1
|
Ibos KE, Bodnár É, Dinh H, Kis M, Márványkövi F, Kovács ZZA, Siska A, Földesi I, Galla Z, Monostori P, Szatmári I, Simon P, Sárközy M, Csabafi K. Chronic kidney disease may evoke anxiety by altering CRH expression in the amygdala and tryptophan metabolism in rats. Pflugers Arch 2024; 476:179-196. [PMID: 37989901 DOI: 10.1007/s00424-023-02884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Chronic kidney disease (CKD) is associated with anxiety; however, its exact mechanism is not well understood. Therefore, the aim of the present study was to assess the effect of moderate CKD on anxiety in rats. 5/6 nephrectomy was performed in male Wistar rats. 7 weeks after, anxiety-like behavior was assessed by elevated plus maze (EPM), open field (OF), and marble burying (MB) tests. At weeks 8 and 9, urinalysis was performed, and blood and amygdala samples were collected, respectively. In the amygdala, the gene expression of Avp and the gene and protein expression of Crh, Crhr1, and Crhr2 were analyzed. Furthermore, the plasma concentration of corticosterone, uremic toxins, and tryptophan metabolites was measured by UHPLC-MS/MS. Laboratory tests confirmed the development of CKD. In the CKD group, the closed arm time increased; the central time and the total number of entries decreased in the EPM. There was a reduction in rearing, central distance and time in the OF, and fewer interactions with marbles were detected during MB. CKD evoked an upregulation of gene expression of Crh, Crhr1, and Crhr2, but not Avp, in the amygdala. However, there was no alteration in protein expression. In the CKD group, plasma concentrations of p-cresyl-sulfate, indoxyl-sulfate, kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid, xanthurenic acid, 5-hydroxyindoleacetic acid, picolinic acid, and quinolinic acid increased. However, the levels of tryptophan, tryptamine, 5-hydroxytryptophan, serotonin, and tyrosine decreased. In conclusion, moderate CKD evoked anxiety-like behavior that might be mediated by the accumulation of uremic toxins and metabolites of the kynurenine pathway, but the contribution of the amygdalar CRH system to the development of anxiety seems to be negligible at this stage.
Collapse
Affiliation(s)
- Katalin Eszter Ibos
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Semmelweis utca, Szeged, H-6725, Hungary.
| | - Éva Bodnár
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Semmelweis utca, Szeged, H-6725, Hungary
| | - Hoa Dinh
- Department of Biochemistry, Bach Mai Hospital, 78 Giai Phong Street, Phuong Mai, Dong Da, Hanoi, 100000, Vietnam
| | - Merse Kis
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Semmelweis utca, Szeged, H-6725, Hungary
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, 9 Dóm tér, University of Szeged, Szeged, H-6720, Hungary
| | - Fanni Márványkövi
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, 9 Dóm tér, University of Szeged, Szeged, H-6720, Hungary
| | - Zsuzsanna Z A Kovács
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, 9 Dóm tér, University of Szeged, Szeged, H-6720, Hungary
| | - Andrea Siska
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6 Semmelweis utca, Szeged, H-6725, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6 Semmelweis utca, Szeged, H-6725, Hungary
| | - Zsolt Galla
- Metabolic and Newborn Screening Laboratory, Department of Pediatrics, Albert Szent-Györgyi Medical School, University of Szeged, 35-36 Temesvári körút, Szeged, H-6726, Hungary
| | - Péter Monostori
- Metabolic and Newborn Screening Laboratory, Department of Pediatrics, Albert Szent-Györgyi Medical School, University of Szeged, 35-36 Temesvári körút, Szeged, H-6726, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and HUN-REN-SZTE Stereochemistry Research Group, University of Szeged, 6 Eötvös utca, Szeged, H-6720, Hungary
| | - Péter Simon
- Institute of Pharmaceutical Chemistry and HUN-REN-SZTE Stereochemistry Research Group, University of Szeged, 6 Eötvös utca, Szeged, H-6720, Hungary
| | - Márta Sárközy
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Semmelweis utca, Szeged, H-6725, Hungary
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, 9 Dóm tér, University of Szeged, Szeged, H-6720, Hungary
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Semmelweis utca, Szeged, H-6725, Hungary
| |
Collapse
|
2
|
Lin S, Wang H, Qiu J, Li M, Gao E, Wu X, Xu Y, Chen G. Altered gut microbiota profile in patients with perimenopausal panic disorder. Front Psychiatry 2023; 14:1139992. [PMID: 37304433 PMCID: PMC10249373 DOI: 10.3389/fpsyt.2023.1139992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Females in the perimenopausal period are susceptible to mood disorders. Perimenopausal panic disorder (PPD) is characterized by repeated and unpredictable panic attacks during perimenopause, and it impacts the patient's physical and mental health and social function. Pharmacotherapy is limited in the clinic, and its pathological mechanism is unclear. Recent studies have demonstrated that gut microbiota is strongly linked to emotion; however, the relation between PPD and microbiota is limitedly known. Methods This study aimed to discover specific microbiota in PPD patients and the intrinsic connection between them. Gut microbiota was analyzed in PPD patients (n = 40) and healthy controls (n = 40) by 16S rRNA sequencing. Results The results showed reduced α-diversity (richness) in the gut microbiota of PPD patients. β-diversity indicated that PPD and healthy controls had different intestinal microbiota compositions. At the genus level, 30 species of microbiota abundance had significantly different between the PPD and healthy controls. In addition, HAMA, PDSS, and PASS scales were collected in two groups. It was found that Bacteroides and Alistipes were positively correlated with PASS, PDSS, and HAMA. Discussion Bacteroides and Alistipes dysbiosis dominate imbalanced microbiota in PPD patients. This microbial alteration may be a potential pathogenesis and physio-pathological feature of PPD. The distinct gut microbiota can be a potential diagnostic marker and a new therapeutic target for PPD.
