1
|
Reisdorph N, Doenges K, Levens C, Manke J, Armstrong M, Smith H, Quinn K, Radcliffe R, Reisdorph R, Saba L, Kuhn KA. Oral Cannabis consumption and intraperitoneal THC:CBD dosing results in changes in brain and plasma neurochemicals and endocannabinoids in mice. J Cannabis Res 2024; 6:10. [PMID: 38429800 PMCID: PMC10908076 DOI: 10.1186/s42238-024-00219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND While the use of orally consumed Cannabis, cannabidiol (CBD) and tetrahydrocannabinol (THC) containing products, i.e. "edibles", has expanded, the health consequences are still largely unknown. This study examines the effects of oral consumption of whole Cannabis and a complex Cannabis extract on neurochemicals, endocannabinoids (eCB), and physiological parameters (body temperature, heart rate) in mice. METHODS In this pilot study, C57BL/6 J mice were treated with one of the following every other day for 2 weeks: a complex Cannabis extract by gavage, whole Cannabis mixed with nutritional gel through free feeding, or purified THC/CBD by intraperitoneal (i.p.) injection. Treatments were conducted at 4 doses ranging from 0-100 mg/kg/day of CBD with THC levels of ≤ 1.2 mg/kg/day for free feeding and gavage and 10 mg/kg/day for i.p. Body temperature and heart rate were monitored using surgically implanted telemetry devices. Levels of neurochemicals, eCB, THC, CBD, and 11-OH-THC were measured using mass spectrometry 48 h after the final treatment. Statistical comparisons were conducted using ANOVA and t-tests. RESULTS Differences were found between neurochemicals in the brains and plasma of mice treated by i.p. (e.g. dopamine, p < 0.01), gavage (e.g., phenylalanine, p < 0.05) and in mice receiving whole Cannabis (e.g., 3,4-dihydroxyphenylacetic DOPAC p < 0.05). Tryptophan trended downward or was significantly decreased in the brain and/or plasma of all mice receiving Cannabis or purified CBD/THC, regardless of dose, compared to controls. Levels of the eCB, arachidonoyl glycerol (2-AG) were decreased in mice receiving lowest doses of a complex Cannabis extract by gavage, but were higher in mice receiving highest doses compared to controls (p < 0.05). Plasma and brain levels of THC and 11-OH-THC were higher in mice receiving 1:1 THC:CBD by i.p. compared to those receiving 1:5 or 1:10 THC:CBD. Nominal changes in body temperature and heart rate following acute and repeated exposures were seen to some degree in all treatments. CONCLUSIONS Changes to neurochemicals and eCBs were apparent at all doses regardless of treatment type. Levels of neurochemicals seemed to vary based on the presence of a complex Cannabis extract, suggesting a non-linear response between THC and neurochemicals following repeated oral dosing.
Collapse
Affiliation(s)
- Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Katrina Doenges
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Cassandra Levens
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jon Manke
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Michael Armstrong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Harry Smith
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kevin Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Richard Radcliffe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Richard Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Laura Saba
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kristine A Kuhn
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
2
|
Manful EE, Dofuor AK, Gwira TM. The role of tryptophan derivatives as anti-kinetoplastid agents. Heliyon 2024; 10:e23895. [PMID: 38187297 PMCID: PMC10770616 DOI: 10.1016/j.heliyon.2023.e23895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Kinetoplastids are the causative agents for a spectrum of vector-borne diseases including Leishmaniasis, Chagas disease and Trypanosomiasis that affect millions of people worldwide. In the absence of safe and effective vaccines, chemotherapy, in conjunction with vector control, remain the most significant control approach for kinetoplastid diseases. However, commercially available treatment for these neglected tropical diseases frequently ends up with toxic side effects and increasing resistance. To meet the rising need for innovative medications, alternative chemotherapeutic agents are required. Moreover, insights into target-based mode of action of chemotherapeutic agents are required if novel drugs that may outwit resistance to commercially available drugs are to be developed. Tryptophan has been implicated in a variety of diseases and disorders due to its fundamental role as a precursor to several bioactive metabolites, as well as its importance in the improvement of health and nutrition, diagnostics, and therapeutics. The regulation of tryptophan metabolism plays a fundamental role in the growth of kinetoplastids. Moreover, the levels of tryptophan may serve as a biomarker to distinguish between the stages of kinetoplastids making it an important amino acid to explore for drug targets. The main aim of this review is thus to provide a comprehensive literature synthesis of tryptophan derivatives to explore as potential anti-kinetoplastids. Here we highlight the role of tryptophan derivatives as chemotherapeutic agents against kinetoplastids. The reviewed compounds provide insights into potential new drug interventions that may combat the increasing problem of anti-kinetoplastid resistance.
Collapse
Affiliation(s)
- Ewura-Esi Manful
- Division of Molecular Biology and Human Genetics, Stellenbosch University, South Africa
| | - Aboagye Kwarteng Dofuor
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Theresa Manful Gwira
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| |
Collapse
|
3
|
Haleem DJ. Nutritional importance of tryptophan for improving treatment in depression and diabetes. Nutr Rev 2022. [DOI: 10.1093/nutrit/nuac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The importance of nutrients in our diet is becoming increasingly recognized. From the viewpoint of protein synthesis and other physiologic and metabolic functions, all amino acids are important, but some of these amino acids are not synthesized endogenously. This subset, called essential amino acids, comprise dietarily indispensable nutrients. Tryptophan, an essential amino acid, is the sole precursor of neuronal as well as peripheral serotonin (5-hydroxytryptamine). Its systemic or oral administration increases serotonin synthesis because tryptophan hydroxylase, the rate-limiting enzyme of 5-hydroxytryptamine biosynthesis, is physiologically unsaturated with its substrate. Central serotonin is implicated in a number of psychiatric illnesses, including depression, and in responses to stress. Acting peripherally, serotonin affects vasoconstriction, intestinal motility, control of T cell–mediated immunity, and liver and pancreatic functions. Depression and diabetes are 2 highly prevalent diseases that often coexist. There is evidence that occurrence of depression is 2–3 times higher in people with diabetes mellitus. A comorbid condition of diabetes and depression worsens the treatment and increases risk for death. Stress, known for its causal role in depression, can also enhance risk for diabetes. Stress-induced decreases in the circulating levels of tryptophan can impair brain and pancreatic serotonin-dependent functions to precipitate these diseases. The importance of tryptophan supplementation for improving therapeutic intervention in depression and diabetes is the focus of this article. A deficiency of this essential amino acid may enhance risk for depression as well as diabetes, and can also weaken treatment efficacy of medicinal compounds for treating these diseases. Guidelines for optimal levels of circulating tryptophan can help if supplements of this amino acid can improve treatment efficacy.
Collapse
Affiliation(s)
- Darakhshan Jabeen Haleem
- University of Karachi Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical and Biological Science, and the Department of Biochemistry, Neurochemistry and Neuropharmacology Research Laboratory, , Karachi, Pakistan
| |
Collapse
|
4
|
Karbownik MS, Hicks SD. The Association of Salivary Serotonin With Mood and Cardio-Autonomic Function: A Preliminary Report. Front Psychiatry 2022; 13:788153. [PMID: 35711584 PMCID: PMC9193578 DOI: 10.3389/fpsyt.2022.788153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Serotonin plays an important role in mood regulation and depression. However, it is not clear whether the levels of serotonin in saliva are related to current mood. AIM To test the association of salivary serotonin concentrations with mood, as well as cardiovascular and autonomic parameters. MATERIALS AND METHODS Saliva samples were obtained from collegiate runners and output parameters were examined before and after physical activity. RESULTS Salivary serotonin concentration was negatively associated with current mood (β = -0.32, 95%CI -0.62 to -0.02, p = 0.037, analysis adjusted for potential confounders), but insignificantly with measured cardiovascular and autonomic parameters. CONCLUSIONS Salivary serotonin may reflect current mood. The results are preliminary and require further evaluation.
Collapse
Affiliation(s)
| | - Steven Daniel Hicks
- Division of Academic General Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
5
|
Plassmann H, Schelski DS, Simon M, Koban L. How we decide what to eat: Toward an interdisciplinary model of gut-brain interactions. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1562. [PMID: 33977675 PMCID: PMC9286667 DOI: 10.1002/wcs.1562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/12/2022]
Abstract
Everyday dietary decisions have important short-term and long-term consequences for health and well-being. How do we decide what to eat, and what physiological and neurobiological systems are involved in those decisions? Here, we integrate findings from thus-far separate literatures: (a) the cognitive neuroscience of dietary decision-making, and (b) growing evidence of gut-brain interactions and especially influences of the gut microbiome on diet and health outcomes. We review findings that suggest that dietary decisions and food consumption influence nutrient sensing, homeostatic signaling in the gut, and the composition of the gut microbiome. In turn, the microbiome can influence host health and behavior. Through reward signaling pathways, the microbiome could potentially affect food and drink decisions. Such bidirectional links between gut microbiome and the brain systems underlying dietary decision-making may lead to self-reinforcing feedback loops that determine long-term dietary patterns, body mass, and health outcomes. This article is categorized under: Economics > Individual Decision-Making Psychology > Brain Function and Dysfunction Psychology > Reasoning and Decision Making.
