. [PMID: 35184026 PMCID: PMC8861425 DOI: 10.1016/j.dcn.2022.101083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Fetal, infant, and toddler neuroimaging is commonly thought of as a development of modern times (last two decades). Yet, this field mobilized shortly after the discovery and implementation of MRI technology. Here, we provide a review of the parallel advancements in the fields of fetal, infant, and toddler neuroimaging, noting the shifts from clinical to research use, and the ongoing challenges in this fast-growing field. We chronicle the pioneering science of fetal, infant, and toddler neuroimaging, highlighting the early studies that set the stage for modern advances in imaging during this developmental period, and the large-scale multi-site efforts which ultimately led to the explosion of interest in the field today. Lastly, we consider the growing pains of the community and the need for an academic society that bridges expertise in developmental neuroscience, clinical science, as well as computational and biomedical engineering, to ensure special consideration of the vulnerable mother-offspring dyad (especially during pregnancy), data quality, and image processing tools that are created, rather than adapted, for the young brain.
Collapse
Affiliation(s)
- Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Courtney A Filippi
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Ezra Aydin
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Kelly Vaughn
- Department of Pediatrics, University of Texas Health Sciences Center, Houston, TX, USA
| | - Deanne Thompson
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Lilla Zöllei
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Alice Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Dustin Scheinost
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
18
|
Kanel D, Vanes LD, Ball G, Hadaya L, Falconer S, Counsell SJ, Edwards AD, Nosarti C. OUP accepted manuscript. Brain Commun 2022; 4:fcac009. [PMID: 35178519 PMCID: PMC8846580 DOI: 10.1093/braincomms/fcac009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Very preterm children are more likely to exhibit difficulties in socio-emotional processing than their term-born peers. Emerging socio-emotional problems may be partly due to alterations in limbic system development associated with infants’ early transition to extrauterine life. The amygdala is a key structure in this system and plays a critical role in various aspects of socio-emotional development, including emotion regulation. The current study tested the hypothesis that amygdala resting-state functional connectivity at term-equivalent age would be associated with socio-emotional outcomes in childhood. Participants were 129 very preterm infants (<33 weeks' gestation) who underwent resting-state functional MRI at term and received a neurodevelopmental assessment at 4–7 years (median = 4.64). Using the left and right amygdalae as seed regions, we investigated associations between whole-brain seed-based functional connectivity and three socio-emotional outcome factors which were derived using exploratory factor analysis (Emotion Moderation, Social Function and Empathy), controlling for sex, neonatal sickness, post-menstrual age at scan and social risk. Childhood Emotion Moderation scores were significantly associated with neonatal resting-state functional connectivity of the right amygdala with right parahippocampal gyrus and right middle occipital gyrus, as well as with functional connectivity of the left amygdala with the right thalamus. No significant associations were found between amygdalar resting-state functional connectivity and either Social Function or Empathy scores. The current findings show that amygdalar functional connectivity assessed at term is associated with later socio-emotional outcomes in very preterm children.
Collapse
Affiliation(s)
- Dana Kanel
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Lucy D. Vanes
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Gareth Ball
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Laila Hadaya
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Shona Falconer
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | | | - Chiara Nosarti
- Correspondence to: Chiara Nosarti Centre for the Developing Brain School of Bioengineering and Imaging Sciences King’s College London and Evelina Children’s Hospital London SE1 7EH, UK E-mail:
| |
Collapse
|
19
|
Radhakrishnan R, Vishnubhotla RV, Zhao Y, Yan J, He B, Steinhardt N, Haas DM, Sokol GM, Sadhasivam S. Global Brain Functional Network Connectivity in Infants With Prenatal Opioid Exposure. Front Pediatr 2022; 10:847037. [PMID: 35359894 PMCID: PMC8964084 DOI: 10.3389/fped.2022.847037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Infants with prenatal opioid and substance exposure are at higher risk of poor neurobehavioral outcomes in later childhood. Early brain imaging in infancy has the potential to identify early brain developmental alterations that may help predict behavioral outcomes in these children. In this study, using resting-state functional MRI in early infancy, we aim to identify differences in global brain network connectivity in infants with prenatal opioid and substance exposure compared to healthy control infants. METHODS AND MATERIALS In this prospective study, we recruited 23 infants with prenatal opioid exposure and 29 healthy opioid naïve infants. All subjects underwent brain resting-state functional MRI before 3 months postmenstrual age. Covariate Assisted Principal (CAP) regression was performed to identify brain networks within which functional connectivity was associated with opioid exposure after adjusting for sex and gestational age. Associations of these significant networks with maternal comorbidities were also evaluated. Additionally, graph network metrics were assessed in these CAP networks. RESULTS There were four CAP network components that were significantly different between the opioid exposed and healthy control infants. Two of these four networks were associated with maternal psychological factors. Intra-network graph metrics, namely average flow coefficient, clustering coefficient and transitivity were also significantly different in opioid exposed infants compared to healthy controls. CONCLUSION Prenatal opioid exposure is associated with alterations in global brain functional networks compared to non-opioid exposed infants, with intra-network alterations in graph network modeling. These network alterations were also associated with maternal comorbidity, especially mental health. Large-scale longitudinal studies can help in understanding the clinical implications of these early brain functional network alterations in infants with prenatal opioid exposure.
Collapse
Affiliation(s)
- Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ramana V Vishnubhotla
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jingwen Yan
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bing He
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nicole Steinhardt
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - David M Haas
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Gregory M Sokol
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Senthilkumar Sadhasivam
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
20
|
Abstract
Advances in neuroimaging have increasingly enabled researchers to investigate whether alterations in brain development commonly identified in preterm infants underlie their high risk of long-term neurodevelopmental impairment, including sensory, motor, cognitive, and psychiatric deficits. This review begins by examining the growing body of literature utilizing advanced magnetic resonance imaging (MRI) techniques to probe structural (via diffusion MRI) and functional (via resting state-functional MRI) connectivity development in the preterm brain during the neonatal period, both in the presence and absence of brain injury. It then details the recent work linking neonatal brain connectivity measures to neurodevelopmental and psychiatric outcomes in prematurely-born cohorts. Finally, building upon the recent substantive growth in the utilization of these neuroimaging modalities, it concludes by highlighting areas in which continued optimization of age-specific acquisition and analysis techniques for these data remains necessary, efforts fundamental to advancing the field toward establishing individual-level predictive capabilities in this high-risk population.
