1
|
Everix L, Elvas F, Miranda Menchaca A, Khetarpal V, Liu L, Bard J, Staelens S, Bertoglio D. Preclinical validation and kinetic modelling of the SV2A PET ligand [ 18F]UCB-J in mice. J Cereb Blood Flow Metab 2024:271678X241304923. [PMID: 39628318 PMCID: PMC11615906 DOI: 10.1177/0271678x241304923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
Synaptic vesicle protein 2A (SV2A) is ubiquitously expressed in presynaptic terminals where it functions as a neurotransmission regulator protein. Synaptopathy has been reported during healthy ageing and in a variety of neurodegenerative diseases. Positron emission tomography (PET) imaging of SV2A can be used to evaluate synaptic density. The PET ligand [11C]UCB-J has high binding affinity and selectivity for SV2A but has a short physical half-life due to the 11C isotope. Here we report the characterization and validation of its 18F-labeled equivalent, [18F]UCB-J, in terms of specificity, reproducibility and stability in C57BL/6J mice. Plasma analysis revealed at least one polar radiometabolite. Kinetic modelling was performed using a population-based metabolite corrected image-derived input function (IDIF). [18F]UCB-J showed relatively fast kinetics and a reliable measure of the IDIF-based volume of distribution (VT(IDIF)). [18F]UCB-J specificity for SV2A was confirmed through a levetiracetam blocking assay (50 to 200 mg/kg). Reproducibility of the VT(IDIF) was determined through test-retest analysis, revealing significant correlation (r2 = 0.773, p < 0.0001). Time-stability analyses indicate a scan duration of 60 min to be sufficient to obtain a reliable VT(IDIF). In conclusion, [18F]UCB-J is a selective SV2A ligand with optimal kinetics in mice. Further investigation is warranted for (pre)clinical applicability of [18F]UCB-J in synaptopathies.
Collapse
Affiliation(s)
- Liesbeth Everix
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Filipe Elvas
- Molecular Imaging and Radiology (MIRA), Wilrijk, Belgium
| | | | - Vinod Khetarpal
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, USA
| | - Longbin Liu
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, USA
| | - Jonathan Bard
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, USA
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- µNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Snellman A, Tuisku J, Koivumäki M, Wahlroos S, Aarnio R, Rajander J, Karrasch M, Ekblad LL, Rinne JO. SV2A PET shows hippocampal synaptic loss in cognitively unimpaired APOE ε4/ε4 homozygotes. Alzheimers Dement 2024; 20:8802-8813. [PMID: 39475191 DOI: 10.1002/alz.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION We investigated hippocampal synaptic density using synaptic vesicle 2A positron emission tomography (PET), and its association with amyloid beta (Aβ) and cognitive performance in healthy apolipoprotein E (APOE) ε4 carriers. METHODS Synaptic density was assessed in 46 individuals (APOE ε4/ε4 n = 14; APOE ε3/ε4 n = 16; APOE ε3/ε3 n = 16) with [11C]UCB-J-PET standardized uptake value ratios (SUVRs), by using the centrum semiovale as a reference region. Differences in hippocampal [11C]UCB-J SUVRs were analyzed with analysis of variance (ANOVA) and linear models. Associations among [11C]UCB-J SUVR, Aβ, hippocampal volume, and cognitive variables were analyzed with Spearman correlation. RESULTS Hippocampal synaptic density was different among the APOE groups (PANOVA = 0.016): APOE ε4/ε4 carriers had lower [11C]UCB-J SUVRs compared to APOE ε3/ε3 (p = 0.013). Hippocampal synaptic density did not correlate with Consortium to Establish a Registry for Alzheimer's Disease (CERAD) total score (rho = -0.052, p = 0.74), Alzheimer's Prevention Initiative Preclinical Cognitive Composite (APCC) score (rho = 0.17, p = 0.28), or [11C]PiB uptake (rho = -0.10, p = 0.50). DISCUSSION Hippocampal synaptic loss emerges early in the AD continuum and is measurable in vivo in cognitively unimpaired high-risk individuals. HIGHLIGHTS Synaptic density was studied in vivo in healthy older adults using [11C]UCB-J positron emission tomography. Apolipoprotein E (APOE) ε4/ε4 carriers had lower hippocampal synaptic density compared to APOE ε3/ε3. Synaptic density was not associated with cognitive performance in this population. Hippocampal synaptic alterations occur before clinical symptoms in APOE ε4/ε4 carriers.
Collapse
Affiliation(s)
- Anniina Snellman
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku, Turku, Finland
| | - Mikko Koivumäki
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | | | | | - Johan Rajander
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Laura L Ekblad
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Geriatric Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Naganawa M, Gallezot JD, Li S, Nabulsi NB, Henry S, Cai Z, Matuskey D, Huang Y, Carson RE. Noninvasive quantification of [ 18F]SynVesT-1 binding using simplified reference tissue model 2. Eur J Nucl Med Mol Imaging 2024; 52:113-121. [PMID: 39155309 DOI: 10.1007/s00259-024-06885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE [18F]SynVesT-1, a positron emission tomography (PET) radiotracer for the synaptic vesicle glycoprotein 2A (SV2A), demonstrates kinetics similar to [11C]UCB-J, with high brain uptake, fast kinetics fitting well with the one-tissue compartment (1TC) model, and excellent test-retest reproducibility. Challenges arise due to the similarity between k2 and [Formula: see text] (efflux rate of the reference region), when applying the simplified reference tissue model (SRTM) and related methods in [11C]UCB-J studies to accurately estimate [Formula: see text]. This study evaluated the suitability of these methods to estimate [18F]SynVesT-1 binding using centrum semiovale (CS) or cerebellum (CER) as reference regions. METHOD Seven healthy participants underwent 120-min PET scans on the HRRT scanner with [18F]SynVesT-1. Six participants underwent test and retest scans. Arterial blood sampling and metabolite analysis provided input functions for the 1TC model, serving as the gold standard for kinetic parameters values. SRTM, coupled SRTM (SRTMC) and SRTM2 estimated were applied to estimate [Formula: see text](ref: CS) and DVRCER(ref: CER) values. For SRTM2, the population average of [Formula: see text] was determined from the 1TC model applied to the reference region. Test-retest variability and minimum scan time were also calculated. RESULTS The 1TC k2 (1/min) values for CS and CER were 0.031 ± 0.004 and 0.021 ± 0.002, respectively. Although SRTMC [Formula: see text] was much higher than 1TC [Formula: see text], SRTMC underestimated BPND(ref: CS) and DVRCER by an average of 3% and 1% across regions, respectively, due to similar bias in k2 and [Formula: see text] estimation. SRTM underestimated BPND(ref: CS) by an average of 3%, but with the CER as reference region, SRTM estimation was unstable and DVRCER underestimation varied by region (mean 10%). Using population average [Formula: see text] values, SRTM2 BPND and DVRCER showed the best agreement with 1TC estimates. CONCLUSION Our findings support the use of population [Formula: see text] value in SRTM2 with [18F]SynVesT-1 for the estimation of [Formula: see text] or DVRCER, regardless of the choice of reference region.