Collapse
Affiliation(s)
- Hilke Plassmann
- Marketing AreaINSEADFontainebleauFrance
- Paris Brain Institute (ICM)INSERM U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| | - Daniela Stephanie Schelski
- Center for Economics and NeuroscienceUniversity of BonnBonnGermany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical CenterBonnGermany
| | - Marie‐Christine Simon
- Institute of Nutrition and Food Science (IEL), Nutrition and Microbiota, University of BonnBonnGermany
| | - Leonie Koban
- Marketing AreaINSEADFontainebleauFrance
- Paris Brain Institute (ICM)INSERM U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| |
Collapse
|
6
|
Effects of tryptophan depletion on anxiety, a systematic review. Transl Psychiatry 2021; 11:118. [PMID: 33574223 PMCID: PMC7878770 DOI: 10.1038/s41398-021-01219-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Vulnerability markers for onset of anxiety disorders are scarce. In depression, patients at risk tend to respond with a negative mood to 'acute tryptophan depletion' (ATD), while healthy volunteers and current patients do not. The serotonergic system thus provides indications for vulnerability for depression. It is unknown whether ATD reveals vulnerability in anxiety too. This study systematically reviews the effects of ATD on anxiety and assesses whether challenging anxiety modifies the response. PubMed, Embase and PsychInfo were systematically searched up to April 2019 for studies in which (1) healthy volunteers or patients with a (remitted) anxiety disorder underwent ATD and (2) levels of anxiety were reported. In total, 21 studies were included. Studies conducted in healthy volunteers (n = 13), and patients with a remitted (n = 6) or current (panic, social or generalised) anxiety disorder (n = 4). Studies were mostly of poor quality and heterogeneous regarding population, challenge test used and outcome measures. ATD did not consistently affect anxiety in any of the groups. Moreover, a challenge test after ATD (n = 17 studies) did not consistently provoke anxiety in healthy volunteers or remitted patients. A 35% CO2 challenge did consistently increase anxiety in patients with a current panic disorder (PD). To conclude, this systematic review found no clear indications that ATD provokes anxiety in those at risk for anxiety disorders. Hence, unlike in depression, ATD does not indicate vulnerability to develop an anxiety disorder. Because included studies were heterogeneous and mostly of poor quality, there is an urgent need for high quality research in homogeneous samples.
Collapse
|
7
|
An Increase in Liver Polyamine Concentration Contributes to the Tryptophan-Induced Acute Stimulation of Rat Hepatic Protein Synthesis. Nutrients 2020; 12:nu12092665. [PMID: 32882842 PMCID: PMC7551729 DOI: 10.3390/nu12092665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/02/2023] Open
Abstract
Tryptophan has a unique role as a nutritional signaling molecule that regulates protein synthesis in mouse and rat liver. However, the mechanism underlying the stimulating actions of tryptophan on hepatic protein synthesis remains unclear. Proteomic and metabolomic analyses were performed to identify candidate proteins and metabolites likely to play a role in the stimulation of protein synthesis by tryptophan. Overnight-fasted rats were orally administered L-tryptophan and then sacrificed 1 or 3 h after administration. Four differentially expressed protein spots were detected in rat liver at 3 h after tryptophan administration, of which one was identified as an ornithine aminotransferase (OAT) precursor. OAT is the main catabolic enzyme for ornithine, and its expression was significantly decreased by tryptophan administration. The concentration of ornithine was increased in the liver at 3 h after tryptophan administration. Ornithine is a precursor for polyamine biosynthesis. Significantly increased concentrations of polyamines were found in the liver at 3 h after administration of tryptophan. Additionally, enhanced hepatic protein synthesis was demonstrated by oral administration of putrescine. We speculate that the increase in ornithine level through suppression of OAT expression by tryptophan administration may lead to accelerated polyamine synthesis, thereby promoting protein synthesis in the liver.
Collapse
|
8
|
The scfCDE Operon Encodes a Predicted ABC Importer Required for Fitness and Virulence during Group A Streptococcus Invasive Infection. Infect Immun 2019; 87:IAI.00613-19. [PMID: 31591169 DOI: 10.1128/iai.00613-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/27/2019] [Indexed: 02/08/2023] Open
Abstract
As a strict human pathogen, Streptococcus pyogenes (group A Streptococcus, or GAS) causes a wide range of infections, from superficial to life-threatening diseases, upon dissemination. Thus, it is necessary to gain a better understanding of how GAS successfully overcomes host-mediated challenges and infects various host niches. We previously identified subcutaneous fitness (scf) genes in the clinically relevant wild-type (WT) GAS M1T1 5448 strain that are critical for fitness during murine soft-tissue infection at both 24 h and 48 h postinfection. The uncharacterized locus scfCDE was transcribed as an operon and is predicted to encode an ABC importer for nutrient uptake (e.g., amino acids). Individual scfCDE deletion mutants grew comparably to WT 5448 in rich medium but exhibited reduced fitness during competitive growth in murine soft tissue and in nutrient-limiting chemically defined medium (CDM). A deletion of the permease gene scfD resulted in a monoculture growth defect in CDM that could be rescued by addition of excess peptides, suggesting a role as an amino acid importer. Interestingly, the ΔscfC substrate-binding and ΔscfD permease mutants, but not the ΔscfE ATPase mutant, were highly attenuated in murine soft tissue. Moreover, all three genes were required for GAS survival in human blood, indicating their impact is not limited to superficial infections. As such, scfCDE plays an integral role in enhancing GAS adaptation during localized infection as well as dissemination to deeper host environments. Since scfCDE is conserved throughout Firmicutes, this work may contribute to the development of therapeutic strategies against GAS and other Gram-positive pathogens.
Collapse
|
9
|
Höglund E, Øverli Ø, Winberg S. Tryptophan Metabolic Pathways and Brain Serotonergic Activity: A Comparative Review. Front Endocrinol (Lausanne) 2019; 10:158. [PMID: 31024440 PMCID: PMC6463810 DOI: 10.3389/fendo.2019.00158] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/22/2019] [Indexed: 12/16/2022] Open
Abstract
The essential amino acid L-tryptophan (Trp) is the precursor of the monoaminergic neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). Numerous studies have shown that elevated dietary Trp has a suppressive effect on aggressive behavior and post-stress plasma cortisol concentrations in vertebrates, including teleosts. These effects are believed to be mediated by the brain serotonergic system, even though all mechanisms involved are not well understood. The rate of 5-HT biosynthesis is limited by Trp availability, but only in neurons of the hindbrain raphe area predominantly expressing the isoform TPH2 of the enzyme tryptophan hydroxylase (TPH). In the periphery as well as in brain areas expressing TPH1, 5-HT synthesis is probably not restricted by Trp availability. Moreover, there are factors affecting Trp influx to the brain. Among those are acute stress, which, in contrast to long-term stress, may result in an increase in brain Trp availability. The mechanisms behind this stress induced increase in brain Trp concentration are not fully understood but sympathetic activation is likely to play an important role. Studies in mammals show that only a minor fraction of Trp is utilized for 5-HT synthesis whereas a larger fraction of the Trp pool enters the kynurenic pathway. The first stage of this pathway is catalyzed by the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) and the extrahepatic enzyme indoleamine 2,3-dioxygenase (IDO), enzymes that are induced by glucocorticoids and pro-inflammatory cytokines, respectively. Thus, chronic stress and infections can shunt available Trp toward the kynurenic pathway and thereby lower 5-HT synthesis. In accordance with this, dietary fatty acids affecting the pro-inflammatory cytokines has been suggested to affect metabolic fate of Trp. While TDO seems to be conserved by evolution in the vertebrate linage, earlier studies suggested that IDO was only present mammals. However, recent phylogenic studies show that IDO paralogues are present within the whole vertebrate linage, however, their involvement in the immune and stress reaction in teleost fishes remains to be investigated. In this review we summarize the results from previous studies on the effects of dietary Trp supplementation on behavior and neuroendocrinology, focusing on possible mechanisms involved in mediating these effects.
Collapse
Affiliation(s)
- Erik Höglund
- Norwegian Institute of Water Research, Oslo, Norway
- Centre of Coastal Research, University of Agder, Kristiansand, Norway
| | - Øyvind Øverli
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Svante Winberg
- Behavioural Neuroendocrinology Group, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Al-Mokbel A, Courtney-Martin G, Elango R, Ball RO, Pencharz PB, Tomlinson C. Tryptophan Requirement in School-Age Children Determined by the Indicator Amino Acid Oxidation Method is Similar to Current Recommendations. J Nutr 2019; 149:280-285. [PMID: 30753549 DOI: 10.1093/jn/nxy250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/09/2018] [Accepted: 09/04/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The requirement for dietary tryptophan in school-age children has never been empirically derived. OBJECTIVE The objective of our study was to determine the tryptophan requirement of school-age children using the indicator amino acid oxidation technique. METHODS Volunteer healthy school-age children, between 8 and 12 y, were enrolled and the oxidation of l-[13C]-phenylalanine to 13CO2 measured in response to graded intakes of dietary tryptophan. Seven children (3 boys, 4 girls) participated in the study and received randomly assigned tryptophan intakes ranging from 0.5 to 9.75 mg.kg-1.d-1 for a total of 36 studies. The diets provided energy at 1.5 times each subject's resting energy expenditure and were isocaloric. Protein was provided as an amino acid mixture on the basis of the egg protein pattern, and phenylalanine and tyrosine were maintained constant across the protein intake concentrations at 25 and 40 mg.kg-1.d-1. All subjects were adapted for 2 d before the study day to a protein intake of 1.5 g.kg-1.d-1. The mean tryptophan requirement was determined by applying a mixed-effect change-point regression analysis to F13CO2 (label tracer oxidation in 13CO2 breath) which identified a breakpoint in the F13CO2 in response to graded amounts of tryptophan. RESULTS The mean [estimated average requirement (EAR)] and upper 95% CI, (approximating the RDA) of tryptophan requirements were estimated to be 4.7 and 6.1 mg.kg-1.d-1, respectively. CONCLUSION Our results are similar to the current recommended EAR and RDA of 5 and 6 mg.kg-1.d-1 for healthy growing children based on the factorial calculation. Clinical Trials Registration No. NCT02018588.
