1
|
Liang H, Sathavarodom N, Colmenares C, Gelfond J, Espinoza SE, Ganapathy V, Musi N. Effect of acute TLR4 inhibition on insulin resistance in humans. J Clin Invest 2022; 132:e162291. [PMID: 36066991 PMCID: PMC9621129 DOI: 10.1172/jci162291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
BackgroundStudies in cell cultures and rodents suggest that TLR4 is involved in the pathogenesis of insulin resistance, but direct data in humans are limited. We tested the hypothesis that pharmacologic blockade of TLR4 with the competitive inhibitor eritoran would improve insulin resistance in humans.MethodsIn protocol I, 10 lean, healthy individuals received the following 72-hour i.v. infusions in a randomized crossover design: saline (30 mL/h) plus vehicle; Intralipid (30 mL/h) plus vehicle; or Intralipid (30 mL/h) plus eritoran (12 mg i.v. every 12 hours). In protocol II, also a randomized crossover design, 9 nondiabetic individuals with obesity received eritoran or vehicle for 72 hours. The effect of eritoran was assessed with euglycemic hyperinsulinemic clamps.ResultsIn protocol I, lipid infusion significantly decreased peripheral insulin sensitivity (M value) by 14% and increased fasting plasma glucose (FPG) concentrations, fasting plasma insulin (FPI) concentrations, and the homeostatic model assessment of insulin resistance (HOMA-IR) index by 7%, 22%, and 26%, respectively. Eritoran did not prevent lipid-induced alterations of these metabolic parameters. Eritoran also failed to improve any baseline metabolic parameters (M, FPG, FPI, HOMA-IR) in individuals with obesity and insulin resistance (protocol II).ConclusionsAcute TLR4 inhibition with eritoran did not protect against lipid-induced insulin resistance. Short-term eritoran administration also failed to improve obesity-associated insulin resistance. These data do not support a role for TLR4 in insulin resistance. Future studies with a different class of TLR4 inhibitors, longer drug exposure, and/or lipid-enhancing interventions richer in saturated fats may be needed to further clarify the role of TLR4 in metabolic dysfunction in humans.Trial registrationClinicalTrials.gov NCT02321111 and NCT02267317.FundingNIH grants R01DK080157, P30AG044271, P30AG013319, and UL1TR002645.
Collapse
Affiliation(s)
- Hanyu Liang
- Barshop Institute for Longevity and Aging Studies and
- Diabetes Division, Department of Medicine, UT Health San Antonio, San Antonio, Texas, USA
- San Antonio Geriatric Research, Education and Clinical Center, Audie L. Murphy VA Medical Center, San Antonio, Texas, USA
| | - Nattapol Sathavarodom
- Diabetes Division, Department of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - Claudia Colmenares
- Diabetes Division, Department of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - Jonathan Gelfond
- Barshop Institute for Longevity and Aging Studies and
- Department of Population Health Science, UT Health San Antonio, San Antonio, Texas, USA
| | - Sara E. Espinoza
- Barshop Institute for Longevity and Aging Studies and
- Diabetes Division, Department of Medicine, UT Health San Antonio, San Antonio, Texas, USA
- San Antonio Geriatric Research, Education and Clinical Center, Audie L. Murphy VA Medical Center, San Antonio, Texas, USA
| | - Vinutha Ganapathy
- Diabetes Division, Department of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies and
- Diabetes Division, Department of Medicine, UT Health San Antonio, San Antonio, Texas, USA
- San Antonio Geriatric Research, Education and Clinical Center, Audie L. Murphy VA Medical Center, San Antonio, Texas, USA
| |
Collapse
|
2
|
Garcia MM, Goicoechea C, Molina-Álvarez M, Pascual D. Toll-like receptor 4: A promising crossroads in the diagnosis and treatment of several pathologies. Eur J Pharmacol 2020; 874:172975. [PMID: 32017939 DOI: 10.1016/j.ejphar.2020.172975] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 12/26/2022]
Abstract
Toll-like receptor 4 (TLR4) is expressed in a wide variety of cells and is the central component of the mammalian innate immune system. Since its discovery in 1997, TLR4 has been assigned an ever-increasing number of functions that extend from pathogen recognition to tissue damage identification and promotion of the intrinsic "damage repair response" in pain, intestinal, respiratory and vascular disorders. Precisely, the finding of conserved sequence homology among species along with the molecular and functional characterisation of the TLR4 gene enabled researchers to envisage a common operating system in the activation of innate immunity and the initiation of plastic changes at the onset of chronic pain. Malfunctioning in other conditions was conceived in parallel. In this respect, "pivot" proteins and pathway redundancy are not just evolutionary leftovers but essential for normal functioning or cell survival. Indeed, at present, TLR4 single nucleotide polymorphisms (SNP) and their association with certain dysfunctions and diseases are being confirmed in different pools of patients. However, despite its ability to trigger pathogen infection or alternatively tissue injury communications to immune system, TLR4 targeting might not be considered a panacea. This review article represents a compilation of what we know about TLR4 from clinics and basic research on the 20th anniversary of its discovery. Understanding how to fine-tune the interaction between TLR4 and its specific ligands may lead in the next decades to the development of promising new treatments, reducing polypharmacy and probably having an impact on drug use in numerous pathologies.
Collapse
Affiliation(s)
- Miguel M Garcia
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain
| | - Carlos Goicoechea
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain
| | - Miguel Molina-Álvarez
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain
| | - David Pascual
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain.
| |
Collapse
|
3
|
Monnet E, Choy EH, McInnes I, Kobakhidze T, de Graaf K, Jacqmin P, Lapeyre G, de Min C. Efficacy and safety of NI-0101, an anti-toll-like receptor 4 monoclonal antibody, in patients with rheumatoid arthritis after inadequate response to methotrexate: a phase II study. Ann Rheum Dis 2019; 79:316-323. [PMID: 31892533 DOI: 10.1136/annrheumdis-2019-216487] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/03/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Anti-citrullinated protein antibodies (ACPAs) form immune complexes with citrullinated proteins binding toll-like receptor (TLR) 4, which has been proposed as a mediator of rheumatoid arthritis (RA). NI-0101 is a first-in-class humanised monoclonal antibody blocking TLR4, as confirmed by inhibition of in vivo lipopolysaccharide-induced cytokine release in healthy volunteers. This study was design to confirm preclinical investigations supporting a biomarker-driven approach for treatment of patients with RA who present positive for these immune complexes. METHODS Placebo-controlled, double-blind, randomised (2:1) trial of the tolerability and efficacy of NI-0101 (5 mg/kg, every 2 weeks for 12 weeks) versus placebo in ACPA-positive RA patients with inadequate response to methotrexate. Efficacy measures included Disease Activity Score (28-joint count) with C reactive protein (DAS28-CRP), European League Against Rheumatism (EULAR) good and moderate responses, and American College of Rheumatology (ACR) 20, ACR50 and ACR70 responses. Subgroup analyses defined on biomarkers were conducted. Pharmacokinetics, pharmacodynamics and safety were reported. RESULTS 90 patients were randomised (NI-0101 (61) and placebo (29)); 86 completed the study. No significant between-group difference was observed for any of the efficacy endpoints. Subgroup analyses using baseline parameters as covariants did not reveal any population responding to NI-0101. Treatment-emergent adverse events occurred in 51.7% of patients who received placebo versus 52.5% for NI-0101. CONCLUSIONS We demonstrate for the first time that in RA, a human immune-mediated inflammatory disease, blocking the TLR4 pathway alone does not improve disease parameters. Successful targeting of innate immune pathways in RA may require broader and/or earlier inhibitory approaches.
Collapse
Affiliation(s)
- Emmanuel Monnet
- Clinical Development, NovImmune SA, Plan les Ouates, Geneva, Switzerland
| | - Ernest H Choy
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Iain McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Tamta Kobakhidze
- University Clinic, High Technology Medical Center, Tbilisi, Georgia
| | - Kathy de Graaf
- Clinical Development, NovImmune SA, Plan les Ouates, Geneva, Switzerland
| | | | - Geneviève Lapeyre
- Clinical Development, NovImmune SA, Plan les Ouates, Geneva, Switzerland
| | - Cristina de Min
- Clinical Development, NovImmune SA, Plan les Ouates, Geneva, Switzerland
| |
Collapse
|
4
|
Udgata A, Dolasia K, Ghosh S, Mukhopadhyay S. Dribbling through the host defence: targeting the TLRs by pathogens. Crit Rev Microbiol 2019; 45:354-368. [DOI: 10.1080/1040841x.2019.1608904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Atul Udgata
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Manipal Academy of Higher Education, Manipal, India
| | - Komal Dolasia
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Manipal Academy of Higher Education, Manipal, India
| | - Sudip Ghosh
- Molecular Biology Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
5
|
de Lima RMT, Dos Reis AC, de Menezes AAPM, Santos JVDO, Filho JWGDO, Ferreira JRDO, de Alencar MVOB, da Mata AMOF, Khan IN, Islam A, Uddin SJ, Ali ES, Islam MT, Tripathi S, Mishra SK, Mubarak MS, Melo-Cavalcante AADC. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytother Res 2018; 32:1885-1907. [PMID: 30009484 DOI: 10.1002/ptr.6134] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022]
Abstract
Natural dietary agents have attracted considerable attention due to their role in promoting health and reducing the risk of diseases including cancer. Ginger, one of the most ancient known spices, contains bioactive compounds with several health benefits. [6]-Gingerol constitutes the most pharmacologically active among such compounds. The aim of the present work was to review the literature pertaining to the use of ginger extract and [6]-gingerol against tumorigenic and oxidative and inflammatory processes associated with cancer, along with the underlying mechanisms of action involved in signaling pathways. This will shed some light on the protective or therapeutic role of ginger derivatives in oxidative and inflammatory regulations during metabolic disturbance and on the antiproliferative and anticancer properties. Data collected from experimental (in vitro or in vivo) and clinical studies discussed in this review indicate that ginger extract and [6]-gingerol exert their action through important mediators and pathways of cell signaling, including Bax/Bcl2, p38/MAPK, Nrf2, p65/NF-κB, TNF-α, ERK1/2, SAPK/JNK, ROS/NF-κB/COX-2, caspases-3, -9, and p53. This suggests that ginger derivatives, in the form of an extract or isolated compounds, exhibit relevant antiproliferative, antitumor, invasive, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Rosália Maria Tôrres de Lima
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Antonielly Campinho Dos Reis
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ag-Anne Pereira Melo de Menezes
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - José Victor de Oliveira Santos
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - José Williams Gomes de Oliveira Filho
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - José Roberto de Oliveira Ferreira
- Laboratory of Experimental Cancerology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Marcus Vinícius Oliveira Barros de Alencar
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ana Maria Oliveira Ferreira da Mata
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Amirul Islam
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Eunüs S Ali
- Gaco Pharmaceuticals and Research Laboratory, Dhaka-1000, Bangladesh; College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Swati Tripathi
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, School of Biological Sciences (Zoology), Dr. Harisingh Gour Central University, Sagar, India
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
6
|
Chen G, Xu Y, Jing J, Mackie B, Zheng X, Zhang X, Wang J, Li X. The anti-sepsis activity of the components of Huanglian Jiedu Decoction with high lipid A-binding affinity. Int Immunopharmacol 2017; 46:87-96. [PMID: 28278436 DOI: 10.1016/j.intimp.2017.02.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/09/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Abstract
Huanglian Jiedu Decoction (HJD), one of the classic recipes for relieving toxicity and fever, is a common method for treating sepsis in China. However, the effective components of HJD have not yet been identified. This experiment was carried out to elucidate the effective components of HJD against sepsis. Thus, seven fractions from HJD were tested using a biosensor to test their affinity for lipid A. The components obtained that had high lipid A-binding fractions were further separated, and their affinities to lipid A were assessed with the aid of a biosensor. The levels of LPS in the blood were measured, and pathology experiments were conducted. The LPS levels and mRNA expression analysis of TNF-α and IL-6 of the cell supernatant and animal tissue were evaluated to investigate the molecular mechanisms. Palmatine showed the highest affinity to lipid A and was evaluated by in vitro and in vivo experiments. The results of the in vitro and in vivo experiments indicated that the levels of LPS, TNF-α and IL-6 of the palmatine group were significantly lower than those of the sepsis model group (p<0.01). The group treated with palmatine showed strong neutralizing LPS activity in vivo. The palmatine group exhibited stronger protective activity on vital organs compared to the LPS-induced animal model. This verifies that HJD is a viable treatment option for sepsis given that there are multiple components in HJD that neutralize LPS, decrease the release of IL-6 and TNF-α induced by LPS, and protect vital organs.
