1
|
Hattori M, Wazawa T, Orioka M, Hiruta Y, Nagai T. Creating coveted bioluminescence colors for simultaneous multi-color bioimaging. SCIENCE ADVANCES 2025; 11:eadp4750. [PMID: 39841832 PMCID: PMC11753369 DOI: 10.1126/sciadv.adp4750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Bioluminescence, an optical marker that does not require excitation by light, allows researchers to simultaneously observe multiple targets, each exhibiting a different color. Notably, the colors of the bioluminescent proteins must sufficiently vary to enable simultaneous detection. Here, we aimed to introduce a method that can be used to expand the color variation by tuning dual-acceptor bioluminescence resonance energy transfer. Using this approach, we could visualize multiple targets with up to 20 colors through single-shot acquisition using a color complementary metal-oxide semiconductor camera. Overall, this method enables simple and simultaneous observation of multiple biological targets and phenomena.
Collapse
Affiliation(s)
- Mitsuru Hattori
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tetsuichi Wazawa
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Mariko Orioka
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Transdimensional Life Imaging Division, OTRI, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Institute for Electronic Science, Hokkaido University, Kita-ku-ku, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
2
|
Bae S, Sung K, Kim SK. Linear spectral unmixing analysis in single-molecule FRET spectroscopy for fluorophores with large spectral overlap. Phys Chem Chem Phys 2024; 26:16561-16566. [PMID: 38832676 DOI: 10.1039/d4cp00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Fluorescence resonance energy transfer (FRET) is a highly useful tool to investigate biomolecular interactions and dynamics in single-molecule spectroscopy and nanoscopy. However, the use of spectrally overlapping dye pairs results in various artifact signals that prevent accurate determination of FRET values. In this paper, an algorithmic method of spectral unmixing was devised to extract FRET values of spectrally overlapping dye pairs at the single molecule level. Application of this method allows the determination of both the donor-acceptor composition and the FRET efficiency of the samples labelled with spectrally overlapping dye pairs.
Collapse
Affiliation(s)
- Sohyeon Bae
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Keewon Sung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Qian Y, Celiker OT, Wang Z, Guner-Ataman B, Boyden ES. Temporally multiplexed imaging of dynamic signaling networks in living cells. Cell 2023; 186:5656-5672.e21. [PMID: 38029746 PMCID: PMC10843875 DOI: 10.1016/j.cell.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/30/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Molecular signals interact in networks to mediate biological processes. To analyze these networks, it would be useful to image many signals at once, in the same living cell, using standard microscopes and genetically encoded fluorescent reporters. Here, we report temporally multiplexed imaging (TMI), which uses genetically encoded fluorescent proteins with different clocklike properties-such as reversibly photoswitchable fluorescent proteins with different switching kinetics-to represent different cellular signals. We linearly decompose a brief (few-second-long) trace of the fluorescence fluctuations, at each point in a cell, into a weighted sum of the traces exhibited by each fluorophore expressed in the cell. The weights then represent the signal amplitudes. We use TMI to analyze relationships between different kinase activities in individual cells, as well as between different cell-cycle signals, pointing toward broad utility throughout biology in the analysis of signal transduction cascades in living systems.
Collapse
Affiliation(s)
- Yong Qian
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 01239, USA
| | - Orhan T Celiker
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 01239, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 01239, USA
| | - Zeguan Wang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 01239, USA; Department of Media Arts and Sciences, MIT, Cambridge, MA 01239, USA
| | - Burcu Guner-Ataman
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 01239, USA
| | - Edward S Boyden
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 01239, USA; Department of Media Arts and Sciences, MIT, Cambridge, MA 01239, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 01239, USA; Department of Biological Engineering, MIT, Cambridge, MA 01239, USA; Koch Institute, MIT, Cambridge, MA 01239, USA; Howard Hughes Medical Institute, Cambridge, MA 01239, USA; Center for Neurobiological Engineering and K. Lisa Yang Center for Bionics at MIT, Cambridge, MA 01239, USA.
| |
Collapse
|
4
|
Marshall CR, Farrow MA, Djambazova KV, Spraggins JM. Untangling Alzheimer's disease with spatial multi-omics: a brief review. Front Aging Neurosci 2023; 15:1150512. [PMID: 37533766 PMCID: PMC10390637 DOI: 10.3389/fnagi.2023.1150512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurological dementia, specified by extracellular β-amyloid plaque deposition, neurofibrillary tangles, and cognitive impairment. AD-associated pathologies like cerebral amyloid angiopathy (CAA) are also affiliated with cognitive impairment and have overlapping molecular drivers, including amyloid buildup. Discerning the complexity of these neurological disorders remains a significant challenge, and the spatiomolecular relationships between pathogenic features of AD and AD-associated pathologies remain poorly understood. This review highlights recent developments in spatial omics, including profiling and molecular imaging methods, and how they are applied to AD. These emerging technologies aim to characterize the relationship between how specific cell types and tissue features are organized in combination with mapping molecular distributions to provide a systems biology view of the tissue microenvironment around these neuropathologies. As spatial omics methods achieve greater resolution and improved molecular coverage, they are enabling deeper characterization of the molecular drivers of AD, leading to new possibilities for the prediction, diagnosis, and mitigation of this debilitating disease.
Collapse
Affiliation(s)
- Cody R. Marshall
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Melissa A. Farrow
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Katerina V. Djambazova
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jeffrey M. Spraggins
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
5
|
Chen BN, Humenick A, Yew WP, Peterson RA, Wiklendt L, Dinning PG, Spencer NJ, Wattchow DA, Costa M, Brookes SJH. Types of Neurons in the Human Colonic Myenteric Plexus Identified by Multilayer Immunohistochemical Coding. Cell Mol Gastroenterol Hepatol 2023; 16:573-605. [PMID: 37355216 PMCID: PMC10469081 DOI: 10.1016/j.jcmgh.2023.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND AIMS Gut functions including motility, secretion, and blood flow are largely controlled by the enteric nervous system. Characterizing the different classes of enteric neurons in the human gut is an important step to understand how its circuitry is organized and how it is affected by disease. METHODS Using multiplexed immunohistochemistry, 12 discriminating antisera were applied to distinguish different classes of myenteric neurons in the human colon (2596 neurons, 12 patients) according to their chemical coding. All antisera were applied to every neuron, in multiple layers, separated by elutions. RESULTS A total of 164 combinations of immunohistochemical markers were present among the 2596 neurons, which could be divided into 20 classes, with statistical validation. Putative functions were ascribed for 4 classes of putative excitatory motor neurons (EMN1-4), 4 inhibitory motor neurons (IMN1-4), 3 ascending interneurons (AIN1-3), 6 descending interneurons (DIN1-6), 2 classes of multiaxonal sensory neurons (SN1-2), and a small, miscellaneous group (1.8% of total). Soma-dendritic morphology was analyzed, revealing 5 common shapes distributed differentially between the 20 classes. Distinctive baskets of axonal varicosities surrounded 45% of myenteric nerve cell bodies and were associated with close appositions, suggesting possible connectivity. Baskets of cholinergic terminals and several other types of baskets selectively targeted ascending interneurons and excitatory motor neurons but were significantly sparser around inhibitory motor neurons. CONCLUSIONS Using a simple immunohistochemical method, human myenteric neurons were shown to comprise multiple classes based on chemical coding and morphology and dense clusters of axonal varicosities were selectively associated with some classes.
Collapse
Affiliation(s)
- Bao Nan Chen
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Adam Humenick
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Wai Ping Yew
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Rochelle A Peterson
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lukasz Wiklendt
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Phil G Dinning
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia; Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Nick J Spencer
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - David A Wattchow
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Marcello Costa
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Simon J H Brookes
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
6
|
Chiang HJ, Koo DES, Kitano M, Burkitt S, Unruh JR, Zavaleta C, Trinh LA, Fraser SE, Cutrale F. HyU: Hybrid Unmixing for longitudinal in vivo imaging of low signal-to-noise fluorescence. Nat Methods 2023; 20:248-258. [PMID: 36658278 PMCID: PMC9911352 DOI: 10.1038/s41592-022-01751-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/13/2022] [Indexed: 01/21/2023]
Abstract
The expansion of fluorescence bioimaging toward more complex systems and geometries requires analytical tools capable of spanning widely varying timescales and length scales, cleanly separating multiple fluorescent labels and distinguishing these labels from background autofluorescence. Here we meet these challenging objectives for multispectral fluorescence microscopy, combining hyperspectral phasors and linear unmixing to create Hybrid Unmixing (HyU). HyU is efficient and robust, capable of quantitative signal separation even at low illumination levels. In dynamic imaging of developing zebrafish embryos and in mouse tissue, HyU was able to cleanly and efficiently unmix multiple fluorescent labels, even in demanding volumetric timelapse imaging settings. HyU permits high dynamic range imaging, allowing simultaneous imaging of bright exogenous labels and dim endogenous labels. This enables coincident studies of tagged components, cellular behaviors and cellular metabolism within the same specimen, providing more accurate insights into the orchestrated complexity of biological systems.