Collapse
Affiliation(s)
- Abeer Al-Mokbel
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Glenda Courtney-Martin
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Faculty of Kinesiology & Physical Education.,Departments of Nutritional Sciences
| | - Rajavel Elango
- Department of Pediatrics, School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.,Child & Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Ronald O Ball
- Departments of Nutritional Sciences.,Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Paul B Pencharz
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Departments of Nutritional Sciences.,Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Tomlinson
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Departments of Nutritional Sciences
| |
Collapse
|
11
|
|
12
|
Tryptophan supplementation and serotonin function: genetic variations in behavioural effects. Proc Nutr Soc 2018; 77:174-188. [DOI: 10.1017/s0029665117004451] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The neurotransmitter serotonin has a role in affective disorders such as depression and anxiety, as well as sleep, cognitive function and appetite. This review examines the evidence that serotonin-related genotypes may moderate the behavioural effects of supplementation with the serotonin precursor amino acidl-tryptophan (TRP), on which synthesis of serotonin (or 5-hydroxytryptamine; 5-HT) depends. However, 95 % of serotonin is synthesised and used in the periphery, and TRP is also metabolised via non-5-HT routes such as the kynurenine pathway. Moreover, understanding of genotypes involved in regulation of serotonin raises questions over the generalisability of TRP effects on behaviour across individuals with varied serotonergic genotypes. To date, only differences between variants of the 5-HT transporter-linked promoter region (5-HTTLPR) have been investigated in relation to behavioural effects of TRP supplementation. Effects of 5-HTTLPR genotypes are usually compared between the alleles that are either high (L/L′) or low (S/S′) expressing of mRNA for the 5-HT transporter receptor. Yet, another key genetic variable is sex: in women, the S/S′ genotype predicts sensitivity to improved mood and reduced cortisol by TRP supplementation, during stressful challenges, whereas the L/L′ genotype protects against stress-induced mood deterioration. In men, the L/L′ genotype may confer risk of stress-induced increases in negative affect; there are insufficient data to assess effects on male S/S′ genotypes. However, better-powered studies to detect sex by genotype by stress by TRP interactions, as well as consideration of more genotypes, are needed before strong conclusions and recommendations for behavioural effects of TRP treatment can be reached.
Collapse
|
13
|
Mazza E, Fava A, Ferro Y, Moraca M, Rotundo S, Colica C, Provenzano F, Terracciano R, Greco M, Foti D, Gulletta E, Russo D, Bosco D, Pujia A, Montalcini T. Impact of legumes and plant proteins consumption on cognitive performances in the elderly. J Transl Med 2017; 15:109. [PMID: 28532453 PMCID: PMC5440936 DOI: 10.1186/s12967-017-1209-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Numerous studies have investigated the role of the dietary factors in the prevention of cognitive decline but the short-term effects of foods choice on cognitive performances in the elderly are poorly explored. Our aim was to investigate the choice of foods among elderly Italian individuals and the association with cognitive function. METHODS In this longitudinal study, the participants were 214 individuals aged ≥65 years with a score >20 at the Mini Mental State Examination. The cognitive sub-test of ADAScale was used to detect cognitive decline progression over 12 months. Food choices was measured by a combination of a 24-h recall and a seven-day diet record and Principal Components Analysis. RESULTS The Principal Components Analysis identified four food and four nutrient patterns. MMSE and ADAS-cog score after 1 year were found to be associated with legumes pattern (B = 0.25, p = 0.007; 95% CI 0.07/0.44; and B = -0.10, p = 0.006; CI -0.79/-0.30, respectively). A dietary pattern including plant proteins was independently associated with an improved ADAS-cog after 1 year (B = 0.584, p = 0.04; OR 1.79, CI 0.04-0.42). CONCLUSIONS The Principal Components Analysis is useful to investigate the choice of foods and nutrients in the elderly. We demonstrated an association between legumes pattern with cognitive performances.
Collapse
Affiliation(s)
- Elisa Mazza
- Department of Clinical and Experimental Medicine, Nutrition Unit, University Magna Grecia, Viale S. Venuta, 88100, Catanzaro, Italy
| | - Antonietta Fava
- Department of Medical and Surgical Science, Nutrition Unit, University Magna Grecia, Catanzaro, Italy
| | - Yvelise Ferro
- Department of Medical and Surgical Science, Nutrition Unit, University Magna Grecia, Catanzaro, Italy
| | - Marta Moraca
- Department of Medical and Surgical Science, Nutrition Unit, University Magna Grecia, Catanzaro, Italy
| | - Stefania Rotundo
- Department of Medical and Surgical Science, Nutrition Unit, University Magna Grecia, Catanzaro, Italy
| | - Carmela Colica
- Department of Pharmacology, CNR, ISN, University Magna Graecia, Catanzaro, Italy
| | - Francesco Provenzano
- Department of Clinical and Experimental Medicine, Nutrition Unit, University Magna Grecia, Viale S. Venuta, 88100, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Science, Laboratory Unit, University Magna Grecia, Catanzaro, Italy
| | - Marta Greco
- Department of Health Science, Laboratory Unit, University Magna Grecia, Catanzaro, Italy
| | - Daniela Foti
- Department of Health Science, Laboratory Unit, University Magna Grecia, Catanzaro, Italy
| | - Elio Gulletta
- Department of Health Science, Laboratory Unit, University Magna Grecia, Catanzaro, Italy
| | - Diego Russo
- Department of Health Science, Laboratory Unit, University Magna Grecia, Catanzaro, Italy
| | - Domenico Bosco
- Neurology Unit, S. Giovanni di Dio Hospital, Crotone, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Science, Nutrition Unit, University Magna Grecia, Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, Nutrition Unit, University Magna Grecia, Viale S. Venuta, 88100, Catanzaro, Italy.
| |
Collapse
|
14
|
Raab K, Kirsch P, Mier D. Understanding the impact of 5-HTTLPR, antidepressants, and acute tryptophan depletion on brain activation during facial emotion processing: A review of the imaging literature. Neurosci Biobehav Rev 2016; 71:176-197. [DOI: 10.1016/j.neubiorev.2016.08.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/28/2016] [Accepted: 08/26/2016] [Indexed: 12/22/2022]
|
15
|
Marcos J, Renau N, Valverde O, Aznar-Laín G, Gracia-Rubio I, Gonzalez-Sepulveda M, Pérez-Jurado LA, Ventura R, Segura J, Pozo OJ. Targeting tryptophan and tyrosine metabolism by liquid chromatography tandem mass spectrometry. J Chromatogr A 2016; 1434:91-101. [DOI: 10.1016/j.chroma.2016.01.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/04/2015] [Accepted: 01/04/2016] [Indexed: 11/30/2022]
|
16
|
Hildebrand P, Königschulte W, Gaber TJ, Bubenzer-Busch S, Helmbold K, Biskup CS, Langen KJ, Fink GR, Zepf FD. Effects of dietary tryptophan and phenylalanine-tyrosine depletion on phasic alertness in healthy adults - A pilot study. Food Nutr Res 2015; 59:26407. [PMID: 25933613 PMCID: PMC4417080 DOI: 10.3402/fnr.v59.26407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 11/14/2022] Open
Abstract
Background The synthesis of the neurotransmitters serotonin (5-HT) and dopamine (DA) in the brain can be directly altered by dietary manipulation of their relevant precursor amino acids (AA). There is evidence that altered serotonergic and dopaminergic neurotransmission are both associated with impaired attentional control. Specifically, phasic alertness is one specific aspect of attention that has been linked to changes in 5-HT and DA availability in different neurocircuitries related to attentional processes. The present study investigated the impact of short-term reductions in central nervous system 5-HT and DA synthesis, which was achieved by dietary depletion of the relevant precursor AA, on phasic alertness in healthy adult volunteers; body weight–adapted dietary tryptophan and phenylalanine–tyrosine depletion (PTD) techniques were used. Methods The study employed a double-blind between-subject design. Fifty healthy male and female subjects were allocated to three groups in a randomized and counterbalanced manner and received three different dietary challenge conditions: acute tryptophan depletion (ATD, for the depletion of 5-HT; N=16), PTD (for the depletion of DA; N=17), and a balanced AA load (BAL; N=17), which served as a control condition. Three hours after challenge intake (ATD/PTD/BAL), phasic alertness was assessed using a standardized test battery for attentional performance (TAP). Blood samples for AA level analyses were obtained at baseline and 360 min after the challenge intake. Results Overall, there were no significant differences in phasic alertness for the different challenge conditions. Regarding PTD administration, a positive correlation between the reaction times and the DA-related depletion magnitude was detected via the lower plasma tyrosine levels and the slow reaction times of the first run of the task. In contrast, higher tryptophan concentrations were associated with slower reaction times in the fourth run of the task in the same challenge group. Conclusion The present study is the first to demonstrate preliminary data that support an association between decreased central nervous system DA synthesis, which was achieved by dietary depletion strategies, and slower reaction times in specific runs of a task designed to assess phasic alertness in healthy adult volunteers; these findings are consistent with previous evidence that links phasic alertness with dopaminergic neurotransmission. A lack of significant differences between the three groups could be due to compensatory mechanisms and the limited sample size, as well as the dietary challenge procedures administered to healthy participants and the strict exclusion criteria used. The potential underlying neurochemical processes related to phasic alertness should be the subject of further investigations.