Collapse
Affiliation(s)
- Shen Lin
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hongjin Wang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jingjing Qiu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The Bao'an District TCM Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Minghong Li
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ebin Gao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaofeng Wu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The Bao'an District TCM Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yunxiang Xu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guizhen Chen
- The Bao'an District TCM Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Jiang J, Yang M, Tian M, Chen Z, Xiao L, Gong Y. Intertwined associations between oxytocin, immune system and major depressive disorder. Biomed Pharmacother 2023; 163:114852. [PMID: 37163778 PMCID: PMC10165244 DOI: 10.1016/j.biopha.2023.114852] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Major depressive disorder (MDD) is a prominent psychiatric disorder with a high prevalence rate. The recent COVID-19 pandemic has exacerbated the already high prevalence of MDD. Unfortunately, a significant proportion of patients are unresponsive to conventional treatments, necessitating the exploration of novel therapeutic strategies. Oxytocin, an endogenous neuropeptide, has emerged as a promising candidate with anxiolytic and antidepressant properties. Oxytocin has been shown to alleviate emotional disorders by modulating the hypothalamic-pituitary-adrenal (HPA) axis and the central immune system. The dysfunction of the immune system has been strongly linked to the onset and progression of depression. The central immune system is believed to be a key target of oxytocin in ameliorating emotional disorders. In this review, we examine the evidence regarding the interactions between oxytocin, the immune system, and depressive disorder. Moreover, we summarize and speculate on the potential roles of the intertwined association between oxytocin and the central immune system in treating emotional disorders.
Collapse
Affiliation(s)
- Junliang Jiang
- Department of Orthopedics and Traumatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China; Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Miaoxian Yang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhong Chen
- Department of Orthopedics and Traumatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.
| | - Lei Xiao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Lai JY, Ho JX, Kow ASF, Liang G, Tham CL, Ho YC, Lee MT. Interferon therapy and its association with depressive disorders - A review. Front Immunol 2023; 14:1048592. [PMID: 36911685 PMCID: PMC9992192 DOI: 10.3389/fimmu.2023.1048592] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
Interferons (IFNs) are important in controlling the innate immune response to viral infections. Besides that, studies have found that IFNs also have antimicrobial, antiproliferative/antitumor and immunomodulatory effects. IFNs are divided into Type I, II and III. Type I IFNs, in particular IFN-α, is an approved treatment for hepatitis C. However, patients developed neuropsychological disorders during treatment. IFN-α induces proinflammatory cytokines, indoleamine 2,3-dioxygenase (IDO), oxidative and nitrative stress that intensifies the body's inflammatory response in the treatment of chronic inflammatory disease. The severity of the immune response is related to behavioral changes in both animal models and humans. Reactive oxygen species (ROS) is important for synaptic plasticity and long-term potentiation (LTP) in the hippocampus. However, excess ROS will generate highly reactive free radicals which may lead to neuronal damage and neurodegeneration. The limbic system regulates memory and emotional response, damage of neurons in this region is correlated with mood disorders. Due to the drawbacks of the treatment, often patients will not complete the treatment sessions, and this affects their recovery process. However, with proper management, this could be avoided. This review briefly describes the different types of IFNs and its pharmacological and clinical usages and a focus on IFN-α and its implications on depression.
Collapse
Affiliation(s)
- Jing Yung Lai
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Jian Xiang Ho
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | | | - Gengfan Liang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Kucukkarapinar M, Yay-Pence A, Yildiz Y, Buyukkoruk M, Yaz-Aydin G, Deveci-Bulut TS, Gulbahar O, Senol E, Candansayar S. Psychological outcomes of COVID-19 survivors at sixth months after diagnose: the role of kynurenine pathway metabolites in depression, anxiety, and stress. J Neural Transm (Vienna) 2022; 129:1077-1089. [PMID: 35796878 PMCID: PMC9261222 DOI: 10.1007/s00702-022-02525-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/20/2022] [Indexed: 10/31/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has resulted in long-term psychiatric symptoms because of the immunologic response to the virus itself as well as fundamental life changes related to the pandemic. This immune response leads to altered tryptophan (TRP)-kynurenine (KYN) pathway (TKP) metabolism, which plays an essential role in the pathophysiology of mental illnesses. We aimed to define TKP changes as a potential underlying mechanism of psychiatric disorders in post-COVID-19 patients. We measured plasma levels of several TKP markers, including KYN, TRP, kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and quinolinic acid (QUIN), as well as the TRP/KYN, KYNA/3-HK, and KYNA/QUIN ratios, in 90 post-COVID-19 patients (on the first day of hospitalization) and 59 healthy controls (on the first admission to the Check-Up Center). An online questionnaire that included the Depression, Anxiety and Stress Scale-21 (DASS-21) was used 6 months after the initial assessment in both groups. A total of 32.2% of participants with COVID-19 showed depressive symptoms, 21.1% exhibited anxiety, and 33.3% had signs of stress at follow-up, while 6.6% of healthy controls exhibited depressive and anxiety symptoms and 18.6% had signs of stress. TRP and 3-HK were negative predictors of anxiety and stress, but KYN positively predicted anxiety and stress. Moreover, TRP negatively predicted depression, while KYNA/3-HK was a negative predictor of anxiety. The correlation between depression, anxiety, and stress and TKP activation in COVID-19 could provide prospective biomarkers, especially the reduction in TRP and 3HK levels and the increase in KYN. Our results suggest that the alteration of TKP is not only a potential biomarker of viral infection-related long-term psychiatric disorders but also that the therapy targets future viral infections related to depression and anxiety.