Collapse
Affiliation(s)
- Hsiao Ju Chiang
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Daniel E S Koo
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Masahiro Kitano
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sean Burkitt
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Le A Trinh
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Scott E Fraser
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Francesco Cutrale
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Lim MJ, Yagnik G, Henkel C, Frost SF, Bien T, Rothschild KJ. MALDI HiPLEX-IHC: multiomic and multimodal imaging of targeted intact proteins in tissues. Front Chem 2023; 11:1182404. [PMID: 37201132 PMCID: PMC10187789 DOI: 10.3389/fchem.2023.1182404] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 05/20/2023] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is one of the most widely used methods for imaging the spatial distribution of unlabeled small molecules such as metabolites, lipids and drugs in tissues. Recent progress has enabled many improvements including the ability to achieve single cell spatial resolution, 3D-tissue image reconstruction, and the precise identification of different isomeric and isobaric molecules. However, MALDI-MSI of high molecular weight intact proteins in biospecimens has thus far been difficult to achieve. Conventional methods normally require in situ proteolysis and peptide mass fingerprinting, have low spatial resolution, and typically detect only the most highly abundant proteins in an untargeted manner. In addition, MSI-based multiomic and multimodal workflows are needed which can image both small molecules and intact proteins from the same tissue. Such a capability can provide a more comprehensive understanding of the vast complexity of biological systems at the organ, tissue, and cellular levels of both normal and pathological function. A recently introduced top-down spatial imaging approach known as MALDI HiPLEX-IHC (MALDI-IHC for short) provides a basis for achieving this high-information content imaging of tissues and even individual cells. Based on novel photocleavable mass-tags conjugated to antibody probes, high-plex, multimodal and multiomic MALDI-based workflows have been developed to image both small molecules and intact proteins on the same tissue sample. Dual-labeled antibody probes enable multimodal mass spectrometry and fluorescent imaging of targeted intact proteins. A similar approach using the same photocleavable mass-tags can be applied to lectin and other probes. We detail here several examples of MALDI-IHC workflows designed to enable high-plex, multiomic and multimodal imaging of tissues at a spatial resolution as low as 5 µm. This approach is compared to other existing high-plex methods such as imaging mass cytometry, MIBI-TOF, GeoMx and CODEX. Finally, future applications of MALDI-IHC are discussed.
Collapse
Affiliation(s)
- Mark J. Lim
- AmberGen, Inc., Billerica, MA, United States
- *Correspondence: Mark J. Lim, ; Kenneth J. Rothschild,
| | | | | | | | - Tanja Bien
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Kenneth J. Rothschild
- AmberGen, Inc., Billerica, MA, United States
- Department of Physics and Photonics Center, Boston University, Boston, MA, United States
- *Correspondence: Mark J. Lim, ; Kenneth J. Rothschild,
| |
Collapse
|
8
|
Polesel M, Kaminska M, Haenni D, Bugarski M, Schuh C, Jankovic N, Kaech A, Mateos JM, Berquez M, Hall AM. Spatiotemporal organisation of protein processing in the kidney. Nat Commun 2022; 13:5732. [PMID: 36175561 PMCID: PMC9522658 DOI: 10.1038/s41467-022-33469-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
The kidney regulates plasma protein levels by eliminating them from the circulation. Proteins filtered by glomeruli are endocytosed and degraded in the proximal tubule and defects in this process result in tubular proteinuria, an important clinical biomarker. However, the spatiotemporal organization of renal protein metabolism in vivo was previously unclear. Here, using functional probes and intravital microscopy, we track the fate of filtered proteins in real time in living mice, and map specialized processing to tubular structures with singular value decomposition analysis and three-dimensional electron microscopy. We reveal that degradation of proteins requires sequential, coordinated activity of distinct tubular sub-segments, each adapted to specific tasks. Moreover, we leverage this approach to pinpoint the nature of endo-lysosomal disorders in disease models, and show that compensatory uptake in later regions of the proximal tubule limits urinary protein loss. This means that measurement of proteinuria likely underestimates severity of endocytotic defects in patients. Polesel et al. visualize plasma protein filtration, uptake and metabolism in the kidneys of living mice in real-time. They reveal coordinated activity of different specialized tubular segments, with major compensatory adaptations occurring in disease states.
Collapse
Affiliation(s)
| | - Monika Kaminska
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Dominik Haenni
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Claus Schuh
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Nevena Jankovic
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Jose M Mateos
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Marine Berquez
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland. .,Department of Nephrology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Tani S, Sugiyama K, Sukegawa T, Sato T, Ishizuka Y, Taya S, Feng D, Komeda O, Suto H, Saitoh H, Kobayashi Y. Real-time high-spectral-resolution mid-infrared spectroscopy with a signal-to-noise ratio of ten thousand. OPTICS EXPRESS 2022; 30:36813-36825. [PMID: 36258603 DOI: 10.1364/oe.471848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
We developed a mid-infrared spectroscopy system with high spectral resolution and a high signal-to-noise ratio using an extremely high-order germanium immersion grating. The spectroscopic system covers wavelengths from 3 to 5 µm and has a spectral resolution of 1 GHz with a single-shot bandwidth of 2 THz. We proposed a method of improving the signal-to-noise ratio and achieved a ratio of over 3000 with a data acquisition rate of 125 Hz in the presence of fluctuations in the light source and environment. A signal-to-noise ratio of 10,000 was achieved with 0.1-s integration for 100-µW mid-infrared light.
Collapse
|
10
|
Acuña-Rodriguez JP, Mena-Vega JP, Argüello-Miranda O. Live-cell fluorescence spectral imaging as a data science challenge. Biophys Rev 2022; 14:579-597. [PMID: 35528031 PMCID: PMC9043069 DOI: 10.1007/s12551-022-00941-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Live-cell fluorescence spectral imaging is an evolving modality of microscopy that uses specific properties of fluorophores, such as excitation or emission spectra, to detect multiple molecules and structures in intact cells. The main challenge of analyzing live-cell fluorescence spectral imaging data is the precise quantification of fluorescent molecules despite the weak signals and high noise found when imaging living cells under non-phototoxic conditions. Beyond the optimization of fluorophores and microscopy setups, quantifying multiple fluorophores requires algorithms that separate or unmix the contributions of the numerous fluorescent signals recorded at the single pixel level. This review aims to provide both the experimental scientist and the data analyst with a straightforward description of the evolution of spectral unmixing algorithms for fluorescence live-cell imaging. We show how the initial systems of linear equations used to determine the concentration of fluorophores in a pixel progressively evolved into matrix factorization, clustering, and deep learning approaches. We outline potential future trends on combining fluorescence spectral imaging with label-free detection methods, fluorescence lifetime imaging, and deep learning image analysis.
Collapse
Affiliation(s)
- Jessy Pamela Acuña-Rodriguez
- Center for Geophysical Research (CIGEFI), University of Costa Rica, San Pedro, San José Costa Rica
- School of Physics, University of Costa Rica, 2060 San Pedro, San José Costa Rica
| | - Jean Paul Mena-Vega
- School of Physics, University of Costa Rica, 2060 San Pedro, San José Costa Rica
| | - Orlando Argüello-Miranda
- Department of Plant and Microbial Biology, North Carolina State University, 112 DERIEUX PLACE, Raleigh, NC 27695-7612 USA
| |
Collapse
|
11
|
Xie H, Ding X. The Intriguing Landscape of Single-Cell Protein Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105932. [PMID: 35199955 PMCID: PMC9036017 DOI: 10.1002/advs.202105932] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Indexed: 05/15/2023]
Abstract
Profiling protein expression at single-cell resolution is essential for fundamental biological research (such as cell differentiation and tumor microenvironmental examination) and clinical precision medicine where only a limited number of primary cells are permitted. With the recent advances in engineering, chemistry, and biology, single-cell protein analysis methods are developed rapidly, which enable high-throughput and multiplexed protein measurements in thousands of individual cells. In combination with single cell RNA sequencing and mass spectrometry, single-cell multi-omics analysis can simultaneously measure multiple modalities including mRNAs, proteins, and metabolites in single cells, and obtain a more comprehensive exploration of cellular signaling processes, such as DNA modifications, chromatin accessibility, protein abundance, and gene perturbation. Here, the recent progress and applications of single-cell protein analysis technologies in the last decade are summarized. Current limitations, challenges, and possible future directions in this field are also discussed.
Collapse
Affiliation(s)
- Haiyang Xie
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
12
|
Park S, Brooks FJ, Villa U, Su R, Anastasio MA, Oraevsky AA. Normalization of optical fluence distribution for three-dimensional functional optoacoustic tomography of the breast. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210367GR. [PMID: 35293163 PMCID: PMC8923705 DOI: 10.1117/1.jbo.27.3.036001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/22/2022] [Indexed: 05/20/2023]
Abstract
SIGNIFICANCE In three-dimensional (3D) functional optoacoustic tomography (OAT), wavelength-dependent optical attenuation and nonuniform incident optical fluence limit imaging depth and field of view and can hinder accurate estimation of functional quantities, such as the vascular blood oxygenation. These limitations hinder OAT of large objects, such as a human female breast. AIM We aim to develop a measurement-data-driven method for normalization of the optical fluence distribution and to investigate blood vasculature detectability and accuracy for estimating vascular blood oxygenation. APPROACH The proposed method is based on reasonable assumptions regarding breast anatomy and optical properties. The nonuniform incident optical fluence is estimated based on the illumination geometry in the OAT system, and the depth-dependent optical attenuation is approximated using Beer-Lambert law. RESULTS Numerical studies demonstrated that the proposed method significantly enhanced blood vessel detectability and improved estimation accuracy of the vascular blood oxygenation from multiwavelength OAT measurements, compared with direct application of spectral linear unmixing without optical fluence compensation. Experimental results showed that the proposed method revealed previously invisible structures in regions deeper than 15 mm and/or near the chest wall. CONCLUSIONS The proposed method provides a straightforward and computationally inexpensive approximation of wavelength-dependent effective optical attenuation and, thus, enables mitigation of the spectral coloring effect in functional 3D OAT imaging.