Collapse
Affiliation(s)
- Rebecca G Brenner
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue Campus Box 8111, St. Louis, MO 63110, United States
| | - Muriah D Wheelock
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeffrey J Neil
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue Campus Box 8111, St. Louis, MO 63110, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher D Smyser
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue Campus Box 8111, St. Louis, MO 63110, United States; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
21
|
Filippi CA, Ravi S, Bracy M, Winkler A, Sylvester CM, Pine DS, Fox NA. Amygdala Functional Connectivity and Negative Reactive Temperament at Age 4 Months. J Am Acad Child Adolesc Psychiatry 2021; 60:1137-1146. [PMID: 33385507 PMCID: PMC8239057 DOI: 10.1016/j.jaac.2020.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/18/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Infant amygdala connectivity correlates with maternal reports of infant temperament characterized by novelty-evoked distress and avoidance. However, no studies have examined how human infant amygdala connectivity relates to direct observations of novelty-evoked distress. This study examined the link between amygdala connectivity and infant novelty-evoked distress using direct observation of temperament. METHOD Novelty-evoked distress was assessed at 4 months of age (N = 90) using a standardized reactivity assessment and parent report. Within 3 weeks of assessment, resting-state functional magnetic resonance imaging was collected in a subset of infants (n = 34). Using a whole-brain voxelwise approach, amygdala connectivity associated with positive and negative affect during the reactivity assessment was examined. Regions where the association of amygdala connectivity with negative affect was higher than with positive affect were then examined. Associations between amygdala connectivity and parent report of temperament were also examined. RESULTS Greater amygdala-cingulate and amygdala-superior frontal gyrus connectivity was associated with lower positive affect during the reactivity assessment. Further, the association between amygdala-cingulate connectivity was greater for negative affect compared with positive affect. There were no significant associations between latency to approach novelty (as measured by parent report) and amygdala connectivity. Validation analyses conducted using a large independent longitudinal sample (N = 323) demonstrated that negative reactivity was associated with increased child-reported anxiety symptoms in adolescence. CONCLUSION These results provide novel insight into the developmental pathophysiology of novelty-evoked distress. This is consistent with research linking an altered cognitive control mechanism to temperamental risk for anxiety.
Collapse
Affiliation(s)
- Courtney A Filippi
- University of Maryland, College Park; National Institute of Mental Health (NIMH), Bethesda, Maryland.
| | | | | | | | | | - Daniel S Pine
- National Institute of Mental Health (NIMH), Bethesda, Maryland
| | | |
Collapse
|
22
|
Kanel D, Vanes LD, Pecheva D, Hadaya L, Falconer S, Counsell SJ, Edwards DA, Nosarti C. Neonatal White Matter Microstructure and Emotional Development during the Preschool Years in Children Who Were Born Very Preterm. eNeuro 2021; 8:ENEURO.0546-20.2021. [PMID: 34373253 PMCID: PMC8489022 DOI: 10.1523/eneuro.0546-20.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Children born very preterm (<33 weeks of gestation) are at a higher risk of developing socio-emotional difficulties compared with those born at term. In this longitudinal study, we tested the hypothesis that diffusion characteristics of white matter (WM) tracts implicated in socio-emotional processing assessed in the neonatal period are associated with socio-emotional development in 151 very preterm children previously enrolled into the Evaluation of Preterm Imaging study (EudraCT 2009-011602-42). All children underwent diffusion tensor imaging at term-equivalent age and fractional anisotropy (FA) was quantified in the uncinate fasciculus (UF), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus (SLF). Children's socio-emotional development was evaluated at preschool age (median = 4.63 years). Exploratory factor analysis conducted on the outcome variables revealed a three-factor structure, with latent constructs summarized as: "emotion moderation," "social function," and "empathy." Results of linear regression analyses, adjusting for full-scale IQ and clinical and socio-demographic variables, showed an association between lower FA in the right UF and higher "emotion moderation" scores (β = -0.280; p < 0.001), which was mainly driven by negative affectivity scores (β = -0.281; p = 0.001). Results further showed an association between higher full-scale IQ and better social functioning (β = -0.334, p < 0.001). Girls had higher empathy scores than boys (β = -0.341, p = 0.006). These findings suggest that early alterations of diffusion characteristics of the UF could represent a biological substrate underlying the link between very preterm birth and emotional dysregulation in childhood and beyond.
Collapse
Affiliation(s)
- Dana Kanel
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Lucy D Vanes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Diliana Pecheva
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Laila Hadaya
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - David A Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| |
Collapse
|
23
|
Phillips ML, Schmithorst VJ, Banihashemi L, Taylor M, Samolyk A, Northrup JB, English GE, Versace A, Stiffler RS, Aslam HA, Bonar L, Panigrahy A, Hipwell AE. Patterns of Infant Amygdala Connectivity Mediate the Impact of High Caregiver Affect on Reducing Infant Smiling: Discovery and Replication. Biol Psychiatry 2021; 90:342-352. [PMID: 34130856 PMCID: PMC8364485 DOI: 10.1016/j.biopsych.2021.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/13/2021] [Accepted: 03/21/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Behavioral research indicates that caregiver mood disorders and emotional instability in the early months following childbirth are associated with lower positive emotionality and higher negative emotionality in infants, but the neural mechanisms remain understudied. METHODS Using resting-state functional connectivity as a measure of the functional architecture of the early infant brain, we aimed to determine the extent to which connectivity between the amygdala, a key region supporting emotional learning and perception, and large-scale neural networks mediated the association between caregiver affect and anxiety and early infant negative emotionality and positive emotionality. Two samples of infants (first sample: n = 58; second sample: n = 31) 3 months of age underwent magnetic resonance imaging during natural sleep. RESULTS During infancy, greater resting-state functional connectivity between the amygdala and the salience network and, to a lesser extent, lower amygdala and executive control network resting-state functional connectivity mediated the effect of greater caregiver postpartum depression and trait anxiety on reducing infant smiling (familywise error-corrected p < .05). Furthermore, results from the first sample were replicated in the second, independent sample, to a greater extent for caregiver depression than for caregiver anxiety. CONCLUSIONS We provide evidence of early objective neural markers that can help identify infants who are more likely to be at risk from, versus those who might be protected against, the deleterious effects of caregiver depression and anxiety and reduced positive emotionality.