Collapse
Affiliation(s)
- Melike Kucukkarapinar
- Psychiatry Department, Faculty of Medicine, Gazi University, Emniyet Mah., Yenimahalle, 06560, Ankara, Turkey.
| | - Aysegul Yay-Pence
- Psychiatry Department, Faculty of Medicine, Gazi University, Emniyet Mah., Yenimahalle, 06560, Ankara, Turkey
| | - Yesim Yildiz
- Department of Infectious Diseases, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Merve Buyukkoruk
- Department of Infectious Diseases, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gizem Yaz-Aydin
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Tuba S Deveci-Bulut
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ozlem Gulbahar
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Esin Senol
- Department of Infectious Diseases, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Selcuk Candansayar
- Psychiatry Department, Faculty of Medicine, Gazi University, Emniyet Mah., Yenimahalle, 06560, Ankara, Turkey
| |
Collapse
|
6
|
Ormstad H, Simonsen CS, Broch L, Maes DM, Anderson G, Celius EG. Chronic fatigue and depression due to multiple sclerosis: Immune-inflammatory pathways, tryptophan catabolites and the gut-brain axis as possible shared pathways. Mult Scler Relat Disord 2020; 46:102533. [PMID: 33010585 DOI: 10.1016/j.msard.2020.102533] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Chronic fatigue and major depression (MDD)-like symptoms are common manifestations of multiple sclerosis (MS), both with huge impact on quality of life. Depression can manifest itself as fatigue, and depressive symptoms are often mistaken for fatigue, and vice versa. The two conditions are sometimes difficult to differentiate, and their relationship is unclear. Whether chronic fatigue and depression occur primarily, secondarily or coincidentally with activated immune-inflammatory pathways in MS is still under debate. We have carried out a descriptive review aiming to gain a deeper understanding of the relationship between chronic fatigue and depression in MS, and the shared pathways that underpin both conditions. This review focuses on immune-inflammatory pathways, the kynurenine pathway and the gut-brain axis. It seems likely that proinflammatory cytokines, tryptophan catabolites (the KYN pathway) and the gut-brain axis are involved in the mechanisms causing chronic fatigue and MDD-like symptoms in MS. However, the evidence base is weak, and more research is needed. In order to advance our understanding of the underlying pathological mechanisms, MS-related fatigue and depression should be examined using a longitudinal design and both immune-inflammatory and KYN pathway biomarkers should be measured, relevant clinical characteristics judiciously registered, and self-report instruments for both fatigue and depression should be used.
Collapse
Affiliation(s)
- Heidi Ormstad
- University of South-Eastern Norway and University Oslo Metropolitan University.
| | | | | | - Dr Michael Maes
- Chulalongkorn University, Bangkok, Thailand; Medical University of Plovdiv, Plovdiv, Bulgaria; IMPACT Strategic Center, Deakin University, Australia
| | - George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| | | |
Collapse
|
7
|
Abstract
Psychiatric disorders affect approximately one quarter of people worldwide at some point in their lifetime. This chapter provides a step-by-step guide to conduct behavioral tests in adult mice for investigations of social behavior, without the need for specific equipment. This test should allow the identification of key abnormalities in social interactions that can be followed up by targeted, more complex, behavioral analysis aimed at identification of new biomarkers and potential drug targets.
Collapse
Affiliation(s)
- Ann-Katrin Kraeuter
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- Discipline of Biomedicine, College of Public Health, Medicine and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Zoltán Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.
- Discipline of Biomedicine, College of Public Health, Medicine and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.
| |
Collapse
|
8
|
Bryn V, Verkerk R, Skjeldal OH, Saugstad OD, Ormstad H. Kynurenine Pathway in Autism Spectrum Disorders in Children. Neuropsychobiology 2018; 76:82-88. [PMID: 29694960 DOI: 10.1159/000488157] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/04/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND There is increasing evidence that altered immune responses play a role in the pathogenesis of autism spectrum disorders (ASD), together with dysfunction of the serotonergic and glutamatergic systems. Since the kynurenine (KYN) pathway that degrades tryptophan (TRP) is activated in various neuroinflammatory states, we aimed to determine whether this pathway is activated in ASD. METHODS Sixty-five pediatric ASD patients (including 52 boys) were enrolled from an epidemiological survey covering 2 counties in Norway; 30 (46.5%) of these patients were diagnosed with childhood autism, 16 (24.6%) with Asperger syndrome, 12 (18.5%) with atypical autism, 1 (1.5%) with Rett syndrome, and 6 (9.2%) with other ASD. The serum levels of the following markers were measured in the children with ASD and compared to those in 30 healthy children: TRP, KYN, kynurenic acid (KA), 3-hydroxykynurenine, and quinolinic acid. RESULTS The mean serum level of KA was significantly lower in the ASD group than in the healthy controls (28.97 vs. 34.44 nM, p = 0.040), while the KYN/KA ratio was significantly higher in the ASD group (61.12 vs. 50.39, p = 0.006). The same relative values were found when comparing the childhood autism subgroup with the controls. Also, the mean serum level of TRP was significantly lower in children with a subdiagnosis of childhood autism than in those with Asperger syndrome (67.26 vs. 77.79 μM, p = 0.020). CONCLUSION Our study indicates that there is an increased neurotoxic potential and also a possible lower KYN aminotransferase activity in ASD.
