1
|
Vander Elst N, Bellemans J, Lavigne R, Briers Y, Meyer E. Endolysin NC5 improves early cloxacillin treatment in a mouse model of Streptococcus uberis mastitis. Appl Microbiol Biotechnol 2024; 108:118. [PMID: 38204128 PMCID: PMC10781846 DOI: 10.1007/s00253-023-12820-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Streptococcus uberis frequently causes bovine mastitis, an infectious udder disease with significant economic implications for dairy cows. Conventional antibiotics, such as cloxacillin, sometimes have limited success in eliminating S. uberis as a stand-alone therapy. To address this challenge, the study objective was to investigate the VersaTile engineered endolysin NC5 as a supplemental therapy to cloxacillin in a mouse model of bovine S. uberis mastitis. NC5 was previously selected based on its intracellular killing and biofilm eradicating activity. To deliver preclinical proof-of-concept of this supplemental strategy, lactating mice were intramammarily infected with a bovine S. uberis field isolate and subsequently treated with cloxacillin (30.0 μg) combined with either a low (23.5 μg) or high (235.0 μg) dose of NC5. An antibiotic monotherapy group, as well as placebo treatment, was included as controls. Two types of responders were identified: fast (n = 17), showing response after 4-h treatment, and slow (n = 10), exhibiting no clear response at 4 h post-treatment across all groups. The high-dose combination therapy in comparison with placebo treatment impacted the hallmarks of mastitis in the fast responders by reducing (i) the bacterial load 13,000-fold (4.11 ± 0.78 Δlog10; p < 0.001), (ii) neutrophil infiltration 5.7-fold (p > 0.05), and (iii) the key pro-inflammatory chemokine IL-8 13-fold (p < 0.01). These mastitis hallmarks typically followed a dose response dependent on the amount of endolysin added. The current in vivo study complements our in vitro data and provides preclinical proof-of-concept of NC5 as an adjunct to intramammary cloxacillin treatment. KEY POINTS: • Engineered endolysin NC5 was preclinically evaluated as add-on to cloxacillin treatment. • Two types of mice (slow and fast responding) were observed. • The add-on treatment decreased bacterial load, neutrophil influx, and pro-inflammatory mediators.
Collapse
Affiliation(s)
- Niels Vander Elst
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 21, 3001, Heverlee, Belgium.
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Julie Bellemans
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 21, 3001, Heverlee, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
2
|
Zarn JA, König SLB, Shaw HV, Geiser HC. An analysis of the use of historical control data in the assessment of regulatory pesticide toxicity studies. Regul Toxicol Pharmacol 2024; 154:105724. [PMID: 39426613 DOI: 10.1016/j.yrtph.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The concurrent control group is the most important reference for the interpretation of toxicity studies. However, pooled information on control animals from independent studies, i.e., historical control data (HCD), is also used for the interpretation of results. Currently, an overview on actual HCD use in regulatory toxicology is lacking. Therefore, we evaluated the HCD use of the Joint FAO/WHO Meeting on Pesticide Residues from 2004 to 2021 and compared it with recommendations in regulatory guidelines and in the literature. We found that HCD was used routinely and exclusively to avoid potential false positive decisions regarding the treatment-relatedness of effects, mostly using the HCD range, i.e., the most extreme values, as a benchmark. HCD were not used to avoid potential false negative decisions or for quality control of the index study. The central assumption of the HCD use, namely that the HCD and control group of the index study follow the same underlying distribution because they are samples of the same data generation process, was not investigated, although numerous factors potentially contribute to effect variation between the different control groups pooled in the HCD. We recommend that the existing guidelines be revised to improve the robustness and transparency of toxicological assessments.
Collapse
Affiliation(s)
- Jürg A Zarn
- Federal Food Safety and Veterinary Office (FSVO), Toxicology of Plant Protection Products Sector, Schwarzenburgstrasse 155, 3003, Bern, Switzerland.
| | - Sebastian L B König
- Federal Food Safety and Veterinary Office (FSVO), Toxicology of Plant Protection Products Sector, Schwarzenburgstrasse 155, 3003, Bern, Switzerland
| | - Holly V Shaw
- Federal Food Safety and Veterinary Office (FSVO), Toxicology of Plant Protection Products Sector, Schwarzenburgstrasse 155, 3003, Bern, Switzerland
| | - H Christoph Geiser
- Federal Food Safety and Veterinary Office (FSVO), Toxicology of Plant Protection Products Sector, Schwarzenburgstrasse 155, 3003, Bern, Switzerland
| |
Collapse
|
3
|
Liu Y, Ge RL, Shan ZZ, Wang YJ, Yang YY, Sun X, Luo PL. Adriamycin-induced podocyte injury via the Sema3A/TRPC5/Rac1 pathway. Front Med (Lausanne) 2024; 11:1381479. [PMID: 39301490 PMCID: PMC11410697 DOI: 10.3389/fmed.2024.1381479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Podocytopathies encompass kidney diseases where direct or indirect podocyte injury leads to proteinuria or nephrotic syndrome. Although Semaphorin3A (Sema3A) is expressed in podocytes and tubular cells in adult mammalian kidneys and has a common effect on the progression of podocyte injury, its mechanism remains unclear. Previous studies have shown increased Sema3A expression in various glomerulopathies, indicating a gap in understanding its role. In this study, analysis of human data revealed a positive correlation between the levels of urinary Sema3A and Podocalyxin (PCX), suggesting a close relationship between Sema3A and podocyte loss. Furthermore, the impact of Adriamycin on podocytes was investigated. Adriamycin induced podocyte migration and apoptosis, along with an increase in Sema3A expression, all of which were ameliorated by the inhibition of Sema3A. Importantly, TRPC5 was found to increase the overexpression of Sema3A in podocytes. A TRPC5 inhibitor, AC1903, alleviated podocyte migration and apoptosis, inhibiting the formation of lamellar pseudopodia in the podocyte cytoskeleton by lowering the expression of Rac1. Furthermore, AC1903 relieved massive albuminuria and foot process effacement in the kidneys of Adriamycin-treated mice in vivo. In conclusion, our findings suggest that Sema3A may impact the cytoskeletal stability of podocytes through TRPC5 ion channels, mediated by Rac1, ultimately leading to foot process effacement. Notably, AC1903 demonstrates the potential to reverse Adriamycin-induced foot process fusion and urine protein. These results contribute to a deeper understanding of the mechanisms involved in podocytopathies and highlight the therapeutic potential of targeting the Sema3A-TRPC5 pathway.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Clinical Research Center for Chronic Kidney Disease in Qinghai Province, Xining, China
| | - Ri-Li Ge
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Zhen-Zhen Shan
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Yan-Jun Wang
- Clinical Research Center for Chronic Kidney Disease in Qinghai Province, Xining, China
| | - Yan-Yan Yang
- Clinical Research Center for Chronic Kidney Disease in Qinghai Province, Xining, China
| | - Xue Sun
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Peng-Li Luo
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Clinical Research Center for Chronic Kidney Disease in Qinghai Province, Xining, China
| |
Collapse
|
4
|
De Jesus R, Britton GB, Herrera L, Madrid A, Lleonart R, Fernández PL. Lethality associated with snake venom exposure can be predicted by temperature drop in Swiss mice. Toxicon 2024; 247:107831. [PMID: 38936670 DOI: 10.1016/j.toxicon.2024.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Establishing humane endpoints to minimize animal suffering in studies on snake venom toxicity and antivenom potency tests is crucial. Our findings reveal that Swiss mice exhibit early temperature drop following exposure to different snake venoms and combinations of venoms and antivenoms, predicting later mortality. Evaluating temperature we can identify within 3 h post-inoculation, the animals that will not survive in a period of 48 h. Implementing temperature as a criterion would significantly reduce animal suffering in these studies without compromising the outcomes.
Collapse
Affiliation(s)
- Rosa De Jesus
- Bioterio, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, 0843-01103, Panama.
| | - Gabrielle B Britton
- Centro de Neurociencias, INDICASAT AIP, City of Knowledge, Panama City, 0843-01103, Panama; Sistema Nacional de Investigación (SNI), SENACYT, Panama City, 0816-02852, Panama.
| | - Lizzi Herrera
- Bioterio, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, 0843-01103, Panama.
| | - Alanna Madrid
- Bioterio, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, 0843-01103, Panama.
| | - Ricardo Lleonart
- Sistema Nacional de Investigación (SNI), SENACYT, Panama City, 0816-02852, Panama; Centro de Biología Celular y Molecular de Enfermedades, INDICASAT AIP, City of Knowledge, Panama City, 0843-01103, Panama.
| | - Patricia L Fernández
- Sistema Nacional de Investigación (SNI), SENACYT, Panama City, 0816-02852, Panama; Centro de Biología Celular y Molecular de Enfermedades, INDICASAT AIP, City of Knowledge, Panama City, 0843-01103, Panama.
| |
Collapse
|
5
|
Kinzi J, Hussner J, Seibert I, Vythilingam M, Vonwyl C, Gherardi C, Detampel P, Schwardt O, Ricklin D, Meyer Zu Schwabedissen HE. Impact of OATP2B1 on Pharmacokinetics of Atorvastatin Investigated in rSlco2b1-Knockout and SLCO2B1-Knockin Rats. Drug Metab Dispos 2024; 52:957-965. [PMID: 39038952 DOI: 10.1124/dmd.124.001686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
The organic anion transporting polypeptide (OATP) 2B1 is considered an emerging drug transporter that is found expressed in pharmacokinetically relevant organs such as the liver, small intestine, and kidney. Despite its interaction with various substrate drugs, the understanding of its in vivo relevance is still limited. In this study, we first validated the interaction of atorvastatin with rat OATP2B1 using transiently transfected HeLa cells. Moreover, we characterized our rSlco2b1-knockout and SLCO2B1-knockin rats for mRNA, protein expression, and localization of OATP2B1 in the liver, small intestine, and kidney. The transporter showed the highest expression in the liver followed by the small intestine. In humanized rats, human OATP2B1 is localized on the sinusoidal membrane of hepatocytes. In enterocytes of wild-type and humanized rats, the transporter was detected in the luminal membrane with the vast majority being localized subapical. Subsequently, we assessed atorvastatin pharmacokinetics in male wild-type, rSlco2b1-knockout, and SLCO2B1-knockin rats after a single-dose administration (orally and intravenously). Investigating the contribution of rat OATP2B1 or human OATP2B1 to oral atorvastatin pharmacokinetics revealed no differences in concentration-time profiles or pharmacokinetic parameters. However, when comparing the pharmacokinetics of atorvastatin after intravenous administration in SLCO2B1-humanized rats and knockout animals, notable differences were observed. In particular, the systemic exposure (area under the curve) decreased by approximately 40% in humanized animals, whereas the clearance was 57% higher in animals expressing human OATP2B1. These findings indicate that human OATP2B1 influences pharmacokinetics of atorvastatin after intravenous administration, most likely by contributing to the hepatic uptake. SIGNIFICANCE STATEMENT: Wild-type, rSlco2b1-knockout, and SLCO2B1-humanized Wistar rats were characterized for the expression of rat and human SLCO2B1/OATP2B1. Pharmacokinetic studies of atorvastatin over 24 hours were conducted in male wild-type, rSlco2b1-knockout, and SLCO2B1-humanized rats. After a single-dose intravenous administration, a lower systemic exposure and an increase in clearance were observed in SLCO2B1-humanized rats compared with knockout animals indicating a contribution of OATP2B1 to the hepatic clearance.