Collapse
Affiliation(s)
- Mary L. Phillips
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
| | - Vincent J. Schmithorst
- UPMC Children’s Hospital of Pittsburgh, Department of Pediatric Radiology, Pittsburgh, PA
| | - Layla Banihashemi
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
| | | | | | - Jessie B. Northrup
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
| | | | - Amelia Versace
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
| | | | | | - Lisa Bonar
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
| | - Ashok Panigrahy
- UPMC Children’s Hospital of Pittsburgh, Department of Pediatric Radiology, Pittsburgh, PA
| | - Alison E. Hipwell
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
| |
Collapse
|
24
|
Perino MT, Myers MJ, Wheelock MD, Yu Q, Harper JC, Manhart MF, Gordon EM, Eggebrecht AT, Pine DS, Barch DM, Luby JL, Sylvester CM. Whole-Brain Resting-State Functional Connectivity Patterns Associated With Pediatric Anxiety and Involuntary Attention Capture. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:229-238. [PMID: 36033105 PMCID: PMC9417088 DOI: 10.1016/j.bpsgos.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Pediatric anxiety disorders are linked to dysfunction in multiple functional brain networks, as well as to alterations in the allocation of spatial attention. We used network-level analyses to characterize resting-state functional connectivity (rs-fc) alterations associated with 1) symptoms of anxiety and 2) alterations in stimulus-driven attention associated with pediatric anxiety disorders. We hypothesized that anxiety was related to altered connectivity of the frontoparietal, default mode, cingulo-opercular, and ventral attention networks and that anxiety-related connectivity alterations that include the ventral attention network would simultaneously be related to deviations in stimulus-driven attention. METHODS A sample of children (n = 61; mean = 10.6 years of age), approximately half of whom met criteria for a current anxiety disorder, completed a clinical assay, an attention task, and rs-fc magnetic resonance imaging scans. Network-level analyses examined whole-brain rs-fc patterns associated with clinician-rated anxiety and with involuntary capture of attention. Post hoc analyses controlled for comorbid symptoms. RESULTS Elevated clinician-rated anxiety was associated with altered connectivity within the cingulo-opercular network, as well as between the cingulo-opercular network and the ventral attention, default mode, and visual networks. Connectivity between the ventral attention and cingulo-opercular networks was associated with variation in both anxiety and stimulus-driven attention. CONCLUSIONS Pediatric anxiety is related to aberrant connectivity patterns among several networks, most of which include the cingulo-opercular network. These results help clarify the within- and between-network interactions associated with pediatric anxiety and its association with altered attention, suggesting that specific network connections could be targeted to improve specific altered processes associated with anxiety.
Collapse
Affiliation(s)
- Michael T. Perino
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Michael J. Myers
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Muriah D. Wheelock
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Qiongru Yu
- Department of Psychology, San Diego State University, San Diego, California
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Jennifer C. Harper
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Megan F. Manhart
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Evan M. Gordon
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Adam T. Eggebrecht
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Daniel S. Pine
- Development & Emotion Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Deanna M. Barch
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Joan L. Luby
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Chad M. Sylvester
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
25
|
Sylvester CM, Myers MJ, Perino MT, Kaplan S, Kenley JK, Smyser TA, Warner BB, Barch DM, Pine DS, Luby JL, Rogers CE, Smyser CD. Neonatal Brain Response to Deviant Auditory Stimuli and Relation to Maternal Trait Anxiety. Am J Psychiatry 2021; 178:771-778. [PMID: 33900811 PMCID: PMC8363512 DOI: 10.1176/appi.ajp.2020.20050672] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Excessive response to unexpected or "deviant" stimuli during infancy and early childhood represents an early risk marker for anxiety disorders. However, research has yet to delineate the specific brain regions underlying the neonatal response to deviant stimuli near birth and the relation to risk for anxiety disorders. The authors used task-based functional MRI (fMRI) to delineate the neonatal response to deviant stimuli and its relationship to maternal trait anxiety. METHODS The authors used fMRI to measure brain activity evoked by deviant auditory stimuli in 45 sleeping neonates (mean age, 27.8 days; 60% female; 64% African American). In 41 of the infants, neural response to deviant stimuli was examined in relation to maternal trait anxiety on the State-Trait Anxiety Inventory, a familial risk factor for offspring anxiety. RESULTS Neonates manifested a robust and widespread neural response to deviant stimuli that resembles patterns found previously in adults. Higher maternal trait anxiety was related to higher responses within multiple brain regions, including the left and right anterior insula, the ventrolateral prefrontal cortex, and multiple areas within the anterior cingulate cortex. These areas overlap with brain regions previously linked to anxiety disorders and other psychiatric illnesses in adults. CONCLUSIONS The neural architecture sensitive to deviant stimuli robustly functions in newborns. Excessive responsiveness of some circuitry components at birth may signal risk for anxiety and other psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Deanna M. Barch
- Department of Psychiatry, Washington University
- Department of Radiology, Washington University
- Department of Psychological and Brain Sciences, Washington University
| | - Daniel S. Pine
- National Institute of Mental Health, Emotion and Development Branch, Washington University
| | | | - Cynthia E. Rogers
- Department of Psychiatry, Washington University
- Department of Pediatrics, Washington University
| | - Christopher D. Smyser
- Department of Neurology, Washington University
- Department of Pediatrics, Washington University
- Department of Radiology, Washington University
| |
Collapse
|
26
|
Zacharek SJ, Kribakaran S, Kitt ER, Gee DG. Leveraging big data to map neurodevelopmental trajectories in pediatric anxiety. Dev Cogn Neurosci 2021; 50:100974. [PMID: 34147988 PMCID: PMC8225701 DOI: 10.1016/j.dcn.2021.100974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
Anxiety disorders are the most prevalent psychiatric condition among youth, with symptoms commonly emerging prior to or during adolescence. Delineating neurodevelopmental trajectories associated with anxiety disorders is important for understanding the pathophysiology of pediatric anxiety and for early risk identification. While a growing literature has yielded valuable insights into the nature of brain structure and function in pediatric anxiety, progress has been limited by inconsistent findings and challenges common to neuroimaging research. In this review, we first discuss these challenges and the promise of ‘big data’ to map neurodevelopmental trajectories in pediatric anxiety. Next, we review evidence of age-related differences in neural structure and function among anxious youth, with a focus on anxiety-relevant processes such as threat and safety learning. We then highlight large-scale cross-sectional and longitudinal studies that assess anxiety and are well positioned to inform our understanding of neurodevelopment in pediatric anxiety. Finally, we detail relevant challenges of ‘big data’ and propose future directions through which large publicly available datasets can advance knowledge of deviations from normative brain development in anxiety. Leveraging ‘big data’ will be essential for continued progress in understanding the neurobiology of pediatric anxiety, with implications for identifying markers of risk and novel treatment targets.