Collapse
Affiliation(s)
- Seonyeong Park
- University of Illinois Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Frank J. Brooks
- University of Illinois Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Umberto Villa
- Washington University in St. Louis, Department of Electrical and Systems Engineering, St. Louis, Missouri, United States
| | - Richard Su
- TomoWave Laboratories, Houston, Texas, United States
| | - Mark A. Anastasio
- University of Illinois Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Alexander A. Oraevsky
- TomoWave Laboratories, Houston, Texas, United States
- Address all correspondence to Alexander A. Oraevsky,
| |
Collapse
|
13
|
Shi L, Wei M, Miao Y, Qian N, Shi L, Singer RA, Benninger RKP, Min W. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. Nat Biotechnol 2022; 40:364-373. [PMID: 34608326 PMCID: PMC8930416 DOI: 10.1038/s41587-021-01041-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Mapping the localization of multiple proteins in their native three-dimensional (3D) context would be useful across many areas of biomedicine, but multiplexed fluorescence imaging has limited intrinsic multiplexing capability, and most methods for increasing multiplexity can only be applied to thin samples (<100 µm). Here, we harness the narrow spectrum of Raman spectroscopy and introduce Raman dye imaging and tissue clearing (RADIANT), an optical method that is capable of imaging multiple targets in thick samples in one shot. We expanded the range of suitable bioorthogonal Raman dyes and developed a tissue-clearing strategy for them (Raman 3D imaging of solvent-cleared organs (rDISCO)). We applied RADIANT to image up to 11 targets in millimeter-thick brain slices, extending the imaging depth 10- to 100-fold compared to prior multiplexed protein imaging methods. We showcased the utility of RADIANT in extracting systems information, including region-specific correlation networks and their topology in cerebellum development. RADIANT will facilitate the exploration of the intricate 3D protein interactions in complex systems.
Collapse
Affiliation(s)
- Lixue Shi
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Yupeng Miao
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Lingyan Shi
- Department of Chemistry, Columbia University, New York, NY, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Ruth A Singer
- Graduate Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, NY, USA
- Laboratory of Molecular Neuro-oncology, Rockefeller University, New York, NY, USA
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Reddy R, Yang L, Liu J, Liu Z, Wang J. Spatial Multiplex In Situ Tagging (MIST) Technology for Rapid, Highly Multiplexed Detection of Protein Distribution on Brain Tissue. Anal Chem 2022; 94:3922-3929. [PMID: 35213145 PMCID: PMC10382236 DOI: 10.1021/acs.analchem.1c04970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly multiplexed analysis of biospecimens significantly advances the understanding of biological basics of diseases, but these techniques are limited by the number of multiplexity and the speed of processing. Here, we present a rapid multiplex method for quantitative detection of protein markers on brain sections with the cellular resolution. This spatial multiplex in situ tagging (MIST) technology is built upon a MIST microarray that contains millions of small microbeads carrying barcoded oligonucleotides. Using antibodies tagged with UV cleavable oligonucleotides, the distribution of protein markers on a tissue slice could be "printed" on the MIST microarray with high fidelity. The performance of this technology in detection sensitivity, resolution, and signal-to-noise level has been fully characterized by detecting brain cell markers. We showcase the codetection of 31 proteins simultaneously within 2 h, which is about 10 times faster than the other immunofluorescence-based approaches of similar multiplexity. A full set of computational toolkits was developed to segment the small regions and identify the regional differences across the entire mouse brain. This technique enables us to rapidly and conveniently detect dozens of biomarkers on a tissue specimen, and it can find broad applications in clinical pathology and disease mechanistic studies.
Collapse
Affiliation(s)
- Revanth Reddy
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Jesse Liu
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Zhuojie Liu
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| |
Collapse
|
15
|
Juntunen C, Woller IM, Abramczyk AR, Sung Y. Deep-learning-assisted Fourier transform imaging spectroscopy for hyperspectral fluorescence imaging. Sci Rep 2022; 12:2477. [PMID: 35169167 PMCID: PMC8847646 DOI: 10.1038/s41598-022-06360-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
Hyperspectral fluorescence imaging is widely used when multiple fluorescent probes with close emission peaks are required. In particular, Fourier transform imaging spectroscopy (FTIS) provides unrivaled spectral resolution; however, the imaging throughput is very low due to the amount of interferogram sampling required. In this work, we apply deep learning to FTIS and show that the interferogram sampling can be drastically reduced by an order of magnitude without noticeable degradation in the image quality. For the demonstration, we use bovine pulmonary artery endothelial cells stained with three fluorescent dyes and 10 types of fluorescent beads with close emission peaks. Further, we show that the deep learning approach is more robust to the translation stage error and environmental vibrations. Thereby, the He-Ne correction, which is typically required for FTIS, can be bypassed, thus reducing the cost, size, and complexity of the FTIS system. Finally, we construct neural network models using Hyperband, an automatic hyperparameter selection algorithm, and compare the performance with our manually-optimized model.
Collapse
Affiliation(s)
- Cory Juntunen
- College of Engineering and Applied Science, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Isabel M Woller
- College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Andrew R Abramczyk
- College of Engineering and Applied Science, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Yongjin Sung
- College of Engineering and Applied Science, University of Wisconsin-Milwaukee, Milwaukee, USA.
| |
Collapse
|
16
|
Neumann EK, Patterson NH, Rivera ES, Allen JL, Brewer M, deCaestecker MP, Caprioli RM, Fogo AB, Spraggins JM. Highly multiplexed immunofluorescence of the human kidney using co-detection by indexing. Kidney Int 2022; 101:137-143. [PMID: 34619231 PMCID: PMC8741652 DOI: 10.1016/j.kint.2021.08.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023]
Abstract
The human kidney is composed of many cell types that vary in their abundance and distribution from normal to diseased organ. As these cell types perform unique and essential functions, it is important to confidently label each within a single tissue to accurately assess tissue architecture and microenvironments. Towards this goal, we demonstrate the use of co-detection by indexing (CODEX) multiplexed immunofluorescence for visualizing 23 antigens within the human kidney. Using CODEX, many of the major cell types and substructures, such as collecting ducts, glomeruli, and thick ascending limb, were visualized within a single tissue section. Of these antibodies, 19 were conjugated in-house, demonstrating the flexibility and utility of this approach for studying the human kidney using custom and commercially available antibodies. We performed a pilot study that compared both fresh frozen and formalin-fixed paraffin-embedded healthy non-neoplastic and diabetic nephropathy kidney tissues. The largest cellular differences between the two groups was observed in cells labeled with aquaporin 1, cytokeratin 7, and α-smooth muscle actin. Thus, our data show the power of CODEX multiplexed immunofluorescence for surveying the cellular diversity of the human kidney and the potential for applications within pathology, histology, and building anatomical atlases.
Collapse
Affiliation(s)
- Elizabeth K. Neumann
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA 37232,Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232
| | - Nathan Heath Patterson
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA 37232,Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232
| | - Emilio S. Rivera
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA 37232,Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232
| | - Jamie L. Allen
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA 37232,Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232
| | - Maya Brewer
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA 37232
| | - Mark P. deCaestecker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA 37232
| | - Richard M. Caprioli
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA 37232,Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232.,Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37232
| | - Agnes B. Fogo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA 37232,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN USA 37232.,Departments of Medicine and Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA 37232
| | - Jeffrey M. Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232.,Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37232,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA 37232
| |
Collapse
|
17
|
Capturing the third dimension in drug discovery: Spatially-resolved tools for interrogation of complex 3D cell models. Biotechnol Adv 2021; 55:107883. [PMID: 34875362 DOI: 10.1016/j.biotechadv.2021.107883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Advanced three-dimensional (3D) cell models have proven to be capable of depicting architectural and microenvironmental features of several tissues. By providing data of higher physiological and pathophysiological relevance, 3D cell models have been contributing to a better understanding of human development, pathology onset and progression mechanisms, as well as for 3D cell-based assays for drug discovery. Nonetheless, the characterization and interrogation of these tissue-like structures pose major challenges on the conventional analytical methods, pushing the development of spatially-resolved technologies. Herein, we review recent advances and pioneering technologies suitable for the interrogation of multicellular 3D models, while capable of retaining biological spatial information. We focused on imaging technologies and omics tools, namely transcriptomics, proteomics and metabolomics. The advantages and shortcomings of these novel methodologies are discussed, alongside the opportunities to intertwine data from the different tools.
Collapse
|
18
|
Schlecht A, Boneva S, Salie H, Killmer S, Wolf J, Hajdu RI, Auw-Haedrich C, Agostini H, Reinhard T, Schlunck G, Bengsch B, Lange CA. Imaging mass cytometry for high-dimensional tissue profiling in the eye. BMC Ophthalmol 2021; 21:338. [PMID: 34544377 PMCID: PMC8454101 DOI: 10.1186/s12886-021-02099-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background Imaging mass cytometry (IMC) combines the principles of flow cytometry and mass spectrometry (MS) with laser scanning spatial resolution and offers unique advantages for the analysis of tissue samples in unprecedented detail. In contrast to conventional immunohistochemistry, which is limited in its application by the number of possible fluorochrome combinations, IMC uses isoptope-coupled antibodies that allow multiplex analysis of up to 40 markers in the same tissue section simultaneously. Methods In this report we use IMC to analyze formalin-fixed, paraffin-embedded conjunctival tissue. We performed a 18-biomarkers IMC analysis of conjunctival tissue to determine and summarize the possibilities, relevance and limitations of IMC for deciphering the biology and pathology of ocular diseases. Results Without modifying the manufacturer’s protocol, we observed positive and plausible staining for 12 of 18 biomarkers. Subsequent bioinformatical single-cell analysis and phenograph clustering identified 24 different cellular clusters with distinct expression profiles with respect to the markers used. Conclusions IMC enables highly multiplexed imaging of ocular samples at subcellular resolution. IMC is an innovative and feasible method, providing new insights into ocular disease pathogenesis that will be valuable for basic research, drug discovery and clinical diagnostics. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-021-02099-8.