Collapse
Affiliation(s)
- Jonny Kinzi
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Janine Hussner
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Mirubagini Vythilingam
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Celina Vonwyl
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Clarisse Gherardi
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Pascal Detampel
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Oliver Schwardt
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Daniel Ricklin
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Henriette E Meyer Zu Schwabedissen
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Bisio MMC, Jurado Medina LS, García-Bournissen F, Gulin JEN. Listen to what the animals say: a systematic review and meta-analysis of sterol 14-demethylase inhibitor efficacy for in vivo models of Trypanosoma cruzi infection. Parasitol Res 2024; 123:248. [PMID: 38904688 DOI: 10.1007/s00436-024-08257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Sterol 14-demethylase (CYP51) inhibitors, encompassing new chemical entities and repurposed drugs, have emerged as promising candidates for Chagas disease treatment, based on preclinical studies reporting anti-Trypanosoma cruzi activity. Triazoles like ravuconazole (RAV) and posaconazole (POS) progressed to clinical trials. Unexpectedly, their efficacy was transient in chronic Chagas disease patients, and their activity was not superior to benznidazole (BZ) treatment. This paper aims to summarize evidence on the global activity of CYP51 inhibitors against T. cruzi by applying systematic review strategies, risk of bias assessment, and meta-analysis from in vivo studies. PubMed and Embase databases were searched for original articles, obtaining fifty-six relevant papers meeting inclusion criteria. Characteristics of animal models, parasite strain, treatment schemes, and cure rates were extracted. Primary outcomes such as maximum parasitaemia values, survival, and parasitological cure were recorded for meta-analysis, when possible. The risk of bias was uncertain in most studies. Animals treated with itraconazole, RAV, or POS survived significantly longer than the infected non-treated groups (RR = 4.85 [3.62, 6.49], P < 0.00001), and they showed no differences with animals treated with positive control drugs (RR = 1.01 [0.98, 1.04], P = 0.54). Furthermore, the overall analysis showed that RAV or POS was not likely to achieve parasitological cure when compared with BZ or NFX treatment (OD = 0.49 [0.31, 0.77], P = 0.002). This systematic review contributes to understanding why the azoles had failed in clinical trials and, more importantly, how to improve the animal models of T. cruzi infection by filling the gaps between basic, translational, and clinical research.
Collapse
Affiliation(s)
- Margarita María Catalina Bisio
- Instituto Nacional de Parasitología (INP) 'Dr. Mario Fatala Chaben'-ANLIS 'Dr. Carlos G. Malbrán', Buenos Aires, Argentina. Av. Paseo Colón 568, C1097, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Smeldy Jurado Medina
- Dipartimento Di Scienze Mediche E Chirurgiche, Alma Mater Studiorum, Università Di Bologna, Via San Giacomo 12, 2 Floor, 55. 40126, BO. Bologna, Italy
| | - Facundo García-Bournissen
- Division of Paediatric Clinical Pharmacology, Department of Paediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, 800 Commissioners Rd. E., Rm. B1-437., London, ON, Canada
| | - Julián Ernesto Nicolás Gulin
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina.
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Ratz-Wirsching V, Habermeyer J, Moceri S, Harrer J, Schmitz C, von Hörsten S. Gene-dosage- and sex-dependent differences in the prodromal-Like phase of the F344tgHD rat model for Huntington disease. Front Neurosci 2024; 18:1354977. [PMID: 38384482 PMCID: PMC10879377 DOI: 10.3389/fnins.2024.1354977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
In Huntington disease (HD) the prodromal phase has been increasingly investigated and is currently in focus for early interventional treatments. Also, the influence of sex on disease progression and severity in patients is under discussion, as a sex-specific impact has been reported in transgenic rodent models for HD. To this end, we have been studying these aspects in Sprague Dawley rats transgenic for HD. Here, we took up on the congenic F344tgHD rat model, expressing a fragmented Htt construct with 51 CAG repeats on an inbred F344 rat background and characterized potential sexual dimorphism and gene-dosage effects in rats during the pre-symptomatic phase (1-8 months of age). Our study comprises a longitudinal phenotyping of motor function, emotion and sensorimotor gating, as well as screening of metabolic parameters with classical and automated assays in combination with investigation of molecular HD hallmarks (striatal cell number and volume estimation, appearance of HTT aggregates). Differences between sexes became apparent during middle age, particularly in the motor and sensorimotor domains. Female individuals were generally more active, demonstrated different gait characteristics than males and less anxiolytic-like behavior. Alterations in both the time course and affected behavioral domains varied between male and female F344tgHD rats. First subtle behavioral anomalies were detected in transgenic F344tgHD rats prior to striatal MSN cell loss, revealing a prodromal-like phase in this model. Our findings demonstrate that the congenic F344tgHD rat model shows high face-validity, closely resembling the human disease's temporal progression, while having a relatively low number of CAG repeats, a slowly progressing pathology with a prodromal-like phase and a comparatively subtle phenotype. By differentiating the sexes regarding HD-related changes and characterizing the prodromal-like phase in this model, these findings provide a foundation for future treatment studies.
Collapse
Affiliation(s)
- Veronika Ratz-Wirsching
- Department of Experimental Therapy, University Hospital Erlangen, Erlangen, Germany
- Preclinical Experimental Center, Friedrich-Alexander-University, Erlangen-Nürnberg, Erlangen, Germany
| | - Johanna Habermeyer
- Department of Experimental Therapy, University Hospital Erlangen, Erlangen, Germany
- Preclinical Experimental Center, Friedrich-Alexander-University, Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Moceri
- Department of Experimental Therapy, University Hospital Erlangen, Erlangen, Germany
| | - Julia Harrer
- Department of Experimental Therapy, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Schmitz
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, University Hospital Erlangen, Erlangen, Germany
- Preclinical Experimental Center, Friedrich-Alexander-University, Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Elies L, Guillaume E, Gorieu M, Neves P, Schorsch F. Historical Control Data of Spontaneous Pathological Findings in C57BL/6J Mice Used in 18-Month Dietary Carcinogenicity Assays. Toxicol Pathol 2024; 52:99-113. [PMID: 38757264 DOI: 10.1177/01926233241248658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A retrospective analysis in C57BL6/J mice used in dietary carcinogenicity studies was performed to determine the survival rate, causes of death and incidences of spontaneous non-tumoral and tumoral findings. Data were collected from 1600 mice from control dose groups of sixteen 18-month carcinogenicity assays performed between 2003 and 2021 at the same test facility with similar environmental conditions and experimental procedures. The survival rate was high in both sexes (81%-85%) and the causes of humane euthanasia or death were mainly non-tumoral (chronic ulcerative dermatitis, atrial thrombosis). Benign tumors were more frequent than malignant tumors and females were more affected than males. Pituitary gland adenoma in females, lymphoma, bronchioloalveolar adenoma, and harderian gland adenoma in both sexes were the most common tumors. Systemic amyloidosis, the most frequent non-tumoral lesion, was observed variably across studies without sex predilection. The analysis by cohort (3 time periods of 6 years) showed a tendency toward higher incidences of lymphoma and pituitary gland adenoma and lower incidences of amyloidosis over time. The results presented here provide for the first time a robust set of control historical data in untreated C57BL/6J mice kept for 18 months contributing to build in depth knowledge of this animal model.
Collapse
Affiliation(s)
- Laëtitia Elies
- Charles River Laboratories, Saint-Germain-Nuelles, France
| | | | | | | | | |
Collapse
|
9
|
Ryabova YV, Sutunkova MP, Minigalieva IA, Shabardina LV, Filippini T, Tsatsakis A. Toxicological effects of selenium nanoparticles in laboratory animals: A review. J Appl Toxicol 2024; 44:4-16. [PMID: 37312419 DOI: 10.1002/jat.4499] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
This paper provides a comprehensive summary of the main toxicological studies conducted on selenium nanoparticles (NPs) using laboratory animals, up until February 28, 2023. A literature search revealed 17 articles describing experimental studies conducted on warm-blooded animals. Despite some uncertainties, in vivo studies have demonstrated that selenium NPs have an adverse effect on laboratory animals, as evidenced by several indicators of general toxic action. These effects include reductions of body mass, changes in hepatotoxicity indices (increased enzyme activity and accumulation of selenium in the liver), and the possibility of impairment of fatty acid, protein, lipid, and carbohydrate metabolisms. However, no specific toxic action attributable solely to selenium has been identified. The LOAEL and NOAEL values are contradictory. The NOAEL was 0.22 mg/kg body weight per day for males and 0.33 mg/kg body weight per day for females, while the LOAEL was assumed to be a dose of 0.05 mg/kg of nanoselenium. This LOAEL value is much higher for rats than for humans. The relationship between the adverse effects of selenium NPs and exposure dose is controversial and presents a wide typological diversity. Further research is needed to clarify the absorption, metabolism, and long-term toxicity of selenium NPs, which is critical to improving the risk assessment of these compounds.