Collapse
Affiliation(s)
- Sadie J Zacharek
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Cambridge, MA, 02139, United States; Yale University, Department of Psychology, New Haven, CT, 06511, United States
| | - Sahana Kribakaran
- Yale University, Department of Psychology, New Haven, CT, 06511, United States
| | - Elizabeth R Kitt
- Yale University, Department of Psychology, New Haven, CT, 06511, United States
| | - Dylan G Gee
- Yale University, Department of Psychology, New Haven, CT, 06511, United States.
| |
Collapse
|
27
|
Perino MT, Yu Q, Myers MJ, Harper JC, Baumel WT, Petersen SE, Barch DM, Luby JL, Sylvester CM. Attention Alterations in Pediatric Anxiety: Evidence From Behavior and Neuroimaging. Biol Psychiatry 2021; 89:726-734. [PMID: 33012520 PMCID: PMC9166685 DOI: 10.1016/j.biopsych.2020.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Pediatric anxiety disorders involve greater capture of attention by threatening stimuli. However, it is not known if disturbances extend to nonthreatening stimuli, as part of a pervasive disturbance in attention-related brain systems. We hypothesized that pediatric anxiety involves greater capture of attention by salient, nonemotional stimuli, coupled with greater activity in the portion of the inferior frontal gyrus (IFG) specific to the ventral attention network (VAN). METHODS A sample of children (n = 129, 75 girls, mean 10.6 years of age), approximately half of whom met criteria for a current anxiety disorder, completed a task measuring involuntary capture of attention by nonemotional (square boxes) and emotional (angry and neutral faces) stimuli. A subset (n = 61) completed a task variant during functional magnetic resonance imaging. A priori analyses examined activity in functional brain areas within the right IFG, supplemented by a whole-brain, exploratory analysis. RESULTS Higher clinician-rated anxiety was associated with greater capture of attention by nonemotional, salient stimuli (F1,125 = 4.94, p = .028) and greater activity in the portion of the IFG specific to the VAN (F1,57 = 10.311, p = .002). Whole-brain analyses confirmed that the effect of anxiety during capture of attention was most pronounced in the VAN portion of the IFG, along with additional areas of the VAN and the default mode network. CONCLUSIONS The pathophysiology of pediatric anxiety appears to involve greater capture of attention to salient stimuli, as well as greater activity in attention-related brain networks. These results provide novel behavioral and brain-based targets for treatment of pediatric anxiety disorders.
Collapse
Affiliation(s)
- Michael T Perino
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| | - Qiongru Yu
- Department of Psychology, San Diego State University, San Diego, California; Department of Psychiatry, University of California San Diego School of Medicine, San Diego, California
| | - Michael J Myers
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Jennifer C Harper
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - William T Baumel
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Steven E Petersen
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Psychological and Brain Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Chad M Sylvester
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|
28
|
Fox NA, Buzzell GA, Morales S, Valadez EA, Wilson M, Henderson HA. Understanding the Emergence of Social Anxiety in Children With Behavioral Inhibition. Biol Psychiatry 2021; 89:681-689. [PMID: 33353668 PMCID: PMC7954867 DOI: 10.1016/j.biopsych.2020.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
Behavioral inhibition (BI) is a temperament characterized in early childhood by distress to novelty and avoidance of unfamiliar people, and it is one of the best-known risk factors for the development of social anxiety. However, nearly 60% of children with BI do not go on to meet criteria for social anxiety disorder. In this review we present an approach to understanding differential developmental trajectories among children with BI. We review research using laboratory-based tasks that isolate specific attention processes that enhance versus mitigate risk for social anxiety among behaviorally inhibited children and studies that suggest that BI is associated with heightened detection of novelty or threat. Moreover, stimulus-driven control processes, which we term "automatic control," increase the probability that behaviorally inhibited children display socially reticent behavior and develop social anxiety. In contrast, goal-driven control processes, which we term "planful control," decrease risk for anxiety. We suggest that these three categories of processes (detection, automatic control, and planful control) function together to determine whether behaviorally inhibited children are able to flexibly regulate their initial reactions to novelty, and in turn, decrease risk for social anxiety. Although laboratory-based tasks have identified these processes underlying risk and resilience, the challenge is linking them to the emotions, thoughts, and behaviors of behaviorally inhibited children in real-world contexts.
Collapse
Affiliation(s)
- Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland.
| | - George A Buzzell
- Department of Psychology, Florida International University, Miami, Florida
| | - Santiago Morales
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland
| | - Emilio A Valadez
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland
| | - McLennon Wilson
- Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
29
|
Emerging Evidence for Putative Neural Networks and Antecedents of Pediatric Anxiety in the Fetal, Neonatal, and Infant Periods. Biol Psychiatry 2021; 89:672-680. [PMID: 33518264 PMCID: PMC8087150 DOI: 10.1016/j.biopsych.2020.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/12/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
Anxiety disorders are the most prevalent psychiatric disorders in youth and are associated with profound individual impairment and public health costs. Research shows that clinically significant anxiety symptoms manifest in preschool-aged children, and correlates of anxiety symptoms are observable in infancy. Yet, predicting who is at risk for developing anxiety remains an enduring challenge. Predictive biomarkers of anxiety are needed before school age when anxiety symptoms typically consolidate into diagnostic profiles. Increasing evidence indicates that early neural measures implicated in anxiety and anxious temperament may be incorporated with traditional measures of behavioral risk (i.e., behavioral inhibition) to provide more robust classification of pediatric anxiety problems. This review examines the phenomenology of anxiety disorders in early life, highlighting developmental research that interrogates the putative neurocircuitry of pediatric anxiety. First, we discuss enduring challenges in identifying and predicting risk for pediatric anxiety. Second, we summarize emerging evidence for putative neural antecedents and networks underlying risk for pediatric anxiety in the fetal, neonatal, and infant periods that represent novel potential avenues for risk identification and prediction. We focus on evidence examining the importance of early amygdala and extended amygdala circuitry development to the emergence of anxiety. Finally, we discuss the utility of integrating developmental psychopathology and neuroscience to facilitate future research and clinical work.