Collapse
Affiliation(s)
- Vesna Bryn
- Department of Pediatrics, Innlandet Hospital Trust, Lillehammer, Norway
| | - Robert Verkerk
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Ola H Skjeldal
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ola Didrik Saugstad
- Pediatric Research Institute, Rikshospitalet Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Heidi Ormstad
- Faculty of Health Sciences, Buskerud University College, Drammen, Norway
| |
Collapse
|
9
|
Communication and social interaction anxiety enhance interleukin-1 beta and cortisol reactivity during high-stakes public speaking. Psychoneuroendocrinology 2018; 94:83-90. [PMID: 29775877 DOI: 10.1016/j.psyneuen.2018.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/07/2018] [Accepted: 05/07/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Worry or fear related to speaking in front of others, or more broadly, communicating and interacting with others, is common. At elevated levels, however, it may contribute to heightened stress reactivity during acute speaking challenges. The purpose of this study was to examine multi-system physiological stress reactivity in the context of high-stakes public speaking while considering the impact of hypothesized individual difference risk factors. METHODS University student participants (n = 95) delivering speeches as a heavily-weighted component of their final grade had saliva samples collected immediately prior to speaking, immediately after, and 20 min after speech completion. Saliva samples were assayed for alpha amylase (sAA), cortisol, and interleukin-1 beta (IL-1β). Self-reported communication anxiety, social interaction anxiety, rejection sensitivity, and sex were assessed as risk factors for heightened stress reactivity. RESULTS Salivary sAA, cortisol, and IL-1β significantly changed following speech delivery. Multivariate analyses demonstrated that elevated levels of self-reported communication anxiety and social interaction anxiety were independently associated with increased cortisol and IL-1β responses and combined to enhance HPA axis and inflammatory cytokine activity further (i.e., cortisol and IL-1β AUCI). Sex and rejection sensitivity were unrelated to physiological stress reactivity. CONCLUSIONS These findings suggest that individuals with elevated communication and interaction fears may be at increased risk of heightened neuroendocrine and inflammatory responses following exposure to acute social stressors. Both types of anxiety may combine to increase physiological reactivity further, with unknown, though likely insalubrious, health consequences over time.
Collapse
|
10
|
Tryptophan catabolites along the indoleamine 2,3-dioxygenase pathway as a biological link between depression and cancer. Behav Pharmacol 2018. [DOI: 10.1097/fbp.0000000000000384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Chaves Filho AJM, Lima CNC, Vasconcelos SMM, de Lucena DF, Maes M, Macedo D. IDO chronic immune activation and tryptophan metabolic pathway: A potential pathophysiological link between depression and obesity. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:234-249. [PMID: 28595944 DOI: 10.1016/j.pnpbp.2017.04.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
Obesity and depression are among the most pressing health problems in the contemporary world. Obesity and depression share a bidirectional relationship, whereby each condition increases the risk of the other. By inference, shared pathways may underpin the comorbidity between obesity and depression. Activation of cell-mediated immunity (CMI) is a key factor in the pathophysiology of depression. CMI cytokines, including IFN-γ, TNFα and IL-1β, induce the catabolism of tryptophan (TRY) by stimulating indoleamine 2,3-dioxygenase (IDO) resulting in the synthesis of kynurenine (KYN) and other tryptophan catabolites (TRYCATs). In the CNS, TRYCATs have been related to oxidative damage, inflammation, mitochondrial dysfunction, cytotoxicity, excitotoxicity, neurotoxicity and lowered neuroplasticity. The pathophysiology of obesity is also associated with a state of aberrant inflammation that activates aryl hydrocarbon receptor (AHR), a pathway involved in the detection of intracellular or environmental changes as well as with increases in the production of TRYCATs, being KYN an agonists of AHR. Both AHR and TRYCATS are involved in obesity and related metabolic disorders. These changes in the TRYCAT pathway may contribute to the onset of neuropsychiatric symptoms in obesity. This paper reviews the role of immune activation, IDO stimulation and increased TRYCAT production in the pathophysiology of depression and obesity. Here we suggest that increased synthesis of detrimental TRYCATs is implicated in comorbid obesity and depression and is a new drug target to treat both diseases.
Collapse
Affiliation(s)
- Adriano José Maia Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Camila Nayane Carvalho Lima
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - David Freitas de Lucena
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Impact Strategic Research Center, Deakin University, Geelong, Australia; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Danielle Macedo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
12
|
Kim YK, Jeon SW. Neuroinflammation and the Immune-Kynurenine Pathway in Anxiety Disorders. Curr Neuropharmacol 2018; 16:574-582. [PMID: 28901278 PMCID: PMC5997870 DOI: 10.2174/1570159x15666170913110426] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/10/2017] [Accepted: 08/16/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Recently, neuroinflammation and the immune-kynurenine pathway have received increased attention in the psychoimmunology field of major depressive disorder (MDD), while studies related to anxiety disorders have been very limited. OBJECTIVE This study reviewed possible mechanisms by which stress or inflammation modulate anxiety through tryptophan metabolism and the kynurenine pathway. METHODS Relevant literature was identified through a search of MEDLINE via PubMed. RESULTS Accumulating evidence has indicated the modulatory effects of the immune-kynurenine pathway on anxiety. The tryptophan catabolites (TRYCATs) in the kynurenine pathway imbalanced by stress or inflammation induce serotonin and melatonin deficiency, making anxiety reactions more sensitive. In addition, TRYCATs cause or sustain anxiety by acting as endogenous anxiogens or anxiolytics, an NMDA agonist or antagonist, or a free radical generator. CONCLUSION We hope that our understanding of the psychoimmunological mechanisms of anxiety will be expanded and anxiety-related studies will receive greater attention.