Collapse
Affiliation(s)
- Guirong Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD port, Dalian 116600, China
| | - Yubin Xu
- Key Laboratory of Biological Invasions and Global Changes, College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110161, China.
| | - Jing Jing
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD port, Dalian 116600, China
| | - Brianna Mackie
- Department of Medicinal Chemistry, Virginia Commonwealth University, 23219, USA
| | - Xinchuan Zheng
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xu Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD port, Dalian 116600, China
| | - Jing Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD port, Dalian 116600, China
| | - Xuetao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD port, Dalian 116600, China
| |
Collapse
|
7
|
Kaneko K, Ueda R, Kawata T, Ishizaka S, Yoshimura T. LPS binding protein does not participate in the pharmacokinetics of E5564. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519040100030501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
E5564, a lipid A analogue, is a potent antagonist of lipopolysaccharide (LPS). Clinically, E5564 was developed as a possible therapy for treatment of sepsis and septic shock. Surface plasmon resonance (SPR) analysis indicates that E5564 binds to LPS binding protein (LBP), in a manner similar to LPS. Gel-filtration radioactive chromatograms of [14C]-E5564 in plasma revealed that E5564 initially distributes to the lipoprotein fractions, separated from high-density lipoprotein (HDL); the bound fraction is then released and binds to HDL. Similar results were obtained by heparin-manganese precipitation. At doses of E5564 relevant to its clinical use ( i.e. 6 µg/ml), antibodies against LBP did not influence either the distribution of E5564 to non-HDL lipoprotein fractions or the transfer of E5564 from non-HDLs to HDL. Under these conditions, transfer of E5564 to HDL occurs similarly in the plasma of LBP knockout (KO) mice as in the plasma from wild-type mice. In addition, plasma clearance of E5564 in LBP KO mice is similar to that of wild-type mice. Thus, LBP binds E5564 in a manner similar to LPS, but does not play a role in E5564 redistribution/binding to lipoprotein and plasma clearance.
Collapse
Affiliation(s)
- Kazuhiro Kaneko
- Tsukuba Research Laboratories, Eisai Co. Ltd, Ibaraki, Japan
| | - Rika Ueda
- Tsukuba Research Laboratories, Eisai Co. Ltd, Ibaraki, Japan
| | - Tsutomu Kawata
- Tsukuba Research Laboratories, Eisai Co. Ltd, Ibaraki, Japan
| | - Sally Ishizaka
- Tsukuba Research Laboratories, Eisai Co. Ltd, Ibaraki, Japan
| | | |
Collapse
|
8
|
Chen GR, Zhang G, Li MY, Jing J, Wang J, Zhang X, Mackie B, Dou DQ. The effective components of Huanglian Jiedu Decoction against sepsis evaluated by a lipid A-based affinity biosensor. JOURNAL OF ETHNOPHARMACOLOGY 2016; 186:369-376. [PMID: 27045865 DOI: 10.1016/j.jep.2016.03.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huanglian Jiedu Decoction (HJD), the classical recipe for relieving fever and toxicity, has been used for treating sepsis in China for sixteen years. However, the effective components of HJD have not been elucidated until now. Therefore, there is a need to elucidate the effective components of HJD against sepsis on animal models induced by endotoxin (LPS). The affinity force of the effective components of HJD with lipid A was evaluated by a biosensor. MATERIALS AND METHODS Lipid A is regarded as the bioactive center of LPS and is always used as a drug target. In order to obtain the effective components of HJD against sepsis, seven fractions from HJD were tested by a biosensor method for assessing the affinity for lipid A. After further separation, the components were isolated from high lipid A-binding fractions and their affinities to lipid A were assessed with the aid of a biosensor. Their activities were then assayed by an in vivo experiment administered through a tail vein injection. The levels of LPS, TNF-α, and IL-6 from the blood were found and pathology experiments were performed. RESULTS Three out of the seven fractions exhibited high lipid A-binding affinities. Berberine, baicalin and geniposide were obtained from the three high lipid A-binding fractions. The animal experiments indicated that the levels of LPS, TNF-α and IL-6 in the medicated treatment groups were much lower than that of the model group ((**)P<0.01). The medicated treatment groups exhibited stronger protective activities on varying organs in the animal model. CONCLUSIONS Berberine, baicalin and geniposide could neutralize LPS by binding with lipid A and then reduce the release of IL-6 and TNF-α induced by LPS. Furthermore, berberine, baicalin and geniposide exhibited protective activities on varying organs compared to the animal model established by the LPS-induced. These results validate that the components from HJD neutralized LPS and then depressed the release of IL-6 and TNF-α induced by LPS. This gives further evidence that HJD would be a suitable treatment for sepsis and protecting vital organs.
Collapse
Affiliation(s)
- Gui-Rong Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD port, Dalian 116600, China.
| | - Gang Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 23219, USA
| | - Ming-Yu Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD port, Dalian 116600, China
| | - Jing Jing
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD port, Dalian 116600, China
| | - Jing Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD port, Dalian 116600, China
| | - Xu Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD port, Dalian 116600, China
| | - Brianna Mackie
- Department of Medicinal Chemistry, Virginia Commonwealth University, 23219, USA
| | - De-Qiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD port, Dalian 116600, China
| |
Collapse
|
9
|
Dowling JK, Mansell A. Toll-like receptors: the swiss army knife of immunity and vaccine development. Clin Transl Immunology 2016; 5:e85. [PMID: 27350884 PMCID: PMC4910119 DOI: 10.1038/cti.2016.22] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 12/27/2022] Open
Abstract
Innate immune cells have a critical role in defense against infection and disease. Central to this is the broad specificity with which they can detect pathogen-associated patterns and danger-associated patterns via the pattern recognition receptors (PRRs) they express. Several families of PRRs have been identified including: Toll-like receptors (TLRs), C-type lectin-like receptors, retinoic acid-inducible gene-like receptors and nucleotide-binding oligomerization domain-like receptors. TLRs are one of the most largely studied families of PRRs. The binding of ligands to TLRs on antigen presenting cells (APCs), mainly dendritic cells, leads to APC maturation, induction of inflammatory cytokines and the priming of naive T cells to drive acquired immunity. Therefore, activation of TLRs promotes both innate inflammatory responses and the induction of adaptive immunity. Consequently, in the last two decades mounting evidence has inextricably linked TLR activation with the pathogenesis of immune diseases and cancer. It has become advantageous to harness these aspects of TLR signaling therapeutically to accelerate and enhance the induction of vaccine-specific responses and also target TLRs with the use of biologics and small molecule inhibitors for the treatment of disease. In these respects, TLRs may be considered a 'Swiss Army' knife of the immune system, ready to respond in a multitude of infectious and disease states. Here we describe the latest advances in TLR-targeted therapeutics and the use of TLR ligands as vaccine adjuvants.