Collapse
Affiliation(s)
- Yuliya V Ryabova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Yekaterinburg, Russian Federation
| | - Marina P Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
| | - Ilzira A Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Yekaterinburg, Russian Federation
| | - Lada V Shabardina
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
| | - Tommaso Filippini
- CREAGEN Research Center for Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
10
|
Junho CVC, Frisch J, Soppert J, Wollenhaupt J, Noels H. Cardiomyopathy in chronic kidney disease: clinical features, biomarkers and the contribution of murine models in understanding pathophysiology. Clin Kidney J 2023; 16:1786-1803. [PMID: 37915935 PMCID: PMC10616472 DOI: 10.1093/ckj/sfad085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 11/03/2023] Open
Abstract
The cardiorenal syndrome (CRS) is described as a multi-organ disease encompassing bidirectionally heart and kidney. In CRS type 4, chronic kidney disease (CKD) leads to cardiac injury. Different pathological mechanisms have been identified to contribute to the establishment of CKD-induced cardiomyopathy, including a neurohormonal dysregulation, disturbances in the mineral metabolism and an accumulation of uremic toxins, playing an important role in the development of inflammation and oxidative stress. Combined, this leads to cardiac dysfunction and cardiac pathophysiological and morphological changes, like left ventricular hypertrophy, myocardial fibrosis and cardiac electrical changes. Given that around 80% of dialysis patients suffer from uremic cardiomyopathy, the study of cardiac outcomes in CKD is clinically highly relevant. The present review summarizes clinical features and biomarkers of CKD-induced cardiomyopathy and discusses underlying pathophysiological mechanisms recently uncovered in the literature. It discloses how animal models have contributed to the understanding of pathological kidney-heart crosstalk, but also provides insights into the variability in observed effects of CKD on the heart in different CKD mouse models, covering both "single hit" as well as "multifactorial hit" models. Overall, this review aims to support research progress in the field of CKD-induced cardiomyopathy.
Collapse
Affiliation(s)
| | - Janina Frisch
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Center for Human and Molecular Biology, Homburg/Saar, Germany
| | - Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
- Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
11
|
van Walstijn C, Verweij S, Care R, Rigsby P, Clapper EB, Markey K, Vandebriel RJ, Stickings P, Hoefnagel MHN. Variability of in vivo potency assays of whole-cell pertussis, inactivated polio, and meningococcal B vaccines. Vaccine 2023; 41:5603-5613. [PMID: 37527955 DOI: 10.1016/j.vaccine.2023.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/23/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
For the batch release of vaccines, potency release assays are required. Non-animal in vitro tests have numerous advantages and are preferred; however, several vaccines are still released using in vivo assays. Their major drawback is the inherent variability with its practical implications. We quantified the variability of in vivo potency release assays for whole-cell pertussis, inactivated polio and meningococcal B (MenB) vaccines which showed large CV (Coefficient of Variation) ranging from 34% to 125%. As inherent variability might potentially be attributed to the highly variable immune system between individual animals, we evaluated the antibody titres to four MenB antigens in 344 individual outbred mice. These varied strongly, with more than 100-fold differences in antibody titres in responsive mice. Furthermore, within individual mice there was generally no correlation between the strengths of the responses to the four antigens. A mouse with a very low or no response to one antigen in many cases exhibited a strong response to another antigen. The large differences between individual animals is likely a considerable contributor to the inherent variability of in vivo potency assays. Our data again support the notion that it is preferred to move away from in vivo potency assays for monitoring batch to batch consistency as part of vaccine batch release testing.
Collapse
Affiliation(s)
- Cerissa van Walstijn
- CBG-MEB (Medicines Evaluation Board), Graadt van Roggens weg 500, 3531 AH Utrecht, the Netherlands
| | - Stefan Verweij
- CBG-MEB (Medicines Evaluation Board), Graadt van Roggens weg 500, 3531 AH Utrecht, the Netherlands
| | - Rory Care
- Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Peter Rigsby
- Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Eli-Boaz Clapper
- Dept. Methodology & Statistics, Utrecht University, the Netherlands
| | - Kevin Markey
- Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Rob J Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Paul Stickings
- Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Marcel H N Hoefnagel
- CBG-MEB (Medicines Evaluation Board), Graadt van Roggens weg 500, 3531 AH Utrecht, the Netherlands.
| |
Collapse
|
12
|
Oyaga MR, Serra I, Kurup D, Koekkoek SKE, Badura A. Delay eyeblink conditioning performance and brain-wide c-Fos expression in male and female mice. Open Biol 2023; 13:220121. [PMID: 37161289 PMCID: PMC10170203 DOI: 10.1098/rsob.220121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Delay eyeblink conditioning has been extensively used to study associative learning and the cerebellar circuits underlying this task have been largely identified. However, there is a little knowledge on how factors such as strain, sex and innate behaviour influence performance during this type of learning. In this study, we used male and female mice of C57BL/6J (B6) and B6CBAF1 strains to investigate the effect of sex, strain and locomotion in delay eyeblink conditioning. We performed a short and a long delay eyeblink conditioning paradigm and used a c-Fos immunostaining approach to explore the involvement of different brain areas in this task. We found that both B6 and B6CBAF1 females reach higher learning scores compared to males in the initial stages of learning. This sex-dependent difference was no longer present as the learning progressed. Moreover, we found a strong positive correlation between learning scores and voluntary locomotion irrespective of the training duration. c-Fos immunostainings after the short paradigm showed positive correlations between c-Fos expression and learning scores in the cerebellar cortex and brainstem, as well as previously unreported areas. By contrast, after the long paradigm, c-Fos expression was only significantly elevated in the brainstem. Taken together, we show that differences in voluntary locomotion and activity across brain areas correlate with performance in delay eyeblink conditioning across strains and sexes.
Collapse
Affiliation(s)
- Maria Roa Oyaga
- Department of Neuroscience, Erasmus MC, 3000 Rotterdam, the Netherlands
| | - Ines Serra
- Department of Neuroscience, Erasmus MC, 3000 Rotterdam, the Netherlands
| | - Devika Kurup
- Department of Neuroscience, Erasmus MC, 3000 Rotterdam, the Netherlands
| | | | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC, 3000 Rotterdam, the Netherlands
- Netherlands Institute of Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam 1105 BA, the Netherlands
| |
Collapse
|
13
|
Munhoz LS, Poester VR, Benelli JL, Melo AM, Trápaga MR, Nogueira CW, Zeni G, Flores MM, Stevens DA, Xavier MO. Effectiveness of diphenyl diselenide against experimental sporotrichosis caused by Sporothrix brasiliensis. Med Mycol 2023; 61:myad035. [PMID: 36977574 DOI: 10.1093/mmy/myad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Diphenyl diselenide (PhSe)2 is a stable organoselenium compound with promising in vitro antifungal activity against several fungi, including Sporothrix brasiliensis. This species is associated with feline and zoonotic sporotrichosis, an emergent mycosis in Latin America. We evaluated the activity of (PhSe)2, alone and in association with itraconazole, in the treatment of sporotrichosis caused by S. brasiliensis, in a murine model. Sixty mice were subcutaneously infected with S. brasiliensis in the footpad and treated by gavage for 30 consecutive days. The six treatment groups received: no active treatment, itraconazole (50 mg/kg), (PhSe)2 at 1, 5, and 10 mg/kg dosages, or itraconazole (50 mg/kg) + (PhSe)2 1 mg/kg, once a day, starting seven days post-inoculation. A significant reduction in the fungal burden of internal organs was achieved in the groups treated with (PhSe)2 1 mg/kg or itraconazole alone in comparison with the untreated group. Higher dosages (5 and 10 mg/kg) of (PhSe)2 increased the clinical manifestation of sporotrichosis and mortality rate. Treatment with both itraconazole and (PhSe)2 1 mg/kg was better than their activities alone (P < .001). This is the first demonstration of the potential use of (PhSe)2, alone or with the present drug of choice, in the treatment of sporotrichosis.
Collapse
Affiliation(s)
- Lívia Silveira Munhoz
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FAMED), Universidade Federal do Rio Grande (FURG), Rio Grande city, Rio Grande do Sul state, 96203-900, Brazil
| | - Vanice Rodrigues Poester
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FAMED), Universidade Federal do Rio Grande (FURG), Rio Grande city, Rio Grande do Sul state, 96203-900, Brazil
- Universidade Federal de Santa Maria (UFSM), Santa Maria city, Rio Grande do Sul state, 97105-900, Brazil
| | - Jéssica Louise Benelli
- Hospital Universitário Dr. Miguel Riet Corrêa Jr. (HU-FURG), vinculado à Empresa Brasileira de Serviços Hospitalares (EBSERH), Rio Grande city, Rio Grande do Sul state, 96200-190, Brazil
| | - Aryse Martins Melo
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, 1600-609, Portugal
| | - Mariana Rodrigues Trápaga
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FAMED), Universidade Federal do Rio Grande (FURG), Rio Grande city, Rio Grande do Sul state, 96203-900, Brazil
| | - Cristina Wayne Nogueira
- Universidade Federal de Santa Maria (UFSM), Santa Maria city, Rio Grande do Sul state, 97105-900, Brazil
| | - Gilson Zeni
- Universidade Federal de Santa Maria (UFSM), Santa Maria city, Rio Grande do Sul state, 97105-900, Brazil
| | - Mariana Martins Flores
- Universidade Federal de Santa Maria (UFSM), Santa Maria city, Rio Grande do Sul state, 97105-900, Brazil
| | - David A Stevens
- California Institute for Medical Research, San Jose, California 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, California 94305, USA
| | - Melissa Orzechowski Xavier
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FAMED), Universidade Federal do Rio Grande (FURG), Rio Grande city, Rio Grande do Sul state, 96203-900, Brazil
| |
Collapse
|
14
|
Rowe A. Recommendations to improve use and reporting of statistics in animal experiments. Lab Anim 2022:236772221140669. [DOI: 10.1177/00236772221140669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Flaws in experimental statistics are a major contributor to the poor reproducibility of animal experiments. Informed decisions about whether conclusions are justified requires clear reporting of experimental data and the statistical methods used to analyse them. When data are misinterpreted, manipulated or concealed to generate publications, it creates an illusion that chance observations are robust data which confirm the hypotheses presented. Attempts to reproduce and advance such observations can propagate large areas of irreproducible science. This hinders scientific progress, erodes public support for research, damages reputations and wastes resources. This review analyses and explains recommendations to improve use and reporting of statistics in animal experiments.
Collapse
|
15
|
Devlin R, Roberts E. Building a healthy mouse model ecosystem to interrogate cancer biology. Dis Model Mech 2022; 15:276587. [PMID: 36098988 PMCID: PMC9509886 DOI: 10.1242/dmm.049795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In a recent study, Sargent et al. characterise several novel Rag1-/- mouse strains and demonstrate that genetic background strongly influences xenograft development and phenotype. Here, we discuss this work within the broader context of cancer mouse modelling. We argue that new technologies will enable insights into how specific models align with human disease states and that this knowledge can be used to develop a diverse ecosystem of complementary mouse models of cancer. By utilising these diverse, well-characterised models to provide multiple perspectives on specific cancers, it should be possible to reduce the inappropriate attrition of sound hypotheses while protecting against false positives. Furthermore, careful re-introduction of biological variation, be that through outbred populations, environmental diversity or including animals of both sexes, can ensure that results are more broadly applicable and are less impacted by particular traits of homogeneous experimental populations. Thus, careful characterisation and judicious use of an array of mouse models provides an opportunity to address some of the issues surrounding both the reproducibility and translatability crises often referenced in pre-clinical cancer research.