Collapse
Affiliation(s)
| | - Sang Won Jeon
- Address correspondence to this author at the Department of Psychiatry, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Tel: +82-2-2001-2073; Fax: +82-2-2001-2211; E-mail:
| |
Collapse
|
13
|
Yang Y, Sauve AA. NAD(+) metabolism: Bioenergetics, signaling and manipulation for therapy. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1864:1787-1800. [PMID: 27374990 PMCID: PMC5521000 DOI: 10.1016/j.bbapap.2016.06.014] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/30/2016] [Accepted: 06/28/2016] [Indexed: 12/19/2022]
Abstract
We survey the historical development of scientific knowledge surrounding Vitamin B3, and describe the active metabolite forms of Vitamin B3, the pyridine dinucleotides NAD+ and NADP+ which are essential to cellular processes of energy metabolism, cell protection and biosynthesis. The study of NAD+ has become reinvigorated by new understandings that dynamics within NAD+ metabolism trigger major signaling processes coupled to effectors (sirtuins, PARPs, and CD38) that reprogram cellular metabolism using NAD+ as an effector substrate. Cellular adaptations include stimulation of mitochondrial biogenesis, a process fundamental to adjusting cellular and tissue physiology to reduced nutrient availability and/or increased energy demand. Several mammalian metabolic pathways converge to NAD+, including tryptophan-derived de novo pathways, nicotinamide salvage pathways, nicotinic acid salvage and nucleoside salvage pathways incorporating nicotinamide riboside and nicotinic acid riboside. Key discoveries highlight a therapeutic potential for targeting NAD+ biosynthetic pathways for treatment of human diseases. A recent emergence of understanding that NAD+ homeostasis is vulnerable to aging and disease processes has stimulated testing to determine if replenishment or augmentation of cellular or tissue NAD+ can have ameliorative effects on aging or disease phenotypes. This experimental approach has provided several proofs of concept successes demonstrating that replenishment or augmentation of NAD+ concentrations can provide ameliorative or curative benefits. Thus NAD+ metabolic pathways can provide key biomarkers and parameters for assessing and modulating organism health.
Collapse
Affiliation(s)
- Yue Yang
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Anthony A Sauve
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
14
|
Laugeray A, Launay JM, Callebert J, Mutlu O, Guillemin GJ, Belzung C, Barone PR. Chronic Treatment with the IDO1 Inhibitor 1-Methyl-D-Tryptophan Minimizes the Behavioural and Biochemical Abnormalities Induced by Unpredictable Chronic Mild Stress in Mice - Comparison with Fluoxetine. PLoS One 2016; 11:e0164337. [PMID: 27828964 PMCID: PMC5102430 DOI: 10.1371/journal.pone.0164337] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/22/2016] [Indexed: 11/19/2022] Open
Abstract
We demonstrated that confronting mice to the Unpredictable Chronic Mild Stress (UCMS) procedure-a validated model of stress-induced depression-results in behavioural alterations and biochemical changes in the kynurenine pathway (KP), suspected to modify the glutamatergic neurotransmission through the imbalance between downstream metabolites such as 3-hydroxykynurenine, quinolinic and kynurenic acids. We showed that daily treatment with the IDO1 inhibitor 1-methyl-D-tryptophan partially rescues UCMS-induced KP alterations as does the antidepressant fluoxetine. More importantly we demonstrated that 1-methyl-D-tryptophan was able to alleviate most of the behavioural changes resulting from UCMS exposure. We also showed that both fluoxetine and 1-methyl-D-tryptophan robustly reduced peripheral levels of proinflammatory cytokines in UCMS mice suggesting that their therapeutic effects might occur through anti-inflammatory processes. KP inhibition might be involved in the positive effects of fluoxetine on mice behaviour and could be a relevant strategy to counteract depressive-like symptoms.
Collapse
Affiliation(s)
- Anthony Laugeray
- Molecular and Experimental Immunology and Neurogenetics – UMR7355, CNRS - 3b Rue de Férollerie, Orléans La Source, Cedex 2, France
| | - Jean-Marie Launay
- UMRS INSERM U942, Service de Biochimie, Hôpital Lariboisière, Assistance Publique — Hôpitaux de Paris, Paris, France
| | - Jacques Callebert
- UMRS INSERM U942, Service de Biochimie, Hôpital Lariboisière, Assistance Publique — Hôpitaux de Paris, Paris, France
| | - Oguz Mutlu
- UMRS INSERM U930, CNRS ERL 3106, Université François Rabelais, Tours, France
- Department of Pharmacology, Faculty of Medicine, Kocaeli University, 41380 Kocaeli, Turkey
| | - Gilles J. Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Sydney, Australia
| | - Catherine Belzung
- UMRS INSERM U930, CNRS ERL 3106, Université François Rabelais, Tours, France
| | - Pascal R. Barone
- UMRS INSERM U930, CNRS ERL 3106, Université François Rabelais, Tours, France
| |
Collapse
|
15
|
Are Anxiety Disorders Associated with Accelerated Aging? A Focus on Neuroprogression. Neural Plast 2015; 2016:8457612. [PMID: 26881136 PMCID: PMC4736204 DOI: 10.1155/2016/8457612] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 12/16/2022] Open
Abstract
Anxiety disorders (AnxDs) are highly prevalent throughout the lifespan, with detrimental effects on daily-life functioning, somatic health, and quality of life. An emerging perspective suggested that AnxDs may be associated with accelerated aging. In this paper, we explored the association between AnxDs and hallmarks of accelerated aging, with a specific focus on neuroprogression. We reviewed animal and human findings that suggest an overlap between processes of impaired neurogenesis, neurodegeneration, structural, functional, molecular, and cellular modifications in AnxDs, and aging. Although this research is at an early stage, our review suggests a link between anxiety and accelerated aging across multiple processes involved in neuroprogression. Brain structural and functional changes that accompany normal aging were more pronounced in subjects with AnxDs than in coevals without AnxDs, including reduced grey matter density, white matter alterations, impaired functional connectivity of large-scale brain networks, and poorer cognitive performance. Similarly, molecular correlates of brain aging, including telomere shortening, Aβ accumulation, and immune-inflammatory and oxidative/nitrosative stress, were overrepresented in anxious subjects. No conclusions about causality or directionality between anxiety and accelerated aging can be drawn. Potential mechanisms of this association, limitations of the current research, and implications for treatments and future studies are discussed.
