1
|
Rahmati-Holasoo H, Shokrpoor S, Marandi A. Follicular Cell Hyperplasia (Goitre), Adenoma and Adenocarcinoma of the Thyroid Gland in Fourlined Terapon (Pelates quadrilineatus): Clinical and Histopathological Study: 2022-2023. JOURNAL OF FISH DISEASES 2025; 48:e14048. [PMID: 39575874 DOI: 10.1111/jfd.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
Thyroid disorders can manifest in several forms, including follicular cell hyperplasia (goitre), follicular cell adenoma and follicular cell carcinoma. Following the detection of large and gradually increasing tumour-like masses in the gular region of wild fourlined terapons (Pelates quadrilineatus) housed in various tanks in a public aquarium in June 2022, September 2022 and October 2023, several fish displaying clinical signs were transported to the Ornamental Fish Clinic at the Faculty of Veterinary Medicine, University of Tehran. Upon clinical inspection, the fish had prominent tumour-like masses in the gular area, located beneath the operculum. Upon histological examination of the first series, the masses revealed thyroid well-differentiated hyperplastic follicles that contained colloid and were lined by cuboidal epithelial cells. There were no signs of cellular atypia or mitotic figures. The study of the second series also revealed the existence of cellular atypia, but still no mitotic figures. In the examination of the third series, apart from the earlier lesions, there was evidence of neoplastic cell invasion into adjacent structures such as the adipose tissue and subepithelial layer. In addition, there was moderate cellular pleomorphism and a limited number of mitotic figures. Although the termination of water ozonation and the addition of potassium iodide to the feed were effective in treating thyroid hyperplasia, the treatment for thyroid neoplasia was not successful. The present study provides the evidence of clinical and histopathological findings of follicular cell hyperplasia, adenoma and adenocarcinoma of the thyroid gland in fourlined terapon.
Collapse
Affiliation(s)
- Hooman Rahmati-Holasoo
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sara Shokrpoor
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amin Marandi
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Pigoli C, Ghisleni G, Armando F, Grieco V, Ghidelli A, Brambilla E. Cytology of a seminoma in a koi (Cyprinus carpio): a rapid diagnostic tool. Vet Res Commun 2024; 48:2589-2593. [PMID: 38769240 PMCID: PMC11315794 DOI: 10.1007/s11259-024-10391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Koi(Cyprinus carpio) is an ornamental variety of common carp frequently kept as pets. Given their long lifespan, neoplasia, albeit uncommon, may occur in these animals, and only a few studies have faced their cytological diagnosis. In the present case, a koi carp was referred to the clinicians due to coelomic swelling. The carp underwent surgery, which revealed an enlargement of both testes. Testicular samples were cytologically and histologically examined. The lesion was diagnosed as a seminoma since it was composed of round, large, atypical, and often multinucleated cells with round central nuclei and moderate cytoplasm. These tumors had the same appearance as seminomas in mammals and should be considered among differential diagnoses when coelomic swelling occurs in koi carp. Seminomas in koi carp are diagnosed histologically, but cytology, a rapid and cheap exam executable in all veterinary clinical facilities, could be a relevant preliminary diagnostic tool that may influence the entire diagnostic process.
Collapse
Affiliation(s)
- Claudio Pigoli
- Laboratorio Di Istologia, Sede Territoriale Di Milano, Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'Emilia-Romagna (IZSLER), Brescia, Italy
| | - Gabriele Ghisleni
- BiEsseA Laboratorio Analisi Veterinarie, an Antech Company, Milan, Italy
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Valeria Grieco
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy
| | | | - Eleonora Brambilla
- Laboratorio Di Istologia, Sede Territoriale Di Milano, Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'Emilia-Romagna (IZSLER), Brescia, Italy.
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy.
| |
Collapse
|
3
|
Verma SK, Nandi A, Sinha A, Patel P, Mohanty S, Jha E, Jena S, Kumari P, Ghosh A, Jerman I, Chouhan RS, Dutt A, Samal SK, Mishra YK, Varma RS, Panda PK, Kaushik NK, Singh D, Suar M. The posterity of Zebrafish in paradigm of in vivo molecular toxicological profiling. Biomed Pharmacother 2024; 171:116160. [PMID: 38237351 DOI: 10.1016/j.biopha.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
The aggrandised advancement in utility of advanced day-to-day materials and nanomaterials has raised serious concern on their biocompatibility with human and other biotic members. In last few decades, understanding of toxicity of these materials has been given the centre stage of research using many in vitro and in vivo models. Zebrafish (Danio rerio), a freshwater fish and a member of the minnow family has garnered much attention due to its distinct features, which make it an important and frequently used animal model in various fields of embryology and toxicological studies. Given that fertilization and development of zebrafish eggs take place externally, they serve as an excellent model organism for studying early developmental stages. Moreover, zebrafish possess a comparable genetic composition to humans and share almost 70% of their genes with mammals. This particular model organism has become increasingly popular, especially for developmental research. Moreover, it serves as a link between in vitro studies and in vivo analysis in mammals. It is an appealing choice for vertebrate research, when employing high-throughput methods, due to their small size, swift development, and relatively affordable laboratory setup. This small vertebrate has enhanced comprehension of pathobiology and drug toxicity. This review emphasizes on the recent developments in toxicity screening and assays, and the new insights gained about the toxicity of drugs through these assays. Specifically, the cardio, neural, and, hepatic toxicology studies inferred by applications of nanoparticles have been highlighted.
Collapse
Affiliation(s)
- Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | | | - Ealisha Jha
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Snehasmita Jena
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Puja Kumari
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno 61137, Czech Republic
| | - Aishee Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, UNAM, CDMX, Mexico
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, Sønderborg DK-6400, Denmark
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea.
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| |
Collapse
|
4
|
Shen Y, Sheng R, Guo R. Application of Zebrafish as a Model for Anti-Cancer Activity Evaluation and Toxicity Testing of Natural Products. Pharmaceuticals (Basel) 2023; 16:827. [PMID: 37375774 DOI: 10.3390/ph16060827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Developing natural product-based anti-cancer drugs/agents is a promising way to overcome the serious side effects and toxicity of traditional chemotherapeutics for cancer treatment. However, rapid assessment of the in vivo anti-cancer activities of natural products is a challenge. Alternatively, zebrafish are useful model organisms and perform well in addressing this challenging issue. Nowadays, a growing number of studies have utilized zebrafish models to evaluate the in vivo activities of natural compounds. Herein, we reviewed the application of zebrafish models for evaluating the anti-cancer activity and toxicity of natural products over the past years, summarized its process and benefits, and provided future outlooks for the development of natural product-based anti-cancer drugs.
Collapse
Affiliation(s)
- Yifan Shen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| |
Collapse
|
5
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
6
|
MacRae CA, Peterson RT. Zebrafish as a Mainstream Model for In Vivo Systems Pharmacology and Toxicology. Annu Rev Pharmacol Toxicol 2023; 63:43-64. [PMID: 36151053 DOI: 10.1146/annurev-pharmtox-051421-105617] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pharmacology and toxicology are part of a much broader effort to understand the relationship between chemistry and biology. While biomedicine has necessarily focused on specific cases, typically of direct human relevance, there are real advantages in pursuing more systematic approaches to characterizing how health and disease are influenced by small molecules and other interventions. In this context, the zebrafish is now established as the representative screenable vertebrate and, through ongoing advances in the available scale of genome editing and automated phenotyping, is beginning to address systems-level solutions to some biomedical problems. The addition of broader efforts to integrate information content across preclinical model organisms and the incorporation of rigorous analytics, including closed-loop deep learning, will facilitate efforts to create systems pharmacology and toxicology with the ability to continuously optimize chemical biological interactions around societal needs. In this review, we outline progress toward this goal.
Collapse
Affiliation(s)
- Calum A MacRae
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA;
| | | |
Collapse
|
7
|
Brotzmann K, Escher SE, Walker P, Braunbeck T. Potential of the zebrafish (Danio rerio) embryo test to discriminate between chemicals of similar molecular structure-a study with valproic acid and 14 of its analogues. Arch Toxicol 2022; 96:3033-3051. [PMID: 35920856 PMCID: PMC9525359 DOI: 10.1007/s00204-022-03340-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/13/2022] [Indexed: 12/01/2022]
Abstract
Valproic acid is a frequently used antiepileptic drug and known pediatric hepatotoxic agent. In search of pharmaceuticals with increased effectiveness and reduced toxicity, analogue chemicals came into focus. So far, toxicity and teratogenicity data of drugs and metabolites have usually been collected from mammalian model systems such as mice and rats. However, in an attempt to reduce mammalian testing while maintaining the reliability of toxicity testing of new industrial chemicals and drugs, alternative test methods are being developed. To this end, the potential of the zebrafish (Danio rerio) embryo to discriminate between valproic acid and 14 analogues was investigated by exposing zebrafish embryos for 120 h post fertilization in the extended version of the fish embryo acute toxicity test (FET; OECD TG 236), and analyzing liver histology to evaluate the correlation of liver effects and the molecular structure of each compound. Although histological evaluation of zebrafish liver did not identify steatosis as the prominent adverse effect typical in human and mice, the structure–activity relationship (SAR) derived was comparable not only to human HepG2 cells, but also to available in vivo mouse and rat data. Thus, there is evidence that zebrafish embryos might serve as a tool to bridge the gap between subcellular, cell-based systems and vertebrate models.
Collapse
Affiliation(s)
- Katharina Brotzmann
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Sylvia E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Paul Walker
- Cyprotex Discovery, No. 24 Mereside, Alderley Park, Nether Alderley, Cheshire, SK10 4TG, UK
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Cascallar M, Alijas S, Pensado-López A, Vázquez-Ríos AJ, Sánchez L, Piñeiro R, de la Fuente M. What Zebrafish and Nanotechnology Can Offer for Cancer Treatments in the Age of Personalized Medicine. Cancers (Basel) 2022; 14:cancers14092238. [PMID: 35565373 PMCID: PMC9099873 DOI: 10.3390/cancers14092238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer causes millions of deaths each year and thus urgently requires the development of new therapeutic strategies. Nanotechnology-based anticancer therapies are a promising approach, with several formulations already approved and in clinical use. The evaluation of these therapies requires efficient in vivo models to study their behavior and interaction with cancer cells, and to optimize their properties to ensure maximum efficacy and safety. In this way, zebrafish is an important candidate due to its high homology with the human genoma, its large offspring, and the ease in developing specific cancer models. The role of zebrafish as a model for anticancer therapy studies has been highly evidenced, allowing researchers not only to perform drug screenings but also to evaluate novel therapies such as immunotherapies and nanotherapies. Beyond that, zebrafish can be used as an “avatar” model for performing patient-derived xenografts for personalized medicine. These characteristics place zebrafish in an attractive position as a role model for evaluating novel therapies for cancer treatment, such as nanomedicine.