Collapse
Affiliation(s)
- Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520- 8048, USA.
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520- 8048, USA.
| | - Songye Li
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520- 8048, USA
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520- 8048, USA
| | - Shannan Henry
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520- 8048, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520- 8048, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520- 8048, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520- 8048, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520- 8048, USA
| |
Collapse
|
4
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake EM. Repetitive Mild Closed-Head Injury Induced Synapse Loss and Increased Local BOLD-fMRI Signal Homogeneity. J Neurotrauma 2024; 41:2528-2544. [PMID: 39096127 PMCID: PMC11698675 DOI: 10.1089/neu.2024.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild traumatic brain injury (rmTBI) and chronic variable stress mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [18F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an increase in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
Affiliation(s)
- Marija Markicevic
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Arman Fesharaki-Zadeh
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Stephen M. Strittmatter
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, Connecticut, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| | - Evelyn M.R. Lake
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Facca M, Del Felice A, Bertoldo A. Multiscale and multimodal signatures of structure-function coupling variability across the human neocortex. Neuroimage 2024; 302:120902. [PMID: 39490561 DOI: 10.1016/j.neuroimage.2024.120902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/01/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
The relationship between the brain's structural wiring and its dynamic activity is thought to vary regionally, implying that the mechanisms underlying structure-function coupling may differ depending on a region's position within the brain's hierarchy. To better bridge the gap between structure and function, it is crucial to identify the factors shaping this regionality, not only in terms of how static functional connectivity aligns with structure, but also regarding the time-domain variability of this interplay. Here we map structure - function coupling and its time-domain variability and relate them to the heterogeneity of the cortex. We show that these two properties split the cortical landscape into two districts anchored to the opposite ends of the brain's hierarchy. By looking at statistical relationships with layer-specific gene transcription, T1w/T2 w ratio, and synaptic density, we show that macro-scale structure-function coupling may be rooted in the brain's microstructure and meso‑scale laminar specialization. Finally, we demonstrate that a lower and more variable alignment of function and structure may bestow the emergence of unique functional dynamics.
Collapse
Affiliation(s)
| | - Alessandra Del Felice
- Padova Neuroscience Center (PNC), Padova, Italy; Department of Neuroscience, University of Padova, Padova, Italy.
| | - Alessandra Bertoldo
- Padova Neuroscience Center (PNC), Padova, Italy; Department of Information Engineering, University of Padova, Italy
| |
Collapse
|
6
|
Asch RH, Abdallah CG, Carson RE, Esterlis I. Challenges and rewards of in vivo synaptic density imaging, and its application to the study of depression. Neuropsychopharmacology 2024; 50:153-163. [PMID: 39039139 PMCID: PMC11525584 DOI: 10.1038/s41386-024-01913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
The development of novel radiotracers for Positron Emission Tomography (PET) imaging agents targeting the synaptic vesicle glycoprotein 2 A (SV2A), an integral glycoprotein present in the membrane of all synaptic vesicles throughout the central nervous system, provides a method for the in vivo quantification of synaptic density. This is of particular interest in neuropsychiatric disorders given that synaptic alterations appear to underlie disease progression and symptom severity. In this review, we briefly describe the development of these SV2A tracers and the evaluation of quantification methods. Next, we discuss application of SV2A PET imaging to the study of depression, including a review of our findings demonstrating lower SV2A synaptic density in people with significant depressive symptoms and the use of a ketamine drug challenge to examine synaptogenesis in vivo. We then highlight the importance of performing translational PET imaging in animal models in conjunction with clinical imaging. We consider the ongoing challenges, possible solutions, and present preliminary findings from our lab demonstrating the translational benefit and potential of in vivo SV2A imaging in animal models of chronic stress. Finally, we discuss methodological improvements and future directions for SV2A imaging, potentially in conjunction with other neural markers.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Chadi G Abdallah
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA.
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
7
|
Young JJ, O'Dell RS, Naganawa M, Toyonaga T, Chen MK, Nabulsi NB, Huang Y, Cooper E, Miller A, Lam J, Bates K, Ruan A, Nelsen K, Salardini E, Carson RE, van Dyck CH, Mecca AP. Validation of a Simplified Tissue-to-Reference Ratio Measurement Using SUVR to Assess Synaptic Density Alterations in Alzheimer Disease with [ 11C]UCB-J PET. J Nucl Med 2024; 65:1782-1785. [PMID: 39299782 PMCID: PMC11533916 DOI: 10.2967/jnumed.124.267419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Simplified methods of acquisition and quantification would facilitate the use of synaptic density imaging in multicenter and longitudinal studies of Alzheimer disease (AD). We validated a simplified tissue-to-reference ratio method using SUV ratios (SUVRs) for estimating synaptic density with [11C]UCB-J PET. Methods: Participants included 31 older adults with AD and 16 with normal cognition. The distribution volume ratio (DVR) using simplified reference tissue model 2 was compared with SUVR at short scan windows using a whole-cerebellum reference region. Results: Synaptic density was reduced in AD participants using DVR or SUVR. SUVR using later scan windows (60-90 or 70-90 min) was minimally biased, with the strongest correlation with DVR. Effect sizes using SUVR at these late time windows were minimally reduced compared with effect sizes with DVR. Conclusion: A simplified tissue-to-reference method may be useful for multicenter and longitudinal studies seeking to measure synaptic density in AD.