Collapse
|
16
|
Hoyo-Becerra C, Schlaak JF, Hermann DM. Insights from interferon-α-related depression for the pathogenesis of depression associated with inflammation. Brain Behav Immun 2014; 42:222-31. [PMID: 25066466 DOI: 10.1016/j.bbi.2014.06.200] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 02/06/2023] Open
Abstract
Interferon-α (IFN-α) is a pleiotropic cytokine that is administered as a therapeutic in highly prevalent medical conditions such as chronic hepatitis C and B virus infection, melanoma and lymphoma. IFN-α induces, to a clinically relevant degree, concentration, memory, drive and mood disturbances in almost half of all patients. For this reason, IFN-α is increasingly being replaced by more specifically acting drugs. In the past decades, IFN-α has offered a valuable insight into the pathogenesis of major depression, particularly in settings associated with inflammation. IFN-α triggers immune responses, hypothalamo-pituitary-adrenal axis abnormalities and disturbances of brain metabolism resembling those in other depression states. IFN-α stimulates indoleamine-2,3 dioxygenase-1, activating the kynurenine pathway with reduced formation of the neurotransmitters serotonin and dopamine, excessive formation of the NMDA agonist quinolinic acid, and reduced formation of the NMDA antagonist kynurenic acid. In addition, IFN-α disturbs neurotrophic signaling and impedes neurite outgrowth, synaptic plasticity, endogenous neurogenesis and neuronal survival. Consequently, IFN-α-related depression may represent a model for the neurodegenerative changes that are noticed in late-life major depression. Indeed, the observation that brain responses in IFN-α-related depression resemble idiopathic depression is supported by the existence of common genetic signatures, among which of note, a number of neuronal survival and plasticity genes have been identified. In view of the high incidence of depressive symptoms, IFN-α-related depression is an attractive model for studying links between neuronal plasticity, neurodegeneration and depression. We predict that in the latter areas new targets for anti-depressant therapies could be identified, which may deepen our understanding of idiopathic major depression.
Collapse
Affiliation(s)
| | - Joerg F Schlaak
- Department of Gastroenterology and Hepatology, University Hospital Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Germany.
| |
Collapse
|
17
|
Anderson G, Berk M, Maes M. Biological phenotypes underpin the physio-somatic symptoms of somatization, depression, and chronic fatigue syndrome. Acta Psychiatr Scand 2014; 129:83-97. [PMID: 23952563 DOI: 10.1111/acps.12182] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Somatization is a symptom cluster characterized by 'psychosomatic' symptoms, that is, medically unexplained symptoms, and is a common component of other conditions, including depression and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This article reviews the data regarding the pathophysiological foundations of 'psychosomatic' symptoms and the implications that this has for conceptualization of what may more appropriately be termed physio-somatic symptoms. METHOD This narrative review used papers published in PubMed, Scopus, and Google Scholar electronic databases using the keywords: depression and chronic fatigue, depression and somatization, somatization and chronic fatigue syndrome, each combined with inflammation, inflammatory, tryptophan, and cell-mediated immune (CMI). RESULTS The physio-somatic symptoms of depression, ME/CFS, and somatization are associated with specific biomarkers of inflammation and CMI activation, which are correlated with, and causally linked to, changes in the tryptophan catabolite (TRYCAT) pathway. Oxidative and nitrosative stress induces damage that increases neoepitopes and autoimmunity that contribute to the immuno-inflammatory processes. These pathways are all known to cause physio-somatic symptoms, including fatigue, malaise, autonomic symptoms, hyperalgesia, intestinal hypermotility, peripheral neuropathy, etc. CONCLUSION Biological underpinnings, such as immune-inflammatory pathways, may explain, at least in part, the occurrence of physio-somatic symptoms in depression, somatization, or myalgic encephalomyelitis/chronic fatigue syndrome and thus the clinical overlap among these disorders.
Collapse
|
18
|
Iaccarino HF, Suckow RF, Xie S, Bucci DJ. The effect of transient increases in kynurenic acid and quinolinic acid levels early in life on behavior in adulthood: Implications for schizophrenia. Schizophr Res 2013; 150:392-7. [PMID: 24091034 PMCID: PMC3844520 DOI: 10.1016/j.schres.2013.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/06/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
Abstract
Kynurenic acid is a tryptophan metabolite that is synthesized and released in the brain by astrocytes and acts as an antagonist of nicotinic acetylcholine receptors and N-methyl-d-aspartate glutamate receptors, both of which are critically involved in cognition as well as neural plasticity and brain development. The concentration of kynurenic acid is increased in the brains of persons with schizophrenia and this increase has been implicated in the cognitive and social impairments associated with the disease. In addition, growing evidence suggests that the increase in kynurenic acid may begin early in life. For example, exposure to influenza A virus during development results in a transient increase in kynurenic acid concentration that could disrupt normal brain development and lead to cognitive deficits later in life. Changes in kynurenic acid may thus provide a link between developmental exposure to viruses and the increased risk of subsequently developing schizophrenia. To test this, we mimicked the effects of influenza A exposure by treating rats with kynurenine, the precursor of kynurenic acid, on postnatal days 7-10. We observed a transient increase in both kynurenic acid and quinolinic acid during treatment. When rats were subsequently behaviorally tested as adults, those previously treated with kynurenine exhibited decreased social behavior and locomotor activity. In contrast, attentional function and fear conditioning were not affected. Together with other recent findings, these data have several implications for understanding how viral-induced changes in tryptophan metabolism during development may contribute to schizophrenia-related symptoms later in life.