Collapse
Affiliation(s)
- María Cascallar
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abi Judit Vázquez-Ríos
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-981-955-704
| |
Collapse
|
9
|
Lin HD, Tseng YK, Yuh CH, Chen SC. Low concentrations of 4-ABP promote liver carcinogenesis in human liver cells and a zebrafish model. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126954. [PMID: 34474361 DOI: 10.1016/j.jhazmat.2021.126954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
4-Aminobiphenyl (4-ABP) is a human bladder cancer carcinogen found in the manufacture of azo dyes and the composition of cigarette smoke in the environment. To determine whether low concentrations of 4-ABP induced or promote liver carcinogenesis and investigate the underlying mechanism, we have established the liver cell carcinogenesis model in human liver cell lines and zebrafish to evaluate liver cancer development associated with long-term exposure to low concentrations of 4-ABP. Results show that repeated 4-ABP exposure promoted cellular proliferation and migration via the involvement of ROS in Ras/MEK/ERK pathway in vitro. Also, 4-ABP (1, 10, and 100 nM) induces hepatocellular carcinoma (HCC) formation in HBx, Src (p53-/-) transgenic zebrafish at four months of age and in wild-type zebrafish at seven months of age. In addition, we observed a correlation between the Ras-ERK pathway and 4-ABP-induced HCC in vitro and in vivo. Our finding suggests low concentrations of 4-ABP repeated exposure is a potential risk factor for liver cancer. To our knowledge, this is the first report on the promotion of liver carcinogenesis in human liver cells and zebrafish following 4-ABP exposure.
Collapse
Affiliation(s)
- Heng-Dao Lin
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Yi-Kuan Tseng
- Graduate Institute of Statistics, National Central University, Taoyuan City, Taiwan
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu, Taiwan; Department of Biological Science & Technology, National Chiao Tung University, Hsinchu, Taiwan; Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
10
|
Lu JW, Lin LI, Sun Y, Liu D, Gong Z. Effect of Lipopolysaccharides on Liver Tumor Metastasis of twist1a/krasV12 Double Transgenic Zebrafish. Biomedicines 2022; 10:biomedicines10010095. [PMID: 35052775 PMCID: PMC8773574 DOI: 10.3390/biomedicines10010095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
The poor prognosis of patients diagnosed with hepatocellular carcinoma (HCC) is directly associated with the multi-step process of tumor metastasis. TWIST1, a basic helix-loop-helix (bHLH) transcription factor, is the most important epithelial-mesenchymal transition (EMT) gene involved in embryonic development, tumor progression, and metastasis. However, the role that TWIST1 gene plays in the process of liver tumor metastasis in vivo is still not well understood. Zebrafish can serve as a powerful model for cancer research. Thus, in this study, we crossed twist1a+ and kras+ transgenic zebrafish, which, respectively, express hepatocyte-specific mCherry and enhanced green fluorescent protein (EGFP); they also drive overexpression of their respective transcription factors. This was found to exacerbate the development of metastatic HCC. Fluorescence of mCherry and EGFP-labeled hepatocytes revealed that approximately 37.5% to 45.5% of the twist1a+/kras+ double transgenic zebrafish exhibited spontaneous tumor metastasis from the liver to the abdomen and tail areas, respectively. We also investigated the inflammatory effects of lipopolysaccharides (LPS) on the hepatocyte-specific co-expression of twist1a+ and kras+ in double transgenic zebrafish. Following LPS exposure, co-expression of twist1a+ and kras+ was found to increase tumor metastasis by 57.8%, likely due to crosstalk with the EMT pathway. Our results confirm that twist1a and kras are important mediators in the development of metastatic HCC. Taken together, our in-vivo model demonstrated that co-expression of twist1a+/kras+ in conjunction with exposure to LPS enhanced metastatic HCC offers a useful platform for the study of tumor initiation and metastasis in liver cancer.
Collapse
Affiliation(s)
- Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan;
- Correspondence: (J.-W.L.); (Z.G.); Tel.: +65-6516-2860 (Z.G.)
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan;
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Yuxi Sun
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Dong Liu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Correspondence: (J.-W.L.); (Z.G.); Tel.: +65-6516-2860 (Z.G.)
| |
Collapse
|
11
|
Lee AQ, Li Y, Gong Z. Inducible Liver Cancer Models in Transgenic Zebrafish to Investigate Cancer Biology. Cancers (Basel) 2021; 13:5148. [PMID: 34680297 PMCID: PMC8533791 DOI: 10.3390/cancers13205148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
Primary liver cancer is one of the most prevalent and deadly cancers, which incidence continues to increase while treatment response remains poor; thus, in-depth understanding of tumour events is necessary to develop more effective therapies. Animal models for liver cancer are powerful tools to reach this goal. Over the past decade, our laboratory has established multiple oncogene transgenic zebrafish lines that can be robustly induced to develop liver cancer. Histological, transcriptomic and molecular analyses validate the use of these transgenic zebrafish as experimental models for liver cancer. In this review, we provide a comprehensive summary of our findings with these inducible zebrafish liver cancer models in tumour initiation, oncogene addiction, tumour microenvironment, gender disparity, cancer cachexia, drug screening and others. Induced oncogene expression causes a rapid change of the tumour microenvironment such as inflammatory responses, increased vascularisation and rapid hepatic growth. In several models, histologically-proven carcinoma can be induced within one week of chemical inducer administration. Interestingly, the induced liver tumours show the ability to regress when the transgenic oncogene is suppressed by the withdrawal of the chemical inducer. Like human liver cancer, there is a strong bias of liver cancer severity in male zebrafish. After long-term tumour progression, liver cancer-bearing zebrafish also show symptoms of cancer cachexia such as muscle-wasting. In addition, the zebrafish models have been used to screen for anti-metastasis drugs as well as to evaluate environmental toxicants in carcinogenesis. These findings demonstrated that these inducible zebrafish liver cancer models provide rapid and convenient experimental tools for further investigation of fundamental cancer biology, with the potential for the discovery of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore; (A.Q.L.); (Y.L.)
| |
Collapse
|
12
|
Kawasaki T, Shimizu Y. Carcinogenesis Models Using Small Fish. Chem Pharm Bull (Tokyo) 2021; 69:962-969. [PMID: 34602577 DOI: 10.1248/cpb.c21-00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental animals are indispensable in life science-related research, including cancer studies. After rats and mice, small fishes, such as zebrafish and medaka, are the second most frequently used model species. Fish models have some advantageous physical characteristics that make them suitable for research, including their small size, some transparency, genetic manipulability, ease of handling, and highly ortholog correspondence with humans. This review introduces technological advances in carcinogenesis model production using small fish. Carcinogenesis model production begins with chemical carcinogenesis, followed by mutagenesis. Gene transfer technology has made it possible to incorporate various mechanisms that act on cancer-related genes in individuals. For example, scientists may now spatiotemporally control gene expression in a single fish through methods including the localization of an expression site via a tissue-specific promoter and expression control using light, heat, or a chemical substance. In addition, genome editing technology is realizing more specific and more efficient gene disruption than conventional mutagenesis, in which the disruption of the gene of interest depends on chance. These technological advances have improved animal models and will soon create carcinogenesis models that better mimic human pathology. We conclude by discussing future expectations for cancer research using small fish.
Collapse
Affiliation(s)
- Takashi Kawasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yuki Shimizu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
13
|
Arnaud LC, Gauthier T, Le Naour A, Hashim S, Naud N, Shay JW, Pierre FH, Boutet-Robinet E, Huc L. Short-Term and Long-Term Carcinogenic Effects of Food Contaminants (4-Hydroxynonenal and Pesticides) on Colorectal Human Cells: Involvement of Genotoxic and Non-Genomic Mechanisms. Cancers (Basel) 2021; 13:cancers13174337. [PMID: 34503147 PMCID: PMC8431687 DOI: 10.3390/cancers13174337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary One’s environment, including diet, play a major role in the occurrence and the development of colorectal cancer (CRC). In this study, we are interested in two western diet associated food contaminants: 4-hydroxynonenal (HNE), a major lipid peroxidation product neoformed during digestion, and a mixture of pesticides to which we are commonly exposed to via fruit and vegetable consumption. The aim of this study was to analyse the impact of acute and long-term exposure to these contaminants, alone or in combination, on colorectal carcinogenesis. We used in vitro models of human colonic cells, either exhibiting or not different genetic susceptibilities to CRC. After acute exposure, we did not observe major alteration. However, long-term exposure to contaminants induce malignant transformation with different cellular mechanisms, depending on genetic susceptibility and contaminants alone or in mixtures. Abstract To investigate environmental impacts upon colorectal carcinogenesis (CRC) by diet, we assessed two western diet food contaminants: 4-hydroxynonenal (HNE), a major lipid peroxidation product neoformed during digestion, and a mixture of pesticides. We used human colonic cell lines ectopically eliciting varied genetic susceptibilities to CRC: the non-transformed human epithelial colonic cells (HCECs) and their five isogenic cell lines with the loss of APC (Adenomatous polyposis coli) and TP53 (Tumor protein 53) and/or ectopic expression of mutated KRAS (Kristen-ras). These cell lines have been exposed for either for a short time (2–24 h) or for a long period (3 weeks) to 1 µM HNE and/or 10 µM pesticides. After acute exposure, we did not observe any cytotoxicity or major DNA damage. However, long-term exposure to pesticides alone and in mixture with HNE induced clonogenic transformation in normal HCECs, as well as in cells representing later stages of carcinogenesis. It was associated with genotoxic and non-genomic mechanisms (cell growth, metabolic reprogramming, cell mobility and epithelial-mesenchymal transition) depending on genetic susceptibility. This study demonstrated a potential initiating and promoting effect of food contaminants on CRC after long-term exposure. It supports that these contaminants can accelerate carcinogenesis when mutations in oncogenes or tumor suppressor genes occur.
Collapse
Affiliation(s)
- Liana C. Arnaud
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
| | - Thierry Gauthier
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
| | - Augustin Le Naour
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
| | - Saleha Hashim
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
| | - Nathalie Naud
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
| | - Jerry W. Shay
- Southwestern Medical Center Dallas, Department of Cell Biology, The University of Texas, Dallas, TX 75390, USA;
| | - Fabrice H. Pierre
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
| | - Laurence Huc
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
- Correspondence: ; Tel.: +33-5-8206-6320
| |
Collapse
|
14
|
Al-Thani HF, Shurbaji S, Yalcin HC. Zebrafish as a Model for Anticancer Nanomedicine Studies. Pharmaceuticals (Basel) 2021; 14:625. [PMID: 34203407 PMCID: PMC8308643 DOI: 10.3390/ph14070625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nanomedicine is a new approach to fight against cancer by the development of anticancer nanoparticles (NPs) that are of high sensitivity, specificity, and targeting ability to detect cancer cells, such as the ability of Silica NPs in targeting epithelial cancer cells. However, these anticancer NPs require preclinical testing, and zebrafish is a useful animal model for preclinical studies of anticancer NPs. This model affords a large sample size, optical imaging, and easy genetic manipulation that aid in nanomedicine studies. This review summarizes the numerous advantages of the zebrafish animal model for such investigation, various techniques for inducing cancer in zebrafish, and discusses the methods to assess cancer development in the model and to test for the toxicity of the anticancer drugs and NPs. In addition, it summarizes the recent studies that used zebrafish as a model to test the efficacy of several different anticancer NPs in treating cancer.