Collapse
Affiliation(s)
- Jennifer K Dowling
- Pattern Recognition Receptors and Inflammation Research group, Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Melbourne, Victoria, Australia; Monash University, Clayton, Victoria, Australia
| | - Ashley Mansell
- Pattern Recognition Receptors and Inflammation Research group, Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Melbourne, Victoria, Australia; Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Dai YW, Zhang CC, Zhao HX, Wan JZ, Deng LL, Zhou ZY, Dun YY, Liu CQ, Yuan D, Wang T. Chikusetsusaponin V attenuates lipopolysaccharide-induced liver injury in mice. Immunopharmacol Immunotoxicol 2016; 38:167-74. [DOI: 10.3109/08923973.2016.1153109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Chung MY, Jung SK, Lee HJ, Shon DH, Kim HK. Ethanol Extract of Sarcodon asparatus Mitigates Inflammatory Responses in Lipopolysaccharide-Challenged Mice and Murine Macrophages. J Med Food 2015; 18:1198-206. [DOI: 10.1089/jmf.2014.3422] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
| | | | - Hye-Jin Lee
- Korea Food Research Institute, Gyeonggi, Korea
| | | | - Hyun-Ku Kim
- Department of Marine Life Science, Jeju National University, Jeju, Korea
| |
Collapse
|
12
|
Renal expression of Toll-like receptor 2 and 4: Dynamics in human allograft injury and comparison to rodents. Mol Immunol 2015; 64:82-9. [DOI: 10.1016/j.molimm.2014.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/22/2022]
|
13
|
Novel Pharmacologic Approaches for the Treatment of ARDS. ANNUAL UPDATE IN INTENSIVE CARE AND EMERGENCY MEDICINE 2014 2014. [PMCID: PMC7176210 DOI: 10.1007/978-3-319-03746-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Korff S, Loughran P, Cai C, Lee YS, Scott M, Billiar TR. Eritoran attenuates tissue damage and inflammation in hemorrhagic shock/trauma. J Surg Res 2013; 184:e17-25. [PMID: 23777984 PMCID: PMC10026379 DOI: 10.1016/j.jss.2013.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/28/2013] [Accepted: 03/07/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Severe injury and associated hemorrhagic shock lead to an inflammatory response and subsequent increased tissue damage. Numerous reports have shown that injury-induced inflammation and the associated end-organ damage is driven by Toll-like receptor 4 (TLR4) activation via damage-associated molecular patterns. We examined the effectiveness of Eritoran tetrasodium (E5564), an inhibitor of TLR4 function, in reducing inflammation induced during hemorrhagic shock with resuscitation (HS/R) or after peripheral tissue injury (bilateral femur fracture, BFF). MATERIAL AND METHODS Mice underwent HS/R or BFF with or without injection of Eritoran (5 mg/kg body weight) or vehicle control given before, both before and after, or only after HS/R or BFF. Mice were sacrificed after 6 h and plasma and tissue cytokines, liver damage (histology; aspartate aminotransferase/alanine aminotransferase), and inflammation (NF-κB) and gut permeability were assessed. RESULTS In HS/R Eritoran significantly reduced liver damage (values ± SEM: alanine aminotransferase 9910 ± 3680 U/L versus 1239 ± 327 U/L and aspartate aminotransferase 5863 ± 2000 U/L versus 1246 ± 243 U/L, P < 0.01) at 6 h compared with control when given just before HS and again just prior to resuscitation. Eritoran administration also led to lower IL-6 levels in plasma and liver and less NF-κB activation in liver. Increases in gut barrier permeability induced by HS/R were also prevented with Eritoran. Eritoran similarly diminished BFF-mediated systemic inflammatory responses. CONCLUSION These data suggest Eritoran can inhibit tissue damage and inflammation induced via TLR4/myeloid differentiation factor 2 signaling from damage-associated molecular patterns released during HS/R or BFF. Eritoran may represent a promising therapeutic for trauma patients to prevent multiple organ failure.
Collapse
Affiliation(s)
- Sebastian Korff
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Department of Trauma Surgery, University of Heidelberg, Heidelberg, Germany
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Chanchun Cai
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Yi Shan Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Melanie Scott
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Corresponding author. Department of Surgery, F1281 Presbyterian University Hospital, 200 Lothrop Street, Pittsburgh, PA 15213. Tel.: +1 412 647 1749; fax: +1 412 647 5959., (T.R. Billiar)
| |
Collapse
|
15
|
Dried Ginger (Zingiber officinalis) Inhibits Inflammation in a Lipopolysaccharide-Induced Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:914563. [PMID: 23935687 PMCID: PMC3712229 DOI: 10.1155/2013/914563] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/05/2013] [Accepted: 06/03/2013] [Indexed: 12/30/2022]
Abstract
Objectives. Ginger rhizomes have a long history of human use, especially with regards to their anti-inflammatory properties. However, the mechanisms by which ginger acts on lipopolysaccharide-(LPS-)induced inflammation have not yet been identified. We investigated the anti-inflammatory effects of dried Zingiber officinalis (DZO) on LPS-induced hepatic injury. Methods. ICR mice were given a DZO water extract (100, 1000 mg/kg) orally for three consecutive days. On the third day, they were administered by LPS intraperitoneally. To investigate the anti-inflammatory effects of DZO, histological, cytokine expression, and protein factor analyses were performed. Results. Oral administration of DZO significantly reduced pathological changes in the liver and proinflammatory cytokines including interferon-(IFN-)γ and interleukin-(IL-)6 in the serum. In addition, DZO inhibited LPS-induced NF-κB activation by preventing degradation of the IκB-α, as well as the phosphorylation of ERK1/2, SAPK/JNK, and p38 MAPKs. These were associated with a decrease in the expression of inducible nitric oxide synthase (iNOS) and cyclooxyenase-2 (COX-2). Conclusions. Our data provide evidence for the hepatoprotective mechanisms of DZO as an anti-inflammatory effect. Furthermore, use of DZO to treat could provide therapeutic benefits in clinical settings.
Collapse
|
16
|
Shirey KA, Lai W, Scott AJ, Lipsky M, Mistry P, Pletneva LM, Karp CL, McAlees J, Gioannini TL, Weiss J, Chen WH, Ernst RK, Rossignol DP, Gusovsky F, Blanco JCG, Vogel SN. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 2013; 497:498-502. [PMID: 23636320 DOI: 10.1038/nature12118] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 03/22/2013] [Indexed: 12/31/2022]
Abstract
There is a pressing need to develop alternatives to annual influenza vaccines and antiviral agents licensed for mitigating influenza infection. Previous studies reported that acute lung injury caused by chemical or microbial insults is secondary to the generation of host-derived, oxidized phospholipid that potently stimulates Toll-like receptor 4 (TLR4)-dependent inflammation. Subsequently, we reported that Tlr4(-/-) mice are highly refractory to influenza-induced lethality, and proposed that therapeutic antagonism of TLR4 signalling would protect against influenza-induced acute lung injury. Here we report that therapeutic administration of Eritoran (also known as E5564)-a potent, well-tolerated, synthetic TLR4 antagonist-blocks influenza-induced lethality in mice, as well as lung pathology, clinical symptoms, cytokine and oxidized phospholipid expression, and decreases viral titres. CD14 and TLR2 are also required for Eritoran-mediated protection, and CD14 directly binds Eritoran and inhibits ligand binding to MD2. Thus, Eritoran blockade of TLR signalling represents a novel therapeutic approach for inflammation associated with influenza, and possibly other infections.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Buoen C, Bjerrum OJ, Thomsen MS. How First-Time-in-Human Studies Are Being Performed: A Survey of Phase I Dose-Escalation Trials in Healthy Volunteers Published Between 1995 and 2004. J Clin Pharmacol 2013; 45:1123-36. [PMID: 16172177 DOI: 10.1177/0091270005279943] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
First-time-in-human studies are small, time-lagged dose-escalation studies including volunteer subjects evaluating safety and tolerability. There is little consensus in the design of a first-time-in-human study, and it is difficult to get an overview of studies performed. One hundred five studies comprising 3323 healthy volunteers published in the 5 major clinical pharmacology journals since 1995 were analyzed. The average trial was placebo controlled, double blind including 32 subjects at 5 dose levels but with great variation in cohort size and dose-escalation method. The parallel single-dose design was the most common design, with the crossover designs being more frequent in the early publications. Despite discussions on the optimization of phase I trials, little seems to be happening. The development of study designs and evaluation methods for cancer trials is extensive, but formal statistically based methods and more scientific study designs are unusual in phase I dose-escalation trials in healthy volunteers.
Collapse
Affiliation(s)
- Camilla Buoen
- Department of Pharmacology, Danish University of Pharmaceutical Sciences, Universitetsparken 2, Copenhagen 2100, Denmark
| | | | | |
Collapse
|
18
|
Abstract
Serious infection and the patient's response (sepsis) is a serious health problem that, even today, is associated with a mortality rate of 30 %-50 %. The phases of severe sepsis include an early hyperinflammatory response to pathogens and a late immunosuppressed phase. Toll-like receptors (TLRs) are a family of transmembrane innate immune receptors that play a major role in both phases of sepsis. Here, their physiology and the therapeutic strategies employed to date are reviewed. Currently, there are no approved therapies targeting TLRs, but it is anticipated that in the future, the less-studied TLRs, such as TLR3, TLR7, and TLR9, will evolve therapeutic targets, perhaps predominantly with agonists, versus the usual antagonist strategies. Furthermore, accurately characterizing the stage of sepsis will be essential to directing appropriate therapeutic choices.
Collapse
Affiliation(s)
- John H Boyd
- Critical Care Research Laboratories, Heart + Lung Institute, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC, Canada, V6Z 1Y6,
| |
Collapse
|
19
|
Connolly DJ, O'Neill LAJ. New developments in Toll-like receptor targeted therapeutics. Curr Opin Pharmacol 2012; 12:510-8. [PMID: 22748800 DOI: 10.1016/j.coph.2012.06.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 06/06/2012] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) play a crucial role in host defence and inflammation. Given that a significant amount of evidence implicates TLRs in the pathogenesis of immune diseases and cancer, and their activation occurs early in the inflammatory cascade, they are attractive targets for novel therapeutic agents. Potential therapeutics include TLR-targeted antibodies, small molecules and nucleic acid based drugs. Agonists are being tested in vaccines against hepatitis C and influenza as well as in allergic rhinitis and certain cancers. Antagonists are being tested in ischemia/reperfusion injury, systemic lupus erythematosus and psoriasis. The prospect of targeting TLRs in multiple pathologies continues to hold much promise.
Collapse
Affiliation(s)
- Dympna J Connolly
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
20
|
Amato R, Zhai J, Willis J, Saxena S, DeFoe M. A phase II trial of intrapatient dose-escalated sorafenib in patients with metastatic renal cell carcinoma. Clin Genitourin Cancer 2012; 10:153-8. [PMID: 22551785 DOI: 10.1016/j.clgc.2012.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/13/2012] [Accepted: 03/06/2012] [Indexed: 01/16/2023]
Abstract
PURPOSE Sorafenib has been demonstrated as second-line therapy, with limited significant adverse events at a dose of 400 mg twice a day (b.i.d.) in patients with metastatic renal cell carcinoma. This study evaluated the ability of patients to dose-escalate, response rate, progression-free survival (PFS), and overall survival. METHODS The initial dose of sorafenib was 400 mg b.i.d.. Dose escalation of sorafenib to 600 mg b.i.d. occurred from days 29-56 and increased to 800 mg b.i.d. on day 57 and beyond as tolerated. Dose modifications were performed for toxicity per the National Cancer Institute Common Toxicity Criteria version 3.0. The patients were evaluated every 2 cycles (8 weeks) by using Response Evaluation Criteria in Solid Tumors version 1.0. RESULTS Forty-four patients were evaluable for response. Median age was 62.5 years, 39 patients had a Karnofsky Perfomance Status of 100%. Twenty-two patients received no prior therapy. Of the evaluable patients, 42 were dose escalated to 600 mg b.i.d., and 74% (31) of these were further dose escalated to 800 mg b.i.d.. Eight patients had a complete response (CR), 13 patients demonstrated a partial response (PR), and 21 patients had stable disease. Common treatment-related adverse events included hypertension, hand-foot syndrome, skin rash, diarrhea, dry skin, alopecia, and facial redness. DISCUSSION The majority of patients were escalated to 600 mg b.i.d. or 800 mg b.i.d.. Intrapatient dose-escalated sorafenib has promising antitumor activity as demonstrated by a 48% CR-PR rate (21 patients). Antitumor activity is further suggested by a prolonged PFS ≥6 months in 64% (28) of patients. Significant antitumor activity and reversible adverse events has been demonstrated in escalated doses of sorafenib.