Collapse
Affiliation(s)
- Juan J Young
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- VA Connecticut Healthcare System, West Haven, Connecticut
| | - Ryan S O'Dell
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Emma Cooper
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Alyssa Miller
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jessica Lam
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
| | - Kara Bates
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
| | - Audrey Ruan
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Kimberly Nelsen
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Elaheh Salardini
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut; and
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Adam P Mecca
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut;
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
8
|
Howes O, Marcinkowska J, Turkheimer FE, Carr R. Synaptic changes in psychiatric and neurological disorders: state-of-the art of in vivo imaging. Neuropsychopharmacology 2024; 50:164-183. [PMID: 39134769 PMCID: PMC11525650 DOI: 10.1038/s41386-024-01943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 11/01/2024]
Abstract
Synapses are implicated in many neuropsychiatric illnesses. Here, we provide an overview of in vivo techniques to index synaptic markers in patients. Several positron emission tomography (PET) tracers for synaptic vesicle glycoprotein 2 A (SV2A) show good reliability and selectivity. We review over 50 clinical studies including over 1700 participants, and compare findings in healthy ageing and across disorders, including addiction, schizophrenia, depression, posttraumatic stress disorder, and neurodegenerative disorders, including tauopathies, Huntington's disease and α-synucleinopathies. These show lower SV2A measures in cortical brain regions across most of these disorders relative to healthy volunteers, with the most well-replicated findings in tauopathies, whilst changes in Huntington's chorea, Parkinson's disease, corticobasal degeneration and progressive supranuclear palsy are predominantly subcortical. SV2A PET measures are correlated with functional connectivity across brain networks, and a number of other measures of brain function, including glucose metabolism. However, the majority of studies found no relationship between grey matter volume measured with magnetic resonance imaging and SV2A PET measures. Cognitive dysfunction, in domains including working memory and executive function, show replicated inverse relationships with SV2A measures across diagnoses, and initial findings also suggest transdiagnostic relationships with mood and anxiety symptoms. This suggests that synaptic abnormalities could be a common pathophysiological substrate underlying cognitive and, potentially, affective symptoms. We consider limitations of evidence and future directions; highlighting the need to develop postsynaptic imaging markers and for longitudinal studies to test causal mechanisms.
Collapse
Affiliation(s)
- Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England.
- South London & the Maudsley NHS Trust, London, England.
- London Institute of Medical Sciences, London, England.
| | - Julia Marcinkowska
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Richard Carr
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- South London & the Maudsley NHS Trust, London, England
- London Institute of Medical Sciences, London, England
| |
Collapse
|
9
|
Matuskey D, Yang Y, Naganawa M, Koohsari S, Toyonaga T, Gravel P, Pittman B, Torres K, Pisani L, Finn C, Cramer-Benjamin S, Herman N, Rosenthal LH, Franke CJ, Walicki BM, Esterlis I, Skosnik P, Radhakrishnan R, Wolf JM, Nabulsi N, Ropchan J, Huang Y, Carson RE, Naples AJ, McPartland JC. 11C-UCB-J PET imaging is consistent with lower synaptic density in autistic adults. Mol Psychiatry 2024:10.1038/s41380-024-02776-2. [PMID: 39367053 DOI: 10.1038/s41380-024-02776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The neural bases of autism are poorly understood at the molecular level, but evidence from animal models, genetics, post-mortem studies, and single-gene disorders implicate synaptopathology. Here, we use positron emission tomography (PET) to assess the density of synapses with synaptic vesicle glycoprotein 2A (SV2A) in autistic adults using 11C-UCB-J. Twelve autistic (mean (SD) age 25 (4) years; six males), and twenty demographically matched non-autistic individuals (26 (3) years; eleven males) participated in a 11C-UCB-J PET scan. Binding potential, BPND, was the primary outcome measure and computed with the centrum semiovale as the reference region. Partial volume correction with Iterative Yang was applied to control for possible volumetric differences. Mixed-model statistics were calculated for between-group differences. Relationships to clinical characteristics were evaluated based on clinician ratings of autistic features. Whole cortex synaptic density was 17% lower in the autism group (p = 0.01). All brain regions in autism had lower 11C-UCB-J BPND compared to non-autistic participants. This effect was evident in all brain regions implicated in autism. Significant differences were observed across multiple individual regions, including the prefrontal cortex (-15%, p = 0.02), with differences most pronounced in gray matter (p < 0.0001). Synaptic density was significantly associated with clinical measures across the whole cortex (r = 0.67, p = 0.02) and multiple regions (rs = -0.58 to -0.82, ps = 0.05 to <0.01). The first in vivo investigation of synaptic density in autism with PET reveals pervasive and large-scale lower density in the cortex and across multiple brain areas. Synaptic density also correlated with clinical features, such that a greater number of autistic features were associated with lower synaptic density. These results indicate that brain-wide synaptic density may represent an as-yet-undiscovered molecular basis for the clinical phenotype of autism and associated pervasive alterations across a diversity of neural processes.
Collapse
Affiliation(s)
- David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- Department of Neurology, Yale University, New Haven, CT, USA.
- Center for Brain and Mind Health, Yale University, New Haven, CT, USA.
| | - Yanghong Yang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Paul Gravel
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Kristen Torres
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Lauren Pisani
- Child Study Center, Yale University, New Haven, CT, USA
| | - Caroline Finn
- Child Study Center, Yale University, New Haven, CT, USA
| | | | - Nicole Herman
- Child Study Center, Yale University, New Haven, CT, USA
| | | | | | | | - Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Patrick Skosnik
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Julie M Wolf
- Child Study Center, Yale University, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Adam J Naples
- Center for Brain and Mind Health, Yale University, New Haven, CT, USA
- Child Study Center, Yale University, New Haven, CT, USA
| | - James C McPartland
- Center for Brain and Mind Health, Yale University, New Haven, CT, USA.