Collapse
Affiliation(s)
- Hissa F Al-Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Samar Shurbaji
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
15
|
Gombač M, Seničar M, Švara T, Šturm S, Dolenšek T, Tekavec K, Cerkvenik Flajs V, Schmidt-Posthaus H. Sudden outbreak of metastatic intestinal adenocarcinoma in rainbow trout Oncorhynchus mykiss. DISEASES OF AQUATIC ORGANISMS 2021; 144:237-244. [PMID: 34042071 DOI: 10.3354/dao03592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intestinal adenocarcinomas are uncommon in fishes. To date, they have been reported in zebrafish Danio rerio, blue gularis Fundulopanchax sjostedti, koi carp Cyprinus carpio koi, Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss. Metastases are even rarer and have been observed so far at very low prevalence, only in feed-induced adenocarcinoma in Atlantic salmon and rainbow trout. Intestinal adenocarcinoma with liver and heart metastases and mesenteric invasion was found in approximately 33% of 4 yr old rainbow trout from a Slovene hatchery with 2000 breeding trout. During stripping, lumps in the abdominal cavity were palpated in one-third of the breeding fish; some of the fish were anorectic and lethargic, and mortality was slightly increased. Affected trout were euthanized and 4 were submitted for necropsy and histopathology. Necropsy revealed firm, whitish, irregularly lobular masses originating from the intestine. Histologically, the intestinal masses showed a prominent proliferation of tall columnar neoplastic epithelial cells arranged in dense irregular islands or solid areas and papillotubular protuberances. Solid areas of neoplastic cells were also observed in the mesentery of all trout and in the liver of one trout, whereas minute groups of neoplastic cells were seen in the vessels of the intestinal mucosa in all trout and in the myocardium and the liver of one trout. Epithelial origin of neoplastic cells was confirmed by expression of the cytokeratin marker AE1/AE3. The intestinal masses were diagnosed as intestinal adenocarcinoma with mesenteric invasion and metastases to the liver and heart. The cause of intestinal adenocarcinoma was not determined.
Collapse
Affiliation(s)
- Mitja Gombač
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kent ML, Wall ES, Sichel S, Watral V, Stagaman K, Sharpton TJ, Guillemin K. Pseudocapillaria tomentosa, Mycoplasma spp., and Intestinal Lesions in Experimentally Infected Zebrafish Danio rerio. Zebrafish 2021; 18:207-220. [PMID: 33999743 DOI: 10.1089/zeb.2020.1955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intestinal neoplasms and preneoplastic lesions are common in zebrafish research facilities. Previous studies have demonstrated that these neoplasms are caused by a transmissible agent, and two candidate agents have been implicated: a Mycoplasma sp. related to Mycoplasma penetrans and the intestinal parasitic nematode, Pseudocapillaria tomentosa, and both agents are common in zebrafish facilities. To elucidate the role of these two agents in the occurrence and severity of neoplasia and other intestinal lesions, we conducted two experimental inoculation studies. Exposed fish were examined at various time points over an 8-month period for intestinal histopathologic changes and the burden of Mycoplasma and nematodes. Fish exposed to Mycoplasma sp. isolated from zebrafish were associated with preneoplastic lesions. Fish exposed to the nematode alone or with the Mycoplasma isolate developed severe lesions and neoplasms. Both inflammation and neoplasm scores were associated with an increase in Mycoplasma burden. These results support the conclusions that P. tomentosa is a strong promoter of intestinal neoplasms in zebrafish and that Mycoplasma alone can also cause intestinal lesions and accelerate cancer development in the context of nematode infection.
Collapse
Affiliation(s)
- Michael L Kent
- Department of Microbiology and Oregon State University, Corvallis, Oregon, USA.,Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Elena S Wall
- Department of Biology and Institute of Molecular Biology, Eugene, University of Oregon, Eugene, Oregon, USA
| | - Sophie Sichel
- Department of Biology and Institute of Molecular Biology, Eugene, University of Oregon, Eugene, Oregon, USA
| | - Virginia Watral
- Department of Microbiology and Oregon State University, Corvallis, Oregon, USA
| | - Keaton Stagaman
- Department of Microbiology and Oregon State University, Corvallis, Oregon, USA
| | - Thomas J Sharpton
- Department of Microbiology and Oregon State University, Corvallis, Oregon, USA.,Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Karen Guillemin
- Department of Biology and Institute of Molecular Biology, Eugene, University of Oregon, Eugene, Oregon, USA.,Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Aspatwar A, Berrino E, Bua S, Carta F, Capasso C, Parkkila S, Supuran CT. Toxicity evaluation of sulfamides and coumarins that efficiently inhibit human carbonic anhydrases. J Enzyme Inhib Med Chem 2021; 35:1765-1772. [PMID: 32942905 PMCID: PMC7534274 DOI: 10.1080/14756366.2020.1822829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Here, we report a toxicity study, conducted on zebrafish larvae, of a series of coumarin and sulfamide compounds that were previously reported as inhibitors of human (h) metalloenzymes, carbonic anhydrases (CAs, EC 4.2.1.1). Due to the high relevance of hCA inhibitors as theragnostic agents, it is of pivotal importance to address safety issues that may arise from the initial in vivo toxicological assessment using zebrafish, a relevant model for biomedical research. None of the reported compounds showed adverse phenotypic effects or tissue damage on developing zebrafish larvae after 5 days of exposure. Our study suggests that the coumarin and sulfamide derivatives considered here are safe and suitable for further development and testing.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Emanuela Berrino
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Silvia Bua
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Fabrizio Carta
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | | | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd., Tampere, Finland.,Tampere University Hospital, Tampere, Finland
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
18
|
Baines C, Lerebours A, Thomas F, Fort J, Kreitsberg R, Gentes S, Meitern R, Saks L, Ujvari B, Giraudeau M, Sepp T. Linking pollution and cancer in aquatic environments: A review. ENVIRONMENT INTERNATIONAL 2021; 149:106391. [PMID: 33515955 DOI: 10.1016/j.envint.2021.106391] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Due to the interconnectedness of aquatic ecosystems through the highly effective marine and atmospheric transport routes, all aquatic ecosystems are potentially vulnerable to pollution. Whilst links between pollution and increased mortality of wild animals have now been firmly established, the next steps should be to focus on specific physiological pathways and pathologies that link pollution to wildlife health deterioration. One of the pollution-induced pathologies that should be at the centre of attention in ecological and evolutionary research is cancer, as anthropogenic contamination has resulted in a rapid increase of oncogenic substances in natural habitats. Whilst wildlife cancer research is an emerging research topic, systematic reviews of the many case studies published over the recent decades are scarce. This research direction would (1) provide a better understanding of the physiological mechanisms connecting anthropogenic pollution to oncogenic processes in non-model organisms (reducing the current bias towards human and lab-animal studies in cancer research), and (2) allow us to better predict the vulnerability of different wild populations to oncogenic contamination. This article combines the information available within the scientific literature about cancer occurrences in aquatic and semi-aquatic species. For the first aim, we use available knowledge from aquatic species to suggest physiological mechanisms that link pollution and cancer, including main metabolic detoxification pathways, oxidative damage effects, infections, and changes to the microbiome. For the second aim, we determine which types of aquatic animals are more vulnerable to pollution-induced cancer, which types of pollution are mainly associated with cancer in aquatic ecosystems, and which types of cancer pollution causes. We also discuss the role of migration in exposing aquatic and semi-aquatic animals to different oncogenic pollutants. Finally, we suggest novel research avenues, including experimental approaches, analysis of the effects of pollutant cocktails and long-term chronic exposure to lower levels of pollutants, and the use of already published databases of gene expression levels in animals from differently polluted habitats.
Collapse
Affiliation(s)
- Ciara Baines
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia.
| | - Adelaide Lerebours
- LIttoral, ENvironnement et Sociétés (LIENSs), UMR7266, CNRS Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle Cedex, France
| | - Frederic Thomas
- CREEC/CREES, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France; MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
| | - Jerome Fort
- LIttoral, ENvironnement et Sociétés (LIENSs), UMR7266, CNRS Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle Cedex, France
| | - Randel Kreitsberg
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Sophie Gentes
- LIttoral, ENvironnement et Sociétés (LIENSs), UMR7266, CNRS Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle Cedex, France
| | - Richard Meitern
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Lauri Saks
- Estonian Marine Institute, Universty of Tartu, Mäealuse 14, 12618 Tallinn, Harju County, Estonia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, VIC, Australia
| | - Mathieu Giraudeau
- LIttoral, ENvironnement et Sociétés (LIENSs), UMR7266, CNRS Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle Cedex, France; CREEC/CREES, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France; MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
| | - Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| |
Collapse
|
19
|
Antitumor effects of different Ganoderma lucidum spore powder in cell- and zebrafish-based bioassays. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:177-184. [PMID: 33495135 DOI: 10.1016/j.joim.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Ganoderma lucidum spore (GLS) is gaining recognition as a medicinal part of G. lucidum and has been reported to possess various pharmacological properties, such as antitumor activity. In this work, wall-broken GLS powder (BGLSP) and wall-removed GLS powder (RGLSP), two kinds of GLS powder with different manufacturing techniques, were compared in terms of contents of active constituents and in vivo and in vitro antitumor effects. METHODS The ultraviolet and visible spectrophotometry method was used to determine the contents of polysaccharides and total triterpenoids in BGLSP and RGLSP. Seventeen individual triterpenoids were further quantified using ultra-high-performance liquid chromatography and quantitative analysis of multi-components by single marker. The antitumor effects of BGLSP and RGLSP were evaluated using in vitro cell viability assay against human gastric carcinoma SGC-7901, lung carcinoma A549 and lymphoma Ramos and further validated by in vivo zebrafish xenograft models with transplanted SGC-7901, A549 and Ramos. RESULTS The results showed that the contents of polysaccharides, total triterpenoids and individual triterpenoids of RGLSP were significantly higher than those of BGLSP. Although both BGLSP and RGLSP inhibited the three tumor cell lines in vitro in a dose-dependent manner, the inhibitory effects of RGLSP were much better than those of BGLSP. In the in vivo zebrafish assay, RGLSP exhibited more potent inhibitory activities against tumors transplanted into the zebrafish compared with BGLSP, and the inhibition rates of RGLSP reached approximately 78%, 31% and 83% on SGC-7901, A549 and Ramos, respectively. CONCLUSION The results indicated that the antitumor effects of GLS were positively correlated with the contents of the polysaccharides and triterpenoids and demonstrated that the wall-removing manufacturing technique could significantly improve the levels of active constituents, and thereby enhance the antitumor activity.