Collapse
Affiliation(s)
- Patricia Hildebrand
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Werner Königschulte
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tilman Jakob Gaber
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sarah Bubenzer-Busch
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Katrin Helmbold
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Caroline Sarah Biskup
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Jülich, Jülich, Germany.,Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Florian Daniel Zepf
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, Australia.,Specialised Child and Adolescent Mental Health Services (CAHMS), Department of Health in Western Australia, Perth, WA, Australia;
| |
Collapse
|
17
|
Badawy AAB, Dougherty DM. Standardization of formulations for the acute amino acid depletion and loading tests. J Psychopharmacol 2015; 29:363-71. [PMID: 25586395 PMCID: PMC5516789 DOI: 10.1177/0269881114565141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The acute tryptophan depletion and loading and the acute tyrosine plus phenylalanine depletion tests are powerful tools for studying the roles of cerebral monoamines in behaviour and symptoms related to various disorders. The tests use either amino acid mixtures or proteins. Current amino acid mixtures lack specificity in humans, but not in rodents, because of the faster disposal of branched-chain amino acids (BCAAs) by the latter. The high content of BCAA (30-60%) is responsible for the poor specificity in humans and we recommend, in a 50g dose, a control formulation with a lowered BCAA content (18%) as a common control for the above tests. With protein-based formulations, α-lactalbumin is specific for acute tryptophan loading, whereas gelatine is only partially effective for acute tryptophan depletion. We recommend the use of the whey protein fraction glycomacropeptide as an alternative protein. Its BCAA content is ideal for specificity and the absence of tryptophan, tyrosine and phenylalanine render it suitable as a template for seven formulations (separate and combined depletion or loading and a truly balanced control). We invite the research community to participate in standardization of the depletion and loading methodologies by using our recommended amino acid formulation and developing those based on glycomacropeptide.
Collapse
Affiliation(s)
| | - Donald M Dougherty
- Department of Psychiatry, University of Texas Health Sciences Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 7793, San Antonio, Texas, 78229, USA
| |
Collapse
|
18
|
den Ouden HEM, Swart JC, Schmidt K, Fekkes D, Geurts DEM, Cools R. Acute serotonin depletion releases motivated inhibition of response vigour. Psychopharmacology (Berl) 2015; 232:1303-12. [PMID: 25326051 DOI: 10.1007/s00213-014-3762-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023]
Abstract
RATIONALE The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas, however, has been mixed. OBJECTIVES In the current study, we aimed to investigate the role of serotonin (5HT) in behavioural vigour as a function of incentive motivation. METHODS We employed dietary acute tryptophan depletion (ATD) to lower the 5HT precursor tryptophan during the performance of a speeded visual discrimination task. Feedback valence and feedback probability were manipulated independently and cued prior to target onset. On feedback trials, fast correct responses led to either reward or avoidance of punishment, while slow or incorrect responses led to reward omission or punishment. RESULTS We show that behavioural responding is inhibited under high incentive motivation (i.e. high-feedback probability) at baseline 5HT levels and that lowering these leads to behavioural disinhibition, while leaving accuracy unaffected. Surprisingly, there were no differential effects of motivational valence, with 5HT depletion releasing behavioural inhibition under both appetitive and aversive motivation. CONCLUSIONS Our findings extend current theories on the role of 5HT in behavioural inhibition by showing that reductions in serotonin lead to increased behavioural vigour only if there is a motivational drive to inhibit behaviour at baseline.
Collapse
Affiliation(s)
- Hanneke E M den Ouden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands,
| | | | | | | | | | | |
Collapse
|
19
|
Patrick RP, Ames BN. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J 2015; 29:2207-22. [PMID: 25713056 DOI: 10.1096/fj.14-268342] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/04/2015] [Indexed: 01/22/2023]
Abstract
Serotonin regulates a wide variety of brain functions and behaviors. Here, we synthesize previous findings that serotonin regulates executive function, sensory gating, and social behavior and that attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior all share in common defects in these functions. It has remained unclear why supplementation with omega-3 fatty acids and vitamin D improve cognitive function and behavior in these brain disorders. Here, we propose mechanisms by which serotonin synthesis, release, and function in the brain are modulated by vitamin D and the 2 marine omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Brain serotonin is synthesized from tryptophan by tryptophan hydroxylase 2, which is transcriptionally activated by vitamin D hormone. Inadequate levels of vitamin D (∼70% of the population) and omega-3 fatty acids are common, suggesting that brain serotonin synthesis is not optimal. We propose mechanisms by which EPA increases serotonin release from presynaptic neurons by reducing E2 series prostaglandins and DHA influences serotonin receptor action by increasing cell membrane fluidity in postsynaptic neurons. We propose a model whereby insufficient levels of vitamin D, EPA, or DHA, in combination with genetic factors and at key periods during development, would lead to dysfunctional serotonin activation and function and may be one underlying mechanism that contributes to neuropsychiatric disorders and depression. This model suggests that optimizing vitamin D and marine omega-3 fatty acid intake may help prevent and modulate the severity of brain dysfunction.
Collapse
Affiliation(s)
- Rhonda P Patrick
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Bruce N Ames
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA
| |
Collapse
|
20
|
Diabetes and Tryptophan Metabolism. TRYPTOPHAN METABOLISM: IMPLICATIONS FOR BIOLOGICAL PROCESSES, HEALTH AND DISEASE 2015. [DOI: 10.1007/978-3-319-15630-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Hebart MN, Gläscher J. Serotonin and dopamine differentially affect appetitive and aversive general Pavlovian-to-instrumental transfer. Psychopharmacology (Berl) 2015; 232:437-51. [PMID: 25034118 DOI: 10.1007/s00213-014-3682-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/30/2014] [Indexed: 12/29/2022]
Abstract
RATIONALE Human motivation and decision-making is influenced by the interaction of Pavlovian and instrumental systems. The neurotransmitters dopamine and serotonin have been suggested to play a major role in motivation and decision-making, but how they affect this interaction in humans is largely unknown. OBJECTIVE We investigated the effect of these neurotransmitters in a general Pavlovian-to-instrumental transfer (PIT) task which measured the nonspecific effect of appetitive and aversive Pavlovian cues on instrumental responses. METHODS For that purpose, we used selective dietary depletion of the amino acid precursors of serotonin and dopamine: tryptophan (n = 34) and tyrosine/phenylalanine (n = 35), respectively, and compared the performance of these groups to a control group (n = 34) receiving a nondepleted (balanced) amino acid drink. RESULTS We found that PIT differed between groups: Relative to the control group that exhibited only appetitive PIT, we found reduced appetitive PIT in the tyrosine/phenylalanine-depleted group and enhanced aversive PIT in the tryptophan-depleted group. CONCLUSIONS These results demonstrate a differential involvement of serotonin and dopamine in motivated behavior. They suggest that reductions in serotonin enhance the motivational influence of aversive stimuli on instrumental behavior and do not affect the influence of appetitive stimuli, while reductions in dopamine diminish the influence of appetitive stimuli. No conclusions could be drawn about how dopamine affects the influence of aversive stimuli. The interplay of both neurotransmitter systems allows for flexible and adaptive responses depending on the behavioral context.
Collapse
Affiliation(s)
- Martin N Hebart
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, W34, Martinistraße 52, 20251, Hamburg, Germany,
| | | |
Collapse
|
22
|
Geurts DEM, Huys QJM, den Ouden HEM, Cools R. Serotonin and aversive Pavlovian control of instrumental behavior in humans. J Neurosci 2013; 33:18932-9. [PMID: 24285898 PMCID: PMC6618702 DOI: 10.1523/jneurosci.2749-13.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 11/21/2022] Open
Abstract
Adaptive decision-making involves interaction between systems regulating Pavlovian and instrumental control of behavior. Here we investigate in humans the role of serotonin in such Pavlovian-instrumental transfer in both the aversive and the appetitive domain using acute tryptophan depletion, known to lower central serotonin levels. Acute tryptophan depletion attenuated the inhibiting effect of aversive Pavlovian cues on instrumental behavior, while leaving unaltered the activating effect of appetitive Pavlovian cues. These data suggest that serotonin is selectively involved in Pavlovian inhibition due to aversive expectations and have implications for our understanding of the mechanisms underlying a range of affective, impulsive, and aggressive neuropsychiatric disorders.