Collapse
Affiliation(s)
- Ryan Devlin
- Beatson Institute for Cancer Research, University of Glasgow, Glasgow G61 1BD, UK
| | - Ed Roberts
- Beatson Institute for Cancer Research, University of Glasgow, Glasgow G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
16
|
Model systems and organisms for addressing inter- and intra-species variability in risk assessment. Regul Toxicol Pharmacol 2022; 132:105197. [DOI: 10.1016/j.yrtph.2022.105197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
|
17
|
Lee YT, Tan YJ, Mok PY, Kaur G, Sreenivasan S, Falasca M, Oon CE. Sex-divergent expression of cytochrome P450 and SIRTUIN 1-7 proteins in toxicity evaluation of a benzimidazole-derived epigenetic modulator in mice. Toxicol Appl Pharmacol 2022; 445:116039. [PMID: 35489524 DOI: 10.1016/j.taap.2022.116039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Abstract
Efforts in precision medicine to combat aberrant epigenome have led to the development of epigenetic targeting drugs. We have previously reported the capability of the BZD9L1 epigenetic modulator to impede colorectal tumour growth in vitro and in vivo through sirtuin (SIRT) inhibition. Although most benzimidazole derivatives are commonly less toxic, their effects on SIRTs and cytochrome P450 (CYP) regulations have not been explored alongside toxicity assessments. SIRTs are histone deacetylases that are crucial in maintaining metabolic homeostasis, whereas CYP is essential in drug metabolism. This study aims to determine the toxicology profile of BZD9L1 through oral acute and repeated dose toxicity evaluations, along with molecular analyses of SIRT, CYP and relevant toxicity markers through western blot and quantitative polymerase chain reaction (qPCR). BZD9L1 demonstrated no sign of acute toxicity at the limit dose (2000 mg/kg). The 28-day toxicity study highlighted the tolerability of repeated dose administration without adverse effects. BZD9L1 showed a sex-divergent regulation of hepatic SIRT1-7, CYP2A5 and CYP2D proteins. Furthermore, BZD9L1 did not induce the expression of organ injury proteins or alter the gene expression of cellular function indicators in mouse liver and kidneys, hence demonstrating, at least in part, the safety of BZD9L1 in short-term evaluations. The present study cautions for personalised strategies when employing benzimidazole-derived epigenetic therapeutics.
Collapse
Affiliation(s)
- Yeuan Ting Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Yi Jer Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Pei Yi Mok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Sasidharan Sreenivasan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Marco Falasca
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
18
|
Sayahi Z, Komaki A, Saidi Jam M, Karimi SA, Raoufi S, Mardani P, Naderishahab M, Sarihi A, Mirnajafi-Zadeh J. Effect of ramosetron, a 5-HT 3 receptor antagonist on the severity of seizures and memory impairment in electrical amygdala kindled rats. J Physiol Sci 2022; 72:1. [PMID: 35034601 PMCID: PMC10717980 DOI: 10.1186/s12576-022-00825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022]
Abstract
The entorhinal cortex (EC) plays a pivotal role in epileptogenesis and seizures. EC expresses high density of serotonergic receptors, especially 5-HT3 receptors. Cognitive impairment is common among people with epilepsy. The present study investigated the role of 5-HT3 receptor on the severity of seizures and learning and memory impairment by electrical kindling of amygdala in rats. The amygdala kindling was conducted in a chronic kindling manner in male Wistar rats. In fully kindled animals, ramosetron (as a potent and selective 5-HT3 receptor antagonist) was microinjected unilaterally (ad doses of 1, 10 or 100 µg/0.5 µl) into the EC 5 min before the novel object recognition (NOR) and Y-maze tests or kindling stimulations. Applying ramosetron at the concentration of 100 μg/0.5 µl (but not at 1 and 10 µg/0.5 µl) reduced afterdischarge (AD) duration and increased stage 4 latency in the kindled rats. Moreover, the obtained data from the NOR test showed that treatment by ramosetron (10 and 100 µg/0.5 µl) increased the discrimination index in the fully kindled animals. Microinjection of ramosetron (10 and 100 µg/0.5 µl) in fully kindled animals reversed the kindling induced changes in the percentage of spontaneous alternation in Y-maze task. The findings demonstrated an anticonvulsant role for a selective 5-HT3 receptor antagonist microinjected into the EC, therefore, suggesting an excitatory role for the EC 5-HT3 receptors in the amygdala kindling model of epilepsy. This anticonvulsive effect was accompanied with a restoring effect on cognitive behavior in NOR and Y-maze tests.
Collapse
Affiliation(s)
- Zeynab Sayahi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Saidi Jam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
| | - Parastoo Mardani
- Department of Biology, Faculty of Sciences, Payame Noor University, Sanandaj, Iran
| | - Marzieh Naderishahab
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran.
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, 1411713116, Tehran, Iran.
| |
Collapse
|
19
|
Pohorec V, Križančić Bombek L, Skelin Klemen M, Dolenšek J, Stožer A. Glucose-Stimulated Calcium Dynamics in Beta Cells From Male C57BL/6J, C57BL/6N, and NMRI Mice: A Comparison of Activation, Activity, and Deactivation Properties in Tissue Slices. Front Endocrinol (Lausanne) 2022; 13:867663. [PMID: 35399951 PMCID: PMC8988149 DOI: 10.3389/fendo.2022.867663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Although mice are a very instrumental model in islet beta cell research, possible phenotypic differences between strains and substrains are largely neglected in the scientific community. In this study, we show important phenotypic differences in beta cell responses to glucose between C57BL/6J, C57BL/6N, and NMRI mice, i.e., the three most commonly used strains. High-resolution multicellular confocal imaging of beta cells in acute pancreas tissue slices was used to measure and quantitatively compare the calcium dynamics in response to a wide range of glucose concentrations. Strain- and substrain-specific features were found in all three phases of beta cell responses to glucose: a shift in the dose-response curve characterizing the delay to activation and deactivation in response to stimulus onset and termination, respectively, and distinct concentration-encoding principles during the plateau phase in terms of frequency, duration, and active time changes with increasing glucose concentrations. Our results underline the significance of carefully choosing and reporting the strain to enable comparison and increase reproducibility, emphasize the importance of analyzing a number of different beta cell physiological parameters characterizing the response to glucose, and provide a valuable standard for future studies on beta cell calcium dynamics in health and disease in tissue slices.
Collapse
Affiliation(s)
- Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- *Correspondence: Andraž Stožer, ; Jurij Dolenšek,
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- *Correspondence: Andraž Stožer, ; Jurij Dolenšek,
| |
Collapse
|
20
|
Methods and protocols for chemotherapy-induced peripheral neuropathy (CIPN) mouse models using paclitaxel. Methods Cell Biol 2022; 168:277-298. [DOI: 10.1016/bs.mcb.2021.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Karczmarczyk U, Ochniewicz P, Laszuk E, Tomczyk K, Garnuszek P. How does the Selection of Laboratory Mice Affect the Results of Physiological Distribution of Radiopharmaceuticals? Curr Radiopharm 2022; 15:84-91. [PMID: 34053431 DOI: 10.2174/1874471014666210528124953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The choice of mice strain can significantly influence the physiological distribution and may lead to an inadequate assessment of the radiopharmaceutical properties. OBJECTIVE This work aims to present how the legal requirements that apply to radiopharmaceuticals contained in the various guidelines determine the choice of the mouse strain for quality control and preclinical studies and affect the results of physiological distribution. METHODS Swiss and BALB/c mice were chosen as commonly used strains in experiments for research and quality control purposes. Radiopharmaceuticals, i.e., preparations containing one or more radioactive isotopes in their composition, are subject to the same legal regulations at every stage of the research, development and routine quality control as all other medicines. Therefore, in vivo experiments are to be carried out to confirm the pharmacological properties and safety. Moreover, if a radiopharmaceutical's chemical structure is unknown or complex and impossible to be determined by physicochemical methods, an analysis of physiological distribution in a rodent animal model needs to be performed. RESULTS In our studies, thirty-six mice (Swiss n=18, BALB/c n=18) were randomly divided into six groups and injected with the following radiopharmaceuticals: [99mTc]Tc-Colloid, [99mTc]Tc-DTPA and [99mTc]Tc-EHIDA. Measurement of physiological distribution was conducted following the requirements of European Pharmacopoeia (Ph. Eur.) monograph 0689, internal instructions and the United States Pharmacopeia (USP) monograph. Additionally, at preclinical studies, ten mice (Swiss n=5, BALB/c n=5) were injected with the new tracer [99mTc]Tc-PSMA-T4, and its physiological distribution has been compared. The p-value <0.05 proved the statistical significance of the radiopharmaceutical physiological distribution. CONCLUSION We claim that mice strain choice can significantly influence the physiological distribution and may lead to inaccurate quality control results and incomprehensible interpretation of the results from preclinical in vivo studies of a new radiopharmaceutical.
Collapse
Affiliation(s)
- Urszula Karczmarczyk
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, ul. Andrzeja Sołtana 7, Poland
| | - Piotr Ochniewicz
- Karolinska Institute, Department of Clinical Neuroscience, Karolinska University Hospital SOLNA, R5:02, SE-171 76 Stockholm, Sweden
| | - Ewa Laszuk
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, ul. Andrzeja Sołtana 7, Poland
| | - Kamil Tomczyk
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, ul. Andrzeja Sołtana 7, Poland
| | - Piotr Garnuszek
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, ul. Andrzeja Sołtana 7, Poland
| |
Collapse
|
22
|
A synthetically lethal nanomedicine delivering novel inhibitors of polynucleotide kinase 3'-phosphatase (PNKP) for targeted therapy of PTEN-deficient colorectal cancer. J Control Release 2021; 334:335-352. [PMID: 33933518 DOI: 10.1016/j.jconrel.2021.04.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022]
Abstract
Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) is a major tumor-suppressor protein that is lost in up to 75% of aggressive colorectal cancers (CRC). The co-depletion of PTEN and a DNA repair protein, polynucleotide kinase 3'-phosphatase (PNKP), has been shown to lead to synthetic lethality in several cancer types including CRC. This finding inspired the development of novel PNKP inhibitors as potential new drugs against PTEN-deficient CRC. Here, we report on the in vitro and in vivo evaluation of a nano-encapsulated potent, but poorly water-soluble lead PNKP inhibitor, A83B4C63, as a new targeted therapeutic for PTEN-deficient CRC. Our data confirmed the binding of A83B4C63, as free or nanoparticle (NP) formulation, to intracellular PNKP using the cellular thermal shift assay (CETSA), in vitro and in vivo. Dose escalating toxicity studies in healthy CD-1 mice, based on measurement of animal weight changes and biochemical blood analysis, revealed the safety of both free and nano-encapsulated A83B4C63, at assessed doses of ≤50 mg/kg. Nano-carriers of A83B4C63 effectively inhibited the growth of HCT116/PTEN-/- xenografts in NIH-III nude mice following intravenous (IV) administration, but not that of wild-type HCT116/PTEN+/+ xenografts. This was in contrast to IV administration of A83B4C63 solubilized with the aid of Cremophor EL: Ethanol (CE), which led to similar tumor growth to that of formulation excipients (NP or CE without drug) or 5% dextrose. This observation was attributed to the higher levels of A83B4C63 delivered to tumor tissue by its NP formulation. Our data provide evidence for the success of NPs of A83B4C63, as novel synthetically lethal nano-therapeutics in the treatment of PTEN-deficient CRC. This research also highlights the potential of successful application of nanomedicine in the drug development process.