Collapse
|
20
|
Matsche MA, Blazer VS, Pulster EL, Mazik PM. High prevalence of biliary neoplasia in white perch Morone americana: potential roles of bile duct parasites and environmental contaminants. DISEASES OF AQUATIC ORGANISMS 2020; 141:195-224. [PMID: 33150869 DOI: 10.3354/dao03510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent surveys of white perch Morone americana from Chesapeake Bay, USA, revealed a high prevalence of hepatic and biliary lesions, including neoplasia, and bile duct parasites. Here, we describe lesions in the liver and gallbladder and evaluate for statistical associations among lesions, parasites, and biomarkers of chemical exposure in fish from 2 tributaries of Chesapeake Bay. Fish were collected from an estuarine site in the Choptank River (n = 122, ages 3-11), a tributary with extensive agriculture within the watershed, and the Severn River (n = 131, ages 2-16), a tributary with extensive urban development. Passive integrative samplers were deployed at the fish collection site and an upstream, non-tidal site in each river for 30 d. Intrahepatic biliary lesions observed in fish from both rivers included neoplasia (23.3%), dysplasia (16.2%), hyperplasia (46.6%), cholangitis (24.9%), and dilated ducts containing plasmodia of Myxidium sp. (24.9%). Hepatocellular lesions included foci of hepatocellular alteration (FHA, 15.8%) and neoplasia in 4 Severn River fish (2.3%). Age of fish and Myxidium sp. infections were significant risk factors for proliferative and neoplastic biliary lesions, age alone was a risk factor for FHA, and Goussia bayae infections were associated with cholangitis and cholecystitis. Lesion prevalence was higher in fish from the Severn River, which contained higher concentrations of PAHs, organochlorine pesticides, and brominated diphenyl ethers. Metabolite biomarkers indicated higher PAH exposures in Severn River fish. This study suggests Myxidium sp. as a promoter of bile duct tumors, but more data are needed to evaluate the biological effects of environmental contaminants in this species.
Collapse
Affiliation(s)
- Mark A Matsche
- Cooperative Oxford Laboratory, Oxford, Maryland 21654, USA
| | | | | | | |
Collapse
|
21
|
Schaaf RM, Sharpton TJ, Murray KN, Kent AD, Kent ML. Retrospective analysis of the Zebrafish International Resource Center diagnostic data links Pseudocapillaria tomentosa to intestinal neoplasms in zebrafish Danio rerio (Hamilton 1822). JOURNAL OF FISH DISEASES 2020; 43:1459-1462. [PMID: 32892418 PMCID: PMC7924165 DOI: 10.1111/jfd.13233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 05/02/2023]
Affiliation(s)
- Russel M. Schaaf
- Department of Microbiology, Oregon State University, Corvallis, Oregon
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon
- Department of Statistics, Oregon State University, Corvallis, Oregon
| | - Katrina N. Murray
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon
| | | | - Michael L. Kent
- Department of Microbiology, Oregon State University, Corvallis, Oregon
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon
- Zebrafish International Resource Center, Eugene, Oregon
| |
Collapse
|
22
|
Raby L, Völkel P, Le Bourhis X, Angrand PO. Genetic Engineering of Zebrafish in Cancer Research. Cancers (Basel) 2020; 12:E2168. [PMID: 32759814 PMCID: PMC7464884 DOI: 10.3390/cancers12082168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Zebrafish (Danio rerio) is an excellent model to study a wide diversity of human cancers. In this review, we provide an overview of the genetic and reverse genetic toolbox allowing the generation of zebrafish lines that develop tumors. The large spectrum of genetic tools enables the engineering of zebrafish lines harboring precise genetic alterations found in human patients, the generation of zebrafish carrying somatic or germline inheritable mutations or zebrafish showing conditional expression of the oncogenic mutations. Comparative transcriptomics demonstrate that many of the zebrafish tumors share molecular signatures similar to those found in human cancers. Thus, zebrafish cancer models provide a unique in vivo platform to investigate cancer initiation and progression at the molecular and cellular levels, to identify novel genes involved in tumorigenesis as well as to contemplate new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Pierre-Olivier Angrand
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (X.L.B.)
| |
Collapse
|
23
|
Eğimezer G, Üstündağ ÜV, Ateş PS, Ünal I, Üstündağ FD, Alturfan AA, Emekli-Alturfan E, Altinoz MA, Elmaci I. Methylnitrosourea, dimethylbenzanthracene and benzoapyrene differentially affect redox pathways, apoptosis and immunity in zebrafish. Hum Exp Toxicol 2020; 39:920-929. [PMID: 32054343 DOI: 10.1177/0960327120905961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer continues to be a major cause of mortality globally. Zebrafish present suitable models for studying the mechanisms of genotoxic carcinogens. The aim of this study was to investigate the interaction between oxidant-antioxidant status, apoptosis and immunity in zebrafish that were exposed to three different genotoxic carcinogens methylnitrosourea, dimethylbenzanthracene, benzoapyrene and methylnitrosourea + dimethylbenzanthracene starting from early embryogenesis for 30 days. Lipid peroxidation, nitric oxide levels, superoxide dismutase and glutathione-S-transferase activities and mRNA levels of apoptosis genes p53, bax, casp3a, casp2 and immunity genes fas, tnfα and ifnγ1 were evaluated. The disruption of the oxidant-antioxidant balance accompanied by altered expressions of apoptotic and immunity related genes were observed in different levels according to the carcinogen applied. Noteworthy, ifnγ expressions decreased in all carcinogen-exposed groups. Our results will provide basic data for further carcinogenesis research in zebrafish models.
Collapse
Affiliation(s)
- G Eğimezer
- Department of Biochemistry, Faculty of Dentistry Marmara University, Istanbul, Turkey
| | - Ü V Üstündağ
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Kavacık, Istanbul, Turkey
| | - P S Ateş
- Department of Biochemistry, Faculty of Dentistry Marmara University, Istanbul, Turkey
| | - I Ünal
- Department of Biochemistry, Faculty of Dentistry Marmara University, Istanbul, Turkey
| | - F D Üstündağ
- Department of Biophysics, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - A A Alturfan
- Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
| | - E Emekli-Alturfan
- Department of Biochemistry, Faculty of Dentistry Marmara University, Istanbul, Turkey
| | - M A Altinoz
- Department of Biochemistry, Acibadem University, Istanbul, Turkey
| | - I Elmaci
- Department of Neurosurgery, Acibadem University, Istanbul, Turkey
| |
Collapse
|
24
|
Delage N, Couturier B, Jatteau P, Larcher T, Ledevin M, Goubin H, Cachot J, Rochard E. Oxythermal window drastically constraints the survival and development of European sturgeon early life phases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3651-3660. [PMID: 30632040 DOI: 10.1007/s11356-018-4021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
European sturgeon Acipenser sturio is an anadromous fish species being classified "critically endangered" with only one remaining population in the Gironde-Garonne-Dordogne basin (France). In the global warming context, this paper aims to determine the sensitivity of A. sturio early life phases to temperature and oxygen saturation. Embryos were experimentally exposed to a combination of temperature (12 to 30 °C) and oxygen (30 to 90% O2 saturation) conditions. Lethal and sublethal effects were evaluated using embryonic mortality, hatching success, malformation rate, yolk sac resorption, tissue development and swimming speed. Embryonic survival peaked at 20 °C and no survival was recorded at 30 °C regardless of the associated oxygen saturation. No hatching occurred at 50% O2 sat or below regardless of temperature. Malformation frequency appeared to be minimum at 20 °C and 90% O2 sat. Swimming speed peaked at 16 °C. The temperature optimum of early life phases of A. sturio was determined to be close to 20 °C. Its upper tolerance limit is between 26 and 30 °C and its lower tolerance limit is below 12 °C. Oxygen depletion induces sublethal effects at 70% O2 sat and lethal effects at 50% O2 sat. Within the spawning period in the Gironde-Garonne-Dordogne basin, we identified yearly favourable oxythermal windows. Consequences of climate change would depend of the phenological adaptation of the species for its spawning period.
Collapse
Affiliation(s)
- Nicolas Delage
- IRSTEA EABX, Aquatic Ecosystems and Global Changes Research Unit, 50 Avenue de Verdun, 33612, Cestas, France
- University of Bordeaux, UMR CNRS EPOC 5805, Allée Geoffroy Saint-Hilaire - CS 50023, 33615, Pessac Cedex, France
- Agence Française de la Biodiversité, Pôle Gest'Aqua, 65 rue de St Brieuc, 35042, Rennes Cedex, France
| | - Blandine Couturier
- IRSTEA EABX, Aquatic Ecosystems and Global Changes Research Unit, 50 Avenue de Verdun, 33612, Cestas, France
| | - Philippe Jatteau
- IRSTEA EABX, Aquatic Ecosystems and Global Changes Research Unit, 50 Avenue de Verdun, 33612, Cestas, France
| | - Thibaut Larcher
- INRA,UMR 703 APEX, Oniris La Chantrerie, Nantes, France
- LUNAM Université, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-atlantique (Oniris), Nantes, France
| | - Mireille Ledevin
- INRA,UMR 703 APEX, Oniris La Chantrerie, Nantes, France
- LUNAM Université, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-atlantique (Oniris), Nantes, France
| | - Hélicia Goubin
- INRA,UMR 703 APEX, Oniris La Chantrerie, Nantes, France
- LUNAM Université, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-atlantique (Oniris), Nantes, France
| | - Jérôme Cachot
- University of Bordeaux, UMR CNRS EPOC 5805, Allée Geoffroy Saint-Hilaire - CS 50023, 33615, Pessac Cedex, France
| | - Eric Rochard
- IRSTEA EABX, Aquatic Ecosystems and Global Changes Research Unit, 50 Avenue de Verdun, 33612, Cestas, France.
| |
Collapse
|
25
|
Sieber S, Grossen P, Bussmann J, Campbell F, Kros A, Witzigmann D, Huwyler J. Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv Drug Deliv Rev 2019; 151-152:152-168. [PMID: 30615917 DOI: 10.1016/j.addr.2019.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The interactions of nanomedicines with biological environments is heavily influenced by their physicochemical properties. Formulation design and optimization are therefore key steps towards successful nanomedicine development. Unfortunately, detailed assessment of nanomedicine formulations, at a macromolecular level, in rodents is severely limited by the restricted imaging possibilities within these animals. Moreover, rodent in vivo studies are time consuming and expensive, limiting the number of formulations that can be practically assessed in any one study. Consequently, screening and optimisation of nanomedicine formulations is most commonly performed in surrogate biological model systems, such as human-derived cell cultures. However, despite the time and cost advantages of classical in vitro models, these artificial systems fail to reflect and mimic the complex biological situation a nanomedicine will encounter in vivo. This has acutely hampered the selection of potentially successful nanomedicines for subsequent rodent in vivo studies. Recently, zebrafish have emerged as a promising in vivo model, within nanomedicine development pipelines, by offering opportunities to quickly screen nanomedicines under in vivo conditions and in a cost-effective manner so as to bridge the current gap between in vitro and rodent studies. In this review, we outline several advantageous features of the zebrafish model, such as biological conservation, imaging modalities, availability of genetic tools and disease models, as well as their various applications in nanomedicine development. Critical experimental parameters are discussed and the most beneficial applications of the zebrafish model, in the context of nanomedicine development, are highlighted.
Collapse
Affiliation(s)
- Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jeroen Bussmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada..