Collapse
Affiliation(s)
- Anja Schlecht
- Faculty of Medicine, Eye Center, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.,Institute of Anatomy, Wuerzburg University, Wuerzburg, Germany
| | - Stefaniya Boneva
- Faculty of Medicine, Eye Center, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Henrike Salie
- Faculty of Medicine, Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Saskia Killmer
- Faculty of Medicine, Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Julian Wolf
- Faculty of Medicine, Eye Center, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Rozina Ida Hajdu
- Faculty of Medicine, Eye Center, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.,Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Claudia Auw-Haedrich
- Faculty of Medicine, Eye Center, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Hansjürgen Agostini
- Faculty of Medicine, Eye Center, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Thomas Reinhard
- Faculty of Medicine, Eye Center, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Günther Schlunck
- Faculty of Medicine, Eye Center, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Bertram Bengsch
- Faculty of Medicine, Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Clemens Ak Lange
- Faculty of Medicine, Eye Center, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.
| |
Collapse
|
19
|
Gregor I, Butkevich E, Enderlein J, Mojiri S. Instant three-color multiplane fluorescence microscopy. BIOPHYSICAL REPORTS 2021; 1:100001. [PMID: 36425311 PMCID: PMC9680778 DOI: 10.1016/j.bpr.2021.100001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/22/2021] [Indexed: 06/16/2023]
Abstract
One of the most widely used microscopy techniques in biology and medicine is fluorescence microscopy, offering high specificity in labeling as well as maximal sensitivity. For live-cell imaging, the ideal fluorescence microscope should offer high spatial resolution, fast image acquisition, three-dimensional sectioning, and multicolor detection. However, most existing fluorescence microscopes have to compromise between these different requirements. Here, we present a multiplane, multicolor wide-field microscope that uses a dedicated beam splitter for recording volumetric data in eight focal planes and for three emission colors with frame rates of hundreds of volumes per second. We demonstrate the efficiency and performance of our system by three-dimensional imaging of multiply labeled fixed and living cells. The use of commercially available components makes our proposed microscope straightforward for implementation, thus promising for widely used applications.
Collapse
Affiliation(s)
| | | | - Jörg Enderlein
- III. Institute of Physics – Biophysics
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells,” Georg-August-University, Göttingen, Germany
| | | |
Collapse
|
20
|
Chuah S, Chew V. High-dimensional immune-profiling in cancer: implications for immunotherapy. J Immunother Cancer 2021; 8:jitc-2019-000363. [PMID: 32034066 PMCID: PMC7057482 DOI: 10.1136/jitc-2019-000363] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy is a rapidly growing field for cancer treatment. In contrast to conventional cancer therapies, immunotherapeutic strategies focus on reactivating the immune system to mount an antitumor response. Despite the encouraging outcome in clinical trials, a large proportion of patients still do not respond to treatment and many experience different degrees of immune-related adverse events. Furthermore, it is now increasingly appreciated that even many conventional cancer therapies such as radiotherapy could have a positive impact on the host immune system for better clinical response. Hence, there is a need to better understand tumor immunity in order to design immunotherapeutic strategies, especially evidence-based combination therapies, for improved clinical outcomes. With this aim, cancer research turned its attention to profiling the immune contexture of either the tumor microenvironment (TME) or peripheral blood to uncover mechanisms and biomarkers which might aid in precision immunotherapeutics. Conventional technologies used for this purpose were limited by the depth and dimensionality of the data. Advances in newer techniques have, however, greatly improved the breadth and depth, as well as the quantity and quality of data that can be obtained. The result of these advances is a wealth of new information and insights on how the TME could be affected by various immune cell-types, and how this might in turn impact the clinical outcome of cancer patients . We highlight herein some of the high-dimensional technologies currently employed in immune profiling in cancer and summarize the insights and potential benefits they could bring in designing better cancer immunotherapies.
Collapse
Affiliation(s)
- Samuel Chuah
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
21
|
Reitz SJ, Sauerbeck AD, Kummer TT. Enhanced Multiplexing of Immunofluorescence Microscopy Using a Long-Stokes-Shift Fluorophore. Curr Protoc 2021; 1:e214. [PMID: 34387945 DOI: 10.1002/cpz1.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunofluorescence labeling and microscopy offer a highly specific means to visualize proteins or other molecular species in a sample by labeling target antigens with fluorescent probes. These fluorescent probes can then be visualized using a fluorescence microscope, allowing their relative spatial relationships to be determined. Due to spectral overlap of common fluorophores, however, it can be challenging to analyze more than three antigens in a single sample with standard imaging approaches. This article describes multiplexed labeling and imaging of four target antigens through the use of a long-Stokes-shift fluorophore-a fluorophore with an unusually large gap between its excitation and emission maxima-in tandem with three conventional fluorophores. This combination allows for multiplexed imaging of four antigens in a single sample with excellent spectral discrimination suitable for sensitive analyses using standard imaging hardware. Particular advantages of this approach are its flexibility in terms of target antigens and the lack of any specialized procedures, reagents, or equipment beyond the commercially available labeling reagent coupled to the long-Stokes-shift fluorophore. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Four-probe immunofluorescence labeling Basic Protocol 2: Four-probe immunofluorescence imaging.
Collapse
Affiliation(s)
- Sydney J Reitz
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew D Sauerbeck
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Terrance T Kummer
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
22
|
McCarthy ME, Anglin CM, Peer HA, Boleman SA, Klaubert SR, Birtwistle MR. Protocol for Creating Antibodies with Complex Fluorescence Spectra. Bioconjug Chem 2021; 32:1156-1166. [PMID: 34009954 DOI: 10.1021/acs.bioconjchem.1c00220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fluorescent antibodies are a workhorse of biomedical science, but fluorescence multiplexing has been notoriously difficult due to spectral overlap between fluorophores. We recently established proof-of-principal for fluorescence Multiplexing using Spectral Imaging and Combinatorics (MuSIC), which uses combinations of existing fluorophores to create unique spectral signatures for increased multiplexing. However, a method for labeling antibodies with MuSIC probes has not yet been developed. Here, we present a method for labeling antibodies with MuSIC probes. We conjugate a DBCO-Peg5-NHS ester linker to antibodies and a single-stranded DNA "docking strand" to the linker and, finally, hybridize two MuSIC-compatible, fluorescently labeled oligos to the docking strand. We validate the labeling protocol with spin-column purification and absorbance measurements. We demonstrate the approach using (i) Cy3, (ii) Tex615, and (iii) a Cy3-Tex615 combination as three different MuSIC probes attached to three separate batches of antibodies. We created single-, double-, and triple-positive beads that are analogous to single cells by incubating MuSIC probe-labeled antibodies with protein A beads. Spectral flow cytometry experiments demonstrate that each MuSIC probe can be uniquely distinguished, and the fraction of beads in a mixture with different staining patterns are accurately inferred. The approach is general and might be more broadly applied to cell-type profiling or tissue heterogeneity studies in clinical, biomedical, and drug discovery research.
Collapse
Affiliation(s)
- Madeline E McCarthy
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Caitlin M Anglin
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Heather A Peer
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sevanna A Boleman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Stephanie R Klaubert
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
23
|
High-speed compressed-sensing fluorescence lifetime imaging microscopy of live cells. Proc Natl Acad Sci U S A 2021; 118:2004176118. [PMID: 33431663 DOI: 10.1073/pnas.2004176118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We present high-resolution, high-speed fluorescence lifetime imaging microscopy (FLIM) of live cells based on a compressed sensing scheme. By leveraging the compressibility of biological scenes in a specific domain, we simultaneously record the time-lapse fluorescence decay upon pulsed laser excitation within a large field of view. The resultant system, referred to as compressed FLIM, can acquire a widefield fluorescence lifetime image within a single camera exposure, eliminating the motion artifact and minimizing the photobleaching and phototoxicity. The imaging speed, limited only by the readout speed of the camera, is up to 100 Hz. We demonstrated the utility of compressed FLIM in imaging various transient dynamics at the microscopic scale.
Collapse
|
24
|
Hugelier S, Van den Eynde R, Vandenberg W, Dedecker P. Fluorophore unmixing based on bleaching and recovery kinetics using MCR-ALS. Talanta 2021; 226:122117. [PMID: 33676672 DOI: 10.1016/j.talanta.2021.122117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/03/2023]
Abstract
Fluorescence microscopy is a key technology in the life sciences, though its performance is constrained by the number of labels that can be recorded. We propose to use the kinetics of fluorophore photodestruction and subsequent fluorescence recovery to distinguish multiple spectrally-overlapping emitters in fixed cells, thus enhancing the information that can be obtained from a single measurement. We show that the data can be directly processed using multivariate curve resolution - alternating least squares (MCR-ALS) to deliver distinct images for each fluorophore in their local environment, and apply this methodology to membrane imaging using DiBAC4(3) and concanavalin A - Alexa Fluor 488 as the fluorophores. We find that the DiBAC4(3) displays two distinct degradation/recovery kinetics that correspond to two different label distributions, allowing us to simultaneously distinguish three different fluorescence distributions from two spectrally overlapping fluorophores. We expect that our approach will scale to other dynamically-binding dyes, leading to similarly increased multiplexing capability.
Collapse
Affiliation(s)
- S Hugelier
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium.
| | - R Van den Eynde
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium
| | - W Vandenberg
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium; Univ. Lille, CNRS, Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement (LASIRE), F-59000 Lille, France
| | - P Dedecker
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
25
|
Yagnik G, Liu Z, Rothschild KJ, Lim MJ. Highly Multiplexed Immunohistochemical MALDI-MS Imaging of Biomarkers in Tissues. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:977-988. [PMID: 33631930 PMCID: PMC8033562 DOI: 10.1021/jasms.0c00473] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Immunohistochemistry (IHC) combined with fluorescence microscopy provides an important and widely used tool for researchers and pathologists to image multiple biomarkers in tissue specimens. However, multiplex IHC using standard fluorescence microscopy is generally limited to 3-5 different biomarkers, with hyperspectral or multispectral methods limited to 8. We report the development of a new technology based on novel photocleavable mass-tags (PC-MTs) for facile antibody labeling, which enables highly multiplexed IHC based on MALDI mass spectrometric imaging (MALDI-IHC). This approach significantly exceeds the multiplexity of both fluorescence- and previous cleavable mass-tag-based methods. Up to 12-plex MALDI-IHC was demonstrated on mouse brain, human tonsil, and breast cancer tissues specimens, reflecting the known molecular composition, anatomy, and pathology of the targeted biomarkers. Novel dual-labeled fluorescent PC-MT antibodies and label-free small-molecule mass spectrometric imaging greatly extend the capability of this new approach. MALDI-IHC shows promise for use in the fields of tissue pathology, tissue diagnostics, therapeutics, and precision medicine.