Collapse
Affiliation(s)
- Robert Amato
- Division of Oncology, Department of Internal Medicine, University of Texas, Health Science Center at Houston (Medical School)/Memorial Hermann Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
21
|
Aikawa N, Okubo Y, Lynn M, Rossignol DP, Wong YN, Schuck E, Kitahara Y, Nakano T, Sivak O, Wasan KM, Nagy C, Yen M. Safety, pharmacokinetics and pharmacodynamics of four-hour intravenous infusions of eritoran in healthy Japanese and Caucasian men. Innate Immun 2012; 18:793-803. [PMID: 22459966 DOI: 10.1177/1753425912441845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Eritoran, a synthetic analogue of lipid A, has been shown to bind to TLR4/MD-2 complex and thereby block the interaction of endotoxins with TLR4. We report here the results of a study conducted to assess the single-dose safety and tolerability, as well as the pharmacokinetics and pharmacodynamics, of eritoran infusion in Japanese and Caucasian healthy adult men. Sixty-four men (aged 20-45 years; body mass index 18-30 kg/m(2)) were randomized into four groups: 4-mg total dose (six Japanese and six Caucasian men); 12-mg total dose (12 Japanese and 12 Caucasian men); 28-mg total dose (six Japanese and six Caucasian men); and placebo (eight Japanese and eight Caucasian men). Eritoran in single doses up to 28 mg over 4 h was well tolerated, with no apparent ethnic differences noted. Plasma concentrations were slightly higher in Japanese versus Caucasian men; these differences were not significant after adjustment for differences in body mass (clearance: approximately 1.2 ml/h/kg; volume of distribution at steady state: approximately 0.07 l/kg). The ex vivo endotoxin inhibitory activity of eritoran was similar in Japanese and Caucasian men. The data do not indicate any need for clinical dose adjustment for possible ethnic-based differences in drug distribution or metabolism.
Collapse
Affiliation(s)
- Naoki Aikawa
- Emergency and Critical Care Medicine, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tidswell M, LaRosa SP. Toll-like receptor-4 antagonist eritoran tetrasodium for severe sepsis. Expert Rev Anti Infect Ther 2011; 9:507-20. [PMID: 21609262 DOI: 10.1586/eri.11.27] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The human innate immune system initiates inflammation in response to bacterial molecules, particularly Gram-negative bacterial endotoxin. The steps by which endotoxin exposure leads to systemic inflammation include binding to Toll-like receptor-4 that specifically recognizes endotoxin and subsequently triggers cellular and molecular inflammatory responses. Severe sepsis is a systemic inflammatory response to infection that induces organ dysfunction and threatens a person's survival. Severe sepsis is frequently associated with increased blood levels of endotoxin. It is a significant medical problem that effects approximately 700,000 patients every year in the USA, resulting in 250,000 deaths. Eritoran tetrasodium is a nonpathogenic analog of bacterial endotoxin that antagonizes inflammatory signaling by the immune receptor Toll-like receptor-4. Eritoran is being evaluated for the treatment of patients with severe sepsis.
Collapse
Affiliation(s)
- Mark Tidswell
- Adult Critical Care Division, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, USA.
| | | |
Collapse
|
23
|
Barochia A, Solomon S, Cui X, Natanson C, Eichacker PQ. Eritoran tetrasodium (E5564) treatment for sepsis: review of preclinical and clinical studies. Expert Opin Drug Metab Toxicol 2011; 7:479-94. [PMID: 21323610 PMCID: PMC3065179 DOI: 10.1517/17425255.2011.558190] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Sepsis remains a leading cause of death worldwide. Despite years of extensive research, effective drugs that inhibit the pro-inflammatory effects of lipopolysaccharide (LPS) and improve outcome when added to conventional sepsis treatments are lacking. Eritoran tetrasodium (E5564) is a promising candidate therapy for sepsis belonging to a new class of such drugs which inhibit LPS-induced inflammation by blocking toll-like receptor 4. AREAS COVERED This review focuses on the rationale for the use of eritoran tetrasodium in sepsis as well as on its pharmacokinetics, pharmacodynamics, efficacy and safety. Preclinical and clinical studies from a MEDLINE/PubMed literature search in August 2010 with the search terms 'eritoran' and 'E5564' are discussed. EXPERT OPINION Preclinical in vitro and in vivo studies of eritoran tetrasodium indicate it can limit excessive inflammatory mediator release associated with LPS and improve survival in sepsis models. While early clinical results are promising, its efficacy and safety for treating patients with sepsis are currently under investigation. Even if the ongoing Phase III clinical trial enrolling patients with severe sepsis and increased risk of death shows benefit from eritoran, questions remain and confirmatory studies would be necessary to define its clinical usage.
Collapse
Affiliation(s)
- Amisha Barochia
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
24
|
Fleischer JG, Rossignol D, Francis GA, Chan T, Lynn M, Wasan KM. Deactivation of the lipopolysaccharide antagonist eritoran (E5564) by high-density lipoprotein-associated apolipoproteins. Innate Immun 2011; 18:171-8. [DOI: 10.1177/1753425910394395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Lipid A, the active moiety of LPS, exerts its effects through interaction with TLR4, triggering a signalling cascade that results in the release of pro-inflammatory cytokines. Eritoran is a lipid A analogue that competes with LPS for binding to TLR4; however, after intravenous administration, it undergoes a time-dependent deactivation as a consequence of binding to high-density lipoproteins (HDLs). The site of eritoran association with HDL remains unknown. Therefore the aim of this study was to determine if HDL-associated apolipoproteins A1, A2, serum amyloid A (SAA) and C1, inhibit the ability of eritoran to block LPS-induced TNF-α release from whole blood. Eritoran activity after LPS stimulation in human whole blood was assessed in the presence of reconstituted HDL (rHDL) containing different apos. In rHDL, the major apolipoproteins in both the healthy and septic state, A1 and SAA, caused a significant reduction in eritoran antagonistic activity and had a greater effect than minor apolipoproteins A2 and C1. Apolipoproteins associated with HDL are likely to facilitate eritoran deactivation. Apolipoproteins A1 and SAA should be of particular focus as they are the major apos found on HDL in both the healthy and septic state. Further evaluation of the physical association between apolipoproteins and eritoran should be explored.
Collapse
Affiliation(s)
- Jacklyn G Fleischer
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Gordon A Francis
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Teddy Chan
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Kishor M Wasan
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Zheng X, Yang D, Liu X, Wang N, Li B, Cao H, Lu Y, Wei G, Zhou H, Zheng J. Identification of a new anti-LPS agent, geniposide, from Gardenia jasminoides Ellis, and its ability of direct binding and neutralization of lipopolysaccharide in vitro and in vivo. Int Immunopharmacol 2010; 10:1209-19. [DOI: 10.1016/j.intimp.2010.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/03/2010] [Indexed: 10/19/2022]
|
26
|
Ungaro R, Fukata M, Hsu D, Hernandez Y, Breglio K, Chen A, Xu R, Sotolongo J, Espana C, Zaias J, Elson G, Mayer L, Kosco-Vilbois M, Abreu MT. A novel Toll-like receptor 4 antagonist antibody ameliorates inflammation but impairs mucosal healing in murine colitis. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1167-79. [PMID: 19359427 PMCID: PMC2697943 DOI: 10.1152/ajpgi.90496.2008] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dysregulated innate immune responses to commensal bacteria contribute to the development of inflammatory bowel disease (IBD). TLR4 is overexpressed in the intestinal mucosa of IBD patients and may contribute to uncontrolled inflammation. However, TLR4 is also an important mediator of intestinal repair. The aim of this study is to examine the effect of a TLR4 antagonist on inflammation and intestinal repair in two murine models of IBD. Colitis was induced in C57BL/6J mice with dextran sodium sulfate (DSS) or by transferring CD45Rb(hi) T cells into RAG1-/- mice. An antibody (Ab) against the TLR4/MD-2 complex or isotype control Ab was administered intraperitoneally during DSS treatment, recovery from DSS colitis, or induction of colitis in RAG1-/- mice. Colitis severity was assessed by disease activity index (DAI) and histology. The effect of the Ab on the inflammatory infiltrate was determined by cell isolation and immunohistochemistry. Mucosal expression of inflammatory mediators was analyzed by real-time PCR and ELISA. Blocking TLR4 at the beginning of DSS administration delayed the development of colitis with significantly lower DAI scores. Anti-TLR4 Ab treatment decreased macrophage and dendritic cell infiltrate and reduced mucosal expression of CCL2, CCL20, TNF-alpha, and IL-6. Anti-TLR4 Ab treatment during recovery from DSS colitis resulted in defective mucosal healing with lower expression of COX-2, PGE(2), and amphiregulin. In contrast, TLR4 blockade had minimal efficacy in ameliorating inflammation in the adoptive transfer model of chronic colitis. Our findings suggest that anti-TLR4 therapy may decrease inflammation in IBD but may also interfere with colonic mucosal healing.