- Child Study Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
10
|
Miskowiak KW, Damgaard V, Schandorff JM, Macoveanu J, Knudsen GM, Johansen A, Plaven-Sigray P, Svarer C, Fussing CB, Cramer K, Jørgensen MB, Kessing LV, Ehrenreich H. Effects of cognitive training under hypoxia on cognitive proficiency and neuroplasticity in remitted patients with mood disorders and healthy individuals: ALTIBRAIN study protocol for a randomized controlled trial. Trials 2024; 25:648. [PMID: 39363230 PMCID: PMC11447976 DOI: 10.1186/s13063-024-08463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Cognitive impairment is prevalent across neuropsychiatric disorders but there is a lack of treatment strategies with robust, enduring effects. Emerging evidence indicates that altitude-like hypoxia cognition training may induce long-lasting neuroplasticity and improve cognition. We will investigate whether repeated cognition training under normobaric hypoxia can improve cognitive functions in healthy individuals and patients with affective disorders and the neurobiological underpinnings of such effects. METHODS In sub-study 1, 120 healthy participants are randomized to one of four treatment arms in a double-blind manner, allowing for examination of separate and combined effects of three-week repeated moderate hypoxia and cognitive training, respectively. In sub-study 2, 60 remitted patients with major depressive disorder or bipolar disorder are randomized to hypoxia with cognition training or treatment as usual. Assessments of cognition, psychosocial functioning, and quality of life are performed at baseline, end-of-treatment, and at 1-month follow-up. Functional magnetic resonance imaging (fMRI) scans are conducted at baseline and 1-month follow-up, and [11C]UCB-J positron emission tomography (PET) scans are performed at end-of-treatment to quantify the synaptic vesicle glycoprotein 2A (SV2A). The primary outcome is a cognitive composite score of attention, verbal memory, and executive functions. Statistical power of ≥ 80% is reached to detect a clinically relevant between-group difference with minimum n = 26 per treatment arm. Behavioral data are analyzed with an intention-to-treat approach using mixed models. fMRI data is analyzed with the FMRIB Software Library, while PET data is quantified using the simplified reference tissue model (SRTM) with centrum semiovale as reference region. DISCUSSION The results will provide novel insights into whether repeated hypoxia cognition training increases cognition and brain plasticity, which can aid future treatment development strategies. TRIAL REGISTRATION ClinicalTrials.gov, NCT06121206 . Registered on 31 October 2023.
Collapse
Affiliation(s)
- Kamilla Woznica Miskowiak
- NEAD Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Psychiatric Centre Copenhagen, Mental Health Services, Hovedvejen 17, Frederiksberg, Capital Region of Denmark, DK-2000, Denmark.
- Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, Copenhagen, DK-1353, Denmark.
| | - Viktoria Damgaard
- NEAD Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Psychiatric Centre Copenhagen, Mental Health Services, Hovedvejen 17, Frederiksberg, Capital Region of Denmark, DK-2000, Denmark
- Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, Copenhagen, DK-1353, Denmark
| | - Johanna Mariegaard Schandorff
- NEAD Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Psychiatric Centre Copenhagen, Mental Health Services, Hovedvejen 17, Frederiksberg, Capital Region of Denmark, DK-2000, Denmark
- Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, Copenhagen, DK-1353, Denmark
| | - Julian Macoveanu
- NEAD Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Psychiatric Centre Copenhagen, Mental Health Services, Hovedvejen 17, Frederiksberg, Capital Region of Denmark, DK-2000, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pontus Plaven-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Caroline Bruun Fussing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Psychiatric Centre Copenhagen, Mental Health Services, Frederiksberg, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Cramer
- NEAD Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Psychiatric Centre Copenhagen, Mental Health Services, Hovedvejen 17, Frederiksberg, Capital Region of Denmark, DK-2000, Denmark
| | - Martin Balslev Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Psychiatric Centre Copenhagen, Mental Health Services, Frederiksberg, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Psychiatric Centre Copenhagen, Mental Health Services, Frederiksberg, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max-Planck-Institute of Experimental Medicine, City Campus, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
11
|
Nabizadeh F. Local molecular and connectomic contributions of tau-related neurodegeneration. GeroScience 2024:10.1007/s11357-024-01339-1. [PMID: 39343862 DOI: 10.1007/s11357-024-01339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
Neurodegeneration in Alzheimer's disease (AD) is known to be mostly driven by tau neurofibrillary tangles. However, both tau and neurodegeneration exhibit variability in their distribution across the brain and among individuals, and the relationship between tau and neurodegeneration might be influenced by several factors. I aimed to map local molecular and connectivity characteristics that affect the association between tau pathology and neurodegeneration. The current study was conducted on the cross-sectional tau-PET and longitudinal T1-weighted MRI scan data of 186 participants from the ADNI dataset including 71 cognitively unimpaired (CU) and 115 mild cognitive impairment (MCI) individuals. Furthermore, the normative molecular profile of a region was defined using neurotransmitter receptor densities, gene expression, T1w/T2w ratio (myelination), FDG-PET (glycolytic index, glucose metabolism, and oxygen metabolism), and synaptic density. I found that the excitatory-inhibitory (E:I) ratio, myelination, synaptic density, glycolytic index, and functional connectivity are linked with deviation in the relationship between tau and neurodegeneration. Furthermore, there was spatial similarity between tau pathology and glycolytic index, synaptic density, and functional connectivity across brain regions. The current study demonstrates that the regional susceptibility to tau-related neurodegeneration is associated with specific molecular and connectomic characteristics of the affected neural systems. I found that the molecular and connectivity architecture of the human brain is linked to the different effects of tau pathology on downstream neurodegeneration.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Alzheimer's Disease Institute, Tehran, Iran.