Collapse
|
30
|
Dobson ET, Croarkin PE, Schroeder HK, Varney ST, Mossman SA, Cecil K, Strawn JR. Bridging Anxiety and Depression: A Network Approach in Anxious Adolescents. J Affect Disord 2021; 280:305-314. [PMID: 33221716 PMCID: PMC7744436 DOI: 10.1016/j.jad.2020.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/22/2020] [Accepted: 11/07/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND The phenomenology and neurobiology of depressive symptoms in anxious youth is poorly understood. METHODS Association networks of anxiety and depressive symptoms were developed in adolescents with generalized anxiety disorder (GAD; N=52, mean age: 15.4±1.6 years) who had not yet developed major depressive disorder. Community analyses were used to create consensus clusters of depressive and anxiety symptoms and to identify "bridge" symptoms between the clusters. In a subset of this sample (n=39), correlations between cortical thickness and depressive symptom severity was examined. RESULTS Ten symptoms clustered into an anxious community, 5 clustered into a depressive community and 5 bridged the two communities: impaired schoolwork, excessive weeping, low self-esteem, disturbed appetite, and physical symptoms of depression. Patients with more depressive cluster burden had altered cortical thickness in prefrontal, inferior and medial parietal (e.g., precuneus, supramarginal) regions and had decreases in cortical thickness-age relationships in prefrontal, temporal and parietal cortices. LIMITATIONS Data are cross-sectional and observational. Limited sample size precluded secondary analysis of comorbidities and demographics. CONCLUSIONS In youth with GAD, a sub-set of symptoms not directly related to anxiety bridge anxiety and depression. Youth with greater depressive cluster burden had altered cortical thickness in cortical structures within the default mode and central executive networks. These alternations in cortical thickness may represent a distinct neurostructural fingerprint in anxious youth with early depressive symptoms. Finally, youth with GAD and high depressive symptoms had reduced age-cortical thickness correlations. The emergence of depressive symptoms in early GAD and cortical development may have bidirectional, neurobiological relationships.
Collapse
Affiliation(s)
- Eric T Dobson
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina.
| | | | - Heidi K Schroeder
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH 45219
| | - Sara T Varney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH 45219
| | - Sarah A Mossman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH 45219
| | - Kim Cecil
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45267
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH 45219
| |
Collapse
|
31
|
Boggini T, Pozzoli S, Schiavolin P, Erario R, Mosca F, Brambilla P, Fumagalli M. Cumulative procedural pain and brain development in very preterm infants: A systematic review of clinical and preclinical studies. Neurosci Biobehav Rev 2020; 123:320-336. [PMID: 33359095 DOI: 10.1016/j.neubiorev.2020.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 01/16/2023]
Abstract
Very preterm infants may manifest neurodevelopmental impairments, even in the absence of brain lesions. Pathogenesis is complex and multifactorial. Evidence suggests a role of early adversities on neurodevelopmental outcomes, via epigenetic regulation and changes in brain architecture. In this context, we focused on cumulative pain exposure which preterm neonates experience in neonatal intensive care unit (NICU). We systematically searched for: i) evidence linking pain with brain development and exploring the potential pathogenetic role of epigenetics; ii) preclinical research supporting clinical observational studies. Nine clinical neuroimaging studies, during neonatal or school age, mostly from the same research group, revealed volume reduction of white and gray matter structures in association with postnatal pain exposure. Three controlled animal studies mimicking NICU settings found increased cell death or apoptosis; nevertheless, eligible groups were limited in size. Epigenetic modulation (SLC6A4 promoter methylation) was identified in only two clinical trials. We call for additional research and, although knowledge gaps, we also point out the urgent need of minimizing painful procedures in NICUs.
Collapse
Affiliation(s)
- Tiziana Boggini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy.
| | - Sara Pozzoli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, Milan, Italy
| | - Paola Schiavolin
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Raffaele Erario
- University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Fabio Mosca
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy; University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Paolo Brambilla
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, Milan, Italy; University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Monica Fumagalli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy; University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| |
Collapse
|
32
|
Lu L, Li H, Mills JA, Schroeder H, Mossman SA, Varney ST, Cecil KM, Huang X, Gong Q, Levine A, DelBello MP, Sweeny JA, Strawn JR. Greater Dynamic and Lower Static Functional Brain Connectivity Prospectively Predict Placebo Response in Pediatric Generalized Anxiety Disorder. J Child Adolesc Psychopharmacol 2020; 30:606-616. [PMID: 32721213 PMCID: PMC7864114 DOI: 10.1089/cap.2020.0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objectives: Placebo response is one of the most significant barriers to detecting treatment effects in pediatric (and adult) clinical trials focusing on affective and anxiety disorders. We sought to identify neurofunctional predictors of placebo response in adolescents with generalized anxiety disorder (GAD) by examining dynamic and static functional brain connectivity. Methods: Before randomization to blinded placebo, adolescents, aged 12-17 years, with GAD (N = 25) underwent resting state functional magnetic resonance imaging. Whole brain voxelwise correlation analyses were used to determine the relationship between change in anxiety symptoms from baseline to week 8 and seed-based dynamic and static functional connectivity maps of regions in the salience and ventral attention networks (amygdala, dorsal anterior cingulate cortex [dACC], and ventrolateral prefrontal cortex [VLPFC]). Results: Greater dynamic functional connectivity variability in amygdala, dACC, VLPFC, and regions within salience, default mode, and frontoparietal networks was associated with greater placebo response. Lower static functional connectivity between amygdala and dorsolateral prefrontal cortex, amygdala and medial prefrontal cortex, dACC and posterior cingulate cortex and greater static functional connectivity between VLPFC and inferior parietal lobule were associated with greater placebo response. Conclusion: Placebo response is associated with a distinct dynamic and static connectivity fingerprint characterized by "variable" dynamic but "weak" static connectivity in the salience, default mode, frontoparietal, and ventral attention networks. These data provide granular evidence of how circuit-based biotypes mechanistically relate to placebo response. Finding biosignatures that predict placebo response is critically important in clinical psychopharmacology and to improve our ability to detect medication-placebo differences in clinical trials.