Collapse
Affiliation(s)
- Dirk E M Geurts
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging and Department of Psychiatry, 6500 HB, Nijmegen, The Netherlands, Gatsby Computational Neuroscience Unit and Wellcome Trust Centre for Neuroimaging, UCL, WC1N 3AR, London, United Kingdom, Translational Neuromodeling Unit, ETH, University of Zurich, CH-8032 Zurich, Switzerland, and Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, CH-8032 Zurich, Switzerland
| | | | | | | |
Collapse
|
23
|
GCN2-dependent metabolic stress is essential for endotoxemic cytokine induction and pathology. Mol Cell Biol 2013; 34:428-38. [PMID: 24248597 DOI: 10.1128/mcb.00946-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Activated inflammatory macrophages can express indoleamine 2,3-dioxygenase (IDO) and thus actively deplete their own tryptophan supply; however, it is not clear how amino acid depletion influences macrophage behavior in inflammatory environments. In this report, we demonstrate that the stress response kinase GCN2 promotes macrophage inflammation and mortality in a mouse model of septicemia. In vitro, enzymatic amino acid consumption enhanced sensitivity of macrophages to the Toll-like receptor 4 (TLR4) ligand lipopolysaccharide (LPS) with significantly increased interleukin 6 (IL-6) production. Tryptophan withdrawal induced the stress response proteins ATF4 and CHOP/GADD153; however, LPS stimulation rapidly enhanced expression of both proteins. Moreover, LPS-driven cytokine production under amino acid-deficient conditions was dependent on GCN2, as GCN2 knockout (GCN2KO) macrophages had a significant reduction of cytokine gene expression after LPS stimulation. To test the in vivo relevance of these findings, monocytic-lineage-specific GCN2KO mice were challenged with a lethal dose of LPS intraperitoneally (i.p.). The GCN2KO mice showed reduced inflammatory responses, with decreased IL-6 and IL-12 expression correlating with significant reduction in animal mortality. Thus, the data show that amino acid depletion stress signals (via GCN2) synergize with proinflammatory signals to potently increase innate immune responsiveness.
Collapse
|
24
|
Duke AA, Bègue L, Bell R, Eisenlohr-Moul T. Revisiting the serotonin-aggression relation in humans: a meta-analysis. Psychol Bull 2013; 139:1148-72. [PMID: 23379963 PMCID: PMC3718863 DOI: 10.1037/a0031544] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The inverse relation between serotonin and human aggression is often portrayed as "reliable," "strong," and "well established" despite decades of conflicting reports and widely recognized methodological limitations. In this systematic review and meta-analysis, we evaluate the evidence for and against the serotonin deficiency hypothesis of human aggression across 4 methods of assessing serotonin: (a) cerebrospinal fluid levels of 5-hydroxyindoleacetic acid (CSF 5-HIAA), (b) acute tryptophan depletion, (c) pharmacological challenge, and (d) endocrine challenge. Results across 175 independent samples and over 6,500 total participants were heterogeneous, but, in aggregate, revealed a small, inverse correlation between serotonin functioning and aggression, anger, and hostility (r = -.12). Pharmacological challenge studies had the largest mean weighted effect size (r = -.21), and CSF 5-HIAA studies had the smallest (r = -.06). Potential methodological and demographic moderators largely failed to account for variability in study outcomes. Notable exceptions included year of publication (effect sizes tended to diminish with time) and self- versus other-reported aggression (other-reported aggression was positively correlated to serotonin functioning). We discuss 4 possible explanations for the pattern of findings: unreliable measures, ambient correlational noise, an unidentified higher order interaction, and a selective serotonergic effect. Finally, we provide 4 recommendations for bringing much needed clarity to this important area of research: acknowledge contradictory findings and avoid selective reporting practices; focus on improving the reliability and validity of serotonin and aggression measures; test for interactions involving personality and/or environmental moderators; and revise the serotonin deficiency hypothesis to account for serotonin's functional complexity.
Collapse
|
25
|
Donovan MH, Tecott LH. Serotonin and the regulation of mammalian energy balance. Front Neurosci 2013; 7:36. [PMID: 23543912 PMCID: PMC3608917 DOI: 10.3389/fnins.2013.00036] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/03/2013] [Indexed: 01/17/2023] Open
Abstract
Maintenance of energy balance requires regulation of the amount and timing of food intake. Decades of experiments utilizing pharmacological and later genetic manipulations have demonstrated the importance of serotonin signaling in this regulation. Much progress has been made in recent years in understanding how central nervous system (CNS) serotonin systems acting through a diverse array of serotonin receptors impact feeding behavior and metabolism. Particular attention has been paid to mechanisms through which serotonin impacts energy balance pathways within the hypothalamus. How upstream factors relevant to energy balance regulate the release of hypothalamic serotonin is less clear, but work addressing this issue is underway. Generally, investigation into the central serotonergic regulation of energy balance has had a predominantly “hypothalamocentric” focus, yet non-hypothalamic structures that have been implicated in energy balance regulation also receive serotonergic innervation and express multiple subtypes of serotonin receptors. Moreover, there is a growing appreciation of the diverse mechanisms through which peripheral serotonin impacts energy balance regulation. Clearly, the serotonergic regulation of energy balance is a field characterized by both rapid advances and by an extensive and diverse set of central and peripheral mechanisms yet to be delineated.
Collapse
Affiliation(s)
- Michael H Donovan
- Department of Psychiatry, University of California San Francisco CA, USA
| | | |
Collapse
|
26
|
Abstract
The precise neural substrates of major depressive disorder (MDD) remain elusive, and FDA-approved antidepressants fail at least one-third of treatment-seeking patients. It is imperative, therefore, to identify novel research strategies to tackle the factors impeding progress. In this chapter we propose that the knowledge derived from computational investigations of associative learning might offer new insights into the neurobiology of MDD.
Collapse
|
27
|
Moehn S, Pencharz PB, Ball RO. Lessons learned regarding symptoms of tryptophan deficiency and excess from animal requirement studies. J Nutr 2012; 142:2231S-2235S. [PMID: 23077198 DOI: 10.3945/jn.112.159061] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tryptophan is the precursor for several neurotransmitters and metabolic regulators, which, although quantitatively of little importance in determining the dietary requirement, have major importance for interpreting symptoms of dietary tryptophan deficiency and excess. The quantitative dietary tryptophan requirement appears to vary widely across species, so intakes relative to requirements are more appropriate expressions for comparison of adverse effects across species than daily intake or diet concentration. Symptoms of tryptophan deficiency may occur at intakes as little as 25% below the requirement. Symptoms include reduced feed intake and reduced growth rate but also impaired skeletal development and aberrant behavior. Older animals appear less susceptible than younger animals to tryptophan deficiency and females less than males. Symptoms of excess tryptophan intake include reduced food intake and growth rate. In growing animals, it appears that tryptophan intakes of >10 times the requirement are necessary before there are detrimental effects on growth performance. At still greater intakes, fatty liver and fibrotic changes in muscles, lung, and pancreas and the serotonin syndrome may develop. In pigs, tryptophan intake of 60 times the daily requirement did not cause mortality. The maximal tryptophan oxidation rate, measured in vivo using (13)C universally labeled tryptophan, may be a possible marker of the intake above which increasing intake increases the risk of adverse effects. The advantage of the oxidation technique is that it does not necessarily rely on but still allows the identification and measurement of amino acid metabolites and is therefore simpler and more universally applicable.
Collapse
Affiliation(s)
- Soenke Moehn
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
28
|
Alhaj HA, Selman M, Jervis V, Rodgers J, Barton S, McAllister-Williams RH. Effect of low-dose acute tryptophan depletion on the specificity of autobiographical memory in healthy subjects with a family history of depression. Psychopharmacology (Berl) 2012; 222:285-92. [PMID: 22286957 DOI: 10.1007/s00213-012-2644-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 01/08/2012] [Indexed: 10/14/2022]
Abstract
RATIONALE Low-dose acute tryptophan depletion (LD-ATD), while having no effect on mood, has been shown to reduce specificity of autobiographical memory in patients who have recovered from a depressive episode. OBJECTIVES This study aimed to explore if reduced specificity of autobiographical memory with LD-ATD is common to other groups of individuals at risk of depression, specifically a healthy population with a family history of depression. METHODS Nineteen healthy young adults with at least one first-degree relative with a history of major depression were recruited. LD-ATD drinks containing 1.15 g of tryptophan (T+) or no tryptophan (T−) were administered on two separate occasions, in a double blind random order crossover design. The Autobiographical Memory Test (AMT) was administered 5 h after drink administration. RESULTS Analysis of variance revealed a significant difference in the effects of LD-ATD drinks on plasma free tryptophan with no mood change with either drink. There was no within-subject main effect of LD-ATD on the memory task. However, there was a main effect of order of drink. Exploratory analysis of visit 1 data indicated a large between-subject effect (d=1.4) of LD-ATD on AMT with T− associated with less specificity in response to negative cue words (F(1, 17)08.71, p=0.009). CONCLUSIONS Similar to findings following recovery from depression, LD-ATD can reduce specificity of AMT in the absence of lowered mood in healthy individuals with a strong family history of depression. These findings may reflect a 5-HT-dependent cognitive vulnerability to depression in different populations and warrant further research.