Collapse
Affiliation(s)
- Ryan Ungaro
- Division of Gastroenterology, Department of Medicine, and Veterinary Resources, University of Miami Miller School of Medicine, Miami, Florida; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Department of Pathology, Mount Sinai School of Medicine, New York, New York; and Novimmune, Geneva, Switzerland
| | - Masayuki Fukata
- Division of Gastroenterology, Department of Medicine, and Veterinary Resources, University of Miami Miller School of Medicine, Miami, Florida; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Department of Pathology, Mount Sinai School of Medicine, New York, New York; and Novimmune, Geneva, Switzerland
| | - David Hsu
- Division of Gastroenterology, Department of Medicine, and Veterinary Resources, University of Miami Miller School of Medicine, Miami, Florida; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Department of Pathology, Mount Sinai School of Medicine, New York, New York; and Novimmune, Geneva, Switzerland
| | - Yasmin Hernandez
- Division of Gastroenterology, Department of Medicine, and Veterinary Resources, University of Miami Miller School of Medicine, Miami, Florida; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Department of Pathology, Mount Sinai School of Medicine, New York, New York; and Novimmune, Geneva, Switzerland
| | - Keith Breglio
- Division of Gastroenterology, Department of Medicine, and Veterinary Resources, University of Miami Miller School of Medicine, Miami, Florida; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Department of Pathology, Mount Sinai School of Medicine, New York, New York; and Novimmune, Geneva, Switzerland
| | - Anli Chen
- Division of Gastroenterology, Department of Medicine, and Veterinary Resources, University of Miami Miller School of Medicine, Miami, Florida; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Department of Pathology, Mount Sinai School of Medicine, New York, New York; and Novimmune, Geneva, Switzerland
| | - Ruliang Xu
- Division of Gastroenterology, Department of Medicine, and Veterinary Resources, University of Miami Miller School of Medicine, Miami, Florida; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Department of Pathology, Mount Sinai School of Medicine, New York, New York; and Novimmune, Geneva, Switzerland
| | - John Sotolongo
- Division of Gastroenterology, Department of Medicine, and Veterinary Resources, University of Miami Miller School of Medicine, Miami, Florida; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Department of Pathology, Mount Sinai School of Medicine, New York, New York; and Novimmune, Geneva, Switzerland
| | - Cecillia Espana
- Division of Gastroenterology, Department of Medicine, and Veterinary Resources, University of Miami Miller School of Medicine, Miami, Florida; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Department of Pathology, Mount Sinai School of Medicine, New York, New York; and Novimmune, Geneva, Switzerland
| | - Julia Zaias
- Division of Gastroenterology, Department of Medicine, and Veterinary Resources, University of Miami Miller School of Medicine, Miami, Florida; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Department of Pathology, Mount Sinai School of Medicine, New York, New York; and Novimmune, Geneva, Switzerland
| | - Greg Elson
- Division of Gastroenterology, Department of Medicine, and Veterinary Resources, University of Miami Miller School of Medicine, Miami, Florida; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Department of Pathology, Mount Sinai School of Medicine, New York, New York; and Novimmune, Geneva, Switzerland
| | - Lloyd Mayer
- Division of Gastroenterology, Department of Medicine, and Veterinary Resources, University of Miami Miller School of Medicine, Miami, Florida; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Department of Pathology, Mount Sinai School of Medicine, New York, New York; and Novimmune, Geneva, Switzerland
| | - Marie Kosco-Vilbois
- Division of Gastroenterology, Department of Medicine, and Veterinary Resources, University of Miami Miller School of Medicine, Miami, Florida; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Department of Pathology, Mount Sinai School of Medicine, New York, New York; and Novimmune, Geneva, Switzerland
| | - Maria T. Abreu
- Division of Gastroenterology, Department of Medicine, and Veterinary Resources, University of Miami Miller School of Medicine, Miami, Florida; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Department of Pathology, Mount Sinai School of Medicine, New York, New York; and Novimmune, Geneva, Switzerland
| |
Collapse
|
27
|
Katsargyris A, Klonaris C, Bastounis E, Theocharis S. Toll-like receptor modulation: a novel therapeutic strategy in cardiovascular disease? Expert Opin Ther Targets 2009; 12:1329-46. [PMID: 18851691 DOI: 10.1517/14728222.12.11.1329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Toll-like receptors (TLRs) have been recently recognised as primary receptors in the innate immune system. Apart from initiating a prompt immune response against invading pathogens, TLRs are also considered to be an important link between innate immunity, inflammation and a variety of clinical disorders, including cardiovascular diseases. TLR signalling manipulation with novel drugs could offer important opportunities for cardiovascular disease modification. OBJECTIVE To present the latest knowledge supporting the involvement of TLRs in the pathogenesis and progress of cardiovascular diseases and explore the role of TLRs as potential targets for therapeutic intervention in cardiovascular territory. METHODS A review of the literature documenting implication of TLR signalling in cardiovascular disorders. Current progress in TLR-targeting drug development and the potential role of such a treatment strategy in cardiovascular disorders are discussed. CONCLUSIONS A growing body of evidence supports a role for TLRs in cardiovascular disease initiation and progression. Altering TLR signalling with novel drugs could be a beneficial therapeutic strategy for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Athanasios Katsargyris
- National and Kapodistrian University of Athens, School of Medicine, LAIKON Hospital, Vascular Division, 1st Department of Surgery, 75, Mikras Asias street, Goudi, 11527 Athens, Greece
| | | | | | | |
Collapse
|
28
|
Rossignol DP, Wong N, Noveck R, Lynn M. Continuous pharmacodynamic activity of eritoran tetrasodium, a TLR4 antagonist, during intermittent intravenous infusion into normal volunteers. Innate Immun 2008; 14:383-94. [DOI: 10.1177/1753425908099173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Eritoran tetrasodium (E5564), a structural analogue of the lipid A portion of endotoxin (lipopolysaccharide or LPS), is an antagonist of LPS and other Toll-like receptor 4 (TLR4) ligands. Eritoran tetrasodium quantitatively blocks LPS response in vivo in animal and human endotoxemia models and demonstrates a long pharmacokinetic half-life, but a short pharmacodynamic half-life. The objective of this study was to assess the safety, and pharmacokinetic and pharmacodynamic profile of E5564 infused twice-daily at three target steady-state plasma levels of approximately 1, 3 and 10 µg/ml in healthy volunteers. Results: Loading and maintenance doses of up to 77 mg over 3 days in females and 105 mg over 6 days in males were safe and well-tolerated except for self-limiting phlebitis at the drug infusion site. Plasma levels reached steady state by 24 h. The Cmax, Cmin, and C88, AUC0 —∞ were dose proportional and gender independent. Pharmacodynamic activity measured by an ex vivo LPS challenge assay, demonstrated dose-dependence for both E5564 and LPS and plasma levels of ~3 µg/ml E5564 or greater blocked up to 1 ng/ml LPS. Conclusions: Every 12-h dosing of E5564 can replace continuous infusion, while maintaining uninterrupted blocking of high-dose LPS.
Collapse
Affiliation(s)
| | - Nancy Wong
- Drug Safety and Disposition, Research Institute, Andover, Massachusetts, USA
| | - Robert Noveck
- MDS Pharma Services (US), Inc., Neptune, New Jersey, USA
| | - Melvyn Lynn
- Eisai Medical Research Inc., Ridgefield Park, New Jersey, USA
| |
Collapse
|
29
|
Figueiredo MD, Moore JN, Vandenplas ML, Sun WC, Murray TF. Effects of the second-generation synthetic lipid A analogue E5564 on responses to endotoxin in [corrected] equine whole blood and monocytes. Am J Vet Res 2008; 69:796-803. [PMID: 18518661 DOI: 10.2460/ajvr.69.6.796] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate proinflammatory effects of the second-generation synthetic lipid A analogue E5564 on equine whole blood and isolated monocytes and to determine the ability of E5564 to prevent LPS (lipopolysaccharide)-induced procoagulant activity (PCA); tumor necrosis factor (TNF)-alpha production; and mRNA expression of TNF-alpha, interleukin (IL)-1beta, IL-6, and IL-10 by equine monocytes. SAMPLE POPULATION Venous blood samples obtained from 19 healthy horses. PROCEDURES Whole blood and monocytes were incubated with Escherichia coli O111:B4 LPS, E5564, or E5564 plus E coli O111:B4 LPS. Whole blood and cell supernatants were assayed for TNF-alpha, and cell lysates were assayed to determine PCA. Expression of mRNA for TNF-alpha, IL-1beta, IL-6, and IL-10 by monocytes was determined by use of real-time quantitative PCR assay. RESULTS Minimal proinflammatory effects were detected in whole blood and monocytes. In addition, E5564 inhibited LPS-induced PCA and TNF-alpha production in a concentration-dependent manner. Furthermore, E5564 significantly inhibited LPS-induced mRNA expression of TNF-alpha, IL-1beta, and IL-10 and decreased LPS-induced expression of IL-6. CONCLUSIONS AND CLINICAL RELEVANCE The second-generation synthetic lipid A analogue E5564 lacked agonist activity in equine whole blood and monocytes and was a potent antagonist of enteric LPS. Therefore, E5564 appeared to be the first lipid A analogue that has potential as an effective therapeutic agent in horses with endotoxemia.
Collapse
Affiliation(s)
- Monica D Figueiredo
- Department of Physiology and Pharmacology and Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7385, USA
| | | | | | | | | |
Collapse
|
30
|
Discovery and development of toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases. Pharm Res 2008; 25:1751-61. [PMID: 18493843 PMCID: PMC2469272 DOI: 10.1007/s11095-008-9571-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 03/13/2008] [Indexed: 02/06/2023]
Abstract
Sepsis remains the most common cause of death in intensive care units in the USA, with a current estimate of at least 750,000 cases per year, and 215,000 deaths annually. Despite extensive research still we do not quite understand the cellular and molecular mechanisms that are involved in triggering and propagation of septic injury. Endotoxin (lipopolysaccharide from Gram-negative bacteria, or LPS) has been implicated as a major cause of this syndrome. Inflammatory shock as a consequence of LPS release remains a serious clinical concern. In humans, inflammatory responses to LPS result in the release of cytokines and other cell mediators from monocytes and macrophages, which can cause fever, shock, organ failure and death. A number of different approaches have been investigated to try to treat and/or prevent the septic shock associated with infections caused by Gram-negative bacteria, including blockage of one or more of the cytokines induced by LPS. Recently several novel amphipathic compounds have been developed as direct LPS antagonists at the LPS receptor, TLR4. This review article will outline the current knowledge on the TLR4-LPS synthesis and discuss the signaling, in vitro pre-clinical and in vivo clinical evaluation of TLR4 antagonists and their potential use in sepsis and a variety of diseases such as atherosclerosis as well as hepatic and renal malfunction.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The intention of this article is to review endotoxin, host response to endotoxin, clinical significance of endotoxemia, past failed therapies targeting endotoxin, current therapeutic efforts in this area and the authors' opinion on the future of such therapy. RECENT FINDINGS Endotoxin or lipopolysaccharide is implicated in the activation of cytokine release with the potential to lead to severe sepsis. Therapies targeting endotoxin are very appealing and remain a matter of study and debate. Antiendotoxin antibody studies did not show consistent benefit to warrant its approval for use. Lipid A analog, phospholipid emulsion, and ethyl pyruvate are currently being evaluated for potential clinical use. Polymyxin B as an antiendotoxin strategy has an unacceptable toxicity profile for routine use as an intravenous agent and its use in plasmapheris is too cumbersome. Curcumin and lipopolysaccharide binding peptides, although having a potentially desirable effect on ameliorating endotoxin toxicity, remain to be shown effective in clinical trials. The development of a vaccine against endotoxin carries promise. SUMMARY The benefits of therapies targeting endotoxin remain to be elucidated. Clinical trials targeting populations with documented endotoxemia are more likely to provide an adequate test of this therapeutic approach. Prophylaxis of high-risk populations should also be considered.