Collapse
Affiliation(s)
- Gargey Yagnik
- AmberGen,
Inc., 313 Pleasant Street, Watertown, Massachusetts 02472, United States
| | - Ziying Liu
- AmberGen,
Inc., 313 Pleasant Street, Watertown, Massachusetts 02472, United States
| | - Kenneth J. Rothschild
- AmberGen,
Inc., 313 Pleasant Street, Watertown, Massachusetts 02472, United States
- Molecular
Biophysics Laboratory, Department of Physics and Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Mark J. Lim
- AmberGen,
Inc., 313 Pleasant Street, Watertown, Massachusetts 02472, United States
| |
Collapse
|
26
|
Shi L, Fung AA, Zhou A. Advances in stimulated Raman scattering imaging for tissues and animals. Quant Imaging Med Surg 2021; 11:1078-1101. [PMID: 33654679 PMCID: PMC7829158 DOI: 10.21037/qims-20-712] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Stimulated Raman scattering (SRS) microscopy has emerged in the last decade as a powerful optical imaging technology with high chemical selectivity, speed, and subcellular resolution. Since the invention of SRS microscopy, it has been extensively employed in life science to study composition, structure, metabolism, development, and disease in biological systems. Applications of SRS in research and the clinic have generated new insights in many fields including neurobiology, tumor biology, developmental biology, metabolomics, pharmacokinetics, and more. Herein we review the advances and applications of SRS microscopy imaging in tissues and animals, as well as envision future applications and development of SRS imaging in life science and medicine.
Collapse
Affiliation(s)
- Lingyan Shi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Anthony A Fung
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Andy Zhou
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
Zieger SE, Mosshammer M, Kühl M, Koren K. Hyperspectral Luminescence Imaging in Combination with Signal Deconvolution Enables Reliable Multi-Indicator-Based Chemical Sensing. ACS Sens 2021; 6:183-191. [PMID: 33337140 DOI: 10.1021/acssensors.0c02084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although real-time monitoring of individual analytes using reversible optical chemical sensors (optodes) is well established, it remains a challenge in optical sensing to monitor multiple analyte concentrations simultaneously. Here, we present a novel sensing approach using hyperspectral imaging in combination with signal deconvolution of overlapping emission spectra of multiple luminescent indicator dyes, which facilitates multi-indicator-based chemical imaging. The deconvolution algorithm uses a linear combination model to describe the superimposed sensor signals and employs a sequential least-squares fit to determine the percent contribution of the individual indicator dyes to the total measured signal. As a proof of concept, we used the algorithm to analyze the measured response of an O2 sensor composed of red-emitting Pd(II)/Pt(II) porphyrins and NIR-emitting Pd(II)/Pt(II) benzoporphyrins with different sensitivities. This facilitated chemical imaging of O2 over a wide dynamic range (0-950 hPa) with a hyperspectral camera system (470-900 nm). The applicability of the novel method was demonstrated by imaging the O2 distribution in the heterogeneous microenvironment around the roots of the aquatic plant Littorella uniflora. The presented approach of combining hyperspectral sensing with signal deconvolution is flexible and can easily be adapted for use of various multi-indicator- or even multianalyte-based optical sensors with different spectral characteristics, enabling high-resolution simultaneous imaging of multiple analytes.
Collapse
Affiliation(s)
- Silvia E. Zieger
- Aarhus University Centre for Water Technology (WATEC), Department of Biology, Section for Microbiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Maria Mosshammer
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark
| | - Klaus Koren
- Aarhus University Centre for Water Technology (WATEC), Department of Biology, Section for Microbiology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
28
|
Anazawa T, Yamazaki M, Yamamoto S, Inaba R. Ultra-small four-emission-point spectral-detection system using seven-dichroic-mirror array. Talanta 2021; 222:121667. [PMID: 33167280 DOI: 10.1016/j.talanta.2020.121667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
An ultra-small and highly efficient spectral-detection system for four emission points was developed by integrating an injection-molded-plastic four-lens array, a seven-dichroic-mirror array, and an image sensor as one device. The seven-dichroic-mirror array was further miniaturized compared to our previous four-dichroic-mirror array by measures including reduction of the thickness of each dichroic mirror from 1.0 to 0.5 mm. As a result, the system enables highly sensitive and low-crosstalk seven-color detection of laser-induced fluorescence from four emission points of a four-capillary array. This capability allows simultaneous quantification of up-to-seven fluorophores concurrently present in each capillary. Sanger DNA sequencing and STR genotyping by four-capillary-array electrophoresis were experimentally demonstrated by the system.
Collapse
Affiliation(s)
- Takashi Anazawa
- Research & Development Group, Hitachi Ltd., 1-280 Higashi-koigakubo Kokubunji, Tokyo, 185-8601, Japan.
| | - Motohiro Yamazaki
- Analytical & Medical Solution Business Group, Hitachi High-Tech Corporation, 882 Ichige Hitachinaka, Ibaraki, 312-8504, Japan
| | - Shuhei Yamamoto
- Analytical & Medical Solution Business Group, Hitachi High-Tech Corporation, 882 Ichige Hitachinaka, Ibaraki, 312-8504, Japan
| | - Ryoji Inaba
- Analytical & Medical Solution Business Group, Hitachi High-Tech Corporation, 882 Ichige Hitachinaka, Ibaraki, 312-8504, Japan
| |
Collapse
|
29
|
Kim JM, Kim J, Ha M, Nam JM. Cyclodextrin-Based Synthesis and Host-Guest Chemistry of Plasmonic Nanogap Particles with Strong, Quantitative, and Highly Multiplexable Surface-Enhanced Raman Scattering Signals. J Phys Chem Lett 2020; 11:8358-8364. [PMID: 32956585 DOI: 10.1021/acs.jpclett.0c02624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We developed a synthetic strategy to form cyclodextrin-based intrananogap particles (CIPs) with a well-defined ∼1 nm interior gap in a high yield (∼97%), and were able to incorporate 10 different Raman dyes inside the gap using the cyclodextrin-based host-guest chemistry, leading to strong, reproducible, and highly multiplexable surface-enhanced Raman scattering (SERS) signals. The average SERS enhancement factor (EF) for CIPs was 3.0 × 109 with a very narrow distribution of the EFs that range from 9.5 × 108 to 9.5 × 109 for ∼95% of the measured particles. Remarkably, 10 different Raman dyes can be loaded within the nanogap of CIPs, and 6 different Raman dye-loaded CIPs with little spectral overlaps were distinctly detected for cancer cell imaging applications with a single excitation source. Our synthetic strategy provides new platforms in precisely forming plasmonic nanogap structures with all key features for widespread use of SERS including strong signal intensity, reliability in quantification of signal and multiplexing capability.
Collapse
Affiliation(s)
- Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jiyeon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Minji Ha
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
30
|
Hayashi-Takanaka Y, Kina Y, Nakamura F, Becking LE, Nakao Y, Nagase T, Nozaki N, Kimura H. Histone modification dynamics as revealed by multicolor immunofluorescence-based single-cell analysis. J Cell Sci 2020; 133:jcs243444. [PMID: 32576661 PMCID: PMC7390643 DOI: 10.1242/jcs.243444] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023] Open
Abstract
Post-translational modifications on histones can be stable epigenetic marks or transient signals that can occur in response to internal and external stimuli. Levels of histone modifications fluctuate during the cell cycle and vary among different cell types. Here, we describe a simple system to monitor the levels of multiple histone modifications in single cells by multicolor immunofluorescence using directly labeled modification-specific antibodies. We analyzed histone H3 and H4 modifications during the cell cycle. Levels of active marks, such as acetylation and H3K4 methylation, were increased during the S phase, in association with chromatin duplication. By contrast, levels of some repressive modifications gradually increased during G2 and the next G1 phases. We applied this method to validate the target modifications of various histone demethylases in cells using a transient overexpression system. In extracts of marine organisms, we also screened chemical compounds that affect histone modifications and identified psammaplin A, which was previously reported to inhibit histone deacetylases. Thus, the method presented here is a powerful and convenient tool for analyzing the changes in histone modifications.
Collapse
Affiliation(s)
- Yoko Hayashi-Takanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, Suita 565-0871, Japan
| | - Yuto Kina
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Fumiaki Nakamura
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Leontine E Becking
- Marine Animal Ecology Group, Wageningen University & Research, PO Box 338, Bode 36, 6700 AH Wageningen, The Netherlands
| | - Yoichi Nakao
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
31
|
Smith JT, Ochoa M, Intes X. UNMIX-ME: spectral and lifetime fluorescence unmixing via deep learning. BIOMEDICAL OPTICS EXPRESS 2020; 11:3857-3874. [PMID: 33014571 PMCID: PMC7510912 DOI: 10.1364/boe.391992] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 05/18/2023]
Abstract
Hyperspectral fluorescence lifetime imaging allows for the simultaneous acquisition of spectrally resolved temporal fluorescence emission decays. In turn, the acquired rich multidimensional data set enables simultaneous imaging of multiple fluorescent species for a comprehensive molecular assessment of biotissues. However, to enable quantitative imaging, inherent spectral overlap between the considered fluorescent probes and potential bleed-through must be considered. Such a task is performed via either spectral or lifetime unmixing, typically independently. Herein, we present "UNMIX-ME" (unmix multiple emissions), a deep learning-based fluorescence unmixing routine, capable of quantitative fluorophore unmixing by simultaneously using both spectral and temporal signatures. UNMIX-ME was trained and validated using an in silico framework replicating the data acquisition process of a compressive hyperspectral fluorescent lifetime imaging platform (HMFLI). It was benchmarked against a conventional LSQ method for tri and quadri-exponential simulated samples. Last, UNMIX-ME's potential was assessed for NIR FRET in vitro and in vivo preclinical applications.