Collapse
|
23
|
Koshko L, Debarba LK, Sacla M, de Lima JBM, Didyuk O, Fakhoury P, Sadagurski M. In Utero Maternal Benzene Exposure Predisposes to the Metabolic Imbalance in the Offspring. Toxicol Sci 2021; 180:252-261. [PMID: 33502539 DOI: 10.1093/toxsci/kfab010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental chemicals play a significant role in the development of metabolic disorders, especially when exposure occurs early in life. We have recently demonstrated that benzene exposure, at concentrations relevant to cigarette smoke, induces a severe metabolic imbalance in a sex-specific manner affecting male but not female mice. However, the roles of benzene in the development of aberrant metabolic outcomes following gestational exposure, remain largely unexplored. In this study, we exposed pregnant C57BL/6JB dams to benzene at 50 ppm or filtered air for 6 h/day from gestational day 0.5 (GD0.5) through GD21 and studied male and female offspring metabolic phenotypes in their adult life. While no changes in body weight or body composition were observed between groups, 4-month-old male and female offspring exhibited reduced parameters of energy homeostasis (VO2, VCO2, and heat production). However, only male offspring from benzene-exposed dams were glucose intolerant and insulin resistant at this age. By 6 months of age, both male and female offspring exhibited marked glucose intolerance however, only male offspring developed severe insulin resistance. This effect was accompanied by elevated insulin secretion and increased beta-cell mass only in male offspring. In support, Homeostatic Model Assessment for Insulin Resistance, the index of insulin resistance was elevated only in male but not in female offspring. Regardless, both male and female offspring exhibited a considerable increase in hepatic gene expression associated with inflammation and endoplasmic reticulum stress. Thus, gestational benzene exposure can predispose offspring to increased susceptibility to the metabolic imbalance in adulthood with differential sensitivity between sexes.
Collapse
Affiliation(s)
- Lisa Koshko
- Department of Biological Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, Michigan 48202, USA
| | - Lucas K Debarba
- Department of Biological Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, Michigan 48202, USA
| | - Mikaela Sacla
- Department of Biological Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, Michigan 48202, USA
| | - Juliana B M de Lima
- Department of Biological Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, Michigan 48202, USA
| | - Olesya Didyuk
- Department of Biological Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, Michigan 48202, USA
| | - Patrick Fakhoury
- Department of Biological Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, Michigan 48202, USA
| | - Marianna Sadagurski
- Department of Biological Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, Michigan 48202, USA
| |
Collapse
|
24
|
Shihana F, Barron ML, Mohamed F, Seth D, Buckley NA. MicroRNAs in toxic acute kidney injury: Systematic scoping review of the current status. Pharmacol Res Perspect 2021; 9:e00695. [PMID: 33600084 PMCID: PMC7891060 DOI: 10.1002/prp2.695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 11/14/2022] Open
Abstract
Acute kidney injury induced by nephrotoxic agents is common, increasing in incidence and associated with considerable morbidity and mortality in developing countries. MicroRNAs are stable biomarkers that can be detected in extracellular fluids. This systematic scoping review aims to describe published research on urinary and circulating microRNAs in toxic acute kidney injury in both animal and human studies. We conducted a literature search, using EMBASE and Medline, for articles on urinary and circulating microRNA in nephrotoxic injuries to February 2020. A total of 21 publications studied acute kidney injury from 12 different toxic agents. Cisplatin was the most common nephrotoxic agent (n = 10), followed by antibiotics (n = 4). There were no randomized controlled trials. An increase in urinary miR-218 predicted acute kidney injury in six different studies, suggesting it is a promising biomarker for nephrotoxin-induced acute kidney injury. There were many factors that prevented a more comprehensive synthesis of microRNA performance including highly variable models, no consistent protocols for RNA isolation, cDNA synthesis and PCR amplification, and variability in normalization methods using reference controls. In conclusion, while microRNAs are promising biomarkers to study nephrotoxic acute kidney injury, the replication of most positive findings is not assessable due to deficient reporting of negative outcomes. A very narrow range of poisons have been studied, and more human data are required. In particular, further studies are needed on the most important causes of nephrotoxic injury, such as pesticides, chemicals, snake envenoming, and medicines other than aminoglycosides and cisplatin.
Collapse
Affiliation(s)
- Fathima Shihana
- Clinical Pharmacology and Toxicology Research GroupDiscipline of PharmacologyFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- South Asian Clinical Toxicology of Research CollaborationFaculty of MedicineUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Melissa L. Barron
- Department of PharmacyFaculty of Allied Health SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Fahim Mohamed
- Clinical Pharmacology and Toxicology Research GroupDiscipline of PharmacologyFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- South Asian Clinical Toxicology of Research CollaborationFaculty of MedicineUniversity of PeradeniyaPeradeniyaSri Lanka
- Department of PharmacyFaculty of Allied Health SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Devanshi Seth
- Discipline of Clinical Medicine & Addiction MedicineFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Drug Health ServicesRoyal Prince Alfred HospitalCamperdownNSWAustralia
- The Centenary Institute of Cancer Medicine & Cell BiologyThe University of SydneySydneyNSWAustralia
| | - Nicholas A. Buckley
- Clinical Pharmacology and Toxicology Research GroupDiscipline of PharmacologyFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- South Asian Clinical Toxicology of Research CollaborationFaculty of MedicineUniversity of PeradeniyaPeradeniyaSri Lanka
| |
Collapse
|
25
|
Hosszu A, Kaucsar T, Seeliger E, Fekete A. Animal Models of Renal Pathophysiology and Disease. Methods Mol Biol 2021; 2216:27-44. [PMID: 33475992 DOI: 10.1007/978-1-0716-0978-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity worldwide. Animal models are essential tools to better understand the pathomechanisms of kidney-related illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the degree of fibrosis and inflammation. This chapter aims to provide a comprehensive overview of animal models of acute and chronic kidney diseases, highlighting MRI-specific considerations, advantages, and pitfalls, and thus assisting the researcher in experiment planning.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
Collapse
Affiliation(s)
- Adam Hosszu
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tamas Kaucsar
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Erdmann Seeliger
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Andrea Fekete
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
26
|
Buckley RM, Davis BW, Brashear WA, Farias FHG, Kuroki K, Graves T, Hillier LW, Kremitzki M, Li G, Middleton RP, Minx P, Tomlinson C, Lyons LA, Murphy WJ, Warren WC. A new domestic cat genome assembly based on long sequence reads empowers feline genomic medicine and identifies a novel gene for dwarfism. PLoS Genet 2020; 16:e1008926. [PMID: 33090996 PMCID: PMC7581003 DOI: 10.1371/journal.pgen.1008926] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
The domestic cat (Felis catus) numbers over 94 million in the USA alone, occupies households as a companion animal, and, like humans, suffers from cancer and common and rare diseases. However, genome-wide sequence variant information is limited for this species. To empower trait analyses, a new cat genome reference assembly was developed from PacBio long sequence reads that significantly improve sequence representation and assembly contiguity. The whole genome sequences of 54 domestic cats were aligned to the reference to identify single nucleotide variants (SNVs) and structural variants (SVs). Across all cats, 16 SNVs predicted to have deleterious impacts and in a singleton state were identified as high priority candidates for causative mutations. One candidate was a stop gain in the tumor suppressor FBXW7. The SNV is found in cats segregating for feline mediastinal lymphoma and is a candidate for inherited cancer susceptibility. SV analysis revealed a complex deletion coupled with a nearby potential duplication event that was shared privately across three unrelated cats with dwarfism and is found within a known dwarfism associated region on cat chromosome B1. This SV interrupted UDP-glucose 6-dehydrogenase (UGDH), a gene involved in the biosynthesis of glycosaminoglycans. Importantly, UGDH has not yet been associated with human dwarfism and should be screened in undiagnosed patients. The new high-quality cat genome reference and the compilation of sequence variation demonstrate the importance of these resources when searching for disease causative alleles in the domestic cat and for identification of feline biomedical models. The practice of genomic medicine is predicated on the availability of a high quality reference genome and an understanding of the impact of genome variation. Such resources have lead to countless discoveries in humans, however by working exclusively within the framework of human genetics, our potential for understanding diseases biology is limited, as similar analyses in other species have often lead to novel insights. The generation of Felis_catus_9.0, a new high quality reference genome for the domestic cat, helps facilitate the expansion of genomic medicine into the Felis lineage. Using Felis_catus_9.0 we analyze the landscape of genomic variation from a collection of 54 cats within the context of human gene constraint. The distribution of variant impacts in cats is correlated with patterns of gene constraint in humans, indicating the utility of this reference for identifying novel mutations that cause phenotypes relevant to human and cat health. Moreover, structural variant analysis revealed a novel variant for feline dwarfism in UGDH, a gene that has not been associated with dwarfism in any other species, suggesting a role for UGDH in cases of undiagnosed dwarfism in humans.