Collapse
|
32
|
Adams Waldorf KM, Persing D, Novy MJ, Sadowsky DW, Gravett MG. Pretreatment with toll-like receptor 4 antagonist inhibits lipopolysaccharide-induced preterm uterine contractility, cytokines, and prostaglandins in rhesus monkeys. Reprod Sci 2008; 15:121-7. [PMID: 18187405 DOI: 10.1177/1933719107310992] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Intrauterine infection, which occurs in most early preterm births, triggers an immune response culminating in preterm labor. The authors hypothesize that blockade of lipopolysaccharide (LPS)-induced immune responses by a toll-like receptor 4 antagonist (TLR4A) would prevent elevations in amniotic fluid (AF) cytokines, prostaglandins, and uterine contractility. Chronically catheterized rhesus monkeys at 128 to 147 days' gestation received intra-amniotic infusions of either (1) saline (n = 6), (2) LPS (0.15-10 microg; n = 4), or (3) TLR4A pretreatment with LPS (10 microg) 1 hour later (n = 4). AF cytokines, prostaglandins, and uterine contractility were compared using 1-way ANOVA with Bonferroni-adjusted pairwise comparisons. Compared with saline controls, LPS induced significant elevations in AF interleukin-8 (IL-8), tumor necrosis factor (TNF)- alpha, PGE(2), PGF(2)(alpha), and uterine contractility (P < .05). In contrast, TLR4A pretreatment inhibited LPS-induced uterine activity and was associated with significantly lower AF IL-8, TNF-alpha, PGE(2), and PGF(2)( alpha) versus LPS alone (P < .05). Toll-like receptor antagonists, together with antibiotics, may delay or prevent infection-associated preterm birth.
Collapse
|
33
|
Wasan KM, Risovic V, Sivak O, Lee SD, Mason DX, Chiklis GR, McShane J, Lynn M, Wong N, Rossignol DP. Influence of plasma cholesterol and triglyceride concentrations and eritoran (E5564) micelle size on its plasma pharmacokinetics and ex vivo activity following single intravenous bolus dose into healthy female rabbits. Pharm Res 2007; 25:176-82. [PMID: 17849177 DOI: 10.1007/s11095-007-9428-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Accepted: 07/24/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE Eritoran (E5564) is a glycophospholipid that acts as a toll-like receptor 4 (TLR4) antagonist that is being tested as a treatment for severe sepsis and septic shock. In the blood, eritoran binds to plasma lipoproteins altering its pharmacokinetic and pharmacodynamic (PD) effects in vivo. The purpose of this study was to determine the influence of changes in plasma cholesterol and triglyceride concentrations on the plasma pharmacokinetics and ex vivo activity of eritoran following single intravenous bolus dosing of eritoran to healthy female rabbits fed either a regular chow diet or a cholesterol-enriched diet. This was done with eritoran administered as stable micelle formulations of mean hydrodynamic diameters of 8 or 27 nm). METHODS Female New Zealand White rabbits were fed a standard diet for 7 days and then randomly assigned either a regular chow diet [regular-diet (n = 9)] or a cholesterol-enriched diet [cholesterol-diet (n = 12)] for an additional 7 days. Following feeding of these diets a single intravenous bolus dose of eritoran (0.5 mg/kg) formulated into either "small micelles" (8 nm in diameter) or "large micelles" (27 nm in diameter) was administered to regular-fed and cholesterol-fed rabbits. Serial blood samples were obtained prior to eritoran administration and at the following times post injection: 0.083 (5 min), 1, 2, 4, 8, 10, 24, 48 and 72 h. Plasma was analyzed for eritoran concentrations using LC/MS/MS. Total plasma cholesterol (TC) and triglyceride (TG) levels were quantified using enzymatic kits. Plasma eritoran pharmacokinetic (PK) parameters were estimated by non-compartmental analysis using the WinNonlin nonlinear estimation program. To analyze PD activity, whole blood obtained at 0.083 (5 min), 2, 24, 48 and 72 h following eritoran administration was assessed for ex vivo activity by measuring the ability of 1 and 10 ng/ml LPS to elicit TNF-alpha release. RESULTS Total plasma cholesterol and triglyceride levels were significantly higher in cholesterol-fed rabbits compared to the rabbits fed a regular chow diet. Diet had no effect on the estimated plasma PK parameters. However, PD activity of both small and large micelle eritoran as measured by an ex vivo challenge dose of 1 ng/ml LPS was reduced in blood of cholesterol-fed rabbits compared to normal-fed rabbits. Comparison of PK parameters for small and large micelles indicated that small micelles had increased AUC(0-72 h), decreased plasma clearance and increased initial concentration (measured at 5 min post administration) compared to the large micelle formulation. Consistent with this observation, eritoran formulated into small micelles had significantly greater ex vivo activity than large micelles and was independent of TC and TG concentrations. CONCLUSIONS These findings suggest that plasma pharmacokinetics and activity of eritoran maybe influenced by eritoran micelle size and plasma TC and TG concentrations.
Collapse
Affiliation(s)
- Kishor M Wasan
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gearing AJH. Targeting toll‐like receptors for drug development: a summary of commercial approaches. Immunol Cell Biol 2007; 85:490-4. [PMID: 17667933 DOI: 10.1038/sj.icb.7100102] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) play a fundamental role in recognizing infectious and noxious agents as well as products of tissue damage. They are capable of initiating both protective and damaging inflammatory and immune responses. Several biotechnology and pharmaceutical companies have programmes to develop new drugs that are either: agonists of TLRs to enhance immune responses against tumours and infectious agents, or to correct allergic responses; or antagonists designed to reduce inflammation due to infection or autoimmune disease. This article reviews the commercial approaches being undertaken to develop new TLR drugs.
Collapse
Affiliation(s)
- Andrew J H Gearing
- Biocomm Squared and Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
35
|
Ehrentraut S, Frede S, Stapel H, Mengden T, Grohé C, Fandrey J, Meyer R, Baumgarten G. Antagonism of lipopolysaccharide-induced blood pressure attenuation and vascular contractility. Arterioscler Thromb Vasc Biol 2007; 27:2170-6. [PMID: 17656666 DOI: 10.1161/atvbaha.107.146100] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Aim was to assess whether lipopolysaccharide (LPS)-induced decrease of total peripheral resistance depends on Toll-like receptor (TLR)4 signaling and whether it is sensitive to NO-synthase or TLR4 antagonists. METHODS AND RESULTS C3H/HeN mice (control), expressing a functional, and C3H/HeJ mice, expressing a nonfunctional TLR4, were compared. LPS (20 mg/kg) was injected i.p. 6 hours before hemodynamic measurements. L-NAME and SMT, inhibitors of NO production, and Eritoran, a TLR4 antagonist, were tested for their impact on vascular contractility. Aortic rings were incubated for 6 hours with or without LPS (1 microg/mL), or with LPS+Eritoran (2 microg/mL) and their phenylephrine-induced contractility was measured using a myograph. The expression of cytokines in aortic tissue was examined by real-time polymerase chain reaction. In control mice LPS induced a significant decrease of blood pressure and an increase of heart rate, whereas C3H/HeJ remained unaffected. LPS induced an increase of cytokine expression and a depression of vascular contractility only in control mice but not in C3H/HeJ. L-NAME and SMT increased contractility in all rings and restored LPS-dependent depression of contractility. Eritoran prevented LPS-induced loss of contractility. CONCLUSIONS LPS upregulates cytokine expression via TLR4 and induces attenuation of smooth muscle contractility which can be effectively antagonized.
Collapse
Affiliation(s)
- S Ehrentraut
- Institute of Physiology II, Universitätsklinikum Bonn, Wilhelmstrasse 31, D-53111 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bennett-Guerrero E, Grocott HP, Levy JH, Stierer KA, Hogue CW, Cheung AT, Newman MF, Carter AA, Rossignol DP, Collard CD. A Phase II, Double-Blind, Placebo-Controlled, Ascending-Dose Study of Eritoran (E5564), a Lipid A Antagonist, in Patients Undergoing Cardiac Surgery with Cardiopulmonary Bypass. Anesth Analg 2007; 104:378-83. [PMID: 17242095 DOI: 10.1213/01.ane.0000253501.07183.2a] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lipid A, the toxic moiety of endotoxin, is linked to multiple complications after cardiac surgery, including fever, vasodilation, and pulmonary and renal dysfunction. The lipid A antagonist eritoran (or E5564) prevents endotoxin-induced systemic inflammation in animals and humans. In this study we assessed the safety of eritoran administration in patients undergoing cardiac surgery and obtained preliminary efficacy data for the prophylaxis of endotoxin-mediated surgical complications. METHODS A double-blind, randomized, ascending-dose, placebo-controlled study was conducted at nine hospitals. Patients undergoing coronary artery bypass graft and/or cardiac valvular surgery with cardiopulmonary bypass were enrolled. Patients received a 4-h infusion of placebo (n = 78) vs 2 mg (n = 24), 12 mg (n = 26), or 28 mg (n = 24) of eritoran initiated approximately 1 h before cardiopulmonary bypass. RESULTS No significant safety concerns were identified with continuous safety monitoring, and enrollment continued to the highest prespecified dose (28 mg). No statistically significant differences were observed in most variables related to systemic inflammation or organ dysfunction/injury. CONCLUSIONS This Phase II safety study suggests that the administration of the novel lipid A antagonist, eritoran, is not associated with overt toxicity in cardiac surgical patients. Blocking lipid A with eritoran does not appear to confer any clear benefit to elective cardiac surgical patients.