| |
Collapse
|
12
|
Salardini E, O'Dell RS, Tchorz E, Nabulsi NB, Huang Y, Carson RE, van Dyck CH, Mecca AP. Assessment of the relationship between synaptic density and metabotropic glutamate receptors in early Alzheimer's disease: a multi-tracer PET study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614277. [PMID: 39386453 PMCID: PMC11463661 DOI: 10.1101/2024.09.21.614277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Background The pathological effects of amyloid β oligomers (Aβo) may be mediated through the metabotropic glutamate receptor subtype 5 (mGluR5), leading to synaptic loss in Alzheimer's disease (AD). Positron emission tomography (PET) studies of mGluR5 using [18F]FPEB indicate a reduction of receptor binding that is focused in the medial temporal lobe in AD. Synaptic loss due to AD measured through synaptic vesicle glycoprotein 2A (SV2A) quantification with [11C]UCB-J PET is also focused in the medial temporal lobe, but with clear widespread reductions is commonly AD-affected neocortical regions. In this study, we used [18F]FPEB and [11C]UCB-J PET to investigate the relationship between mGluR5 and synaptic density in early AD. Methods Fifteen amyloid positive participants with early AD and 12 amyloid negative, cognitively normal (CN) participants underwent PET scans with both [18F]FPEB to measure mGluR5 and [11C]UCB-J to measure synaptic density. Parametric DVR images using equilibrium methods were generated from dynamic. For [18F]FPEB PET, DVR was calculated using equilibrium methods and a cerebellum reference region. For [11C]UCB-J PET, DVR was calculated with a simplified reference tissue model - 2 and a whole cerebellum reference region.. Result A strong positive correlation between mGluR5 and synaptic density was present in the hippocampus for participants with AD (r = 0.81, p < 0.001) and in the CN group (r = 0.74, p = 0.005). In the entorhinal cortex, there was a strong positive correlation between mGluR5 and synaptic in the AD group (r = 0.85, p <0.001), but a weaker non-significant correlation in the CN group (r = 0.36, p = 0.245). Exploratory analyses within and between other brain regions suggested significant positive correlations between mGluR5 in the medial temporal lobe and synaptic density in a broader set of commonly AD-affected regions. Conclusion Medial temporal loss of mGluR5 in AD is associated with synaptic loss in both medial temporal regions and more broadly in association cortical regions, indicating that mGluR5 mediated Aβo toxicity may lead to early synaptic loss more broadly in AD-affected networks. In CN individuals, an isolated strong association between lower mGluR5 and lower synaptic density may indicate non-AD related synaptic loss.
Collapse
Affiliation(s)
- Elaheh Salardini
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan S O'Dell
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Em Tchorz
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Adam P Mecca
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Oliva HNP, Prudente TP, Nunes EJ, Cosgrove KP, Radhakrishnan R, Potenza MN, Angarita GA. Substance use and spine density: a systematic review and meta-analysis of preclinical studies. Mol Psychiatry 2024; 29:2873-2885. [PMID: 38561468 DOI: 10.1038/s41380-024-02519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
The elucidation of synaptic density changes provides valuable insights into the underlying brain mechanisms of substance use. In preclinical studies, synaptic density markers, like spine density, are altered by substances of abuse (e.g., alcohol, amphetamine, cannabis, cocaine, opioids, nicotine). These changes could be linked to phenomena including behavioral sensitization and drug self-administration in rodents. However, studies have produced heterogeneous results for spine density across substances and brain regions. Identifying patterns will inform translational studies given tools that now exist to measure in vivo synaptic density in humans. We performed a meta-analysis of preclinical studies to identify consistent findings across studies. PubMed, ScienceDirect, Scopus, and EBSCO were searched between September 2022 and September 2023, based on a protocol (PROSPERO: CRD42022354006). We screened 6083 publications and included 70 for meta-analysis. The meta-analysis revealed drug-specific patterns in spine density changes. Hippocampal spine density increased after amphetamine. Amphetamine, cocaine, and nicotine increased spine density in the nucleus accumbens. Alcohol and amphetamine increased, and cannabis reduced, spine density in the prefrontal cortex. There was no convergence of findings for morphine's effects. The effects of cocaine on the prefrontal cortex presented contrasting results compared to human studies, warranting further investigation. Publication bias was small for alcohol or morphine and substantial for the other substances. Heterogeneity was moderate-to-high across all substances. Nonetheless, these findings inform current translational efforts examining spine density in humans with substance use disorders.
Collapse
Affiliation(s)
- Henrique Nunes Pereira Oliva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Tiago Paiva Prudente
- Faculdade de Medicina, Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brazil
| | - Eric J Nunes
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Yale Tobacco Center of Regulatory Science, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly P Cosgrove
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA.
| |
Collapse
|
14
|
Marstrand-Joergensen MR, Laurell GL, Herrmann S, Nasser A, Johansen A, Lund A, Andersen TL, Knudsen GM, Pinborg LH. Assessment of cerebral drug occupancy in humans using a single PET-scan: A [ 11C]UCB-J PET study. Eur J Nucl Med Mol Imaging 2024; 51:3292-3304. [PMID: 38758370 PMCID: PMC11369007 DOI: 10.1007/s00259-024-06759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE Here, we evaluate a PET displacement model with a Single-step and Numerical solution in healthy individuals using the synaptic vesicle glycoprotein (SV2A) PET-tracer [11C]UCB-J and the anti-seizure medication levetiracetam (LEV). We aimed to (1) validate the displacement model by comparing the brain LEV-SV2A occupancy from a single PET scan with the occupancy derived from two PET scans and the Lassen plot and (2) determine the plasma LEV concentration-SV2A occupancy curve in healthy individuals. METHODS Eleven healthy individuals (five females, mean age 35.5 [range: 25-47] years) underwent two 120-min [11C]UCB-J PET scans where an LEV dose (5-30 mg/kg) was administered intravenously halfway through the first PET scan to partially displace radioligand binding to SV2A. Five individuals were scanned twice on the same day; the remaining six were scanned once on two separate days, receiving two identical LEV doses. Arterial blood samples were acquired to determine the arterial input function and plasma LEV concentrations. Using the displacement model, the SV2A-LEV target engagement was calculated and compared with the Lassen plot method. The resulting data were fitted with a single-site binding model. RESULTS SV2A occupancies and VND estimates derived from the displacement model were not significantly different from the Lassen plot (p = 0.55 and 0.13, respectively). The coefficient of variation was 14.6% vs. 17.3% for the Numerical and the Single-step solution in Bland-Altman comparisons with the Lassen plot. The average half maximal inhibitory concentration (IC50), as estimated from the area under the curve of the plasma LEV concentration, was 12.5 µg/mL (95% CI: 5-25) for the Single-Step solution, 11.8 µg/mL (95% CI: 4-25) for the Numerical solution, and 6.3 µg/mL (95% CI: 0.08-21) for the Lassen plot. Constraining Emax to 100% did not significantly improve model fits. CONCLUSION Plasma LEV concentration vs. SV2A occupancy can be determined in humans using a single PET scan displacement model. The average concentration of the three computed IC50 values ranges between 6.3 and 12.5 µg/mL. The next step is to use the displacement model to evaluate LEV occupancy and corresponding plasma concentrations in relation to treatment efficacy. CLINICAL TRIAL REGISTRATION NCT05450822. Retrospectively registered 5 July 2022 https://clinicaltrials.gov/ct2/results? term=NCT05450822&Search=Search.