Collapse
Affiliation(s)
- Reuben M. Buckley
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Wesley A. Brashear
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Fabiana H. G. Farias
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics, Washington University, St. Louis, Missouri, United States of America
| | - Kei Kuroki
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Tina Graves
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - LaDeana W. Hillier
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Milinn Kremitzki
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Gang Li
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | | | - Patrick Minx
- Donald Danforth Plant Science, St Louis, Missouri, United States of America
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Wesley C. Warren
- Division of Animal Sciences, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
27
|
12α-Hydroxylated bile acid induces hepatic steatosis with dysbiosis in rats. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158811. [PMID: 32896622 DOI: 10.1016/j.bbalip.2020.158811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 01/06/2023]
Abstract
There is an increasing need to explore the mechanism of the progression of non-alcoholic fatty liver disease. Steroid metabolism is closely linked to hepatic steatosis and steroids are excreted as bile acids (BAs). Here, we demonstrated that feeding WKAH/HkmSlc inbred rats a diet supplemented with cholic acid (CA) at 0.5 g/kg for 13 weeks induced simple steatosis without obesity. Liver triglyceride and cholesterol levels were increased accompanied by mild elevation of aminotransferase activities. There were no signs of inflammation, insulin resistance, oxidative stress, or fibrosis. CA supplementation increased levels of CA and taurocholic acid (TCA) in enterohepatic circulation and deoxycholic acid (DCA) levels in cecum with an increased ratio of 12α-hydroxylated BAs to non-12α-hydroxylated BAs. Analyses of hepatic gene expression revealed no apparent feedback control of BA and cholesterol biosynthesis. CA feeding induced dysbiosis in cecal microbiota with enrichment of DCA producers, which underlines the increased cecal DCA levels. The mechanism of steatosis was increased expression of Srebp1 (positive regulator of liver lipogenesis) through activation of the liver X receptor by increased oxysterols in the CA-fed rats, especially 4β-hydroxycholesterol (4βOH) formed by upregulated expression of hepatic Cyp3a2, responsible for 4βOH formation. Multiple regression analyses identified portal TCA and cecal DCA as positive predictors for liver 4βOH levels. The possible mechanisms linking these predictors and upregulated expression of Cyp3a2 are discussed. Overall, our observations highlight the role of 12α-hydroxylated BAs in triggering liver lipogenesis and allow us to explore the mechanisms of hepatic steatosis onset, focusing on cholesterol and BA metabolism.
Collapse
|
28
|
Abstract
Breast cancer is one of the most common cancers worldwide, which makes it a very impactful malignancy in the society. Breast cancers can be classified through different systems based on the main tumor features and gene, protein, and cell receptors expression, which will determine the most advisable therapeutic course and expected outcomes. Multiple therapeutic options have already been proposed and implemented for breast cancer treatment. Nonetheless, their use and efficacy still greatly depend on the tumor classification, and treatments are commonly associated with invasiveness, pain, discomfort, severe side effects, and poor specificity. This has demanded an investment in the research of the mechanisms behind the disease progression, evolution, and associated risk factors, and on novel diagnostic and therapeutic techniques. However, advances in the understanding and assessment of breast cancer are dependent on the ability to mimic the properties and microenvironment of tumors in vivo, which can be achieved through experimentation on animal models. This review covers an overview of the main animal models used in breast cancer research, namely in vitro models, in vivo models, in silico models, and other models. For each model, the main characteristics, advantages, and challenges associated to their use are highlighted.
Collapse
|
29
|
Comparative testis structure and function in three representative mice strains. Cell Tissue Res 2020; 382:391-404. [DOI: 10.1007/s00441-020-03239-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
|
30
|
A low coefficient of variation in hepatic triglyceride concentration in an inbred rat strain. Lipids Health Dis 2020; 19:137. [PMID: 32546264 PMCID: PMC7296630 DOI: 10.1186/s12944-020-01320-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022] Open
Abstract
Background Inbred strains are characterized by less genetic variation, which suggests usefulness of inbred strains for evaluations of various parameters. In this study, experimental reproducibility in several parameters was compared between an outbred Wistar rat and Wistar King A Hokkaido (WKAH/HkmSlc) rat, the inbred strain that is originated from Wistar rats. Methods Difference of variations was investigated in parameters of body compositions and liver functions such as body weight, liver weight, liver triglycerides (TG), liver cholesterol and plasma alanine aminotransferase activity (ALT) between WKAH rats and outbred Wistar rats by using the coefficient of variation (CV). Results There was no difference in the CVs of body weight and relative liver weight between WKAH and Wistar rats. The CVs of body weight and relative liver weight were below 10% in both WKAH and Wistar rats. The CVs of TG, cholesterol, and ALT in Wistar rats were between 30 and 40%, whereas those in WKAH rats were between 10 and 25%. A low CV level of TG was observed in WKAH rats compared to that in Wistar rats regardless of the duration of the experimental period in those rat strains. Conclusion The low CV values in metabolic parameters involved in liver functions in the inbred rats suggested an advantage of using inbred rather than outbred rats for the evaluation of liver lipid metabolism.
Collapse
|
31
|
Valic MS, Halim M, Schimmer P, Zheng G. Guidelines for the experimental design of pharmacokinetic studies with nanomaterials in preclinical animal models. J Control Release 2020; 323:83-101. [PMID: 32278829 DOI: 10.1016/j.jconrel.2020.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
A shared feature in the value proposition of every nanomaterial-based drug delivery systems is the desirable improvement in the disposition (or ADME) and pharmacokinetic profiles of the encapsulated drug being delivered. Remarkable progress has been made towards understanding the complex and multifactorial relationships between pharmacokinetic profiles and nanomaterial physicochemical properties, biological interactions, species physiology, etc. These advances have fuelled the rational design of numerous nanomaterials with long-circulation times and improved tissue accumulation (e.g., in tumours). Unfortunately, a central weakness in many of these research efforts has been the inconsistent and insufficient characterisation of the pharmacokinetic profiles of nanomaterials in scientific reporting-a problem affecting the majoirty of of contemporary nanomaterials literature and innovative nanomaterials in early stages of preclinical development especially. Given the significant role of pharmacokinetic assessments to serve as guideposts for deciding whether to continue with the preclinical development and clinical translation of drug delivery systems, the prevalence of poor pharmacokinetic characterisations in nanomaterials research is particularly alarming. A conspicuous problem in many reports is the inappropriate selection of experimental designs and methodologies for studying nanomaterial pharmacokinetics, the consequences of which are increased uncertainty over the accurate interpretation of reported pharmacokinetic data and diminished experimental reproducibility throughout the field. Thus, there is renewed interest in the establishment of consistent and comprehensive strategies for designing preclinical experiments to assess the pharmacokinetics of nanomaterials with diverse physicochemical properties. Towards this end, herein are proposed simple guidelines for the experimental design of pharmacokinetic studies with nanomaterials drawn from the best research practices, principle strategies, and important considerations used in industry for collecting pharmacokinetic data in preclinical animal models. Specifically, key experimental design factors in these studies are identified and examined in the context of nanomaterials for optimality, including blood sampling strategy and technique, sample allocation and sampling time window, test species selection, experimental sources of pharmacokinetic variability, etc. Methods for noninvasive imaging-derived pharmacokinetic assessments of theranostic nanomaterials are also explored with particular focus on emission tomography imaging modalities. Taken together, this review will provide nanomaterial researchers with practical knowledge and pragmatic recommendations for selecting the best designs and methodologies for assessing the pharmacokinetic profiles of their nanomaterials, and hopefully maximise the chances of translational success of these innovative products into humans.
Collapse
Affiliation(s)
- Michael S Valic
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, 101 College Street, Room 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Michael Halim
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, 101 College Street, Room 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Pamela Schimmer
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, 101 College Street, Room 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, 101 College Street, Room 5-354, Toronto, Ontario M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Room 15-701, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
32
|
Real M, Barnhill MS, Higley C, Rosenberg J, Lewis JH. Drug-Induced Liver Injury: Highlights of the Recent Literature. Drug Saf 2020; 42:365-387. [PMID: 30343418 DOI: 10.1007/s40264-018-0743-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI), herbal-induced liver injury, and herbal and dietary supplement (HDS)-induced liver injury are an important aspect of drug safety. Knowledge regarding responsible drugs, mechanisms, risk factors, and the diagnostic tools to detect liver injury have continued to grow in the past year. This review highlights what we considered the most significant publications from among more than 1800 articles relating to liver injury from medications, herbal products, and dietary supplements in 2017 and 2018. The US Drug-Induced Liver Injury Network (DILIN) prospective study highlighted several areas of ongoing study, including the potential utility of human leukocyte antigens and microRNAs as DILI risk factors and new data on racial differences, the role of alcohol consumption, factors associated with prognosis, and updates on the clinical signatures of autoimmune DILI, thiopurines, and HDS agents. Novel data were also generated from the Spanish and Latin American DILI registries as well as from Chinese and Korean case series. A few new agents causing DILI were added to the growing list in the past 2 years, including sodium-glucose co-transporter-2 inhibitors, as were new aspects of chemotherapy-associated liver injury. A number of cases reported previously described hepatotoxins confirmed via the Roussel Uclaf Causality Assessment Method (RUCAM; e.g., norethisterone, methylprednisolone, glatiramer acetate) and/or the DILIN method (e.g., celecoxib, dimethyl fumarate). Additionally, much work centered on elucidating the pathophysiology of DILI, including the importance of bile salt export pumps and immune-mediated mechanisms. Finally, it must be noted that, while hundreds of new studies described DILI in 2017-2018, the quality of such reports must always be addressed. Björnsson reminds us to remain very critical of the data when addressing the future utility of a study, which is why it is so important to adhere to a standardized method such as RUCAM when determining DILI causality. While drug-induced hepatotoxicity remains a diagnosis of exclusion, the diverse array of publications that appeared in 2017 and 2018 provided important advances in our understanding of DILI, paving the way for our improved ability to make a more definitive diagnosis and risk assessment.