Collapse
|
37
|
de Castro FR, Rajas Naranjo O, Aspa Marco J. Infecciones pulmonares. Arch Bronconeumol 2007. [DOI: 10.1016/s0300-2896(07)71176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Shimamoto A, Pohlman TH, Shomura S, Tarukawa T, Takao M, Shimpo H. Toll-like receptor 4 mediates lung ischemia-reperfusion injury. Ann Thorac Surg 2006; 82:2017-23. [PMID: 17126102 DOI: 10.1016/j.athoracsur.2006.06.079] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/12/2006] [Accepted: 06/19/2006] [Indexed: 01/04/2023]
Abstract
BACKGROUND We have previously reported that nuclear factor (NF)-kappaB activation and inflammatory cytokine expression were involved in the development of lung ischemia-reperfusion injury (LIRI). Because Toll-like receptor 4 (TLR4) activates NF-kappaB-dependent transcription of inflammatory cytokine genes during myocardial ischemia-reperfusion injury, we examined whether absence of TLR4 in TLR4-deficient mice protects against LIRI. METHODS Left lungs of wild-type (C57BL/6J) mice or TLR4-null (TLR4-/-) mice were made ischemic for 60 minutes and then reperfused for 180 minutes. Response to injury was quantified by tissue myeloperoxidase activity, vascular permeability ([125I]-bovine serum albumin extravasation), and leukocyte and inflammatory mediator accumulation in bronchoalveolar lavage expression. Lung homogenates were also analyzed for activation of mitogen-activated protein kinases and nuclear translocation of the transcription factors NF-kappaB and activator protein-1. RESULTS After LIRI, lungs from TLR4-/- mice demonstrated a 52.4% reduction in vascular permeability (p = 0.001), a 52.6% reduction in lung myeloperoxidase activity (p = 0.006), and a marked reduction in bronchoalveolar lavage leukocyte accumulation when compared with lungs from wild-type mice. The TLR4-/- mice lungs, subjected to LIRI, also demonstrated marked reductions in amounts of several proinflammatory cytokines/chemokines in bronchoalveolar lavage samples. Phosphorylation of c-Jun NH2-terminal kinase, and activation of NF-kappaB and activator protein-1 were also significantly reduced in homogenates of lungs from TLR4-/- mice injured by ischemia and reperfusion (p < 0.05). CONCLUSIONS These data suggest that TLR4 plays a role in LIRI. Thus, TLR4 may be a potential therapeutic target to minimize ischemic-reperfusion-induced tissue damage and organ dysfunction.
Collapse
Affiliation(s)
- Akira Shimamoto
- Department of Thoracic and Cardiovascular Surgery, Mie University Graduate School of Medicine, Tsu, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Shimamoto A, Chong AJ, Yada M, Shomura S, Takayama H, Fleisig AJ, Agnew ML, Hampton CR, Rothnie CL, Spring DJ, Pohlman TH, Shimpo H, Verrier ED. Inhibition of Toll-like receptor 4 with eritoran attenuates myocardial ischemia-reperfusion injury. Circulation 2006; 114:I270-4. [PMID: 16820585 DOI: 10.1161/circulationaha.105.000901] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND We previously reported that the functional mutation of Toll-like receptor 4 (TLR4) in C3H/HeJ mice subjected to myocardial ischemia-reperfusion (MI/R) injury resulted in an attenuation of myocardial infarction size. To investigate the ligand-activating TLR4 during MI/R injury, we evaluated the effect of eritoran, a specific TLR4 antagonist, on MI/R injury, with the goal of defining better therapeutic options for MI/R injury. METHODS AND RESULTS C57BL/6 mice received eritoran (5 mg/kg) intravenously 10 minutes before 30 minutes of in situ of transient occlusion of the left anterior descending artery, followed by 120 minutes of reperfusion. Infarct size was measured using triphenyltetrazoliumchloride staining. A c-Jun NH(2)-terminal kinase (JNK) activation was determined by Western blotting, nuclear factor (NF)-kappaB activity was detected by gel-shift assay, and cytokine expression was measured by ribonuclease protection assay. Mice treated with eritoran developed significantly smaller infarcts when compared with mice treated with vehicle alone (21.0+/-6.4% versus 30.9+/-13.9%; P=0.041). Eritoran pretreatment resulted in a reduction in JNK phosphorylation (eritoran versus vehicle: 3.98+/-0.81 versus 7.01+/-2.21-fold increase; P=0.020), less nuclear NF-kappaB translocation (2.70+/-0.35 versus 7.75+/-0.60-fold increase; P=0.00007), and a decrease in cytokine expression (P<0.05). CONCLUSIONS We conclude that inhibition of TLR4 with eritoran in an in situ murine model significantly reduces MI/R injury and markers of an inflammatory response.
Collapse
Affiliation(s)
- Akira Shimamoto
- Department of Thoracic & Cardiovascular Surgery, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Baumgarten G, Knuefermann P, Schuhmacher G, Vervölgyi V, von Rappard J, Dreiner U, Fink K, Djoufack C, Hoeft A, Grohé C, Knowlton AA, Meyer R. Toll-like receptor 4, nitric oxide, and myocardial depression in endotoxemia. Shock 2006; 25:43-9. [PMID: 16369185 DOI: 10.1097/01.shk.0000196498.57306.a6] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The molecular mechanisms that mediate gram-negative sepsis-associated myocardial dysfunction remain elusive. Myocardial expression of inflammatory mediators is Toll-like receptor 4 (TLR4) dependent. However, it remains to be elucidated whether TLR4, expressed on cardiac myocytes, mediates impairment of cardiac contractility after lipopolysaccharide (LPS) application. Cardiac myocyte contractility, measured as sarcomere shortening of isolated cardiac myocytes from C3H/HeJ (with nonfunctional TLR4) and C3H/HeN (control), were recorded at stimulation frequencies between 0.5 and 10 Hz and after incubation with 1 and 10 mug/mL LPS for up to 8 h. Control cells treated with LPS were investigated with and without a competitive LPS inhibitor (E5564) and a specific inducible nitric oxide synthase (iNOS) inhibitor S-methylisothiourea. In control mice, LPS reduced sarcomere shortening amplitude and prolonged duration of relaxation, whereas sarcomere shortening of C3H/HeJ cells was insensitive to LPS. NFkappaB and iNOS were upregulated after LPS application in control mice compared with C3H/HeJ. Inhibition of TLR4 by E5564 as well as inhibition of iNOS prevented the influence of LPS on contractile activity in control myocytes. LPS-dependent suppression of cardiac myocyte contractility was significantly blunted in C3H/HeJ mice. Competitive inhibition of functional TLR4 with E5564 protects cardiac myocyte contractility against LPS. These findings suggest that TLR4, expressed on cardiac myocytes, contributes to sepsis-induced myocardial dysfunction. E5564, currently under investigation in two clinical phase II trials, seems to be a new therapeutic option for the treatment of myocardial dysfunction in sepsis associated with endotoxemia.
Collapse
Affiliation(s)
- Georg Baumgarten
- Department of Anesthesiology and Intensive Care Medicine, Institute of Physiology II, Universitätsklinikum Bonn, D-53111 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Severe sepsis and septic shock are common and deadly conditions for which the epidemiology, pathogenesis, and management continue to evolve. Recent publications (2003 and early 2004) have been systematically reviewed for important new original research and scholarly reviews, with an emphasis on clinical advances in adults. RECENT FINDINGS Important new epidemiologic studies establish the increasing frequency (nearly 9% per year) and falling mortality rates associated with sepsis. Sepsis definitions were reviewed by a group of experts, and the principal features of the 1991 consensus conference definitions were supported, with a new framework for evaluation of sepsis proposed. New research and thoughtful reviews continue to elucidate the pathogenesis of sepsis, with emphasis on innate immunity and time-based changes in immune status, varying from hyperreactive immunity and inflammation to immune depression with enhanced risk for nosocomial infections. A comprehensive evidence-based approach to the management of severe sepsis is presented in an important document developed by representatives from many critical care and infectious disease societies. Management includes early targeted resuscitation, broad empiric antibiotic coverage and source control, effective shock evaluation and treatment, adjuvant therapy with recombinant human activated protein C and moderate-dose hydrocortisone in selected patients, and comprehensive supportive care. Recently published multicenter clinical trials for novel agents have been disappointing, particularly for a nitric oxide synthase inhibitor that effectively supported blood pressure but increased mortality. SUMMARY The works reviewed reflect the advances in the care of patients with sepsis.
Collapse
Affiliation(s)
- Curtis N Sessler
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA.
| | | | | |
Collapse
|
42
|
Chong AJ, Shimamoto A, Hampton CR, Takayama H, Spring DJ, Rothnie CL, Yada M, Pohlman TH, Verrier ED. Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg 2004; 128:170-9. [PMID: 15282452 DOI: 10.1016/j.jtcvs.2003.11.036] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Restoration of blood flow to the ischemic heart may paradoxically exacerbate tissue injury (ischemia/reperfusion injury). Toll-like receptor 4, expressed on several cell types, including cardiomyocytes, is a mediator of the host inflammatory response to infection. Because ischemia/reperfusion injury is characterized by an acute inflammatory reaction, we investigated toll-like receptor 4 activation in a murine model of regional myocardial ischemia/reperfusion injury. We used C3H/HeJ mice, which express a nonfunctional toll-like receptor 4, to assess the pertinence of this receptor to tissue injury after reperfusion of ischemic myocardium. METHODS Wild-type mice (C3H/HeN) or toll-like receptor 4 mutant mice (C3H/HeJ) were subjected to 60 minutes of regional myocardial ischemia followed by 2 hours of reperfusion. At the end of reperfusion, the area at risk and the myocardial infarct size were measured as the end point of myocardial ischemia/reperfusion injury. Myocardial mitogen-activated protein kinase activation was measured by Western blotting, and nuclear translocation of nuclear factor-kappaB and activator protein-1 was determined by electrophoretic mobility shift assay. Ischemia/reperfusion-injured myocardium was also assessed by ribonuclease protection assay for expression of inflammatory mediators (tumor necrosis factor-alpha, interleukin-1beta, monocyte chemotactic factor-1, and interleukin-6). RESULTS The area at risk was similar for all groups after myocardial ischemia/reperfusion injury. There was a 40% reduction in infarct size (as a percentage of the area at risk) in C3H/HeJ mice compared with C3H/HeN mice (P =.001). Within the myocardium, significant activation of c-Jun N-terminal kinase, p38, and extracellular signal-regulated kinase was observed in both strains after ischemia and during reperfusion as compared with an absence of mitogen-activated protein kinase activation during sham operations; however, c-Jun N-terminal kinase activity, but not p38 or extracellular signal-regulated kinase activity, was significantly reduced in C3H/HeJ mice (P <.05). In both groups, nuclear factor-kappaB and activator protein-1 nuclear translocation occurred in the myocardium during myocardial ischemia/reperfusion injury, but, by densitometric analysis, nuclear translocation of nuclear factor-kappaB and activator protein-1 was significantly decreased in C3H/HeJ mice compared with C3H/HeN mice. Interleukin-1beta, monocyte chemotactic factor-1, and interleukin-6 were detectable in reperfused ischemic myocardium but were not detected in sham-operated myocardium; the expression of each of these mediators was significantly decreased in the myocardial tissue of C3H/HeJ mice when compared with expression in the control C3H/HeN mouse strain. CONCLUSIONS Our data suggest that toll-like receptor 4 may mediate, at least in part, myocardial ischemia/reperfusion injury. Inhibition of toll-like receptor 4 activation may be a potential therapeutic target to attenuate ischemia/reperfusion-induced tissue damage in the clinical setting.