Collapse
Affiliation(s)
- Maja R Marstrand-Joergensen
- Epilepsy Clinic, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen O, 2100, Denmark
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gjertrud L Laurell
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Susan Herrmann
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark
| | - Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark
| | - Anton Lund
- Department of Neuroanaesthesiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark
| | - Thomas L Andersen
- Department of Clinical Physiology & Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars H Pinborg
- Epilepsy Clinic, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen O, 2100, Denmark.
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark.
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Courault P, Zimmer L, Lancelot S. Toward Functional PET Imaging of the Spinal Cord. Semin Nucl Med 2024:S0001-2998(24)00066-7. [PMID: 39181820 DOI: 10.1053/j.semnuclmed.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
At present, spinal cord imaging primarily uses magnetic resonance imaging (MRI) or computed tomography (CT), but the greater sensitivity of positron emission tomography (PET) techniques and the development of new radiotracers are paving the way for a new approach. The substantial rise in publications on PET radiotracers for spinal cord exploration indicates a growing interest in the functional and molecular imaging of this organ. The present review aimed to provide an overview of the various radiotracers used in this indication, in preclinical and clinical settings. Firstly, we outline spinal cord anatomy and associated target pathologies. Secondly, we present the state-of-the-art of spinal cord imaging techniques used in clinical practice, with their respective strengths and limitations. Thirdly, we summarize the literature on radiotracers employed in functional PET imaging of the spinal cord. In conclusion, we propose criteria for an ideal radiotracer for molecular spinal cord imaging, emphasizing the relevance of multimodal hybrid cameras, and particularly the benefits of PET-MRI integration.
Collapse
Affiliation(s)
- Pierre Courault
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRSx, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging Platform, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRSx, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging Platform, Lyon, France; National Institute for Nuclear Science and Technology (INSTN), CEA, Saclay, France.
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRSx, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging Platform, Lyon, France
| |
Collapse
|
16
|
Karat BG, Genc S, Raven EP, Palombo M, Khan AR, Jones DK. The developing hippocampus: Microstructural evolution through childhood and adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608590. [PMID: 39229062 PMCID: PMC11370384 DOI: 10.1101/2024.08.19.608590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The hippocampus is a structure in the medial temporal lobe which serves multiple cognitive functions. While important, the development of the hippocampus in the formative period of childhood and adolescence has not been extensively investigated, with most contemporary research focusing on macrostructural measures of volume. Thus, there has been little research on the development of the micron-scale structures (i.e., microstructure) of the hippocampus, which engender its cognitive functions. The current study examined age-related changes of hippocampal microstructure using diffusion MRI data acquired with an ultra-strong gradient (300 mT/m) MRI scanner in a sample of children and adolescents (N=88; 8-19 years). Surface-based hippocampal modelling was combined with established microstructural approaches, such as Diffusion Tensor Imaging (DTI) and Neurite Orientation Dispersion Density Imaging (NODDI), and a more advanced gray matter diffusion model Soma And Neurite Density Imaging (SANDI). No significant changes in macrostructural measures (volume, gyrification, and thickness) were found between 8-19 years, while significant changes in microstructure measures related to neurites (from NODDI and SANDI), soma (from SANDI), and mean diffusivity (from DTI) were found. In particular, there was a significant increase across age in neurite MR signal fraction and a significant decrease in extracellular MR signal fraction and mean diffusivity across the hippocampal subfields and long-axis. A significant negative correlation between age and MR apparent soma radius was found in the subiculum and CA1 throughout the anterior and body of the hippocampus. Further surface-based analyses uncovered variability in age-related microstructural changes between the subfields and long-axis, which may reflect ostensible developmental differences along these two axes. Finally, correlation of hippocampal surfaces representing age-related changes of microstructure with maps derived from histology allowed for postulation of the potential underlying microstructure that diffusion changes across age may be capturing. Overall, distinct neurite and soma developmental profiles in the human hippocampus during late childhood and adolescence are reported for the first time.
Collapse
Affiliation(s)
- Bradley G Karat
- Robarts Research Institute, Western University, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
| | - Sila Genc
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Ali R Khan
- Robarts Research Institute, Western University, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
17
|
Johansen A, Beliveau V, Colliander E, Raval NR, Dam VH, Gillings N, Aznar S, Svarer C, Plavén-Sigray P, Knudsen GM. An In Vivo High-Resolution Human Brain Atlas of Synaptic Density. J Neurosci 2024; 44:e1750232024. [PMID: 38997157 PMCID: PMC11326867 DOI: 10.1523/jneurosci.1750-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Synapses are fundamental to the function of the central nervous system and are implicated in a number of brain disorders. Despite their pivotal role, a comprehensive imaging resource detailing the distribution of synapses in the human brain has been lacking until now. Here, we employ high-resolution PET neuroimaging in healthy humans (17F/16M) to create a 3D atlas of the synaptic marker Synaptic Vesicle glycoprotein 2A (SV2A). Calibration to absolute density values (pmol/ml) was achieved by leveraging postmortem human brain autoradiography data. The atlas unveils distinctive cortical and subcortical gradients of synapse density that reflect functional topography and hierarchical order from core sensory to higher-order integrative areas-a distribution that diverges from SV2A mRNA patterns. Furthermore, we found a positive association between IQ and SV2A density in several higher-order cortical areas. This new resource will help advance our understanding of brain physiology and the pathogenesis of brain disorders, serving as a pivotal tool for future neuroscience research.