Collapse
Affiliation(s)
- Hamid A Alhaj
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | |
Collapse
|
29
|
Nakamaru-Ogiso E, Miyamoto H, Hamada K, Tsukada K, Takai K. Novel biochemical manipulation of brain serotonin reveals a role of serotonin in the circadian rhythm of sleep-wake cycles. Eur J Neurosci 2012; 35:1762-70. [DOI: 10.1111/j.1460-9568.2012.08077.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Bao AM, Ruhé HG, Gao SF, Swaab DF. Neurotransmitters and neuropeptides in depression. HANDBOOK OF CLINICAL NEUROLOGY 2012; 106:107-36. [PMID: 22608619 DOI: 10.1016/b978-0-444-52002-9.00008-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- A-M Bao
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
| | | | | | | |
Collapse
|
31
|
Forgeard MJC, Haigh EAP, Beck AT, Davidson RJ, Henn FA, Maier SF, Mayberg HS, Seligman MEP. Beyond Depression: Towards a Process-Based Approach to Research, Diagnosis, and Treatment. ACTA ACUST UNITED AC 2011; 18:275-299. [PMID: 22509072 DOI: 10.1111/j.1468-2850.2011.01259.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite decades of research on the etiology and treatment of depression, a significant proportion of the population is affected by the disorder, fails to respond to treatment and is plagued by relapse. Six prominent scientists, Aaron Beck, Richard Davidson, Fritz Henn, Steven Maier, Helen Mayberg, and Martin Seligman, gathered to discuss the current state of scientific knowledge on depression, and in particular on the basic neurobiological and psychopathological processes at play in the disorder. These general themes were addressed: 1) the relevance of learned helplessness as a basic process involved in the development of depression; 2) the limitations of our current taxonomy of psychological disorders; 3) the need to work towards a psychobiological process-based taxonomy; and 4) the clinical implications of implementing such a process-based taxonomy.
Collapse
|
32
|
Badawy AAB, Dougherty DM, Richard DM. Specificity of the acute tryptophan and tyrosine plus phenylalanine depletion and loading tests I. Review of biochemical aspects and poor specificity of current amino Acid formulations. Int J Tryptophan Res 2011; 2010:23-34. [PMID: 20676231 PMCID: PMC2911801 DOI: 10.4137/ijtr.s5134] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The acute tryptophan or tyrosine plus phenylalanine depletion and loading tests are powerful tools for studying the roles of serotonin, dopamine and noradrenaline in normal subjects and those with behavioural disorders. The current amino acid formulations for these tests, however, are associated with undesirable decreases in ratios of tryptophan or tyrosine plus phenylalanine to competing amino acids resulting in loss of specificity. This could confound biochemical and behavioural findings. Compositions of current formulations are reviewed, the biochemical principles underpinning the tests are revisited and examples of unintended changes in the above ratios and their impact on monoamine function and behaviour will be demonstrated from data in the literature. The presence of excessive amounts of the 3 branched-chain amino acids Leu, Ile and Val is responsible for these unintended decreases and the consequent loss of specificity. Strategies for enhancing the specificity of the different formulations are proposed.
Collapse
|
33
|
Badawy AAB, Dougherty DM, Richard DM. Specificity of the Acute Tryptophan and Tyrosine Plus Phenylalanine Depletion and Loading Tests Part II: Normalisation of the Tryptophan and the Tyrosine Plus Phenylalanine to Competing Amino Acid Ratios in a New Control Formulation. Int J Tryptophan Res 2011; 3:35-47. [PMID: 20725610 PMCID: PMC2923411 DOI: 10.4137/ijtr.s5169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Current formulations for acute tryptophan (Trp) or tyrosine (Tyr) plus phenylalanine (Phe) depletion and loading cause undesirable decreases in ratios of Trp or Tyr + Phe to competing amino acids (CAA), thus undermining the specificities of these tests. Branched-chain amino acids (BCAA) cause these unintended decreases, and lowering their content in a new balanced control formulation in the present study led to normalization of all ratios. Four groups (n = 12 each) of adults each received one of four 50 g control formulations, with 0% (traditional), 20%, 30%, or 40% less of the BCAA. The free and total [Trp]/[CAA] and [Phe + Tyr]/[BCAA + Trp] ratios all decreased significantly during the first 5 h following the traditional formulation, but were fully normalized by the formulation containing 40% less of the BCAA. We recommend the latter as a balanced control formulation and propose adjustments in the depletion and loading formulations to enhance their specificities for 5-HT and the catecholamines.
Collapse
|
34
|
Johnson S, Stockmeier CA, Meyer JH, Austin MC, Albert PR, Wang J, May WL, Rajkowska G, Overholser JC, Jurjus G, Dieter L, Johnson C, Sittman DB, Ou XM. The reduction of R1, a novel repressor protein for monoamine oxidase A, in major depressive disorder. Neuropsychopharmacology 2011; 36:2139-48. [PMID: 21654740 PMCID: PMC3158311 DOI: 10.1038/npp.2011.105] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The novel transcriptional repressor protein, R1 (JPO2/CDCA7L/RAM2), inhibits monoamine oxidase A (MAO A) gene expression and influences cell proliferation and survival. MAO A is implicated in several neuropsychiatric illnesses and highly elevated in major depressive disorder (MDD); however, whether R1 is involved in these disorders is unknown. This study evaluates the role of R1 in depressed subjects either untreated or treated with antidepressant drugs. R1 protein levels were determined in the postmortem prefrontal cortex of 18 untreated MDD subjects and 12 medicated MDD subjects compared with 18 matched psychiatrically normal control subjects. Western blot analysis showed that R1 was significantly decreased by 37.5% (p<0.005) in untreated MDD subjects. The R1 level in medicated MDD subjects was also significantly lower (by 30%; p<0.05) compared with control subjects, but was not significantly different compared with untreated MDD subjects. Interestingly, the reduction in R1 was significantly correlated with an increase (approximately 40%; p<0.05) in MAO A protein levels within the MDD groups compared with controls. Consistent with the change in MAO A protein expression, the MAO A catalytic activity was significantly greater in both MDD groups compared with controls. These results suggest that reduced R1 may lead to elevated MAO A levels in untreated and treated MDD subjects; moreover, the reduction of R1 has been implicated in apoptotic cell death and apoptosis has also been observed in the brains of MDD subjects. Therefore, modulation of R1 levels may provide a new therapeutic target in the development of more effective strategies to treat MDD.
Collapse
Affiliation(s)
- Shakevia Johnson
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | - Jeffrey H Meyer
- Department of Psychiatry and Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Mark C Austin
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Paul R Albert
- Department of Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Junming Wang
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Warren L May
- Biostatistics Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - James C Overholser
- Department of Psychology, Case Western Reserve University, Cleveland, OH, USA
| | - George Jurjus
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | - Lesa Dieter
- Department of Psychology, Case Western Reserve University, Cleveland, OH, USA
| | - Chandra Johnson
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Donald B Sittman
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiao-Ming Ou
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,Department of Psychiatry and Human Behavior (G-109), University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA, Tel: +1 601 984 5893, Fax: +1 601 984 5899, E-mail:
| |
Collapse
|
35
|
Alhaj H, Wisniewski G, McAllister-Williams RH. The use of the EEG in measuring therapeutic drug action: focus on depression and antidepressants. J Psychopharmacol 2011; 25:1175-91. [PMID: 21106608 DOI: 10.1177/0269881110388323] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A major issue in proof of concept studies and early clinical trials of novel therapeutic agents is that the active drugs can often have a relatively small additional effect compared with placebo. This is especially the case in psychiatry when we usually have no direct method of measuring the pathology underlying the disorder being studied but, rather, have to rely on the subjective assessment of psychiatric symptoms. The use of the electroencephalogram (EEG) offers two potential major means of addressing this problem. First it is able to provide direct data relating to neural activity that may be abnormal in certain disorders. As such there are opportunities for utilizing the EEG in a variety of ways as an objective outcome measure. Second there is growing evidence that in certain circumstances the EEG can be used to predict which patients are likely to respond to treatment, thus potentially increasing the power of studies by decreasing non-response rates and increasing mean changes in outcome measure. Both of these uses of the EEG are illustrated in reference to the study of mood disorders and in particular depression and its treatment with antidepressants.
Collapse
Affiliation(s)
- Hamid Alhaj
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | | | | |
Collapse
|
36
|
van Donkelaar EL, Blokland A, Ferrington L, Kelly PAT, Steinbusch HWM, Prickaerts J. Mechanism of acute tryptophan depletion: is it only serotonin? Mol Psychiatry 2011; 16:695-713. [PMID: 21339754 DOI: 10.1038/mp.2011.9] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The method of acute tryptophan depletion (ATD), which reduces the availability of the essential amino acid tryptophan (TRP), the dietary serotonin (5-hydroxytryptamine (5-HT)) precursor, has been applied in many experimental studies. ATD application leads to decreased availability of TRP in the brain and its synthesis into 5-HT. It is therefore assumed that a decrease in 5-HT release and subsequent blunted neurotransmission is the underlying mechanism for the behavioural effects of ATD. However, direct evidence that ATD decreases extracellular 5-HT concentrations is lacking. Furthermore, several studies provide support for alternative underlying mechanisms of ATD. This may question the utility of the method as a selective serotonergic challenge tool. As ATD is extensively used for investigating the role of 5-HT in cognitive functions and psychiatric disorders, the potential of alternative mechanisms and possible confounding factors should be taken into account. It is suggested that caution is required when interpreting ATD effects in terms of a selective serotonergic effect.