Collapse
Affiliation(s)
- Jason T Smith
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- These authors contributed equally
| | - Marien Ochoa
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- These authors contributed equally
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
32
|
AbuElela AF, Al-Amoodi AS, Ali AJ, Merzaban JS. Fluorescent Multiplex Cell Rolling Assay: Simultaneous Capturing up to Seven Samples in Real-Time Using Spectral Confocal Microscopy. Anal Chem 2020; 92:6200-6206. [PMID: 32264668 DOI: 10.1021/acs.analchem.9b04549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The parallel plate flow chamber assay is widely utilized to study physiological cell-cell adhesive interactions under dynamic flow that mimics the bloodstream. In this technique, the cells are perfused under defined shear stresses over a monolayer of endothelial cells (expressing homing molecules, e.g., selectins) or a surface (expressing recombinant homing molecules). However, with the need to study multiple samples and multiple parameters per sample, using a traditional bright-field microscope-based flow assay allows only one sample at a time to be analyzed, resulting in high interexperiment variability, the need for normalization, waste of materials, and significant consumption of time. We developed a multiplexing approach using a three-color fluorescence staining method, which allowed for up to seven different combination signatures to be run at one time. Using this fluorescent multiplex cell rolling (FMCR) assay, each sample is labeled with a different signature of emission wavelengths and mixed with other samples just minutes before the flow run. Subsequently, real-time images are acquired in a single pass using a line-scanning spectral confocal microscope. To illustrate the glycan-dependent binding of E-selectin, a central molecule in cell migration, to its glycosylated ligands expressed on myeloid-leukemic cells in flow, the FMCR assay was used to analyze E-selectin-ligand interactions following the addition (fucosyltransferase-treatment) or removal (deglycosylation) of key glycans on the flowing cells. The FMCR assay allowed us to analyze the cell-adhesion events from these different treatment conditions simultaneously in a competitive manner and to calculate differences in rolling frequency, velocity, and tethering capability of cells under study.
Collapse
Affiliation(s)
- Ayman F AbuElela
- Cell Migration and Signaling Laboratory, King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Asma S Al-Amoodi
- Cell Migration and Signaling Laboratory, King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Amal J Ali
- Cell Migration and Signaling Laboratory, King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Jasmeen S Merzaban
- Cell Migration and Signaling Laboratory, King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| |
Collapse
|
33
|
McMahon NP, Jones JA, Kwon S, Chin K, Nederlof MA, Gray JW, Gibbs SL. Oligonucleotide conjugated antibodies permit highly multiplexed immunofluorescence for future use in clinical histopathology. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-18. [PMID: 32445299 PMCID: PMC7245007 DOI: 10.1117/1.jbo.25.5.056004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/24/2020] [Indexed: 05/30/2023]
Abstract
SIGNIFICANCE Advanced genetic characterization has informed cancer heterogeneity and the challenge it poses to effective therapy; however, current methods lack spatial context, which is vital to successful cancer therapy. Conventional immunolabeling, commonplace in the clinic, can provide spatial context to protein expression. However, these techniques are spectrally limited, resulting in inadequate capacity to resolve the heterogenous cell subpopulations within a tumor. AIM We developed and optimized oligonucleotide conjugated antibodies (Ab-oligo) to facilitate cyclic immunofluorescence (cyCIF), resulting in high-dimensional immunostaining. APPROACH We employed a site-specific conjugation strategy to label antibodies with unique oligonucleotide sequences, which were hybridized in situ with their complementary oligonucleotide sequence tagged with a conventional fluorophore. Antibody concentration, imaging strand concentration, and configuration as well as signal removal strategies were optimized to generate maximal staining intensity using our Ab-oligo cyCIF strategy. RESULTS We successfully generated 14 Ab-oligo conjugates and validated their antigen specificity, which was maintained in single color staining studies. With the validated antibodies, we generated up to 14-color imaging data sets of human breast cancer tissues. CONCLUSIONS Herein, we demonstrated the utility of Ab-oligo cyCIF as a platform for highly multiplexed imaging, its utility to measure tumor heterogeneity, and its potential for future use in clinical histopathology.
Collapse
Affiliation(s)
- Nathan P. McMahon
- Oregon Health and Science University, Biomedical Engineering Department, Portland, Oregon, United States
| | - Jocelyn A. Jones
- Oregon Health and Science University, Biomedical Engineering Department, Portland, Oregon, United States
| | - Sunjong Kwon
- Oregon Health and Science University, Biomedical Engineering Department, Portland, Oregon, United States
- Oregon Health and Science University, OHSU Center for Spatial Systems Biomedicine, Portland, Oregon, United States
| | - Koei Chin
- Oregon Health and Science University, Biomedical Engineering Department, Portland, Oregon, United States
- Oregon Health and Science University, OHSU Center for Spatial Systems Biomedicine, Portland, Oregon, United States
| | | | - Joe W. Gray
- Oregon Health and Science University, Biomedical Engineering Department, Portland, Oregon, United States
- Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon, United States
- Oregon Health and Science University, OHSU Center for Spatial Systems Biomedicine, Portland, Oregon, United States
| | - Summer L. Gibbs
- Oregon Health and Science University, Biomedical Engineering Department, Portland, Oregon, United States
- Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon, United States
- Oregon Health and Science University, OHSU Center for Spatial Systems Biomedicine, Portland, Oregon, United States
| |
Collapse
|
34
|
Rohilla S, Krämer B, Koberling F, Gregor I, Hocke AC. Multi-target immunofluorescence by separation of antibody cross-labelling via spectral-FLIM-FRET. Sci Rep 2020; 10:3820. [PMID: 32123277 PMCID: PMC7052234 DOI: 10.1038/s41598-020-60877-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
In biomedical research, indirect immunofluorescence labelling by use of primary and secondary antibodies is central for revealing the spatial distribution of multiple cellular antigens. However, labelling is regularly restricted to few antigens since species variation of primary and corresponding secondary antibodies is limited bearing the risk of unspecific cross-labelling. Here, we introduce a novel microscopic procedure for leveraging undesirable cross-labelling effects among secondary antibodies thereby increasing the number of fluorophore channels. Under cross-labelling conditions, commonly used fluorophores change chemical-physical properties by ‘Förster resonance energy transfer’ leading to defined changes in spectral emission and lifetime decay. By use of spectral fluorescence lifetime imaging and pattern-matching, we demonstrate precise separation of cross-labelled cellular antigens where conventional imaging completely fails. Consequently, this undesired effect serves for an innovative imaging procedure to separate critical antigens where antibody species variation is limited and allows for multi-target labelling by attribution of new fluorophore cross-labelling channels.
Collapse
Affiliation(s)
- Sumeet Rohilla
- PicoQuant Innovations GmbH, Rudower Chaussee 29 (IGZ), 12489, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charitéplatz 1, 10117, Berlin, Germany
| | - Benedikt Krämer
- PicoQuant GmbH, Rudower Chaussee 29 (IGZ), 12489, Berlin, Germany
| | - Felix Koberling
- PicoQuant GmbH, Rudower Chaussee 29 (IGZ), 12489, Berlin, Germany
| | - Ingo Gregor
- Third Institute of Physics, Georg-August-University, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Andreas C Hocke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
35
|
McRae TD, Oleksyn D, Miller J, Gao YR. Robust blind spectral unmixing for fluorescence microscopy using unsupervised learning. PLoS One 2019; 14:e0225410. [PMID: 31790435 PMCID: PMC6886781 DOI: 10.1371/journal.pone.0225410] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/02/2019] [Indexed: 11/18/2022] Open
Abstract
Due to the overlapping emission spectra of fluorophores, fluorescence microscopy images often have bleed-through problems, leading to a false positive detection. This problem is almost unavoidable when the samples are labeled with three or more fluorophores, and the situation is complicated even further when imaged under a multiphoton microscope. Several methods have been developed and commonly used by biologists for fluorescence microscopy spectral unmixing, such as linear unmixing, non-negative matrix factorization, deconvolution, and principal component analysis. However, they either require pre-knowledge of emission spectra or restrict the number of fluorophores to be the same as detection channels, which highly limits the real-world applications of those spectral unmixing methods. In this paper, we developed a robust and flexible spectral unmixing method: Learning Unsupervised Means of Spectra (LUMoS), which uses an unsupervised machine learning clustering method to learn individual fluorophores’ spectral signatures from mixed images, and blindly separate channels without restrictions on the number of fluorophores that can be imaged. This method highly expands the hardware capability of two-photon microscopy to simultaneously image more fluorophores than is possible with instrumentation alone. Experimental and simulated results demonstrated the robustness of LUMoS in multi-channel separations of two-photon microscopy images. We also extended the application of this method to background/autofluorescence removal and colocalization analysis. Lastly, we integrated this tool into ImageJ to offer an easy to use spectral unmixing tool for fluorescence imaging. LUMoS allows us to gain a higher spectral resolution and obtain a cleaner image without the need to upgrade the imaging hardware capabilities.