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
26
|
Nissim S, Leshchiner I, Mancias JD, Greenblatt MB, Maertens O, Cassa CA, Rosenfeld JA, Cox AG, Hedgepeth J, Wucherpfennig JI, Kim AJ, Henderson JE, Gonyo P, Brandt A, Lorimer E, Unger B, Prokop JW, Heidel JR, Wang XX, Ukaegbu CI, Jennings BC, Paulo JA, Gableske S, Fierke CA, Getz G, Sunyaev SR, Wade Harper J, Cichowski K, Kimmelman AC, Houvras Y, Syngal S, Williams C, Goessling W. Mutations in RABL3 alter KRAS prenylation and are associated with hereditary pancreatic cancer. Nat Genet 2019; 51:1308-1314. [PMID: 31406347 DOI: 10.1038/s41588-019-0475-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma is an aggressive cancer with limited treatment options1. Approximately 10% of cases exhibit familial predisposition, but causative genes are not known in most families2. We perform whole-genome sequence analysis in a family with multiple cases of pancreatic ductal adenocarcinoma and identify a germline truncating mutation in the member of the RAS oncogene family-like 3 (RABL3) gene. Heterozygous rabl3 mutant zebrafish show increased susceptibility to cancer formation. Transcriptomic and mass spectrometry approaches implicate RABL3 in RAS pathway regulation and identify an interaction with RAP1GDS1 (SmgGDS), a chaperone regulating prenylation of RAS GTPases3. Indeed, the truncated mutant RABL3 protein accelerates KRAS prenylation and requires RAS proteins to promote cell proliferation. Finally, evidence in patient cohorts with developmental disorders implicates germline RABL3 mutations in RASopathy syndromes. Our studies identify RABL3 mutations as a target for genetic testing in cancer families and uncover a mechanism for dysregulated RAS activity in development and cancer.
Collapse
Affiliation(s)
- Sahar Nissim
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Ignaty Leshchiner
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joseph D Mancias
- Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine and the Hospital for Special Surgery, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Ophélia Maertens
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher A Cassa
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jill A Rosenfeld
- The Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Andrew G Cox
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - John Hedgepeth
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia I Wucherpfennig
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew J Kim
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jake E Henderson
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick Gonyo
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anthony Brandt
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ellen Lorimer
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bethany Unger
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeremy W Prokop
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jerry R Heidel
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | | | | | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Carol A Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Gad Getz
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cancer Center and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shamil R Sunyaev
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Karen Cichowski
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Yariv Houvras
- Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY, USA
| | - Sapna Syngal
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA
| | - Carol Williams
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wolfram Goessling
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA. .,The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Harvard Stem Cell Institute, Cambridge, MA, USA. .,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Liver-specific androgen receptor knockout attenuates early liver tumor development in zebrafish. Sci Rep 2019; 9:10645. [PMID: 31337771 PMCID: PMC6650507 DOI: 10.1038/s41598-019-46378-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most severe cancer types and many genetic and environmental factors contribute to the development of HCC. Androgen receptor (AR) signaling is increasingly recognized as one of the important factors associated with HCC. Previously, we have developed an inducible HCC model in kras transgenic zebrafish. In the present study, to investigate the role of AR in liver tumor development, we specifically knocked out ar gene in the liver of zebrafish via the CRISPR/Cas9 system and the knockout zebrafish was named L-ARKO for liver-specific ar knockout. We observed that liver-specific knockout of ar attenuated liver tumor development in kras transgenic zebrafish at the early stage (one week of tumor induction). However, at the late stage (two weeks of tumor induction), essentially all kras transgenic fish continue to develop HCC irrespective of the absence or presence of ar gene, indicating an overwhelming role of the driver oncogene kras over ar knockout. Consistently, cell proliferation was reduced at the early stage, but not the late stage, of liver tumor induction in the kras/L-ARKO fish, indicating that the attenuant effect of ar knockout was at least in part via cell proliferation. Furthermore, androgen treatment showed acceleration of HCC progression in kras fish but not in kras/L-ARKO fish, further indicating the abolishment of ar signalling. Therefore, we have established a tissue-specific ar knockout zebrafish and it should be a valuable tool to investigate AR signalling in the liver in future.
Collapse
|
28
|
Li H, Lu JW, Huo X, Li Y, Li Z, Gong Z. Effects of sex hormones on liver tumor progression and regression in Myc/xmrk double oncogene transgenic zebrafish. Gen Comp Endocrinol 2019; 277:112-121. [PMID: 30926469 DOI: 10.1016/j.ygcen.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) shows clear sex disparity with men being more prone to developing HCC and having higher mortality than women. Previous studies have indicated that sex hormones play important roles in HCC initiation and development, but the effects of sex hormones on HCC in clinical trials remain inconsistent. Using zebrafish liver tumor model co-induced by oncogenes Myc and xmrk, we observed similar sex disparity between male and female zebrafish in liver tumor progression and regression; i.e. male Myc/xmrk transgenic zebrafish developed HCC significantly faster and regressed HCC significantly slower than female Myc/xmrk transgenic zebrtafish. To investigate the effects of sex hormones on liver tumor progression and regression, Myc/xmrk fish were treated with either androgen or estrogen, we observed that androgen promoted HCC progression and retarded HCC regression in females, while estrogen attenuated HCC progression and accelerated HCC regression in males. Furthermore, androgen promoted cell proliferation while estrogen inhibited it. Overall, the present study suggested that sex hormones affected liver tumor progression and regression in the Myc/xmrk transgenic zebrafish.
Collapse
Affiliation(s)
- Hankun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Xiaojing Huo
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhen Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
29
|
Gaudenzi G, Vitale G. Transplantable zebrafish models of neuroendocrine tumors. ANNALES D'ENDOCRINOLOGIE 2019; 80:149-152. [DOI: 10.1016/j.ando.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Lin HS, Huang YL, Wang YRS, Hsiao E, Hsu TA, Shiao HY, Jiaang WT, Sampurna BP, Lin KH, Wu MS, Lai GM, Yuh CH. Identification of Novel Anti-Liver Cancer Small Molecules with Better Therapeutic Index than Sorafenib via Zebrafish Drug Screening Platform. Cancers (Basel) 2019; 11:cancers11060739. [PMID: 31141996 PMCID: PMC6628114 DOI: 10.3390/cancers11060739] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks as the fourth leading cause of cancer-related deaths worldwide. Sorafenib was the only U.S. Food and Drug Administration (FDA) approved drug for treating advanced HCC until recently, so development of new target therapy is urgently needed. In this study, we established a zebrafish drug screening platform and compared the therapeutic effects of two multiple tyrosine kinase inhibitors, 419S1 and 420S1, with Sorafenib. All three compounds exhibited anti-angiogenesis abilities in immersed fli1:EGFP transgenic embryos and the half inhibition concentration (IC50) was determined. 419S1 exhibited lower hepatoxicity and embryonic toxicity than 420S1 and Sorafenib, and the half lethal concentration (LC50) was determined. The therapeutic index (LC50/IC50) for 419S1 was much higher than for Sorafenib and 420S1. The compounds were either injected retro-orbitally or by oral gavage to adult transgenic zebrafish with HCC. The compounds not only rescued the pathological feature, but also reversed the expression levels of cell-cycle-related genes and protein levels of a proliferation marker. Using a patient-derived-xenograft assay, we found that the effectiveness of 419S1 and 420S1 in preventing liver cancer proliferation is better than that of Sorafenib. With integrated efforts and the advantage of the zebrafish platform, we can find more effective and safe drugs for HCC treatment and screen for personalized medicine.
Collapse
Affiliation(s)
- Han-Syuan Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Yi-Luen Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Yi-Rui Stefanie Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Eugene Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Tsu-An Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Hui-Yi Shiao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Weir-Torn Jiaang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Bonifasius Putera Sampurna
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Kuan-Hao Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
| | - Gi-Ming Lai
- TMU Research Center of Cancer Translational Medicine, Taipei Municipal Wanfang Hospital, Taipei 11696, Taiwan.
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan.
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013, Taiwan.
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
31
|
Wrighton PJ, Oderberg IM, Goessling W. There Is Something Fishy About Liver Cancer: Zebrafish Models of Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2019; 8:347-363. [PMID: 31108233 PMCID: PMC6713889 DOI: 10.1016/j.jcmgh.2019.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022]
Abstract
The incidence of hepatocellular carcinoma (HCC) and the mortality resulting from HCC are both increasing. Most patients with HCC are diagnosed at advanced stages when curative treatments are impossible. Current drug therapy extends mean overall survival by only a short period of time. Genetic mutations associated with HCC vary widely. Therefore, transgenic and mutant animal models are needed to investigate the molecular effects of specific mutations, classify them as drivers or passengers, and develop targeted treatments. Cirrhosis, however, is the premalignant state common to 90% of HCC patients. Currently, no specific therapies are available to halt or reverse the progression of cirrhosis to HCC. Understanding the genetic drivers of HCC as well as the biochemical, mechanical, hormonal, and metabolic changes associated with cirrhosis could lead to novel treatments and cancer prevention strategies. Although additional therapies recently received Food and Drug Administration approval, significant clinical breakthroughs have not emerged since the introduction of the multikinase inhibitor sorafenib, necessitating alternate research strategies. Zebrafish (Danio rerio) are effective for disease modeling because of their high degree of gene and organ architecture conservation with human beings, ease of transgenesis and mutagenesis, high fecundity, and low housing cost. Here, we review zebrafish models of HCC and identify areas on which to focus future research efforts to maximize the advantages of the zebrafish model system.
Collapse
Affiliation(s)
- Paul J Wrighton
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Isaac M Oderberg
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts; Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Broad Institute, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Division of Health Sciences and Technology, Harvard and Massachusetts Institute of Technology, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
32
|
Haraoka Y, Akieda Y, Ishitani T. [Live-imaging Analyses Using Small Fish Models Reveal New Mechanisms That Regulate Primary Tumorigenesis]. YAKUGAKU ZASSHI 2019; 139:733-741. [PMID: 31061343 DOI: 10.1248/yakushi.18-00185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the 1980s, zebrafish (Danio rerio) have been used as a valuable model system to investigate developmental processes because they: 1) grow outside their mothers; 2) are transparent during the embryonic stage; and 3) have organs similar to those in humans. Recently, zebrafish have emerged as a powerful model animal for studying not only developmental biology but also human diseases, especially cancer. Owing to the significant advantages of zebrafish, such as low-cost breeding, high efficiency of transgenesis, and ease of in vivo imaging and oncogenic/tumor cell induction, zebrafish offer a unique opportunity to unveil novel mechanisms of cancer progression, invasion, and metastasis. In addition, the small size of zebrafish larvae enables high-throughput chemical screening, and this advantage contributes to generating useful platforms for antitumor drug discovery. Owing to these various merits, which other model animals (such as fly, mouse, and rat) do not possess, zebrafish could achieve a unique status in cancer research. In this review, we discuss the availability of zebrafish for studying cancer and introduce recent cancer studies that have used zebrafish.
Collapse
Affiliation(s)
- Yukinari Haraoka
- Laboratory of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University.,Medical Institute of Bioregulation, Kyushu University
| | - Yuki Akieda
- Laboratory of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University
| | - Tohru Ishitani
- Laboratory of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University.,Medical Institute of Bioregulation, Kyushu University
| |
Collapse
|
33
|
Cagan RL, Zon LI, White RM. Modeling Cancer with Flies and Fish. Dev Cell 2019; 49:317-324. [PMID: 31063751 PMCID: PMC6506185 DOI: 10.1016/j.devcel.2019.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Abstract
Cancer has joined heart disease as the leading source of mortality in the US. In an era of organoids, patient-derived xenografts, and organs on a chip, model organisms continue to thrive with a combination of powerful genetic tools, rapid pace of discovery, and affordability. Model organisms enable the analysis of both the tumor and its associated microenvironment, aspects that are particularly relevant to our understanding of metastasis and drug resistance. In this Perspective, we explore some of the strengths of fruit flies and zebrafish for addressing fundamental cancer questions and how these two organisms can contribute to identifying promising therapeutic candidates.