Collapse
Affiliation(s)
- Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Vincent Beliveau
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Emil Colliander
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520
- Yale PET Center, Yale University, New Haven, Connecticut 06520
| | - Vibeke Høyrup Dam
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Nic Gillings
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Susana Aznar
- Center for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, Copenhagen 2400, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Pontus Plavén-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
18
|
Husain MO, Jones B, Arshad U, Ameis SH, Mirfallah G, Schifani C, Rodak T, Aiken M, Shafique M, Ahmed F, Voineskos A, Husain MI, Foussias G. A systematic review and meta-analysis of neuroimaging studies examining synaptic density in individuals with psychotic spectrum disorders. BMC Psychiatry 2024; 24:460. [PMID: 38898401 PMCID: PMC11188231 DOI: 10.1186/s12888-024-05788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/25/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Psychotic disorders have long been considered neurodevelopmental disorders where excessive synaptic pruning and cortical volume loss are central to disease pathology. We conducted a systematic review of the literature to identify neuroimaging studies specifically examining synaptic density across the psychosis spectrum. METHODS PRISMA guidelines on reporting were followed. We systematically searched MEDLINE, Embase, APA PsycINFO, Web of Science and The Cochrane Library from inception to December 8, 2023, and included all original peer-reviewed articles or completed clinical neuroimaging studies of any modality measuring synaptic density in participants with a diagnosis of psychosis spectrum disorder as well as individuals with psychosis-risk states. The NIH quality assessment tool for observational cohort and cross-sectional studies was used for the risk of bias assessment. RESULTS Five studies (k = 5) met inclusion criteria, comprising n = 128 adults (psychotic disorder; n = 61 and healthy volunteers; n = 67 and specifically measuring synaptic density via positron emission tomography (PET) imaging of the synaptic vesicle glycoprotein 2 A (SV2A). Three studies were included in our primary meta-analysis sharing the same outcome measure of SV2A binding, volume of distribution (VT). Regional SV2A VT was reduced in psychotic disorder participants in comparison to healthy volunteers, including the occipital lobe (Mean Difference (MD)= -2.17; 95% CI: -3.36 to -0.98; P < 0.001 ), temporal lobe (MD: -2.03; 95% CI: -3.19 to -0.88; P < 0.001 ), parietal lobe (MD:-1.61; 95% CI: -2.85 to -0.37; P = 0.01), anterior cingulate cortex (MD= -1.47; 95% CI: -2.45 to -0.49; P = 0.003), frontal cortex (MD: -1.16; 95% CI: -2.18 to -0.15; P = 0.02), amygdala (MD: -1.36; 95% CI: -2.20 to -0.52, p = 0.002), thalamus (MD:-1.46; 95% CI:-2.46 to -0.46, p = 0.004) and hippocampus (MD= -0.96; 95% CI: -1.59 to -0.33; P = 0.003). CONCLUSIONS Preliminary studies provide in vivo evidence for reduced synaptic density in psychotic disorders. However, replication of findings in larger samples is required prior to definitive conclusions being drawn. PROSPERO CRD42022359018.
Collapse
Affiliation(s)
- Muhammad Omair Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Brett Jones
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Usman Arshad
- Pakistan Institute of Living and Learning, Karachi, Pakistan
- Division of Psychology & Mental Health, University of Manchester, Manchester, UK
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Giselle Mirfallah
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Christin Schifani
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Terri Rodak
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Madina Aiken
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Mudassar Shafique
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Fatima Ahmed
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Aristotle Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Muhammad Ishrat Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - George Foussias
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake E. Repetitive mild closed-head injury induced synapse loss and increased local BOLD-fMRI signal homogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595651. [PMID: 38826468 PMCID: PMC11142233 DOI: 10.1101/2024.05.24.595651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries, requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild closed-head injury (rmTBI) and chronic variable stress (CVS) mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [ 18 F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an i ncrease in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
|
20
|
Wang HE, Triebkorn P, Breyton M, Dollomaja B, Lemarechal JD, Petkoski S, Sorrentino P, Depannemaecker D, Hashemi M, Jirsa VK. Virtual brain twins: from basic neuroscience to clinical use. Natl Sci Rev 2024; 11:nwae079. [PMID: 38698901 PMCID: PMC11065363 DOI: 10.1093/nsr/nwae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 05/05/2024] Open
Abstract
Virtual brain twins are personalized, generative and adaptive brain models based on data from an individual's brain for scientific and clinical use. After a description of the key elements of virtual brain twins, we present the standard model for personalized whole-brain network models. The personalization is accomplished using a subject's brain imaging data by three means: (1) assemble cortical and subcortical areas in the subject-specific brain space; (2) directly map connectivity into the brain models, which can be generalized to other parameters; and (3) estimate relevant parameters through model inversion, typically using probabilistic machine learning. We present the use of personalized whole-brain network models in healthy ageing and five clinical diseases: epilepsy, Alzheimer's disease, multiple sclerosis, Parkinson's disease and psychiatric disorders. Specifically, we introduce spatial masks for relevant parameters and demonstrate their use based on the physiological and pathophysiological hypotheses. Finally, we pinpoint the key challenges and future directions.