Collapse
Affiliation(s)
- E L van Donkelaar
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
van der Plasse G, Feenstra MGP. WITHDRAWN: Is acute tryptophan depletion a valid method to assess central serotonergic function? Neurosci Biobehav Rev 2011:S0149-7634(11)00053-4. [PMID: 21435352 DOI: 10.1016/j.neubiorev.2011.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/16/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Geoffrey van der Plasse
- Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Department of Psychiatry, PO Box 85500, 3508 GAUtrecht,The Netherlands
| | | |
Collapse
|
38
|
Geeraerts B, Van Oudenhove L, Boesmans W, Vos R, Vanden Berghe P, Tack J. Influence of acute tryptophan depletion on gastric sensorimotor function in humans. Am J Physiol Gastrointest Liver Physiol 2011; 300:G228-35. [PMID: 20884888 DOI: 10.1152/ajpgi.00020.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Peripheral serotonin (5-hydrodytryptamine; 5-HT) is involved in the regulation of gastrointestinal motility and sensation, whereas centrally it plays a role in mood regulation. A dysfunctional serotonergic system may provide a plausible link between functional dyspepsia symptoms and its high psychosocial comorbidity such as anxiety and depression. The aim of this study was to evaluate the effect of decreased 5-HT synthesis by acute tryptophan depletion (ATD) on gastric sensorimotor function and nutrient tolerance, anxiety scores, and gastrointestinal mucosal 5-HT concentrations in healthy volunteers. All subjects were studied under a control condition and during ATD. Gastric sensorimotor function and nutrient tolerance were assessed using a barostat (n = 16, mean age 28.8 ± 1.4 yr) and a satiety drinking test (n = 13, mean age 27.3 ± 1.4 yr). Anxiety during the barostat was evaluated using State-Trait Anxiety Inventory (STAI) questionnaire. 5-HT concentrations were measured in fundic and duodenal mucosal biopsies by means of ELISA and immunohistochemistry. ATD significantly decreased plasma tryptophan levels compared with control in every experiment. ATD did not affect gastric sensitivity and compliance but decreased the sensation of nausea during balloon distension (AUC: 17.4 ± 4.3 vs. 11.4 ± 3.4 mm·mmHg, P = 0.030). ATD enhanced the postprandial volume increase (ANOVA, P < 0.05), but this was not accompanied by augmented nutrient tolerance (848 ± 110 vs. 837 ± 99 ml, nonsignificant). ATD had no effect on STAI state anxiety scores. No evidence was found for an effect on the number of enterochromaffin cells, but ATD reduced 5-HT levels in the duodenal mucosa. ATD alters gastric postprandial motor function and distension-induced nausea. These findings confirm involvement of 5-HT in the control of gastric accommodation and sensitivity.
Collapse
Affiliation(s)
- Brecht Geeraerts
- Dept. of Gastroenterology, Univ. Hospital Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
39
|
Wedekind D, Herchenhein T, Kirchhainer J, Bandelow B, Falkai P, Engel K, Malchow B, Havemann-Reinecke U. Serotonergic function, substance craving, and psychopathology in detoxified alcohol-addicted males undergoing tryptophan depletion. J Psychiatr Res 2010; 44:1163-9. [PMID: 20579662 DOI: 10.1016/j.jpsychires.2010.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 11/29/2022]
Abstract
Alcohol addiction is associated with alterations of central nervous dopaminergic and serotonergic functions. Acute tryptophan depletion has not yet been applied in detoxified alcohol-addicted patients in order to investigate its impact on psychopathology, psychoneuroendocrinology, and substance craving behaviour. 25 alcohol-addicted males randomly either received a tryptophan-free or tryptophan-containing amino acid drink and 7 days later the respective other drink. Anxiety, depression, and craving were assessed before and 5 h after the drink. Tryptophan, 5-HIAA, dopamine, norepinephrine, epinephrine, and HVA in serum were measured before and after both treatments. Nocturnal urinary cortisol measurements and genotyping for the HTTLPR polymorphism of the SLC6A4 gene were performed. Tryptophan depletion resulted in a significant reduction of total and free serum tryptophan while the tryptophan-rich drink increased serum levels. Both treatments caused a significant increase of serum serotonin levels, however, serum 5-HIAA was decreased after depletion but increased after sham depletion. Dopamine and norepinephrine were elevated after tryptophan depletion and sham. Depletion increased depression scores (MADRS), while the full amino acid drink improved state and trait anxiety ratings (STAI) and substance craving. Urinary cortisol excretion was not affected by both treatments. Patients with the ll genotype of the serotonin transporter gene displayed lower baseline tryptophan levels compared to patients with the heterozygous genotype. Results suggest an impaired serotonergic function in alcohol-addicted males.
Collapse
Affiliation(s)
- Dirk Wedekind
- Dept of Psychiatry and Psychotherapy, University of Goettingen, Von-Siebold Strasse 5, D-37075 Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mace JL, Porter RJ, Dalrymple-Alford JC, Wesnes KA, Anderson TJ. Effects of acute tryptophan depletion on neuropsychological and motor function in Parkinson's disease. J Psychopharmacol 2010; 24:1465-72. [PMID: 19460872 DOI: 10.1177/0269881109105721] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interactions between the 5-HT system and the dopaminergic system and cholinergic system may be important in determining cognitive function and motor function in Parkinson's disease (PD). Previous studies have shown effects of reducing serotonin function, by acute tryptophan depletion (ATD), on neuropsychological function. In particular, an adverse effect on verbal memory has been demonstrated. This study compared with the effects of ATD on cognitive and motor function in PD and healthy control subjects. The effects of ATD were investigated in a double-blind, placebo-controlled, counterbalanced, cross-over, randomised design in 20 patients with PD and 35 healthy controls matched for age, gender and premorbid IQ. There was a differential group effect of ATD on global cognitive function whereby the mean score on the modified mini mental state examination during ATD was lower than placebo in PD but higher in controls. There was a similar pattern of effects on verbal recognition. In a visual recognition task, ATD improved performance in the PD but not in the control group. In terms of psychomotor speed, there was also a group-specific effect with reduced latency of response during ATD in the PD group but increased latency in the control group. ATD has subtle neuropsychological effects, which differ significantly between PD and healthy control subjects. This suggests that the dopaminergic and cholinergic deficit of PD significantly modulates the effects of serotonin depletion, resulting in positive effects in some domains. Further investigation on the effects of specific serotonin antagonists may be merited in PD.
Collapse
Affiliation(s)
- J L Mace
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand, Van der Veer Institute, Christchurch, New Zealand
| | | | | | | | | |
Collapse
|
41
|
The Potential Role of Cannabinoids in Modulating Serotonergic Signaling by Their Influence on Tryptophan Metabolism. Pharmaceuticals (Basel) 2010; 3:2647-2660. [PMID: 27713369 PMCID: PMC4033942 DOI: 10.3390/ph3082647] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/06/2010] [Accepted: 08/11/2010] [Indexed: 01/24/2023] Open
Abstract
Phytocannabinoids present in Cannabis plants are well known to exert potent anti-inflammatory and immunomodulatory effects. Previously, we have demonstrated that the psychoactive D9-tetrahydrocannabinol (THC) and the non-psychotropic cannabidiol (CBD) modulate mitogen-induced Th1-type immune responses in peripheral blood mononuclear cells (PBMC). The suppressive effect of both cannabinoids on mitogen-induced tryptophan degradation mediated by indoleamine-2,3-dioxygenase (IDO), suggests an additional mechanism by which antidepressive effects of cannabinoids might be linked to the serotonergic system. Here, we will review the role of tryptophan metabolism in the course of cell mediated immune responses and the relevance of cannabinoids in serotonergic signaling. We conclude that in particular the non-psychotropic CBD might be useful for the treatment of mood disorders in patients with inflammatory diseases, since this cannabinoid seems to be safe and its effects on activation-induced tryptophan degradation by CBD were more potent as compared to THC.
Collapse
|
42
|
The modification of attentional bias to emotional information: A review of the techniques, mechanisms, and relevance to emotional disorders. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2010; 10:8-20. [PMID: 20233952 DOI: 10.3758/cabn.10.1.8] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A negative bias in the deployment of attention to emotional stimuli is commonly found in both anxiety and depression. Recent work has highlighted that such biases are causally related to emotional vulnerability, suggesting that interventions that ameliorate them may be therapeutic. Here, we review the evidence that attentional bias can be modified using both pharmacological and psychological interventions. We highlight the behavioral and neuroimaging studies that suggest that these interventions impact upon attention via alteration of distinct neural mechanisms. Specifically, pharmacological interventions appear to influence the initial deployment of attention via an effect on the amygdala-based stimulus appraisal system, whereas psychological interventions influence attention at later time points and may alter activity in the lateral prefrontal cortex. Finally, we suggest a conceptual framework that embraces both pharmacological and psychological approaches and consider the possible implications of this work for future research and treatment development.
Collapse
|
43
|
Tryptophan Depletion and Serotonin Release — A Critical Reappraisal. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70082-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
44
|
Evaluating the role of serotonin in hot flashes after breast cancer using acute tryptophan depletion. Menopause 2009; 16:644-52. [PMID: 19265726 DOI: 10.1097/gme.0b013e318199e9f6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Among women with breast cancer, hot flashes are frequent, severe, and bothersome symptoms that can negatively impact quality of life and compromise compliance with life-saving medications (eg, tamoxifen and aromatase inhibitors). Clinicians' abilities to treat hot flashes are limited due to inadequate understanding of physiological mechanisms involved in hot flashes. Using an acute tryptophan depletion paradigm, we tested whether alterations in central serotonin levels were involved in the induction of hot flashes in women with breast cancer. METHODS This was a within-participant, double-blind, controlled, balanced, crossover study. Twenty-seven women completed two 9-hour test days. On one test day, women ingested a concentrated amino acid drink and encapsulated amino acids (no tryptophan) according to published procedures that have been shown to have specific effects on serotonin within 4.5 to 7 hours. On the other test day, women ingested a control drink. Serial venous blood sampling and objective hot flash monitoring were used to evaluate response to each condition. RESULTS Response to acute tryptophan depletion was variable and unexplained by use of selective serotonin reuptake inhibitors, antiestrogens, breast cancer disease and treatment variables, or genetic polymorphisms in serotonin receptor and transporter genes. Contrary to our hypothesis, hot flashes were not worsened with acute tryptophan depletion. CONCLUSIONS Physiologically documented and self-reported hot flashes were not exacerbated by tryptophan depletion. Additional mechanistic research is needed to better understand the etiology of hot flashes.