Collapse
Affiliation(s)
- Tristan D. McRae
- Multiphoton Research Core Facility, Shared Resource Laboratories, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States of America
| | - David Oleksyn
- Center for Vaccine Biology and Immunology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Jim Miller
- Center for Vaccine Biology and Immunology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Yu-Rong Gao
- Multiphoton Research Core Facility, Shared Resource Laboratories, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
36
|
Gopal A, Herr AE. Multiplexed in-gel microfluidic immunoassays: characterizing protein target loss during reprobing of benzophenone-modified hydrogels. Sci Rep 2019; 9:15389. [PMID: 31659305 PMCID: PMC6817870 DOI: 10.1038/s41598-019-51849-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022] Open
Abstract
From whole tissues to single-cell lysate, heterogeneous immunoassays are widely utilized for analysis of protein targets in complex biospecimens. Recently, benzophenone-functionalized hydrogel scaffolds have been used to immobilize target protein for immunoassay detection with fluorescent antibody probes. In benzophenone-functionalized hydrogels, multiplex target detection occurs via serial rounds of chemical stripping (incubation with sodium-dodecyl-sulfate (SDS) and β-mercaptoethanol at 50-60 °C for ≥1 h), followed by reprobing (interrogation with additional antibody probes). Although benzophenone facilitates covalent immobilization of proteins to the hydrogel, we observe 50% immunoassay signal loss of immobilized protein targets during stripping rounds. Here, we identify and characterize signal loss mechanisms during stripping and reprobing. We posit that loss of immobilized target is responsible for ≥50% of immunoassay signal loss, and that target loss is attributable to disruption of protein immobilization by denaturing detergents (SDS) and incubation at elevated temperatures. Furthermore, our study suggests that protein losses under non-denaturing conditions are more sensitive to protein structure (i.e., hydrodynamic radius), than to molecular mass (size). We formulate design guidance for multiplexed in-gel immunoassays, including that low-abundance proteins be immunoprobed first, even when targets are covalently immobilized to the gel. We also recommend careful scrutiny of the order of proteins targets detected via multiple immunoprobing cycles, based on the protein immobilization buffer composition.
Collapse
Affiliation(s)
- Anjali Gopal
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, United States
- UC Berkeley/UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, United States.
- UC Berkeley/UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, California, 94720, United States.
- Chan Zuckerberg BioHub, San Francisco, California, 94158, United States.
| |
Collapse
|
37
|
Deal J, Britain A, Rich T, Leavesley S. Excitation-Scanning Hyperspectral Imaging Microscopy to Efficiently Discriminate Fluorescence Signals. J Vis Exp 2019:10.3791/59448. [PMID: 31498305 PMCID: PMC6800214 DOI: 10.3791/59448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Several techniques rely on detection of fluorescence signals to identify or study phenomena or to elucidate functions. Separation of these fluorescence signals were proven cumbersome until the advent of hyperspectral imaging, in which fluorescence sources can be separated from each other as well as from background signals and autofluorescence (given knowledge of their spectral signatures). However, traditional, emission-scanning hyperspectral imaging suffers from slow acquisition times and low signal-to-noise ratios due to the necessary filtering of both excitation and emission light. It has been previously shown that excitation-scanning hyperspectral imaging reduces the necessary acquisition time while simultaneously increasing the signal-to-noise ratio of acquired data. Using commercially available equipment, this protocol describes how to assemble, calibrate, and use an excitation-scanning hyperspectral imaging microscopy system for separation of signals from several fluorescence sources in a single sample. While highly applicable to microscopic imaging of cells and tissues, this technique may also be useful for any type of experiment utilizing fluorescence in which it is possible to vary excitation wavelengths, including but not limited to: chemical imaging, environmental applications, eye care, food science, forensic science, medical science, and mineralogy.
Collapse
Affiliation(s)
- Joshua Deal
- Department of Chemical and Biomolecular Engineering, University of South Alabama; Center for Lung Biology, University of South Alabama; Department of Pharmacology, University of South Alabama
| | - Andrea Britain
- Center for Lung Biology, University of South Alabama; Department of Pharmacology, University of South Alabama
| | - Thomas Rich
- Center for Lung Biology, University of South Alabama; Department of Pharmacology, University of South Alabama
| | - Silas Leavesley
- Department of Chemical and Biomolecular Engineering, University of South Alabama; Center for Lung Biology, University of South Alabama; Department of Pharmacology, University of South Alabama;
| |
Collapse
|
38
|
McCarthy ME, Birtwistle MR. Highly Multiplexed, Quantitative Tissue Imaging at Cellular Resolution. CURRENT PATHOBIOLOGY REPORTS 2019. [DOI: 10.1007/s40139-019-00203-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Mayr U, Serra D, Liberali P. Exploring single cells in space and time during tissue development, homeostasis and regeneration. Development 2019; 146:146/12/dev176727. [DOI: 10.1242/dev.176727] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT
Complex 3D tissues arise during development following tightly organized events in space and time. In particular, gene regulatory networks and local interactions between single cells lead to emergent properties at the tissue and organism levels. To understand the design principles of tissue organization, we need to characterize individual cells at given times, but we also need to consider the collective behavior of multiple cells across different spatial and temporal scales. In recent years, powerful single cell methods have been developed to characterize cells in tissues and to address the challenging questions of how different tissues are formed throughout development, maintained in homeostasis, and repaired after injury and disease. These approaches have led to a massive increase in data pertaining to both mRNA and protein abundances in single cells. As we review here, these new technologies, in combination with in toto live imaging, now allow us to bridge spatial and temporal information quantitatively at the single cell level and generate a mechanistic understanding of tissue development.
Collapse
Affiliation(s)
- Urs Mayr
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Denise Serra
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Prisca Liberali
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
40
|
Abstract
Optical microscopy has served biomedical research for decades due to its high temporal and spatial resolutions. Among various optical imaging techniques, fluorescence imaging offers superb sensitivity down to single molecule level but its multiplexing capacity is limited by intrinsically broad bandwidth. To simultaneously capture a vast number of targets, the newly emerging vibrational microscopy technique draws increasing attention as vibration spectroscopy features narrow transition linewidth. Nonetheless, unlike fluorophores that have been studied for centuries, a systematic investigation on vibrational probes is underemphasized. Herein, we reviewed some of the recent developments of vibrational probes for multiplex imaging applications, particularly those serving stimulated Raman scattering (SRS) microscopy, which is one of the most promising vibrational imaging techniques. We wish to summarize the general guidelines for developing bioorthogonal vibrational probes with high sensitivity, chemical specificity and most importantly, tunability to fulfill super-multiplexed optical imaging. Future directions to significantly improve the performance are also discussed.
Collapse
Affiliation(s)
- Yupeng Miao
- Department of Chemistry, Columbia University, New York, NY 10027, United States of America
| | | | | | | |
Collapse
|
41
|
Krause S, Vosch T. Stokes shift microscopy by excitation and emission imaging. OPTICS EXPRESS 2019; 27:8208-8220. [PMID: 31052643 DOI: 10.1364/oe.27.008208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
In this contribution, we present a new method, based on a tunable excitation laser source and a robust common path interferometer in the detection channel. Its purpose is to image spectral excitation and emission information on a monochrome complementary metal oxide semiconductor (CMOS) camera. This allows us to spatially obtain both excitation and emission spectra of the whole imaged area and create derived images such as red-green-blue (RGB), excitation and emission maxima, and Stokes shift images. Our presented method is a further development of hyperspectral imaging that usually is limited to recording spatially resolved emission spectra. Taking advantage of the full camera chip should speed up the acquisition versus line scan or pointwise hyperspectral imaging.
Collapse
|
42
|
Deal J, Rich TC, Leavesley SJ. Optimizing channel selection for excitation-scanning hyperspectral imaging. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10881:108811B. [PMID: 34045784 PMCID: PMC8151237 DOI: 10.1117/12.2510784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A major benefit of fluorescence microscopy is the now plentiful selection of fluorescent markers. These labels can be chosen to serve complementary functions, such as tracking labeled subcellular molecules near demarcated organelles. However, with the standard 3 or 4 emission channels, multiple label detection is restricted to segregated regions of the electromagnetic spectrum, as in RGB coloring. Hyperspectral imaging allows the user to discern many fluorescence labels by their unique spectral properties, provided there is significant differentiation of their emission spectra. The cost of this technique is often an increase in gain or exposure time to accommodate the signal reduction from separating the signal into many discrete excitation or emission channels. Recent advances in hyperspectral imaging have allowed the acquisition of more signal in a shorter time period by scanning the excitation spectra of fluorophores. Here, we explore the selection of optimal channels for both significant signal separation and sufficient signal detection using excitation-scanning hyperspectral imaging. Excitation spectra were obtained using a custom inverted microscope (TE-2000, Nikon Instruments) with a Xe arc lamp and thin film tunable filter array (VersaChrome, Semrock, Inc.) Tunable filters had bandwidths between 13 and 17 nm. Scans utilized excitation wavelengths between 340 nm and 550 nm. Hyperspectral image stacks were generated and analyzed using ENVI and custom MATLAB scripts. Among channel consideration criteria were: number of channels, spectral range of scan, spacing of center wavelengths, and acquisition time.