Collapse
Affiliation(s)
- Mark Real
- Division of Gastroenterology and Hepatology, Georgetown University Hospital, Washington, DC, USA
| | - Michele S Barnhill
- Department of Medicine, Georgetown University Hospital, Washington, DC, USA
| | - Cory Higley
- Department of Medicine, Georgetown University Hospital, Washington, DC, USA
| | - Jessica Rosenberg
- Department of Medicine, Georgetown University Hospital, Washington, DC, USA
| | - James H Lewis
- Division of Gastroenterology and Hepatology, Georgetown University Hospital, Washington, DC, USA.
| |
Collapse
|
33
|
Muhammad-Azam F, Nur-Fazila SH, Ain-Fatin R, Mustapha Noordin M, Yimer N. Histopathological changes of acetaminophen-induced liver injury and subsequent liver regeneration in BALB/C and ICR mice. Vet World 2019; 12:1682-1688. [PMID: 32009746 PMCID: PMC6925052 DOI: 10.14202/vetworld.2019.1682-1688] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
Background and Aim: Laboratory mice are widely used as a research model to provide insights into toxicological studies of various xenobiotic. Acetaminophen (APAP) is an antipyretic and analgesic drug that is commonly known as paracetamol, an ideal hepatotoxicant to exhibit centrilobular necrosis in laboratory mice to resemble humans. However, assessment of histopathological changes between mouse strains is important to decide the optimal mouse model used in APAP toxicity study. Therefore, we aim to assess the histomorphological features of APAP-induced liver injury (AILI) in BALB/C and Institute of Cancer Research (ICR) mice. Materials and Methods: Twenty-five ICR mice and 20 BALB/C mice were used where five animals as control and the rest were randomly divided into four time points at 5, 10, 24 and 48 hours post-dosing (hpd). They were induced with 500 mg/kg APAP intraperitoneally. Liver sections were processed for hematoxylin-eosin staining and histopathological changes were scored based on grading methods. Results: Intense centrilobular damage was observed as early as 5 hpd in BALB/C as compared to ICR mice, which was observed at 10 hpd. The difference of liver injury between ICR and BALB/C mice is due to dissimilarity in the genetic line-up that related to different elimination pathways of APAP toxicity. However, at 24 hpd, the damage was markedly subsided and liver regeneration had taken place for both ICR and BALB/C groups with evidence of mitotic figures. This study showed that normal liver architecture was restored after the clearance of toxic insult. Conclusion: AILI was exhibited earlier in BALB/C than ICR mice but both underwent liver recovery at later time points.
Collapse
Affiliation(s)
- Fazil Muhammad-Azam
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Saulol Hamid Nur-Fazila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Raslan Ain-Fatin
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohamed Mustapha Noordin
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurhusien Yimer
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
34
|
Ohlemiller KK. Mouse methods and models for studies in hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3668. [PMID: 31795658 DOI: 10.1121/1.5132550] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Laboratory mice have become the dominant animal model for hearing research. The mouse cochlea operates according to standard "mammalian" principles, uses the same cochlear cell types, and exhibits the same types of injury as found in other mammals. The typical mouse lifespan is less than 3 years, yet the age-associated pathologies that may be found are quite similar to longer-lived mammals. All Schuknecht's types of presbycusis have been identified in existing mouse lines, some favoring hair cell loss while others favor strial degeneration. Although noise exposure generally affects the mouse cochlea in a manner similar to other mammals, mice appear more prone to permanent alterations to hair cells or the organ of Corti than to hair cell loss. Therapeutic compounds may be applied systemically or locally through the tympanic membrane or onto (or through) the round window membrane. The thinness of the mouse cochlear capsule and annular ligament may promote drug entry from the middle ear, although an extremely active middle ear lining may quickly remove most drugs. Preclinical testing of any therapeutic will always require tests in multiple animal models. Mice constitute one model providing supporting evidence for any therapeutic, while genetically engineered mice can test hypotheses about mechanisms.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Saint Louis, Missouri 63110, USA
| |
Collapse
|
35
|
Comparison of post-traumatic changes in circulating and bone marrow leukocytes between BALB/c and CD-1 mouse strains. PLoS One 2019; 14:e0222594. [PMID: 31527918 PMCID: PMC6748677 DOI: 10.1371/journal.pone.0222594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022] Open
Abstract
This manuscript emerged from a larger third-party funded project investigating a new poly-trauma model and its influence upon secondary sepsis. The present sub-study compared selected leukocyte subpopulations in the circulation and bone marrow after polytrauma in BALB/c versus CD-1 mice. Animals underwent unilateral femur fracture, splenectomy and hemorrhagic shock. We collected blood and bone marrow for flow cytometry analysis at 24h and 48h post-trauma. Circulating granulocytes (Ly6G+CD11+) increased in both strains after trauma. Only in BALB/c mice circulating CD8+ T-lymphocytes decreased within 48h by 30%. Regulatory T-cells (Tregs, CD4+CD25+CD127low) increased in both strains by approx. 32%. Circulating Tregs and lymphocytes (CD11b-Ly6G-MHC-2+) were always at least 1.5-fold higher in BALB/c, while the bone marrow MHC-2 expression decreased in CD-1 mice (p<0.05). Overall, immune responses to polytrauma were similar in both strains. Additionally, BALB/c expressed higher level of circulating regulatory T-cells and MHC-2-positive lymphocytes compared to CD-1 mice.
Collapse
|
36
|
Benavides F, Rülicke T, Prins JB, Bussell J, Scavizzi F, Cinelli P, Herault Y, Wedekind D. Genetic quality assurance and genetic monitoring of laboratory mice and rats: FELASA Working Group Report. Lab Anim 2019; 54:135-148. [PMID: 31431136 PMCID: PMC7160752 DOI: 10.1177/0023677219867719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetic quality assurance (QA), including genetic monitoring (GeMo) of inbred
strains and background characterization (BC) of genetically altered (GA) animal
models, should be an essential component of any QA programme in laboratory
animal facilities. Genetic quality control is as important for ensuring the
validity of the animal model as health and microbiology monitoring are. It
should be required that studies using laboratory rodents, mainly mice and rats,
utilize genetically defined animals. This paper, presented by the FELASA Working
Group on Genetic Quality Assurance and Genetic Monitoring of Laboratory Murines,
describes the objectives of and available methods for genetic QA programmes in
rodent facilities. The main goals of any genetic QA programme are: (a) to verify
the authenticity and uniformity of inbred stains and substrains, thus ensuring a
genetically reliable colony maintenance; (b) to detect possible genetic
contamination; and (c) to precisely describe the genetic composition of GA
lines. While this publication focuses mainly on mouse and rat genetic QA, the
principles will apply to other rodent species some of which are briefly
mentioned within the context of inbred and outbred stocks.
Collapse
Affiliation(s)
- Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Center, USA
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine, Vienna, Austria
| | - Jan-Bas Prins
- The Francis Crick Institute, London, UK.,Leiden University Medical Centre, Leiden, The Netherlands
| | - James Bussell
- Biomedical and Veterinary Services Department, University of Oxford, Oxford, UK
| | | | - Paolo Cinelli
- Department of Trauma Surgery, University of Zurich, Zurich, Switzerland
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France.,Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, CELPHEDIA-PHENOMIN-ICS, Illkirch, France
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
37
|
Whitlon DS, Young H, Barna M, Depreux F, Richter CP. Hearing differences in Hartley guinea pig stocks from two breeders. Hear Res 2019; 379:69-78. [DOI: 10.1016/j.heares.2019.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 01/26/2023]
|
38
|
Nunes QM, Su D, Brownridge PJ, Simpson DM, Sun C, Li Y, Bui TP, Zhang X, Huang W, Rigden DJ, Beynon RJ, Sutton R, Fernig DG. The heparin-binding proteome in normal pancreas and murine experimental acute pancreatitis. PLoS One 2019; 14:e0217633. [PMID: 31211768 PMCID: PMC6581253 DOI: 10.1371/journal.pone.0217633] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Acute pancreatitis (AP) is acute inflammation of the pancreas, mainly caused by gallstones and alcohol, driven by changes in communication between cells. Heparin-binding proteins (HBPs) play a central role in health and diseases. Therefore, we used heparin affinity proteomics to identify extracellular HBPs in pancreas and plasma of normal mice and in a caerulein mouse model of AP. Many new extracellular HBPs (360) were discovered in the pancreas, taking the total number of HBPs known to 786. Extracellular pancreas HBPs form highly interconnected protein-protein interaction networks in both normal pancreas (NP) and AP. Thus, HBPs represent an important set of extracellular proteins with significant regulatory potential in the pancreas. HBPs in NP are associated with biological functions such as molecular transport and cellular movement that underlie pancreatic homeostasis. However, in AP HBPs are associated with additional inflammatory processes such as acute phase response signalling, complement activation and mitochondrial dysfunction, which has a central role in the development of AP. Plasma HBPs in AP included known AP biomarkers such as serum amyloid A, as well as emerging targets such as histone H2A. Other HBPs such as alpha 2-HS glycoprotein (AHSG) and histidine-rich glycoprotein (HRG) need further investigation for potential applications in the management of AP. Pancreas HBPs are extracellular and so easily accessible and are potential drug targets in AP, whereas plasma HBPs represent potential biomarkers for AP. Thus, their identification paves the way to determine which HBPs may have potential applications in the management of AP.
Collapse
Affiliation(s)
- Quentin M. Nunes
- Liverpool Pancreatitis Research Group, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| | - Dunhao Su
- Liverpool Pancreatitis Research Group, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Department of Biochemistry, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| | - Philip J. Brownridge
- Department of Biochemistry, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
- Centre for Proteome Research, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| | - Deborah M. Simpson
- Department of Biochemistry, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
- Centre for Proteome Research, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| | - Changye Sun
- Department of Biochemistry, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yong Li
- Department of Biochemistry, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
- College of Life and Environmental Science, Wen Zhou University, Wenzhou, China
| | - Thao P. Bui
- Department of Biochemistry, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| | - Xiaoying Zhang
- Liverpool Pancreatitis Research Group, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Wei Huang
- Liverpool Pancreatitis Research Group, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Daniel J. Rigden
- Department of Biochemistry, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| | - Robert J. Beynon
- Department of Biochemistry, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
- Centre for Proteome Research, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - David G. Fernig
- Liverpool Pancreatitis Research Group, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Department of Biochemistry, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
39
|
|
40
|
Abstract
The Collaborative Cross (CC) is a mouse genetic reference population whose range of applications includes quantitative trait loci (QTL) mapping. The design of a CC QTL mapping study involves multiple decisions, including which and how many strains to use, and how many replicates per strain to phenotype, all viewed within the context of hypothesized QTL architecture. Until now, these decisions have been informed largely by early power analyses that were based on simulated, hypothetical CC genomes. Now that more than 50 CC strains are available and more than 70 CC genomes have been observed, it is possible to characterize power based on realized CC genomes. We report power analyses from extensive simulations and examine several key considerations: 1) the number of strains and biological replicates, 2) the QTL effect size, 3) the presence of population structure, and 4) the distribution of functionally distinct alleles among the founder strains at the QTL. We also provide general power estimates to aide in the design of future experiments. All analyses were conducted with our R package, SPARCC (Simulated Power Analysis in the Realized Collaborative Cross), developed for performing either large scale power analyses or those tailored to particular CC experiments.