Collapse
Affiliation(s)
- Albert J Chong
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rossignol DP, Wasan KM, Choo E, Yau E, Wong N, Rose J, Moran J, Lynn M. Safety, pharmacokinetics, pharmacodynamics, and plasma lipoprotein distribution of eritoran (E5564) during continuous intravenous infusion into healthy volunteers. Antimicrob Agents Chemother 2004; 48:3233-40. [PMID: 15328078 PMCID: PMC514793 DOI: 10.1128/aac.48.9.3233-3240.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eritoran, a structural analogue of the lipid A portion of lipopolysaccharide (LPS), is an antagonist of LPS in animal and human endotoxemia models. Previous studies have shown that low doses (350 to 3,500 microg) of eritoran have demonstrated a long pharmacokinetic half-life but a short pharmacodynamic half-life. The present study describes the safety, pharmacokinetics and pharmacodynamics, and lipid distribution profile of eritoran during and after a 72-h intravenous infusion of 500, 2,000, or 3,500 microg/h into healthy volunteers. Except for the occurrence of phlebitis, eritoran administration over 72 h was safe and well tolerated. Eritoran demonstrated a slow plasma clearance (0.679 to 0.930 ml/h/kg of body weight), a small volume of distribution (45.6 to 49.8 ml/kg), and a relatively long half-life (50.4 to 62.7 h). In plasma, the majority (approximately 55%) of eritoran was bound to high-density lipoproteins. During infusion and for up to 72 h thereafter, ex vivo response of blood to 1- or 10-ng/ml LPS was inhibited by > or =85%, even when the lowest dose of eritoran (500 microg/h) was infused. Inhibition of response was dependent on eritoran dose and the concentration of LPS used as an agonist. Finally, in vitro analysis with purified lipoprotein and protein fractions from plasma obtained from healthy volunteers indicated that eritoran is inactivated by high-density but not low-density lipoproteins, very-low-density lipoproteins, or albumin. From these results, we conclude that up to 252 mg of eritoran can be safely infused into normal volunteers over 72 h and even though it associates extensively with high-density lipoproteins, antagonistic activity is maintained, even after infusion ceases.
Collapse
Affiliation(s)
- Daniel P Rossignol
- Eisai Medical Research, Inc., Glenpointe Centre West, 500 Frank W. Burr Blvd., Teaneck, NJ 07666-6741, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Richard J Ulevitch
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
45
|
Cazzola M, Page CP, Matera MG. Alternative and/or integrative therapies for pneumonia under development. Curr Opin Pulm Med 2004; 10:204-10. [PMID: 15071372 DOI: 10.1097/00063198-200405000-00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Increasing antimicrobial resistance among common respiratory bacteria has created challenges in selecting appropriate therapy for pneumonia. Fortunately, the analysis of genome sequences has allowed us to find novel, nontraditional targets that are involved in disease pathogenesis or in adaptation and growth in infection sites. The advantage of the nonclassical targets is that targeting these sites could ablate infection without inducing resistance. Interfering with bacterial adhesion, inhibiting, neutralizing and clearing endotoxin, and administering cytokines as immunoadjuvants are the most promising alternative or integrative treatments for pneumonia that are under development. RECENT FINDINGS Interference with bacterial adhesion is possible using inhibitors of sortase or inactivators of the srtA gene against gram-positive bacteria, inhibitors of the periplasmic chaperone or those of usher function against gram-negative bacteria, novel polysaccharides that are present on echinoderm surfaces, antiadhesin vaccines, or the passive administration of antiadhesin antibodies. Inhibition, neutralization, and clearance of endotoxin possibly interferes in the lipid A biosynthetic pathway or using lipid A analogues with reduced or lack of ability to activate the major endotoxin receptors or proteins such as recombinant Limulus antilipopolysaccharide factor, bactericidal/permeability increasing protein, or lipopolysaccharide binding protein. Tumor necrosis factor 70-80, an adenoviral vector that encodes murine tumor necrosis factor alpha, and recombinant interferon gamma seem to be the most promising cytokines for use as immunoadjuvants for the treatment of pneumonia. SUMMARY Ideally, potential treatment of life-threatening bacterial pneumonia will combine immunoadjuvant and conventional antibiotic therapy. Compounds capable of stimulating early host defense and microbial clearance, but not the later phases of inflammatory tissue injury associated with sepsis, may be advantageous.
Collapse
Affiliation(s)
- Mario Cazzola
- A. Cardarelli Hospital, Department of Respiratory Medicine, Unit of Pneumology and Allergology, Naples, Italy.
| | | | | |
Collapse
|
46
|
Jiang Z, Hong Z, Guo W, Xiaoyun G, Gengfa L, Yongning L, Guangxia X. A synthetic peptide derived from bactericidal/permeability-increasing protein neutralizes endotoxin in vitro and in vivo. Int Immunopharmacol 2004; 4:527-37. [PMID: 15099530 DOI: 10.1016/j.intimp.2004.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 12/11/2003] [Accepted: 02/04/2004] [Indexed: 11/23/2022]
Abstract
Lipopolysaccharide (LPS [endotoxin]), a structural component of gram-negative bacteria, is implicated in the pathogenesis of septic shock. Lipid A is an evolutionarily conserved region of LPS that has been identified as the toxic component of LPS. Therapeutic strategies for the treatment of septic shock in humans are currently focused on neutralization of LPS. Here, the anti-endotoxin activity of BNEP, a synthetic peptide derived from the human bactericidal/permeability-increasing protein (BPI; aa 148-161) was investigated in vitro and in experimental animal endotoxemia models in vivo. The ability of BNEP to bind LPS from Escherichia coli O55:B5 and lipid A from Salmonella Re 595 was tested using an affinity sensor assay, and its ability to neutralize LPS was tested using a sensitive Limulus amebocyte lysate (LAL) assay. Polymyxin B (PMB) was used as the positive control in the in vitro experiments and in mouse experiments. We found that BNEP and PMB bound LPS with a similar affinity (Kd values of 25.4 and 25.8 nM, respectively). In contrast, BNEP bound lipid A with a slightly lower affinity than that of PMB (Kd values of 8 and 5.6 nM, respectively). The exact capacity of BNEP binding to LPS was approximately 0.53 microg peptide per 1 ng of LPS, as shown by affinity sensor assay. The LAL test showed that 256 microg of BNEP almost completely neutralized 2 ng LPS. In vivo, mice were randomized, intravenously injected with BNEP (0.5-10 mg/kg) or 1 mg/kg PMB, and then lethally challenged with 20 mg/kg LPS. We found that 5 mg/kg BNEP significantly protected mice from LPS challenge. In an endotoxemia rat model, animals were co-treated with 5 or 10 mg/kg BNEP and 10 mg/kg LPS via cardiac catheter. BNEP treatment resulted in significant reduction of tumor necrosis factor alpha (TNF-alpha) and IL-6, compared with LPS-only control animals. In addition, 10 mg/kg BNEP-treated animals showed a significant decrease in plasma endotoxin levels in comparison to animals treated with LPS alone. These results provide evidence that BNEP effectively neutralizes LPS in vitro and in vivo, and could protect animals from the lethal effects of LPS via decreasing plasma endotoxin and proinflammatory cytokines. Our work suggests that this peptide is worthy of further investigation as a possible novel treatment for septic shock.
Collapse
Affiliation(s)
- Zheng Jiang
- Medical Research Center, Southwestern Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Lynn M, Wong YN, Wheeler JL, Kao RJ, Perdomo CA, Noveck R, Vargas R, D'Angelo T, Gotzkowsky S, McMahon FG, Wasan KM, Rossignol DP. Extended in Vivo Pharmacodynamic Activity of E5564 in Normal Volunteers with Experimental Endotoxemia. J Pharmacol Exp Ther 2003; 308:175-81. [PMID: 14566003 DOI: 10.1124/jpet.103.056531] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
E5564 (alpha-D-glucopyranose) is a synthetic antagonist of bacterial endotoxin that has been shown to completely block human endotoxin response. Low doses of E5564 (0.35-3.5 mg) have a long pharmacokinetic half-life, but a surprisingly short ex vivo and in vivo pharmacodynamic half-life (generally less than several hours). To determine whether extended antagonistic activity can be achieved in vivo, this study assesses the pharmacodynamic activity of 4- and 72-h infusions of E5564 into normal volunteers. Administration of 3.5 mg of E5564/h x 72 h completely blocked effects of endotoxin challenge at the end of dosing (72 h), and at 48 and 72 h postdosing. Similarly, a 4-h infusion of E5564, 3 mg/h completely blocked endotoxin administered 8 h postdosing. A lower dose of E5564, 0.5 mg/h x 4 h, ameliorated but did not block most effects of endotoxin 8 h postdosing (p <0.05). Finally, the effect of varying plasma lipoprotein content on E5564 activity was studied in subjects having high or low cholesterol levels (>180 or <140 mg/dl) after 72-h infusion of 252 mg of E5564. No differences were observed. These results demonstrate that E5564 blocks the effects of endotoxin in a human model of clinical sepsis and indicate its potential in the treatment and/or prevention of clinical sepsis.
Collapse
Affiliation(s)
- Melvyn Lynn
- Eisai Medical Research Inc., Glenpointe Centre West, Teaneck, New Jersey 07666-6741, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|