Collapse
Affiliation(s)
- Lu Lu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.,Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hailong Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Jeffrey A. Mills
- Department of Economics, Lindner College of Business, University of Cincinnati, Cincinnati, Ohio, USA
| | - Heidi Schroeder
- Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sarah A. Mossman
- Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sara T. Varney
- Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kim M. Cecil
- Department of Radiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA,Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiaoqi Huang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China.,Address correspondence to: Qiyong Gong, MD, PhD, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Amir Levine
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York City, New York, USA
| | - Melissa P. DelBello
- Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - John A. Sweeny
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.,Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jeffrey R. Strawn
- Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
33
|
Prenatal stress exposure and multimodal assessment of amygdala-medial prefrontal cortex connectivity in infants. Dev Cogn Neurosci 2020; 46:100877. [PMID: 33220629 PMCID: PMC7689043 DOI: 10.1016/j.dcn.2020.100877] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/23/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Non-human animal research shows stress alters amygdala–medial prefrontal cortex (mPFC) connectivity. It is unclear how prenatal stress may alter human infant connectivity. Prenatal stress was associated with decreased amygdala–mPFC functional connectivity. Prenatal stress was associated with increased amygdala–mPFC structural connectivity. This work provides insight into how stress contributes to neurodevelopmental risk.
Stressful experiences are linked to neurodevelopment. There is growing interest in the role of stress in the connectivity between the amygdala and medial prefrontal cortex (mPFC), a circuit that subserves automatic emotion regulation. However, the specific timing and mechanisms that underlie the association between stress and amygdala–mPFC connectivity are unclear. Many factors, including variations in fetal exposure to maternal stress, appear to affect early developing brain circuitry. However, few studies have examined the associations of stress and amygdala–mPFC connectivity in early life, when the brain is most plastic and sensitive to environmental influence. In this longitudinal pilot study, we characterized the association between prenatal stress and amygdala–mPFC connectivity in young infants (approximately age 5 weeks). A final sample of 33 women who provided data on preconception and prenatal stress during their pregnancy returned with their offspring for a magnetic resonance imaging scan session, which enabled us to characterize amygdala–mPFC structural and functional connectivity as a function of prenatal stress. Increased prenatal stress was associated with decreased functional connectivity and increased structural connectivity between the amygdala and mPFC. These results provide insight into the influence of prenatal maternal stress on the early development of this critical regulatory circuitry.
Collapse
|
34
|
Ramphal B, Whalen DJ, Kenley JK, Yu Q, Smyser CD, Rogers CE, Sylvester CM. Brain connectivity and socioeconomic status at birth and externalizing symptoms at age 2 years. Dev Cogn Neurosci 2020; 45:100811. [PMID: 32823180 PMCID: PMC7451824 DOI: 10.1016/j.dcn.2020.100811] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/20/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Low childhood socioeconomic status (SES) predisposes individuals to altered trajectories of brain development and increased rates of mental illness. Brain connectivity at birth is associated with psychiatric outcomes. We sought to investigate whether SES at birth is associated with neonatal brain connectivity and if these differences account for socioeconomic disparities in infant symptoms at age 2 years that are predictive of psychopathology. Resting state functional MRI was performed on 75 full-term and 37 term-equivalent preterm newborns (n = 112). SES was characterized by insurance type, the Area Deprivation Index, and a composite score. Seed-based voxelwise linear regression related SES to whole-brain functional connectivity of five brain regions representing functional networks implicated in psychiatric illnesses and affected by socioeconomic disadvantage: striatum, medial prefrontal cortex (mPFC), ventrolateral prefrontal cortex (vlPFC), and dorsal anterior cingulate cortex. Lower SES was associated with differences in striatum and vlPFC connectivity. Striatum connectivity with frontopolar and medial PFC mediated the relationship between SES and behavioral inhibition at age 2 measured by the Infant-Toddler Social Emotional Assessment (n = 46). Striatum-frontopolar connectivity mediated the relationship between SES and externalizing symptoms. These results, convergent across three SES metrics, suggest that neurodevelopmental trajectories linking SES and mental illness may begin as early as birth.
Collapse
Affiliation(s)
- Bruce Ramphal
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, NY, United States.
| | - Diana J Whalen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeanette K Kenley
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Qiongru Yu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher D Smyser
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States; Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Chad M Sylvester
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
35
|
Sylvester CM. Editorial: Several Roads Lead to Anxiety. J Am Acad Child Adolesc Psychiatry 2020; 59:703-704. [PMID: 31628983 DOI: 10.1016/j.jaac.2019.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/05/2019] [Indexed: 10/25/2022]
Abstract
Traditional attempts to characterize the brain pathophysiology associated with mental illnesses have relied on relating symptoms to a static snapshot of abnormal brain structure or function. Over the last few decades, however, it has become increasingly clear that many or most psychiatric disorders are the consequence of atypical brain development.1 As such, the pathophysiology of mental illnesses may be better understood by characterizing the dynamic changes in brain structure or function that unfold over time and ultimately result in psychiatric symptoms. One important concept that has emerged out of studies that have examined longitudinal trajectories resulting in mental illnesses is the concept of equifinality-that multiple different trajectories can result in the same symptoms in adolescence or adulthood.2 If proved to be true, equifinality is a fundamentally important principle because it suggests that even if two patients have the same symptoms, the cascade of brain changes that ultimately resulted in these symptoms differed. Potentially diverse monitoring and treatment strategies would be required to detect and treat patients with the same set of symptoms. There would be no "one-size fits all" approach to screening and treating patients, and clinicians would ultimately have to learn to identify and alter multiple different risk trajectories.