Collapse
Affiliation(s)
- Hannah F. Iaccarino
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | | | - Shan Xie
- Nathan Kline Institute, Orangeburg, New York 10962
| | - David J. Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
19
|
Ormstad H, Verkerk R, Aass HCD, Amthor KF, Sandvik L. Inflammation-induced catabolism of tryptophan and tyrosine in acute ischemic stroke. J Mol Neurosci 2013; 51:893-902. [PMID: 23990339 DOI: 10.1007/s12031-013-0097-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/12/2013] [Indexed: 01/04/2023]
Abstract
Whether the inflammatory response that accompanies acute ischemic stroke induces the kynurenine pathway is currently a matter of conjecture. Activation of this pathway may disturb active metabolites. The aim of this study was thus to characterize the catabolism of tryptophan and tyrosine in acute ischemic stroke (AIS) patients, and its association with cytokines, C-reactive protein, and glucose. Serum levels of 5-hydroxytryptamine, tryptophan catabolites, and competing amino acids and significant ratios of these were measured in 45 AIS patients and compared to those of 40 control subjects. Furthermore, associations between the serum levels of these biomarkers and serum levels of cytokines, C-reactive protein, and glucose were determined. Significantly lower levels of tryptophan and tyrosine in the stroke group indicate increased tryptophan and tyrosine oxidation in acute ischemic stroke, while significantly lowered tryptophan index and tyrosine index indicate a reduced capacity for the synthesis of 5-hydroxytryptamine and catecholamines in the brain, respectively. Furthermore, our findings indicate that the proinflammatory response in acute ischemic stroke may be responsible for a reduced capacity for the biosynthesis of brain catecholamines and mediate neurotoxic effects. Meanwhile, the anti-inflammatory IL-10 may exert a neuroprotective effect and prevent the putative reduced capacity for 5-hydroxytryptamine synthesis in the brain. These mechanisms may be involved in several sequelae following stroke, such as cognitive impairment, depression, and fatigue.
Collapse
Affiliation(s)
- Heidi Ormstad
- Department of Health Sciences, Buskerud University College, Drammen, Norway,
| | | | | | | | | |
Collapse
|
20
|
Karson A, Demirtaş T, Bayramgürler D, Balci F, Utkan T. Chronic administration of infliximab (TNF-α inhibitor) decreases depression and anxiety-like behaviour in rat model of chronic mild stress. Basic Clin Pharmacol Toxicol 2013; 112:335-40. [PMID: 23167806 DOI: 10.1111/bcpt.12037] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/12/2012] [Indexed: 12/11/2022]
Abstract
Pro-inflammatory cytokines have been proposed to be associated with the pathogenesis of depression. Consistent with this notion, several clinical observations have suggested the antidepressant efficacy of TNF-α inhibitors in patients with chronic inflammatory diseases. In this study, we evaluated the antidepressant and anxiolytic effects of chronic TNF-α inhibitor (infliximab, 5 mg/kg, i.p., weekly) administration in the chronic mild stress (CMS) model of depression. Rats were divided into three groups: saline-control (no stress), saline-CMS, and infliximab-CMS. Rats in the latter two groups were exposed to CMS for 8 weeks. Saline (former two groups) or infliximab was injected weekly during this period. After CMS, total locomotor activity, anxiety-like behaviour and depression-like behaviours were evaluated using automated locomotor activity cage, elevated plus maze (EPM), and sucrose preference (SPT) and forced swimming (FS) tests, respectively. As expected, the saline-CMS group exhibited higher depression-like behaviours in FS and SPT tests compared with the saline-control group. There were no differences between these two groups in terms of the anxiety-like behaviour or total locomotor activity. Infliximab reduced the depression-like behaviour of CMS rats compared with saline-CMS group, and anxiety-like behaviour of CMS rats compared with saline-CMS and saline-control groups. Our findings suggest that chronic and systemic TNF-α inhibition reduced depression and anxiety-like behaviour in the CMS model of depression in rats.
Collapse
Affiliation(s)
- Ayşe Karson
- Department of Physiology, Medical School, Kocaeli University, Kocaeli, Turkey.
| | | | | | | | | |
Collapse
|
21
|
Biological underpinnings of the commonalities in depression, somatization, and Chronic Fatigue Syndrome. Med Hypotheses 2012; 78:752-6. [DOI: 10.1016/j.mehy.2012.02.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 12/27/2022]
|
22
|
Maes M, Rief W. Diagnostic classifications in depression and somatization should include biomarkers, such as disorders in the tryptophan catabolite (TRYCAT) pathway. Psychiatry Res 2012; 196:243-9. [PMID: 22364930 DOI: 10.1016/j.psychres.2011.09.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/20/2011] [Accepted: 09/28/2011] [Indexed: 12/17/2022]
Abstract
The tryptophan catabolite (TRYCAT) pathway is induced by indoleamine 2,3-dioxygenase (IDO), which upon activation depletes plasma tryptophan (TRP) and increases the synthesis of TRYCATs. Both phenomena are associated with somatization and depression. The aims of this study are to examine whether disorders in the TRYCAT pathway are specific to depression or somatization and whether the diagnoses somatization, depression, and comorbid depression+somatization reflect qualitatively distinct clinical and biological categories. Plasma TRP, the kynurenine (KY)/TRP and KY/kynurenic acid (KA) ratios were measured in 36 patients with somatization, 35 depressed and 38 depressed+somatization patients and 22 controls. Using pattern recognition methods, the diagnosis comorbid depression+somatization could not be validated, while there was an important overlap between depression and somatization, which form one continuum. Cluster analysis detected a) a control cluster; b) a cluster with lower tryptophan, and higher KY/TRP and KY/KA ratios and somatization scores; and c) a cluster with increased depression but lower KY/TRP values. The differences between both patient clusters were quantitative and not qualitative. Within the patient group, cluster analysis has generated a "pathway phenotype", i.e. aberrations in the TRYCAT pathway, which are associated with somatization rather than with depression.