Collapse
Affiliation(s)
- Ross L Cagan
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Leonard I Zon
- Children's Hospital Boston, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
34
|
Chaturantabut S, Shwartz A, Evason KJ, Cox AG, Labella K, Schepers AG, Yang S, Aravena M, Houvras Y, Mancio-Silva L, Romano S, Gorelick DA, Cohen DE, Zon LI, Bhatia SN, North TE, Goessling W. Estrogen Activation of G-Protein-Coupled Estrogen Receptor 1 Regulates Phosphoinositide 3-Kinase and mTOR Signaling to Promote Liver Growth in Zebrafish and Proliferation of Human Hepatocytes. Gastroenterology 2019; 156:1788-1804.e13. [PMID: 30641053 PMCID: PMC6532055 DOI: 10.1053/j.gastro.2019.01.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Patients with cirrhosis are at high risk for hepatocellular carcinoma (HCC) and often have increased serum levels of estrogen. It is not clear how estrogen promotes hepatic growth. We investigated the effects of estrogen on hepatocyte proliferation during zebrafish development, liver regeneration, and carcinogenesis. We also studied human hepatocytes and liver tissues. METHODS Zebrafish were exposed to selective modifiers of estrogen signaling at larval and adult stages. Liver growth was assessed by gene expression, fluorescent imaging, and histologic analyses. We monitored liver regeneration after hepatocyte ablation and HCC development after administration of chemical carcinogens (dimethylbenzanthrazene). Proliferation of human hepatocytes was measured in a coculture system. We measured levels of G-protein-coupled estrogen receptor (GPER1) in HCC and nontumor liver tissues from 68 patients by immunohistochemistry. RESULTS Exposure to 17β-estradiol (E2) increased proliferation of hepatocytes and liver volume and mass in larval and adult zebrafish. Chemical genetic and epistasis experiments showed that GPER1 mediates the effects of E2 via the phosphoinositide 3-kinase-protein kinase B-mechanistic target of rapamycin pathway: gper1-knockout and mtor-knockout zebrafish did not increase liver growth in response to E2. HCC samples from patients had increased levels of GPER1 compared with nontumor tissue samples; estrogen promoted proliferation of human primary hepatocytes. Estrogen accelerated hepatocarcinogenesis specifically in male zebrafish. Chemical inhibition or genetic loss of GPER1 significantly reduced tumor development in the zebrafish. CONCLUSIONS In an analysis of zebrafish and human liver cells and tissues, we found GPER1 to be a hepatic estrogen sensor that regulates liver growth during development, regeneration, and tumorigenesis. Inhibitors of GPER1 might be developed for liver cancer prevention or treatment. TRANSCRIPT PROFILING The accession number in the Gene Expression Omnibus is GSE92544.
Collapse
Affiliation(s)
- Saireudee Chaturantabut
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arkadi Shwartz
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Andrew G. Cox
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts;,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kyle Labella
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arnout G. Schepers
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Song Yang
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
| | - Marianna Aravena
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York
| | - Yariv Houvras
- Departments of Surgery and Medicine, Weill Cornell Medical College, New York, New York
| | - Liliana Mancio-Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Shannon Romano
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel A. Gorelick
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David E. Cohen
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York
| | - Leonard I. Zon
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts;,Howard Hughes Medical Institute, Chevy Chase, Maryland;,Harvard Stem Cell Institute, Cambridge, Massachusetts;,Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts;,Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts;,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Trista E. North
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts;,Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Wolfram Goessling
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts; Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Divison of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
35
|
Ali MS, Anuradha V, Yogananth N, Krishnakumar S. Heart and liver regeneration in zebrafish using silver nanoparticle synthesized from Turbinaria conoides – In vivo. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Callahan SJ, Tepan S, Zhang YM, Lindsay H, Burger A, Campbell NR, Kim IS, Hollmann TJ, Studer L, Mosimann C, White RM. Cancer modeling by Transgene Electroporation in Adult Zebrafish (TEAZ). Dis Model Mech 2018; 11:dmm.034561. [PMID: 30061297 PMCID: PMC6177007 DOI: 10.1242/dmm.034561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
Transgenic animals are invaluable for modeling cancer genomics, but often require complex crosses of multiple germline alleles to obtain the desired combinations. Zebrafish models have advantages in that transgenes can be rapidly tested by mosaic expression, but typically lack spatial and temporal control of tumor onset, which limits their utility for the study of tumor progression and metastasis. To overcome these limitations, we have developed a method referred to as Transgene Electroporation in Adult Zebrafish (TEAZ). TEAZ can deliver DNA constructs with promoter elements of interest to drive fluorophores, oncogenes or CRISPR-Cas9-based mutagenic cassettes in specific cell types. Using TEAZ, we created a highly aggressive melanoma model via Cas9-mediated inactivation of Rb1 in the context of BRAFV600E in spatially constrained melanocytes. Unlike prior models that take ∼4 months to develop, we found that TEAZ leads to tumor onset in ∼7 weeks, and these tumors develop in fully immunocompetent animals. As the resulting tumors initiated at highly defined locations, we could track their progression via fluorescence, and documented deep invasion into tissues and metastatic deposits. TEAZ can be deployed to other tissues and cell types, such as the heart, with the use of suitable transgenic promoters. The versatility of TEAZ makes it widely accessible for rapid modeling of somatic gene alterations and cancer progression at a scale not achievable in other in vivo systems.
Collapse
Affiliation(s)
- Scott J Callahan
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA.,Memorial Sloan Kettering Cancer Center, Developmental Biology, New York, NY 10065, USA.,Memorial Sloan Kettering Cancer Center, Gerstner Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Stephanie Tepan
- Memorial Sloan Kettering Cancer Center, 2017 Summer Clinical Oncology Research Experience (SCORE) Program, New York, NY 10065, USA.,Hunter College, New York, NY 10065, USA
| | - Yan M Zhang
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA
| | - Helen Lindsay
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich 8057, Switzerland
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Nathaniel R Campbell
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Isabella S Kim
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA
| | - Travis J Hollmann
- Memorial Sloan Kettering Cancer Center, Pathology, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA .,Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
37
|
Bhattacharya M, Ghosh S, Malick RC, Patra BC, Das BK. Therapeutic applications of zebrafish (Danio rerio) miRNAs linked with human diseases: A prospective review. Gene 2018; 679:202-211. [PMID: 30201335 DOI: 10.1016/j.gene.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are the class of small, non-coding RNAs that are produced from precursor transcripts by subsequent processing steps mediated by members of the RNaseIII family, Dicer and Drosha protein within cell. The importance of zebrafish miRNAs in regulation of normal cellular development and support to various kinds of metabolism process. Although the zebrafish model provides a fundamental platform for the study of developmental biology but recent work with zebrafish model has expanded its appliance to a broad range of experimental studies relevant to different kind of human diseases. Presently, the zebrafish model is used for the study of cardiovascular disease, schizophrenia, bipolar I disorder in eyes, psoriasis, spinal cord injury, cancer and diabetes that showing in some selected miRNAs are regulate these diseases in molecular levels. Here, a superior drive performed to depict the fundamental utilization of the zebrafish miRNAs that targeted to several clinical diseases connected to human. This review aims to provide a summary of understanding of the cellular mechanism which is responsible for selected diseases and suggests some therapeutic application for inhibition of miRNA functions.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Soumendu Ghosh
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Ramesh Chandra Malick
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Bidhan Chandra Patra
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India.
| |
Collapse
|
38
|
Vinothkumar R, Ceasar SA, Divyarupa A. Chemosuppressive effect of plumbagin on human non-small lung cancer cell xenotransplanted zebrafish. Indian J Cancer 2018; 54:253-256. [PMID: 29199700 DOI: 10.4103/0019-509x.219580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Plumbagin (5-hydroxy-2-methyl-1,4-napthoquinone) derived from Plumbago species is a potential anti-tumour agent. Plumbagin has been tested for anti-cancer activity in vitro and in vivo using mice model. AIM To study the tumour suppressing efficacy of plumbagin using zebrafish model. MATERIALS AND METHODS Human Non-small lung cancer cell line were cultured in vitro and transplanted in to zebrafish. The development of tumour was confirmed by performing histology. The tumour was then allowed to progress in vivo and the fishes were administered with plumbagin orally for three continuous days. The tumour suppression capacity was monitored subsequently using transcriptosome analysis. STATISTICAL METHODS The pixel integrated density obtained was converted into relative gene expression using IBM SPSS. RESULTS The administration of plumbagin had an ability to suppress tumour and the size of the tumour were relatively lesser when compared with the control sample; it has also increased p53 gene expression. CONCLUSION The study helps to conclude that plumbagin is an effective anti-tumour agent against human cancer cells based on the study in vivo in zebrafish.
Collapse
Affiliation(s)
- R Vinothkumar
- Department of Biotechnology, St. Peter's Engineering College, Avadi, Chennai - 600054, India
| | - S A Ceasar
- Department of Biotechnology, St. Peter's Engineering College, Avadi, Chennai - 600054, India
| | - A Divyarupa
- Department of Biotechnology, St. Peter's Engineering College, Avadi, Chennai - 600054, India
| |
Collapse
|
39
|
Völkel P, Dupret B, Le Bourhis X, Angrand PO. [The zebrafish model in oncology]. Med Sci (Paris) 2018; 34:345-353. [PMID: 29658479 DOI: 10.1051/medsci/20183404016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although cell culture and mouse models will remain a cornerstone of cancer research, the unique capabilities of the zebrafish outline the potential of this model for shedding light on cancer biology in vivo. Zebrafish develops cancers spontaneously, after chemical mutagenesis or through genetic manipulations. Furthermore, zebrafish cancers are similar to human tumors at the histological and molecular levels allowing the study of tumor initiation, progression and heterogeneity. Xenotransplantation of human cancer cells in embryos or adult zebrafish presents the advantage of following cancer cell behavior in vivo. Finally, zebrafish embryos are used in molecule screens and contribute to the identification of novel anti-cancer therapeutic strategies. Here, we review different involvements of the zebrafish model in cancer research.