Collapse
|
41
|
Åhlgren J, Voikar V. Experiments done in Black-6 mice: what does it mean? Lab Anim (NY) 2019; 48:171-180. [DOI: 10.1038/s41684-019-0288-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
|
42
|
Novel quinazolin-4-one derivatives as potentiating agents of doxorubicin cytotoxicity. Bioorg Chem 2019; 82:204-210. [DOI: 10.1016/j.bioorg.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
|
43
|
|
44
|
Assadollahi V, Mohammadi E, Fathi F, Hassanzadeh K, Erfan MBK, Soleimani F, Banafshi O, Yosefi F, Allahvaisi O. Effects of cigarette smoke condensate on proliferation and pluripotency gene expression in mouse embryonic stem cells. J Cell Biochem 2018; 120:4071-4080. [PMID: 30269371 DOI: 10.1002/jcb.27692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of blastocysts. They can be used as valuable experimental models to test the effects of drugs, chemicals, and environmental contaminants such as cigarette smoke condensate (CSC) on preimplantation embryo development. The aim of this study was to evaluate the effect of CSC on ESCs derived from mice with different genetic backgrounds and maternal ages. METHODS The study groups consisted of mouse ESCs (mESCs) obtained from three sources: blastocysts developed from fertilized oocytes of two-month-old (2-C57) and six-month-old (6-C57) C57BL/6 inbred mice and those developed from fertilized oocytes of two-month-old (2-NMRI) NMRI outbred mice. The groups of mESCs were exposed to 0.04, 4, and 40 μg/mL CSC. After exposure, we measured cell viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and real-time polymerase chain reaction for changes in expressions of Oct4, Sox2, Nanog, Ahr, Bax, Bcl2, TFAM, and POLG. The cell doubling time (DT) of these populations was also determined. RESULTS We observed that CSC changed proliferation and DT in the 2-C57 and 6-C57 cells. There was no change in 2-NMRI cells. Exposure to CSC caused changes in the gene expressions and induced apoptosis in all three cell lines. CONCLUSION Based on the results of the study, it can be concluded that CSC has an effect on the viability, DT and gene expression patterns in mouse ESCs and its effects vary based on the genetic background and maternal age of isolated mouse ESCs.
Collapse
Affiliation(s)
- Vahideh Assadollahi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Occupational Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohamad Bager Khadem Erfan
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Farzad Soleimani
- Department of Biology, School of Natural Science, University of Tabriz, Tabriz, Iran
| | - Omid Banafshi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fayeg Yosefi
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ozra Allahvaisi
- Department of Anatomy, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
45
|
Mosedale M. Mouse Population-Based Approaches to Investigate Adverse Drug Reactions. Drug Metab Dispos 2018; 46:1787-1795. [DOI: 10.1124/dmd.118.082834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/06/2018] [Indexed: 01/19/2023] Open
|
46
|
Carter LM, Poty S, Sharma SK, Lewis JS. Preclinical optimization of antibody-based radiopharmaceuticals for cancer imaging and radionuclide therapy-Model, vector, and radionuclide selection. J Labelled Comp Radiopharm 2018; 61:611-635. [PMID: 29412489 PMCID: PMC6081268 DOI: 10.1002/jlcr.3612] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 12/25/2022]
Abstract
Intact antibodies and their truncated counterparts (eg, Fab, scFv fragments) are generally exquisitely specific and selective vectors, enabling recognition of individual cancer-associated molecular phenotypes against a complex and dynamic biomolecular background. Complementary alignment of these advantages with unique properties of radionuclides is a defining paradigm in both radioimmunoimaging and radioimmunotherapy, which remain some of the most adept and promising tools for cancer diagnosis and treatment. This review discusses how translational potency can be maximized through rational selection of antibody-nuclide couples for radioimmunoimaging/therapy in preclinical models.
Collapse
Affiliation(s)
- Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sophie Poty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, New York, USA
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
47
|
A comparative study between outbred and inbred rat strains for the use in in vivo IPV potency testing. Vaccine 2018; 36:2917-2920. [DOI: 10.1016/j.vaccine.2018.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 11/19/2022]
|
48
|
Brekke TD, Steele KA, Mulley JF. Inbred or Outbred? Genetic Diversity in Laboratory Rodent Colonies. G3 (BETHESDA, MD.) 2018; 8:679-686. [PMID: 29242387 PMCID: PMC5919727 DOI: 10.1534/g3.117.300495] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
Nonmodel rodents are widely used as subjects for both basic and applied biological research, but the genetic diversity of the study individuals is rarely quantified. University-housed colonies tend to be small and subject to founder effects and genetic drift; so they may be highly inbred or show substantial genetic divergence from other colonies, even those derived from the same source. Disregard for the levels of genetic diversity in an animal colony may result in a failure to replicate results if a different colony is used to repeat an experiment, as different colonies may have fixed alternative variants. Here we use high throughput sequencing to demonstrate genetic divergence in three isolated colonies of Mongolian gerbil (Meriones unguiculatus) even though they were all established recently from the same source. We also show that genetic diversity in allegedly "outbred" colonies of nonmodel rodents (gerbils, hamsters, house mice, deer mice, and rats) varies considerably from nearly no segregating diversity to very high levels of polymorphism. We conclude that genetic divergence in isolated colonies may play an important role in the "replication crisis." In a more positive light, divergent rodent colonies represent an opportunity to leverage genetically distinct individuals in genetic crossing experiments. In sum, awareness of the genetic diversity of an animal colony is paramount as it allows researchers to properly replicate experiments and also to capitalize on other genetically distinct individuals to explore the genetic basis of a trait.
Collapse
Affiliation(s)
- Thomas D Brekke
- School of Biological Sciences, Bangor University, LL57 2DG, United Kingdom
| | - Katherine A Steele
- School of Environment, Natural Resources and Geography, Bangor University, LL57 2DG, United Kingdom
| | - John F Mulley
- School of Biological Sciences, Bangor University, LL57 2DG, United Kingdom
| |
Collapse
|
49
|
Mosedale M, Kim Y, Brock WJ, Roth SE, Wiltshire T, Eaddy JS, Keele GR, Corty RW, Xie Y, Valdar W, Watkins PB. Editor's Highlight: Candidate Risk Factors and Mechanisms for Tolvaptan-Induced Liver Injury Are Identified Using a Collaborative Cross Approach. Toxicol Sci 2018; 156:438-454. [PMID: 28115652 DOI: 10.1093/toxsci/kfw269] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Clinical trials of tolvaptan showed it to be a promising candidate for the treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD) but also revealed potential for idiosyncratic drug-induced liver injury (DILI) in this patient population. To identify risk factors and mechanisms underlying tolvaptan DILI, 8 mice in each of 45 strains of the genetically diverse Collaborative Cross (CC) mouse population were treated with a single oral dose of either tolvaptan or vehicle. Significant elevations in plasma alanine aminotransferase (ALT) were observed in tolvaptan-treated animals in 3 of the 45 strains. Genetic mapping coupled with transcriptomic analysis in the liver was used to identify several candidate susceptibility genes including epoxide hydrolase 2, interferon regulatory factor 3, and mitochondrial fission factor. Gene pathway analysis revealed that oxidative stress and immune response pathways were activated in response to tolvaptan treatment across all strains, but genes involved in regulation of bile acid homeostasis were most associated with tolvaptan-induced elevations in ALT. Secretory leukocyte peptidase inhibitor (Slpi) mRNA was also induced in the susceptible strains and was associated with increased plasma levels of Slpi protein, suggesting a potential serum marker for DILI susceptibility. In summary, tolvaptan induced signs of oxidative stress, mitochondrial dysfunction, and innate immune response in all strains, but variation in bile acid homeostasis was most associated with susceptibility to the liver response. This CC study has indicated potential mechanisms underlying tolvaptan DILI and biomarkers of susceptibility that may be useful in managing the risk of DILI in ADPKD patients.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - Yunjung Kim
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599
| | - William J Brock
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850.,Brock Scientific Consulting, Montgomery Village, Maryland 20886
| | - Sharin E Roth
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599.,Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599
| | - J Scott Eaddy
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - Gregory R Keele
- Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599
| | - Robert W Corty
- Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599
| | - Yuying Xie
- Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599
| | - William Valdar
- Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599.,Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599
| | - Paul B Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| |
Collapse
|
50
|
Roulois D, Deshayes S, Guilly MN, Nader JS, Liddell C, Robard M, Hulin P, Ouacher A, Le Martelot V, Fonteneau JF, Grégoire M, Blanquart C, Pouliquen DL. Characterization of preneoplastic and neoplastic rat mesothelial cell lines: the involvement of TETs, DNMTs, and 5-hydroxymethylcytosine. Oncotarget 2017; 7:34664-87. [PMID: 27129173 PMCID: PMC5085183 DOI: 10.18632/oncotarget.8970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/10/2016] [Indexed: 12/12/2022] Open
Abstract
Malignant mesothelioma (MM) is one of the worst cancers in terms of clinical outcome, urging the need to establish and characterize new preclinical tools for investigation of the tumorigenic process, improvement of early diagnosis and evaluation of new therapeutic strategies. For these purposes, we characterized a collection of 27 cell lines established from F344 rats, after 136 to 415 days of induction with crocidolite asbestos administered intraperitoneally. Four mesotheliomas were distinguished from 23 preneoplastic mesothelial cell lines (PN) according to their propensity to generate tumors after orthotopic transplantation into syngeneic rats, their growth pattern, and the expression profile of three genes. PN cell lines were further discriminated into groups / subgroups according to morphology in culture and the expression profiles of 14 additional genes. This approach was completed by analysis of positive and negative immunohistochemical MM markers in the four tumors, of karyotype alterations in the most aggressive MM cell line in comparison with a PN epithelioid cell line, and of human normal mesothelial and mesothelioma cells and a tissue array. Our results showed that both the rat and human MM cell lines shared in common a dramatic decrease in the relative expression of Cdkn2a and of epigenetic regulators, in comparison with PN and normal human mesothelial cells, respectively. In particular, we identified the involvement of the relative expression of the Ten-Eleven Translocation (TET) family of dioxygenases and Dnmt3a in relation to the 5-hydroxymethylcytosine level in malignant transformation and the acquisition of metastatic potential.
Collapse
Affiliation(s)
- David Roulois
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Sophie Deshayes
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Joëlle S Nader
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Charly Liddell
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Myriam Robard
- INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Cellular and Tissular Imaging Core Facility (MicroPICell), Nantes, France
| | - Philippe Hulin
- INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Cellular and Tissular Imaging Core Facility (MicroPICell), Nantes, France
| | - Amal Ouacher
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Vanessa Le Martelot
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Jean-François Fonteneau
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marc Grégoire
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Christophe Blanquart
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Daniel L Pouliquen
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| |
Collapse
|