Collapse
|
23
|
Anderson G, Maes M, Berk M. Inflammation-Related Disorders in the Tryptophan Catabolite Pathway in Depression and Somatization. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY VOLUME 88 2012; 88:27-48. [DOI: 10.1016/b978-0-12-398314-5.00002-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 2011; 36:764-85. [PMID: 22197082 DOI: 10.1016/j.neubiorev.2011.12.005] [Citation(s) in RCA: 597] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/24/2011] [Accepted: 12/10/2011] [Indexed: 12/17/2022]
Abstract
This paper reviews that cell-mediated-immune (CMI) activation and inflammation contribute to depressive symptoms, including anhedonia; anxiety-like behaviors; fatigue and somatic symptoms, e.g. illness behavior or malaise; and mild cognitive impairment (MCI). These effects are in part mediated by increased levels of pro-inflammatory cytokines (PICs), e.g. interleukin-1 (IL-1), IL-6 and tumor necrosis factor (TNF)α, and Th-1-derived cytokines, such as IL-2 and interferon (IFN)γ. Moreover, new pathways, i.e. concomitants and sequels of CMI activation and inflammation, were detected in depression: (1) Induction of indoleamine 2,3-dioxygenase (IDO) by IFNγ and some PICs is associated with depleted plasma tryptophan, which may interfere with brain 5-HT synthesis, and increased production of anxiogenic and depressogenic tryptophan catabolites. (2) Increased bacterial translocation may cause depression-like behaviors by activating the cytokine network, oxidative and nitrosative stress (O&NS) pathways and IDO. (3) Induction of O&NS causes damage to membrane ω3 PUFAs, functional proteins, DNA and mitochondria, and autoimmune responses directed against intracellular molecules that may cause dysfunctions in intracellular signaling. (4) Decreased levels of ω3 PUFAs and antioxidants, such as coenzyme Q10, glutathione peroxidase or zinc, are associated with an increased inflammatory potential; more oxidative damage; the onset of specific symptoms; and changes in the expression or functions of brain 5-HT and N-methyl-d-aspartate receptors. (5) All abovementioned factors cause neuroprogression, that is a combination of neurodegeneration, neuronal apoptosis, and lowered neurogenesis and neuroplasticity. It is concluded that depression may be the consequence of a complex interplay between CMI activation and inflammation and their sequels/concomitants which all together cause neuroprogression that further shapes the depression phenotype. Future research should employ high throughput technologies to collect genetic and gene expression and protein data from patients with depression and analyze these data by means of systems biology methods to define the dynamic interactions between the different cell signaling networks and O&NS pathways that cause depression.
Collapse
Affiliation(s)
- Brian Leonard
- Pharmacology Department, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
25
|
Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R. The new '5-HT' hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:702-21. [PMID: 21185346 DOI: 10.1016/j.pnpbp.2010.12.017] [Citation(s) in RCA: 475] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/07/2010] [Accepted: 12/16/2010] [Indexed: 02/07/2023]
Abstract
This paper reviews the body of evidence that not only tryptophan and consequent 5-HT depletion, but also induction of indoleamine 2,3-dioxygenase (IDO) and the detrimental effects of tryptophan catabolites (TRYCATs) play a role in the pathophysiology of depression. IDO is induced by interferon (IFN)γ, interleukin-6 and tumor necrosis factor-α, lipopolysaccharides and oxidative stress, factors that play a role in the pathophysiology of depression. TRYCATs, like kynurenine and quinolinic acid, are depressogenic and anxiogenic; activate oxidative pathways; cause mitochondrial dysfunctions; and have neuroexcitatory and neurotoxic effects that may lead to neurodegeneration. The TRYCAT pathway is also activated following induction of tryptophan 2,3-dioxygenase (TDO) by glucocorticoids, which are elevated in depression. There is evidence that activation of IDO reduces plasma tryptophan and increases TRYCAT synthesis in depressive states and that TDO activation may play a role as well. The development of depressive symptoms during IFNα-based immunotherapy is strongly associated with IDO activation, increased production of detrimental TRYCATs and lowered levels of tryptophan. Women show greater IDO activation and TRYCAT production following immune challenge than men. In the early puerperium, IDO activation and TRYCAT production are associated with the development of affective symptoms. Clinical depression is accompanied by lowered levels of neuroprotective TRYCATs or increased levels or neurotoxic TRYCATs, and lowered plasma tryptophan, which is associated with indices of immune activation and glucocorticoid hypersecretion. Lowered tryptophan and increased TRYCATs induce T cell unresponsiveness and therefore may exert a negative feedback on the primary inflammatory response in depression. It is concluded that activation of the TRYCAT pathway by IDO and TDO may be associated with the development of depressive symptoms through tryptophan depletion and the detrimental effects of TRYCATs. Therefore, the TRYCAT pathway should be a new drug target in depression. Direct inhibitors of IDO are less likely to be useful drugs than agents, such as kynurenine hydroxylase inhibitors; drugs which block the primary immune response; compounds that increase the protective effects of kynurenic acid; and specific antioxidants that target IDO activation, the immune and oxidative pathways, and 5-HT as well.
Collapse
Affiliation(s)
- M Maes
- Maes Clinics @ TRIA, Piyavate Hospital, 998 Rimklongsamsen Road, Bangkok 10310, Thailand.
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- I P Lapin
- Department of Clinical and Experimental Psychopharmacology, Bekhterev Psychoneurological Research Institute, St. Petersburg, Russia
| |
Collapse
|