Collapse
Affiliation(s)
- Pamela Völkel
- CNRS Lille, Inserm U908, Université de Lille, Bâtiment SN3, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | - Babara Dupret
- Inserm U908, Université de Lille, Bâtiment SN3, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | - Xuefen Le Bourhis
- Inserm U908, Université de Lille, Bâtiment SN3, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | - Pierre-Olivier Angrand
- Inserm U908, Université de Lille, Bâtiment SN3, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| |
Collapse
|
40
|
Burns AR, Watral V, Sichel S, Spagnoli S, Banse AV, Mittge E, Sharpton TJ, Guillemin K, Kent ML. Transmission of a common intestinal neoplasm in zebrafish by cohabitation. JOURNAL OF FISH DISEASES 2018; 41:569-579. [PMID: 29023774 PMCID: PMC5844789 DOI: 10.1111/jfd.12743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/31/2017] [Accepted: 09/03/2017] [Indexed: 05/04/2023]
Abstract
Intestinal neoplasms are common in zebrafish (Danio rerio) research facilities. These tumours are most often seen in older fish and are classified as small cell carcinomas or adenocarcinomas. Affected fish populations always contain subpopulations with preneoplastic lesions, characterized by epithelial hyperplasia or inflammation. Previous observations indicated that these tumours are unlikely caused by diet, water quality or genetic background, suggesting an infectious aetiology. We performed five transmission experiments by exposure of naïve fish to affected donor fish by cohabitation or exposure to tank effluent water. Intestinal lesions were observed in recipient fish in all exposure groups, including transmissions from previous recipient fish, and moribund fish exhibited a higher prevalence of neoplasms. We found a single 16S rRNA sequence, most similar to Mycoplasma penetrans, to be highly enriched in the donors and exposed recipients compared to unexposed control fish. We further tracked the presence of the Mycoplasma sp. using a targeted PCR test on individual dissected intestines or faeces or tank faeces. Original donor and exposed fish populations were positive for Mycoplasma, while corresponding unexposed control fish were negative. This study indicates an infectious aetiology for these transmissible tumours of zebrafish and suggests a possible candidate agent of a Mycoplasma species.
Collapse
Affiliation(s)
- Adam R. Burns
- Institute of Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403
| | - Virginia. Watral
- Department of Microbiology Oregon State University, Corvallis, OR 97331
| | - Sophie Sichel
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Sean Spagnoli
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331
| | - Allison V. Banse
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Erika Mittge
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Thomas J. Sharpton
- Department of Microbiology Oregon State University, Corvallis, OR 97331
- Department of Statistics, Oregon State University, Corvallis, OR 97331
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Michael L. Kent
- Department of Microbiology Oregon State University, Corvallis, OR 97331
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
41
|
Getchell RG, Bowser PR, Cornwell ER, Pavek T, Baneux P, Kirby D, Sams KL, Marquis H. Safety of Strontium Chloride as a Skeletal Marking Agent for Pacific Salmon. JOURNAL OF AQUATIC ANIMAL HEALTH 2017; 29:181-188. [PMID: 28787240 DOI: 10.1080/08997659.2017.1360412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The purpose of this study was to evaluate the biological effects associated with administering strontium chloride as a marking agent to age-0 Chinook Salmon Oncorhynchus tshawytscha fry. Fish were held in a 0× (0 mg/L), 1× (3,000 mg/L; current standard dosage), 3× (9,000 mg/L), or 5× (15,000 mg/L) solution of strontium chloride for 72 h (three times the standard duration of 24 h). The mortality among fish in the 5× strontium chloride exposure group was significantly higher than that observed in the other groups. A dose-related effect on general fish behavior and on feeding behavior was observed. Fish in all test tanks appeared to feed to satiation, except for fish in the 5× tanks during days 2 and 3. Fish in all other test tanks behaved normally. No dose-related effect on fish growth was detected. Histopathological evaluations showed that fish in the 5× exposure group had a significantly higher number of gill lesions than the 0× group. Our mortality, behavioral, and histological assessments suggested that juvenile Chinook Salmon could be safely immersed for three consecutive days in a 9,000-mg/L solution of strontium chloride. This finding potentially expands the present 1,000-3,000-mg/L dosage and 24-h holding period that can be used to mark juvenile fish with strontium chloride solutions. The research also provides necessary target animal safety data for U.S. Food and Drug Administration approval of strontium chloride as an alternative marking method that is suitable for fish with a short holding time. Received February 19, 2017; accepted July 16, 2017.
Collapse
Affiliation(s)
- Rodman G Getchell
- a Aquatic Animal Health Program, Department of Microbiology and Immunology , College of Veterinary Medicine, Cornell University , 930 Campus Road, Ithaca , New York 14853 , USA
| | - Paul R Bowser
- a Aquatic Animal Health Program, Department of Microbiology and Immunology , College of Veterinary Medicine, Cornell University , 930 Campus Road, Ithaca , New York 14853 , USA
| | - Emily R Cornwell
- b Muddy Branch Veterinary Center , 880 Muddy Branch Road, Gaithersburg , Maryland 20878 , USA
| | - Todd Pavek
- c Center for Animal Resources and Education , Cornell University , 930 Campus Road, Ithaca , New York 14853 , USA
| | - Philippe Baneux
- c Center for Animal Resources and Education , Cornell University , 930 Campus Road, Ithaca , New York 14853 , USA
| | - Drew Kirby
- c Center for Animal Resources and Education , Cornell University , 930 Campus Road, Ithaca , New York 14853 , USA
| | - Kelly L Sams
- a Aquatic Animal Health Program, Department of Microbiology and Immunology , College of Veterinary Medicine, Cornell University , 930 Campus Road, Ithaca , New York 14853 , USA
| | - Hélène Marquis
- a Aquatic Animal Health Program, Department of Microbiology and Immunology , College of Veterinary Medicine, Cornell University , 930 Campus Road, Ithaca , New York 14853 , USA
| |
Collapse
|
42
|
Cuco AP, Santos JI, Abrantes N, Gonçalves F, Wolinska J, Castro BB. Concentration and timing of application reveal strong fungistatic effect of tebuconazole in a Daphnia-microparasitic yeast model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:141-163. [PMID: 29096087 DOI: 10.1016/j.aquatox.2017.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 05/13/2023]
Abstract
Given the importance of pollutant effects on host-parasite relationships and disease spread, the main goal of this study was to assess the influence of different exposure scenarios for the fungicide tebuconazole (concentration×timing of application) on a Daphnia-microparasitic yeast experimental system. Previous results had demonstrated that tebuconazole is able to suppress Metschnikowia bicuspidata infection at ecologically-relevant concentrations; here, we aimed to obtain an understanding of the mechanism underlying the anti-parasitic (fungicidal or fungistatic) action of tebuconazole. We exposed the Daphnia-yeast system to four nominal tebuconazole concentrations at four timings of application (according to the predicted stage of parasite development), replicated on two Daphnia genotypes, in a fully crossed experiment. An "all-or-nothing" effect was observed, with tebuconazole completely suppressing infection from 13.5μgl-1 upwards, independent of the timing of tebuconazole application. A follow-up experiment confirmed that the suppression of infection occurred within a narrow range of tebuconazole concentrations (3.65-13.5μgl-1), although a later application of the fungicide had to be compensated for by a slight increase in concentration to elicit the same anti-parasitic effect. The mechanism behind this anti-parasitic effect seems to be the inhibition of M. bicuspidata sporulation, since tebuconazole was effective in preventing ascospore production even when applied at a later time. However, this fungicide also seemed to affect the vegetative growth of the yeast, as demonstrated by the enhanced negative effect of the parasite (increasing mortality in one of the host genotypes) at a later time of application of tebuconazole, when no signs of infection were observed. Fungicide contamination can thus affect the severity and spread of disease in natural populations, as well as the inherent co-evolutionary dynamics in host-parasite systems.
Collapse
Affiliation(s)
- Ana P Cuco
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal.
| | - Joana I Santos
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
43
|
Innovative Disease Model: Zebrafish as an In Vivo Platform for Intestinal Disorder and Tumors. Biomedicines 2017; 5:biomedicines5040058. [PMID: 28961226 PMCID: PMC5744082 DOI: 10.3390/biomedicines5040058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the world’s most common cancers and is the second leading cause of cancer deaths, causing more than 50,000 estimated deaths each year. Several risk factors are highly associated with CRC, including being overweight, eating a diet high in red meat and over-processed meat, having a history of inflammatory bowel disease, and smoking. Previous zebrafish studies have demonstrated that multiple oncogenes and tumor suppressor genes can be regulated through genetic or epigenetic alterations. Zebrafish research has also revealed that the activation of carcinogenesis-associated signal pathways plays an important role in CRC. The biology of cancer, intestinal disorders caused by carcinogens, and the morphological patterns of tumors have been found to be highly similar between zebrafish and humans. Therefore, the zebrafish has become an important animal model for translational medical research. Several zebrafish models have been developed to elucidate the characteristics of gastrointestinal diseases. This review article focuses on zebrafish models that have been used to study human intestinal disorders and tumors, including models involving mutant and transgenic fish. We also report on xenograft models and chemically-induced enterocolitis. This review demonstrates that excellent zebrafish models can provide novel insights into the pathogenesis of gastrointestinal diseases and help facilitate the evaluation of novel anti-tumor drugs.
Collapse
|
44
|
Yan C, Yang Q, Shen HM, Spitsbergen JM, Gong Z. Chronically high level of tgfb1a induction causes both hepatocellular carcinoma and cholangiocarcinoma via a dominant Erk pathway in zebrafish. Oncotarget 2017; 8:77096-77109. [PMID: 29100373 PMCID: PMC5652767 DOI: 10.18632/oncotarget.20357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022] Open
Abstract
Liver cancers including both hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) have increased steadily with the prevalence of non-alcoholic steatohepatitis (NASH), but the underlying mechanism for the transition from NASH to liver cancers remains unclear. Here we first employed diet-induced NASH zebrafish and found that elevated level of satiety hormone, leptin, induced overexpression of tgfb1. Then we developed tgfb1a transgenic zebrafish for inducible, hepatocyte-specific expression. Interestingly, chronically high tgfb1a induction in hepatocytes could concurrently drive both HCC and CCA. Molecularly, oncogenicity of Tgfb1 in HCC was dependent on the switch of dominant activated signaling pathway from Smad to Erk in hepatocytes while concurrent activation of both Smad and Erk pathways in cholangiocytes was essential for Tgfb1-induced CCA. These findings pinpointed the novel role of Tgfb1 as a central regulator in the two major types of liver cancers, which was also supported by human liver disease samples.