Collapse
Affiliation(s)
- Joshua Deal
- Department of Chemical & Biomolecular Engineering, University of South Alabama
- Center for Lung Biology, University of South Alabama
- Department of Pharmacology, University of South Alabama
| | - Thomas C Rich
- Center for Lung Biology, University of South Alabama
- Department of Pharmacology, University of South Alabama
| | - Silas J Leavesley
- Department of Chemical & Biomolecular Engineering, University of South Alabama
- Center for Lung Biology, University of South Alabama
- Department of Pharmacology, University of South Alabama
| |
Collapse
|
43
|
McMahon N, Jones J, Eng J, Kwon S, Chang YH, Thibault G, Chin K, Nederlof M, Gray J, Gibbs SL. Signal removal methods for highly multiplexed immunofluorescent staining using antibody conjugated oligonucleotides. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10881:108810X. [PMID: 32280155 PMCID: PMC7145771 DOI: 10.1117/12.2510573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Successful cancer treatment continues to elude modern medicine and its arsenal of therapeutic strategies. Therapy resistance is driven by significant tumor heterogeneity, complex interactions between malignant, microenvironmental and immune cells and cross talk between signaling pathways. Advances in molecular characterization technologies such as next generation sequencing have helped unravel this network of interactions and have vastly affected how cancer is diagnosed and treated. However, the translation of complex genomic analyses to pathological diagnosis remains challenging using conventional immunofluorescence (IF) staining, which is typically limited to 2-5 antigens. Numerous strategies to increase distinct antigen detection on a single sample have been investigated, but all have deleterious effects on the tissue limiting the maximum number of biomarkers that can be imaged on a single sample and none can be seamlessly integrated into routine clinical workflows. To facilitate ready integration into clinical histopathology, we have developed a novel cyclic IF (cycIF) technology based on antibody conjugated oligonucleotides (Ab-oligos). In situ hybridization of complementary oligonucleotides (oligos) facilitates biomarker labeling for imaging on any conventional fluorescent microscope. We have validated a variety of oligo configurations and their respective signal removal strategies capable of diminishing fluorescent signal to levels of autofluorescence before subsequent staining cycles. Robust signal removal is performed without the employment of harsh conditions or reagents, maintaining tissue integrity and antigenicity for higher dimensionality immunostaining of a single sample. Our platform Ab-oligo cycIF technology uses conventional fluorophores and microscopes, allowing for dissemination to a broad audience and congruent integration into clinical histopathology workflows.
Collapse
Affiliation(s)
- Nathan McMahon
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
| | - Jocelyn Jones
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
| | - Jennifer Eng
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
| | - Sunjong Kwon
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
| | - Young-Hwan Chang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
- Computational Biology Program, Oregon Health and Science University, Portland, OR 97201
| | - Guillume Thibault
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
- Computational Biology Program, Oregon Health and Science University, Portland, OR 97201
| | - Koei Chin
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
| | | | - Joe Gray
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
| | - Summer L Gibbs
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
| |
Collapse
|
44
|
Ross AM, Mc Nulty D, O'Dwyer C, Grabrucker AM, Cronin P, Mulvihill JJ. Standardization of research methods employed in assessing the interaction between metallic-based nanoparticles and the blood-brain barrier: Present and future perspectives. J Control Release 2019; 296:202-224. [DOI: 10.1016/j.jconrel.2019.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 01/31/2023]
|
45
|
Holzapfel HY, Stern AD, Bouhaddou M, Anglin CM, Putur D, Comer S, Birtwistle MR. Fluorescence Multiplexing with Spectral Imaging and Combinatorics. ACS COMBINATORIAL SCIENCE 2018; 20:653-659. [PMID: 30339749 PMCID: PMC9827428 DOI: 10.1021/acscombsci.8b00101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ultraviolet-to-infrared fluorescence is a versatile and accessible assay modality but is notoriously hard to multiplex due to overlap of wide emission spectra. We present an approach for fluorescence called multiplexing using spectral imaging and combinatorics (MuSIC). MuSIC consists of creating new independent probes from covalently linked combinations of individual fluorophores, leveraging the wide palette of currently available probes with the mathematical power of combinatorics. Probe levels in a mixture can be inferred from spectral emission scanning data. Theory and simulations suggest MuSIC can increase fluorescence multiplexing ∼4-5 fold using currently available dyes and measurement tools. Experimental proof-of-principle demonstrates robust demultiplexing of nine solution-based probes using ∼25% of the available excitation wavelength window (380-480 nm), consistent with theory. The increasing prevalence of white lasers, angle filter-based wavelength scanning, and large, sensitive multianode photomultiplier tubes make acquisition of such MuSIC-compatible data sets increasingly attainable.
Collapse
Affiliation(s)
- Hadassa Y. Holzapfel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Medical School for International Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er Sheva, 84105, Israel
| | - Alan D. Stern
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mehdi Bouhaddou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Caitlin M. Anglin
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| | - Danielle Putur
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah Comer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marc R. Birtwistle
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA,To whom correspondence should be addressed
| |
Collapse
|
46
|
Razgoniaeva N, Rogers S, Moroz P, Cassidy J, Zamkov M. Improving the spectral resolution in fluorescence microscopy through shaped-excitation imaging. Methods Appl Fluoresc 2018; 6:045006. [PMID: 30078787 DOI: 10.1088/2050-6120/aad81c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The visualization of distinct molecular species represents an important challenge of bio-imaging research. In past decades, the development of multicolor fluorescent (FL) labels has greatly improved our ability to track biological analytes, paving the way for important advances in understanding the cell dynamics. It remains challenging, however, to visualize a large number of different fluorephores simultaneously. Owing to a spectrally broad absorption of fluorescent dyes, only up to five color categories can be resolved at once. Here, we demonstrate a general strategy for distinguishing between multiple fluorescent targets in acquired microscopy images with improved accuracy. The present strategy is enabled through spectral shaping of the excitation light with an optical filter that uniquely attenuates the light absorption of each fluorophore in the investigated sample. The resulting emission changes, induced by such excitation modulation, are therefore target-specific and can be used for identifying various fluorescent species. The technique is demonstrated through an accurate identification of 8 different CdSe dyes with absorption maxima spanning the 520-620 spectral range. It is subsequently applied for accurate measurements of the pH balance in buffers emulating a metabolism of tumor cells.
Collapse
Affiliation(s)
- N Razgoniaeva
- The Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States of America. Department of Physics, Bowling Green State University, Bowling Green, Ohio 43403, United States of America
| | | | | | | | | |
Collapse
|
47
|
Megjhani M, Correa de Sampaio P, Leigh Carstens J, Kalluri R, Roysam B. Morphologically constrained spectral unmixing by dictionary learning for multiplex fluorescence microscopy. Bioinformatics 2018; 33:2182-2190. [PMID: 28334208 DOI: 10.1093/bioinformatics/btx108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Motivation Current spectral unmixing methods for multiplex fluorescence microscopy have a limited ability to cope with high spectral overlap as they only analyze spectral information over individual pixels. Here, we present adaptive Morphologically Constrained Spectral Unmixing (MCSU) algorithms that overcome this limitation by exploiting morphological differences between sub-cellular structures, and their local spatial context. Results The proposed method was effective at improving spectral unmixing performance by exploiting: (i) a set of dictionary-based models for object morphologies learned from the image data; and (ii) models of spatial context learned from the image data using a total variation algorithm. The method was evaluated on multi-spectral images of multiplex-labeled pancreatic ductal adenocarcinoma (PDAC) tissue samples. The former constraint ensures that neighbouring pixels correspond to morphologically similar structures, and the latter constraint ensures that neighbouring pixels have similar spectral signatures. The average Mean Squared Error (MSE) and Signal Reconstruction Error (SRE) ratio of the proposed method was 39.6% less and 8% more, respectively, compared to the best of all other algorithms that do not exploit these spatial constraints. Availability and Implementation Open source software (MATLAB). Contact broysam@central.uh.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Murad Megjhani
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Pedro Correa de Sampaio
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julienne Leigh Carstens
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
48
|
Ballard ZS, Brown C, Ozcan A. Mobile Technologies for the Discovery, Analysis, and Engineering of the Global Microbiome. ACS NANO 2018; 12:3065-3082. [PMID: 29553706 DOI: 10.1021/acsnano.7b08660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microbiome has been heralded as a gauge of and contributor to both human health and environmental conditions. Current challenges in probing, engineering, and harnessing the microbiome stem from its microscopic and nanoscopic nature, diversity and complexity of interactions among its members and hosts, as well as the spatiotemporal sampling and in situ measurement limitations induced by the restricted capabilities and norm of existing technologies, leaving some of the constituents of the microbiome unknown. To facilitate significant progress in the microbiome field, deeper understanding of the constituents' individual behavior, interactions with others, and biodiversity are needed. Also crucial is the generation of multimodal data from a variety of subjects and environments over time. Mobile imaging and sensing technologies, particularly through smartphone-based platforms, can potentially meet some of these needs in field-portable, cost-effective, and massively scalable manners by circumventing the need for bulky, expensive instrumentation. In this Perspective, we outline how mobile sensing and imaging technologies could lead the way to unprecedented insight into the microbiome, potentially shedding light on various microbiome-related mysteries of today, including the composition and function of human, animal, plant, and environmental microbiomes. Finally, we conclude with a look at the future, propose a computational microbiome engineering and optimization framework, and discuss its potential impact and applications.
Collapse
|
49
|
McNamara G, Difilippantonio M, Ried T, Bieber FR. Microscopy and Image Analysis. ACTA ACUST UNITED AC 2018; 94:4.4.1-4.4.89. [DOI: 10.1002/cphg.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Michael Difilippantonio
- Division of Cancer Treatment and Diagnosis National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Thomas Ried
- Section of Cancer Genomics Genetics Branch Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | | |
Collapse
|
50
|
In Situ Hybridization and Double Immunohistochemistry for the Detection of VEGF-A mRNA and CD34/Collagen IV Proteins in Renal Transplant Biopsies. Methods Mol Biol 2017. [PMID: 29076076 DOI: 10.1007/7651_2017_86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Quantitative metrics on the tissue distribution of different cell phenotypes, extracellular matrix components, and signaling/cell cycle markers hold the promise for the advent of new-generation tissue-based predictive/prognostic biomarkers in clinical diagnostics. The workflow of this approach is composed of three major phases: (1) detection of multiple molecular targets on a single histologic section, (2) image acquisition, and (3) digital image processing and analysis. Here, we present the most prevalent current alternatives for step (1) and describe a three-plex staining and image acquisition platform that captures the spatial distribution of macromolecules from two different species.
Collapse
|