Collapse
|
45
|
Robinson OJ, Sahakian BJ. Acute tryptophan depletion evokes negative mood in healthy females who have previously experienced concurrent negative mood and tryptophan depletion. Psychopharmacology (Berl) 2009; 205:227-35. [PMID: 19370340 PMCID: PMC2705725 DOI: 10.1007/s00213-009-1533-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 03/25/2009] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The majority of individuals who suffer an episode of depression go on to experience recurrences. We have proposed, based upon the observation that reducing serotonin via acute tryptophan depletion (ATD) is more likely to induce negative mood in recovered depressed individuals than never depressed individuals, that this may be because associations form between negative mood and reduced serotonin during an episode of depression (Robinson and Sahakian, Psychol Med 38:315-318, 2008b). Such associations would mean that subsequent reductions in serotonin are more likely to provoke depressed mood and hence trigger an episode of depression. METHODS In this study, we tested this hypothesis by manipulating the mood state of healthy females undergoing ATD (or balanced placebo) on two separate testing sessions. On the first session, subjects received either negative or neutral mood induction, while on the second session all subjects received neutral mood induction. RESULTS Our findings demonstrate significant ATD-induced negative mood exclusively on the second visit of subjects who received both ATD and negative mood induction procedure on their first visit. DISCUSSION These findings may be explained by the formation of an association between the negative mood and reduced serotonin states during the first visit. As such, these findings provide preliminary support for the associative hypothesis of recurrence in depression. CONCLUSION Such associations might therefore explain the discrepancy between the effects of ATD in recovered- and never-depressed individuals and may, in turn, explain why an episode of depression increases the risk of subsequent episodes.
Collapse
Affiliation(s)
- Oliver J. Robinson
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, Addenbrooke’s Hospital, P. O. Box 189, Level E4, Hills Road, Cambridge, CB2 2QQ UK ,Section on Neuroimaging in Mood and Anxiety Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Barbara J. Sahakian
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, Addenbrooke’s Hospital, P. O. Box 189, Level E4, Hills Road, Cambridge, CB2 2QQ UK
| |
Collapse
|
46
|
Wang L, Mullette-Gillman OA, Gadde KM, Kuhn CM, McCarthy G, Huettel SA. The effect of acute tryptophan depletion on emotional distraction and subsequent memory. Soc Cogn Affect Neurosci 2009; 4:357-68. [PMID: 19628700 DOI: 10.1093/scan/nsp025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Serotonin is a key neurotransmitter involved in emotional regulation and memory. A number of studies using acute tryptophan depletion (ATD) in healthy subjects have shown that a temporary serotonin reduction both induces a negative emotional bias and impairs long-term memory. However, little is known about the specific effects of ATD on emotional memory. Using functional magnetic resonance imaging (fMRI), we investigated the effect of ATD on negative memory and executive function in healthy volunteers. Our emotional oddball task required participants to distinguish infrequently presented targets from distracting negative and neutral pictures. Memory for the distracting pictures was tested 1 h following the fMRI session. ATD selectively enhanced memory for negative distractors relative to neutral distractors and increased activation in response to the negative distractors in the left orbital-inferior frontal, dorsomedial prefrontal and bilateral angular gyri. ATD also induced greater activation in the left inferior frontal gyrus and anterior cingulate across all stimuli. Stronger frontal activation to distractors was positively correlated with memory performance on ATD but not control days, indicating a possible compensatory mechanism for coping with increased task demand under the ATD challenge. These findings highlight the importance of serotonin in negative memory with implications for mood disorders.
Collapse
Affiliation(s)
- Lihong Wang
- Brain Imaging and Analysis Center, Duke University Medical Center, 2424 Erwin Road, Suite 501 Durham, NC 27705, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Long AB, Kuhn CM, Platt ML. Serotonin shapes risky decision making in monkeys. Soc Cogn Affect Neurosci 2009; 4:346-56. [PMID: 19553236 DOI: 10.1093/scan/nsp020] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Some people love taking risks, while others avoid gambles at all costs. The neural mechanisms underlying individual variation in preference for risky or certain outcomes, however, remain poorly understood. Although behavioral pathologies associated with compulsive gambling, addiction and other psychiatric disorders implicate deficient serotonin signaling in pathological decision making, there is little experimental evidence demonstrating a link between serotonin and risky decision making, in part due to the lack of a good animal model. We used dietary rapid tryptophan depletion (RTD) to acutely lower brain serotonin in three macaques performing a simple gambling task for fluid rewards. To confirm the efficacy of RTD experiments, we measured total plasma tryptophan using high-performance liquid chromatography (HPLC) with electrochemical detection. Reducing brain serotonin synthesis decreased preference for the safe option in a gambling task. Moreover, lowering brain serotonin function significantly decreased the premium required for monkeys to switch their preference to the risky option, suggesting that diminished serotonin signaling enhances the relative subjective value of the risky option. These results implicate serotonin in risk-sensitive decision making and, further, suggest pharmacological therapies for treating pathological risk preferences in disorders such as problem gambling and addiction.
Collapse
Affiliation(s)
- Arwen B Long
- Department of Neurobiology, Duke University, Box 3209, Durham, NC 27710, USA.
| | | | | |
Collapse
|
48
|
Effects of acute tryptophan depletion on memory, attention and executive functions: A systematic review. Neurosci Biobehav Rev 2009; 33:926-52. [DOI: 10.1016/j.neubiorev.2009.03.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 11/21/2022]
|
49
|
Richard DM, Dawes MA, Mathias CW, Acheson A, Hill-Kapturczak N, Dougherty DM. L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int J Tryptophan Res 2009; 2:45-60. [PMID: 20651948 PMCID: PMC2908021 DOI: 10.4137/ijtr.s2129] [Citation(s) in RCA: 374] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
An essential component of the human diet, L-tryptophan is critical in a number of metabolic functions and has been widely used in numerous research and clinical trials. This review provides a brief overview of the role of L-tryptophan in protein synthesis and a number of other metabolic functions. With emphasis on L-tryptophan's role in synthesis of brain serotonin, details are provided on the research uses of L-tryptophan, particularly L-tryptophan depletion, and on clinical trials that have been conducted using L-tryptophan supplementation. The ability to change the rates of serotonin synthesis in the brain by manipulating concentrations of serum tryptophan is the foundation of much research. As the sole precursor of serotonin, experimental research has shown that L-tryptophan's role in brain serotonin synthesis is an important factor involved in mood, behavior, and cognition. Furthermore, clinical trials have provided some initial evidence of L-tryptophan's efficacy for treatment of psychiatric disorders, particularly when used in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Dawn M Richard
- Neurobehavioral Research Laboratory and Clinic, Department of Psychiatry
| | - Michael A Dawes
- Neurobehavioral Research Laboratory and Clinic, Department of Psychiatry
| | - Charles W Mathias
- Neurobehavioral Research Laboratory and Clinic, Department of Psychiatry
| | - Ashley Acheson
- Research Imaging Center, University of Texas Health Science Center at San Antonio, U.S.A
| | | | - Donald M Dougherty
- Neurobehavioral Research Laboratory and Clinic, Department of Psychiatry
| |
Collapse
|
50
|
Jenny M, Santer E, Klein A, Ledochowski M, Schennach H, Ueberall F, Fuchs D. Cacao extracts suppress tryptophan degradation of mitogen-stimulated peripheral blood mononuclear cells. JOURNAL OF ETHNOPHARMACOLOGY 2009; 122:261-267. [PMID: 19330924 DOI: 10.1016/j.jep.2009.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruits of Theobroma cacao L. (Sterculiaceae) have been used as food and a remedy for more than 4000 years. Today, about 100 therapeutic applications of cacao are described involving the gastrointestinal, nervous, cardiovascular and immune systems. Pro-inflammatory cytokine interferon-gamma and related biochemical pathways like tryptophan degradation by indoleamine 2,3-dioxygenase and neopterin formation are closely associated with the pathogenesis of such disorders. AIM OF THE STUDY To determine the anti-inflammatory effect of cacao extracts on interferon-gamma and biochemical consequences in immunocompetent cells. MATERIALS AND METHODS Effects of aqueous or ethanolic extracts of cacao were examined on mitogen-induced human peripheral blood mononuclear cells (PBMC) of healthy donors and on lipopolysaccharide-stimulated myelomonocytic THP-1 cells. Antioxidant activity of extracts was determined by oxygen radical absorption capacity (ORAC) assay. RESULTS In mitogen-stimulated PBMC, enhanced degradation of tryptophan, formation of neopterin and interferon-gamma were almost completely suppressed by the cacao extracts at doses of > or = 5 microg/mL. Cacao extracts had no effect on tryptophan degradation in lipopolysaccharide-stimulated THP-1 cells. CONCLUSIONS There is a significant suppressive effect of cacao extracts on pro-inflammatory pathways in activated T-cells. Particularly the influence on indoleamine 2,3-dioxygenase could relate to some of the beneficial health effects ascribed to cacao.
Collapse
Affiliation(s)
- M Jenny
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Str. 3, 6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|