Collapse
Affiliation(s)
- Chuan Yan
- Department of Biological Sciences, National University of Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Qiqi Yang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jan M Spitsbergen
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
45
|
Sarty KI, Cowie A, Martyniuk CJ. The legacy pesticide dieldrin acts as a teratogen and alters the expression of dopamine transporter and dopamine receptor 2a in zebrafish (Danio rerio) embryos. Comp Biochem Physiol C Toxicol Pharmacol 2017; 194:37-47. [PMID: 28163252 DOI: 10.1016/j.cbpc.2017.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 11/23/2022]
Abstract
Dieldrin (DLD) is a lipophilic pesticide that shows environmental persistence. The objectives were to determine the effects of DLD on GABAergic and dopaminergic systems in developing zebrafish. Both chorionated and dechorionated embryos (~24h post-hatch) were exposed to a single concentration of DLD (0.347-3470μM) for 48h. Following exposure, a subset of larvae was placed into clean water for 6days (i.e. depuration phase). Chorionated embryos showed <15% mortality while dechorionated embryos showed higher mortality (>30%), suggesting that the chorion protected the embryos. Over a 6day depuration phase, there was a dose dependent effect observed in both the "dechorionated and chorionated embryo" treatments for larval mortality (>60%). At the end of depuration, there was no detectable change in neuro-morphological endpoints that included the ratio of notochord length to body length (%) and the ratio of head area to body area (%). However, DLD did induce cardiac edema, skeletal deformities, and tremors. GABA-related transcripts were not affected in abundance by DLD. Conversely, the relative mRNA levels of dopamine transporter (dat1) and dopamine receptor drd2a mRNA were decreased in dechorionated, but not chorionated, embryos. These data suggest that DLD can alter the expression of transcripts related to dopaminergic signaling. Lastly, GABAA receptor subunits gabrB1 and gabrB2, as well as dopamine receptors drd1 and drd2a, were inherently higher in abundance in dechorionated embryos compared to chorionated embryos. This is an important consideration when incorporating transcriptomics into embryo testing as expression levels can change with removal of the chorion prior to exposure.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Chorion/physiology
- Dieldrin/toxicity
- Dopamine Plasma Membrane Transport Proteins/genetics
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Embryonic Development/drug effects
- Gene Expression Regulation, Developmental/drug effects
- Insecticides/toxicity
- Larva/drug effects
- Larva/growth & development
- Larva/metabolism
- Osmolar Concentration
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Subunits/genetics
- Protein Subunits/metabolism
- RNA, Messenger/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Survival Analysis
- Teratogens/toxicity
- Zebrafish/embryology
- Zebrafish/growth & development
- Zebrafish/physiology
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Kathleena I Sarty
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| | - Andrew Cowie
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| | - Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada.
| |
Collapse
|
46
|
Blazer VS, Walsh HL, Braham RP, Hahn CM, Mazik P, McIntyre PB. Tumours in white suckers from Lake Michigan tributaries: pathology and prevalence. JOURNAL OF FISH DISEASES 2017; 40:377-393. [PMID: 27553424 DOI: 10.1111/jfd.12520] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 05/27/2023]
Abstract
The prevalence and histopathology of neoplastic lesions were assessed in white sucker Catostomus commersonii captured at two Lake Michigan Areas of Concern (AOCs), the Sheboygan River and Milwaukee Estuary. Findings were compared to those observed at two non-AOC sites, the Root and Kewaunee rivers. At each site, approximately 200 adult suckers were collected during their spawning migration. Raised skin lesions were observed at all sites and included discrete white spots, mucoid plaques on the body surface and fins and large papillomatous lesions on lips and body. Microscopically, hyperplasia, papilloma and squamous cell carcinoma were documented. Liver neoplasms were also observed at all sites and included both hepatocellular and biliary tumours. Based on land use, the Kewaunee River was the site least impacted by human activities previously associated with fish tumours and had significantly fewer liver neoplasms when compared to the other sites. The proportion of white suckers with liver tumours followed the same patterns as the proportion of urban land use in the watershed: the Milwaukee Estuary had the highest prevalence, followed by the Root, Sheboygan and Kewaunee rivers. The overall skin neoplasm (papilloma and carcinoma) prevalence did not follow the same pattern, although the percentage of white suckers with squamous cell carcinoma exhibited a similar relationship to land use. Testicular tumours (seminoma) were observed at both AOC sites but not at the non-AOC sites. Both skin and liver tumours were significantly and positively associated with age but not sex.
Collapse
Affiliation(s)
- V S Blazer
- Fish Health Branch, Leetown Science Center, U.S. Geological Survey, Kearneysville, WV, USA
| | - H L Walsh
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA
| | - R P Braham
- Fish Health Branch, Leetown Science Center, U.S. Geological Survey, Kearneysville, WV, USA
| | - C M Hahn
- Fish Health Branch, Leetown Science Center, U.S. Geological Survey, Kearneysville, WV, USA
| | - P Mazik
- West Virginia Cooperative Fish and Wildlife Unit, U.S. Geological Survey, West Virginia University, Morgantown, WV, USA
| | - P B McIntyre
- Center for Limnology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
47
|
Martins ML, Watral V, Rodrigues-Soares JP, Kent ML. A method for collecting eggs of Pseudocapillaria tomentosa (Nematoda: Capillariidae) from zebrafish Danio rerio and efficacy of heat and chlorine for killing the nematode's eggs. JOURNAL OF FISH DISEASES 2017; 40:169-182. [PMID: 27334246 PMCID: PMC5182181 DOI: 10.1111/jfd.12501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 05/04/2023]
Abstract
Pseudocapillaria tomentosa is a common pathogen of zebrafish (Danio rerio) in research facilities. We developed a method to collect and concentrate the nematode eggs using a modified sugar centrifugation method and documented their normal development. Embryonating stages with blastomere formation followed by elongation of the embryo prior to larva formation cumulated in developed larvae inside the eggs and hatching after 5-10 day. We then evaluated the efficacy of heat and chlorine to kill them based on a larva development assay. Eggs were exposed to 40, 50, 60 °C for 30 min and 1 h. Chlorine treatment was performed at 100, 250, 500, 1000, 3000 and 6000 ppm for 10 min. Samples exposed to 40 °C for 30 min or 1 h showed incidences of larvated eggs similar to controls. In contrast, no larvation occurred with eggs exposed to either 50 or 60 °C for 30 min or 1 h. Remarkably, in repeated assays, samples exposed to low doses of chlorine (100, 250, 500 and 1000 ppm for 10 min) showed significantly higher incidence of larvation than controls. Eggs treated with 3000 ppm for 10 min did not develop larvae, and no eggs were found after 6000 ppm treatment.
Collapse
Affiliation(s)
- ML Martins
- AQUOS - Aquatic Organism Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, 88040-900, Florianopolis, SC, Brazil
- Departments of Microbiology and Biomedical Sciences, Oregon State University, 97331, Corvallis, OR, USA
| | - V Watral
- Departments of Microbiology and Biomedical Sciences, Oregon State University, 97331, Corvallis, OR, USA
| | - JP Rodrigues-Soares
- AQUOS - Aquatic Organism Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, 88040-900, Florianopolis, SC, Brazil
| | - ML Kent
- Departments of Microbiology and Biomedical Sciences, Oregon State University, 97331, Corvallis, OR, USA
| |
Collapse
|
48
|
Kim H, Greenald D, Vettori A, Markham E, Santhakumar K, Argenton F, van Eeden F. Zebrafish as a model for von Hippel Lindau and hypoxia-inducible factor signaling. Methods Cell Biol 2017; 138:497-523. [DOI: 10.1016/bs.mcb.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
49
|
Vignet C, Larcher T, Davail B, Joassard L, Le Menach K, Guionnet T, Lyphout L, Ledevin M, Goubeau M, Budzinski H, Bégout ML, Cousin X. Fish Reproduction Is Disrupted upon Lifelong Exposure to Environmental PAHs Fractions Revealing Different Modes of Action. TOXICS 2016; 4:toxics4040026. [PMID: 29051429 PMCID: PMC5606653 DOI: 10.3390/toxics4040026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 11/20/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) constitute a large family of organic pollutants emitted in the environment as complex mixtures, the compositions of which depend on origin. Among a wide range of physiological defects, PAHs are suspected to be involved in disruption of reproduction. In an aquatic environment, the trophic route is an important source of chronic exposure to PAHs. Here, we performed trophic exposure of zebrafish to three fractions of different origin, one pyrolytic and two petrogenic. Produced diets contained PAHs at environmental concentrations. Reproductive traits were analyzed at individual, tissue and molecular levels. Reproductive success and cumulative eggs number were disrupted after exposure to all three fractions, albeit to various extents depending on the fraction and concentrations. Histological analyses revealed ovary maturation defects after exposure to all three fractions as well as degeneration after exposure to a pyrolytic fraction. In testis, hypoplasia was observed after exposure to petrogenic fractions. Genes expression analysis in gonads has allowed us to establish common pathways such as endocrine disruption or differentiation/maturation defects. Taken altogether, these results indicate that PAHs can indeed disrupt fish reproduction and that different fractions trigger different pathways resulting in different effects.
Collapse
Affiliation(s)
- Caroline Vignet
- Ifremer, Ecotoxicology Laboratory, Place Gaby Coll, F-17137 L'Houmeau, France.
| | - Thibaut Larcher
- INRA UMR703, APEX, Oniris, F-44307 Nantes, France.
- Oniris, École Nationale vétérinaire, Agro-Alimentaire et de L'alimentation Nantes-Atlantique, LUNAM Université, F-44307 Nantes, France.
| | - Blandine Davail
- Department of Science and Technology, University of Bordeaux 1, EPOC, UMR CNRS 5805, F-33405 Talence, France.
| | - Lucette Joassard
- Ifremer, Fisheries Laboratory, Place Gaby Coll, F-17137 L'Houmeau, France.
| | - Karyn Le Menach
- Department of Science and Technology, University of Bordeaux 1, EPOC, UMR CNRS 5805, F-33405 Talence, France.
| | - Tiphaine Guionnet
- Ifremer, Fisheries Laboratory, Place Gaby Coll, F-17137 L'Houmeau, France.
| | - Laura Lyphout
- Ifremer, Ecotoxicology Laboratory, Place Gaby Coll, F-17137 L'Houmeau, France.
- Ifremer, Fisheries Laboratory, Place Gaby Coll, F-17137 L'Houmeau, France.
| | - Mireille Ledevin
- INRA UMR703, APEX, Oniris, F-44307 Nantes, France.
- Oniris, École Nationale vétérinaire, Agro-Alimentaire et de L'alimentation Nantes-Atlantique, LUNAM Université, F-44307 Nantes, France.
| | - Manon Goubeau
- Ifremer, Ecotoxicology Laboratory, Place Gaby Coll, F-17137 L'Houmeau, France.
| | - Hélène Budzinski
- Department of Science and Technology, University of Bordeaux 1, EPOC, UMR CNRS 5805, F-33405 Talence, France.
| | - Marie-Laure Bégout
- Ifremer, Fisheries Laboratory, Place Gaby Coll, F-17137 L'Houmeau, France.
| | - Xavier Cousin
- Ifremer, Ecotoxicology Laboratory, Place Gaby Coll, F-17137 L'Houmeau, France.
- INRA LPGP, Campus de Beaulieu, F-35042 Rennes, France.
- Ifremer, Laboratoire Adaptation et Adaptabilité des Animaux et des Systèmes, UMR MARBEC, Route de Maguelone, F-34250 Palavas les Flots, France.
| |
Collapse
|
50
|
Abstract
Tissue or cell transplantation is an invaluable technique with a multitude of applications including studying the developmental potential of certain cell populations, dissecting cell-environment interactions, and identifying stem cells. One key technical requirement for performing transplantation assays is the capability of distinguishing the transplanted donor cells from the endogenous host cells and tracing the donor cells over time. The zebrafish has emerged as an excellent model organism for performing transplantation assays, thanks in part to the transparency of embryos and even adults when pigment mutants are employed. Using transgenic techniques and fast-evolving imaging technology, fluorescence-labeled donor cells can be readily identified and studied during development in vivo. In this chapter, we will discuss the rationale of different types of zebrafish transplantation in both embryos and adults and then focus on four detailed methods of transplantation: blastula/gastrula transplantation for mosaic analysis, hematopoietic stem cell transplantation, chemical screening using a transplantation model, and tumor transplantation.
Collapse
Affiliation(s)
- J M Gansner
- Harvard Medical School, Boston, MA, United States
| | - M Dang
- Harvard Medical School, Boston, MA, United States
| | - M Ammerman
- Harvard Medical School, Boston, MA, United States
| | - L I Zon
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|