Collapse
|
36
|
Tamm L, Patel M, Peugh J, Kline-Fath BM, Parikh NA. Early brain abnormalities in infants born very preterm predict under-reactive temperament. Early Hum Dev 2020; 144:104985. [PMID: 32163848 PMCID: PMC7577074 DOI: 10.1016/j.earlhumdev.2020.104985] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/27/2020] [Accepted: 02/13/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Early temperament may mediate the association between brain abnormalities following preterm birth and neurodevelopmental outcomes. AIMS This exploratory study investigated whether brain abnormalities in infants born very preterm predicted temperament. STUDY DESIGN Infants born prematurely underwent structural MRI at term. Mother self-reported depression symptoms at the scanning visit, and the Infant Behavior Questionnaire-Revised-Short (IBQ-R-S) about their infant at 3-months corrected age. SUBJECTS Infants (n = 214) born at ≤32 weeks gestation (M = 29.29, SD = 2.60). Average post-menstrual age at the MRI scan was 42.72 weeks (SD = 1.30). The majority of the infants were male (n = 115), and Caucasian (n = 145) or African American (n = 58). The average birthweight in grams was 1289.75 (SD = 448.5). OUTCOME MEASURES Infant Behavior Questionnaire-Revised-Short (IBQ-R-S) subscales. RESULTS Multivariate regression showed white matter abnormalities predicted lower ratings on High Intensity Pleasure and Vocal Reactivity, grey matter abnormalities predicted lower ratings on High Intensity Pleasure and Cuddliness, and cerebellar abnormalities predicted lower ratings on Fear and Sadness IBQ-R-S subscales adjusting for gestational age and sex. The pattern of results was essentially unchanged when maternal depression and socioeconomic status were included in the model. CONCLUSIONS Early MRI-diagnosed brain abnormalities in infants born very preterm were associated less vocalization and engagement during cuddling, decreased ability to take pleasure in stimulating activities, and lower emotionality in fear and sadness domains. Although replication is warranted, an under-reactive temperament in infants born preterm may have a neurobiological basis.
Collapse
Affiliation(s)
- Leanne Tamm
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7039, Cincinnati, OH 45229-3039, United States of America; University of Cincinnati College of Medicine, United States of America.
| | - Meera Patel
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7039, Cincinnati, OH 45229-3039, United States of America.
| | - James Peugh
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7039, Cincinnati, OH 45229-3039, United States of America; University of Cincinnati College of Medicine, United States of America.
| | - Beth M. Kline-Fath
- University of Cincinnati College of Medicine, United States of America,Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 7039, Cincinnati, OH 45229-3039, United States of America
| | - Nehal A. Parikh
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 7039, Cincinnati, OH 45229-3039, United States of America,University of Cincinnati College of Medicine, United States of America,Correspondence to: N.A. Parikh, Perinatal Institute, Cincinnati Children’s Hospital Med. Center, 3333 Burnet Ave, MLC 7009, Cincinnati, OH 45229-3039, United States of America.
| | | |
Collapse
|
37
|
Luby J, Allen N, Estabrook R, Pine DS, Rogers C, Krogh-Jespersen S, Norton ES, Wakschlag L. Mapping infant neurodevelopmental precursors of mental disorders: How synthetic cohorts & computational approaches can be used to enhance prediction of early childhood psychopathology. Behav Res Ther 2019; 123:103484. [PMID: 31734549 PMCID: PMC7667707 DOI: 10.1016/j.brat.2019.103484] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/04/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
Bridging advances in neurodevelopmental assessment and the established onset of common psychopathologies in early childhood with epidemiological data science and computational methods holds much promise for identifying risk for mental disorders as early as infancy. In particular, we propose the development of a mental health risk algorithm for the early detection of mental disorders with the potential for high public health impact that applies and adapts methods innovated in and successfully applied to early detection of cardiovascular risk. Specifically, we propose methods to advance risk prediction of early developmental psychopathology by creating synthetic cohorts that contain complete behavioral and neural data in the first years of life, as the basis for a robust and generalizable risk algorithm. The application of computational approaches within synthetic cohorts, an approach increasingly applied in psychiatry, may be particularly well suited to advancing risk prediction in early childhood mental health. We propose new research directions using these methods to generate an early childhood mental health risk calculator that could significantly advance early mental health risk detection to direct preventive intervention and/or need for more intensive assessment within a pragmatic framework for maximal clinical utility. The availability of such a tool in early childhood, a period of high neuroplasticity, holds promise to reduce the burden of mental disorder by identifying risk early in the clinical sequence and delivering prevention that targets the neurodevelopmental vulnerability phase.
Collapse
Affiliation(s)
- Joan Luby
- Washington University School of Medicine, 4444 Forest Park Avenue, St. Louis, MO, 63108, USA.
| | - Norrina Allen
- Northwestern University Feinberg School of Medicine & Institute for Innovations in Developmental Sciences, 633 N. St Clair, 19th Floor, Chicago, IL, 60611, USA
| | - Ryne Estabrook
- Northwestern University Feinberg School of Medicine & Institute for Innovations in Developmental Sciences, 633 N. St Clair, 19th Floor, Chicago, IL, 60611, USA
| | - Daniel S Pine
- National Institute of Mental Health (NIMH) Intramural Research Program, Building 15K, Room 110, MSC 2670, Bethesda, MD, 20814, USA
| | - Cynthia Rogers
- Washington University School of Medicine, 4444 Forest Park Avenue, St. Louis, MO, 63108, USA
| | - Sheila Krogh-Jespersen
- Northwestern University Feinberg School of Medicine & Institute for Innovations in Developmental Sciences, 633 N. St Clair, 19th Floor, Chicago, IL, 60611, USA
| | - Elizabeth S Norton
- Northwestern University, Department of Communication Sciences and Disorders, 2240 Campus Drive, Evanston, IL, 60208, USA
| | - Lauren Wakschlag
- Northwestern University Feinberg School of Medicine & Institute for Innovations in Developmental Sciences, 633 N. St Clair, 19th Floor, Chicago, IL, 60611, USA
| |
Collapse
|
38
|
Fu X, Pérez-Edgar K. Threat-related Attention Bias in Socioemotional Development: A Critical Review and Methodological Considerations. DEVELOPMENTAL REVIEW 2019; 51:31-57. [PMID: 32205901 PMCID: PMC7088448 DOI: 10.1016/j.dr.2018.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cross-sectional evidence suggests that attention bias to threat is linked to anxiety disorders and anxiety vulnerability in both children and adults. However, there is a lack of developmental evidence regarding the causal mechanisms through which attention bias to threat might convey risks for socioemotional problems, such as anxiety. Gaining insights into this question demands longitudinal research to track the complex interplay between threat-related attention and socioemotional functioning. Developing and implementing reliable and valid assessments tools is essential to this line of work. This review presents theoretical accounts and empirical evidence from behavioral, eye-tracking, and neural assessments of attention to discuss our current understanding of the development of normative threat-related attention in infancy, as well as maladaptive threat-related attention patterns that may be associated with the development of anxiety. This review highlights the importance of measuring threat-related attention using multiple attention paradigms at multiple levels of analysis. In order to understand if and how threat-related attention bias in real-life, social interactive contexts can predict socioemotional development outcomes, this review proposes that future research cannot solely rely on screen-based paradigms but needs to extend the assessment of threat-related attention to naturalistic settings. Mobile eye-tracking technology provides an effective tool for capturing threat-related attention processes in vivo as children navigate fear-eliciting environments and may help us uncover more proximal bio-psycho-behavioral markers of anxiety.
Collapse
Affiliation(s)
- Xiaoxue Fu
- Department of Psychology, The Pennsylvania State University, University Park, PA, United States
- Center for Biobehavioral Health, Nationwide Children’s Hospital, United States
- Department of Pediatrics, The Ohio State University, United States
| | - Koraly Pérez-Edgar
- Department of Psychology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
39
|
Rogers CE, Lean RE, Wheelock MD, Smyser CD. Aberrant structural and functional connectivity and neurodevelopmental impairment in preterm children. J Neurodev Disord 2018; 10:38. [PMID: 30541449 PMCID: PMC6291944 DOI: 10.1186/s11689-018-9253-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background Despite advances in antenatal and neonatal care, preterm birth remains a leading cause of neurological disabilities in children. Infants born prematurely, particularly those delivered at the earliest gestational ages, commonly demonstrate increased rates of impairment across multiple neurodevelopmental domains. Indeed, the current literature establishes that preterm birth is a leading risk factor for cerebral palsy, is associated with executive function deficits, increases risk for impaired receptive and expressive language skills, and is linked with higher rates of co-occurring attention deficit hyperactivity disorder, anxiety, and autism spectrum disorders. These same infants also demonstrate elevated rates of aberrant cerebral structural and functional connectivity, with persistent changes evident across advanced magnetic resonance imaging modalities as early as the neonatal period. Emerging findings from cross-sectional and longitudinal investigations increasingly suggest that aberrant connectivity within key functional networks and white matter tracts may underlie the neurodevelopmental impairments common in this population. Main body This review begins by highlighting the elevated rates of neurodevelopmental disorders across domains in this clinical population, describes the patterns of aberrant structural and functional connectivity common in prematurely-born infants and children, and then reviews the increasingly established body of literature delineating the relationship between these brain abnormalities and adverse neurodevelopmental outcomes. We also detail important, typically understudied, clinical, and social variables that may influence these relationships among preterm children, including heritability and psychosocial risks. Conclusion Future work in this domain should continue to leverage longitudinal evaluations of preterm infants which include both neuroimaging and detailed serial neurodevelopmental assessments to further characterize relationships between imaging measures and impairment, information necessary for advancing our understanding of modifiable risk factors underlying these disorders and best practices for improving neurodevelopmental trajectories in this high-risk clinical population.
Collapse
Affiliation(s)
- Cynthia E Rogers
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA.
| | - Rachel E Lean
- Departments of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA
| | - Muriah D Wheelock
- Departments of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA
| | - Christopher D Smyser
- Departments of Neurology, Pediatrics and Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO, 63110, USA
| |
Collapse
|
40
|
Neil JJ, Smyser CD. Recent advances in the use of MRI to assess early human cortical development. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 293:56-69. [PMID: 29894905 PMCID: PMC6047926 DOI: 10.1016/j.jmr.2018.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 05/18/2023]
Abstract
Over the past decade, a number of advanced magnetic resonance-based methods have been brought to bear on questions related to early development of the human cerebral cortex. Herein, we describe studies employing analysis of cortical surface folding (cortical cartography), cortical microstructure (diffusion anisotropy), and cortically-based functional networks (resting state-functional connectivity MRI). The fundamentals of each MR method are described, followed by a discussion of application of the method to developing cortex and potential clinical uses. We use premature birth as an exemplar of how these modalities can be used to investigate the effects of medical and environmental variables on early cortical development.
Collapse
Affiliation(s)
- Jeffrey J Neil
- Department of Pediatric Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States.
| | - Christopher D Smyser
- Departments of Neurology, Pediatrics and Radiology, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8111, St. Louis, MO 63110, United States.
| |
Collapse
|
41
|
Sylvester CM, Whalen DJ, Belden AC, Sanchez SL, Luby JL, Barch DM. Shyness and Trajectories of Functional Network Connectivity Over Early Adolescence. Child Dev 2017; 89:734-745. [PMID: 29222816 DOI: 10.1111/cdev.13005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High shyness during early adolescence is associated with impaired peer relationships and risk for psychiatric disorders. Little is known, however, about the relation between shyness and trajectories of brain development over early adolescence. The current study longitudinally examined trajectories of resting-state functional connectivity (rs-fc) within four brain networks in 147 adolescents. Subjects underwent functional magnetic resonance imaging at three different time points, at average ages 10.5 (range = 7.8-13.0), 11.7 (range = 9.3-14.1), and 12.9 years (range = 10.1-15.2). Multilevel linear modeling indicated that high shyness was associated with a less steep negative slope of default mode network (DMN) rs-fc over early adolescence relative to low shyness. Less steep decreases in DMN rs-fc may relate to increased self-focus in adolescents with high shyness.
Collapse
|