Collapse
Affiliation(s)
- Huifang E Wang
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Paul Triebkorn
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Martin Breyton
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
- Service de Pharmacologie Clinique et Pharmacosurveillance, AP–HM, Marseille, 13005, France
| | - Borana Dollomaja
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Jean-Didier Lemarechal
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Spase Petkoski
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Pierpaolo Sorrentino
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Damien Depannemaecker
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Meysam Hashemi
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Viktor K Jirsa
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| |
Collapse
|
21
|
Bavarsad MS, Grinberg LT. SV2A PET imaging in human neurodegenerative diseases. Front Aging Neurosci 2024; 16:1380561. [PMID: 38699560 PMCID: PMC11064927 DOI: 10.3389/fnagi.2024.1380561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
This manuscript presents a thorough review of synaptic vesicle glycoprotein 2A (SV2A) as a biomarker for synaptic integrity using Positron Emission Tomography (PET) in neurodegenerative diseases. Synaptic pathology, characterized by synaptic loss, has been linked to various brain diseases. Therefore, there is a need for a minimally invasive approach to measuring synaptic density in living human patients. Several radiotracers targeting synaptic vesicle protein 2A (SV2A) have been created and effectively adapted for use in human subjects through PET scans. SV2A is an integral glycoprotein found in the membranes of synaptic vesicles in all synaptic terminals and is widely distributed throughout the brain. The review delves into the development of SV2A-specific PET radiotracers, highlighting their advancements and limitations in neurodegenerative diseases. Among these tracers, 11C-UCB-J is the most used so far. We summarize and discuss an increasing body of research that compares measurements of synaptic density using SV2A PET with other established indicators of neurodegenerative diseases, including cognitive performance and radiological findings, thus providing a comprehensive analysis of SV2A's effectiveness and reliability as a diagnostic tool in contrast to traditional markers. Although the literature overall suggests the promise of SV2A as a diagnostic and therapeutic monitoring tool, uncertainties persist regarding the superiority of SV2A as a biomarker compared to other available markers. The review also underscores the paucity of studies characterizing SV2A distribution and loss in human brain tissue from patients with neurodegenerative diseases, emphasizing the need to generate quantitative neuropathological maps of SV2A density in cases with neurodegenerative diseases to fully harness the potential of SV2A PET imaging in clinical settings. We conclude by outlining future research directions, stressing the importance of integrating SV2A PET imaging with other biomarkers and clinical assessments and the need for longitudinal studies to track SV2A changes throughout neurodegenerative disease progression, which could lead to breakthroughs in early diagnosis and the evaluation of new treatments.
Collapse
Affiliation(s)
| | - Lea T. Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
22
|
Onwordi EC, Whitehurst T, Shatalina E, Mansur A, Arumuham A, Osugo M, Marques TR, Jauhar S, Gupta S, Mehrotra R, Rabiner EA, Gunn RN, Natesan S, Howes OD. Synaptic Terminal Density Early in the Course of Schizophrenia: An In Vivo UCB-J Positron Emission Tomographic Imaging Study of SV2A. Biol Psychiatry 2024; 95:639-646. [PMID: 37330164 PMCID: PMC10923626 DOI: 10.1016/j.biopsych.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The synaptic hypothesis is an influential theory of the pathoetiology of schizophrenia (SCZ), which is supported by the finding that there is lower uptake of the synaptic terminal density marker [11C]UCB-J in patients with chronic SCZ than in control participants. However, it is unclear whether these differences are present early in the illness. To address this, we investigated [11C]UCB-J volume of distribution (VT) in antipsychotic-naïve/free patients with SCZ who were recruited from first-episode services compared with healthy volunteers. METHODS Forty-two volunteers (SCZ n = 21, healthy volunteers n = 21) underwent [11C]UCB-J positron emission tomography to index [11C]UCB-J VT and distribution volume ratio in the anterior cingulate, frontal, and dorsolateral prefrontal cortices; the temporal, parietal and occipital lobes; and the hippocampus, thalamus, and amygdala. Symptom severity was assessed in the SCZ group using the Positive and Negative Syndrome Scale. RESULTS We found no significant effects of group on [11C]UCB-J VT or distribution volume ratio in most regions of interest (effect sizes from d = 0.0-0.7, p > .05), with two exceptions: we found lower distribution volume ratio in the temporal lobe (d = 0.7, uncorrected p < .05) and lower VT/fp in the anterior cingulate cortex in patients (d = 0.7, uncorrected p < .05). The Positive and Negative Syndrome Scale total score was negatively associated with [11C]UCB-J VT in the hippocampus in the SCZ group (r = -0.48, p = .03). CONCLUSIONS These findings indicate that large differences in synaptic terminal density are not present early in SCZ, although there may be more subtle effects. When taken together with previous evidence of lower [11C]UCB-J VT in patients with chronic illness, this may indicate synaptic density changes during the course of SCZ.
Collapse
Affiliation(s)
- Ellis Chika Onwordi
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom.
| | - Thomas Whitehurst
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ekaterina Shatalina
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ayla Mansur
- Department of Brain Sciences, Imperial College London, The Commonwealth Building, Hammersmith Hospital, London, United Kingdom; Invicro, Burlington Danes Building, London, United Kingdom
| | - Atheeshaan Arumuham
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Martin Osugo
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tiago Reis Marques
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Sameer Jauhar
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Susham Gupta
- Early Detection and Early Intervention, East London National Health Service Foundation Trust, London, United Kingdom
| | - Ravi Mehrotra
- Early Intervention in Psychosis Team, West Middlesex University Hospital, West London National Health Service Trust, Isleworth, London, United Kingdom
| | - Eugenii A Rabiner
- Invicro, Burlington Danes Building, London, United Kingdom; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Roger N Gunn
- Department of Brain Sciences, Imperial College London, The Commonwealth Building, Hammersmith Hospital, London, United Kingdom; Invicro, Burlington Danes Building, London, United Kingdom
| | - Sridhar Natesan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Oliver D Howes
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
23
|
Martin SL, Uribe C, Strafella AP. PET imaging of synaptic density in Parkinsonian disorders. J Neurosci Res 2024; 102:e25253. [PMID: 37814917 DOI: 10.1002/jnr.25253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Synaptic dysfunction and altered synaptic pruning are present in people with Parkinsonian disorders. Dopamine loss and alpha-synuclein accumulation, two hallmarks of Parkinson's disease (PD) pathology, contribute to synaptic dysfunction and reduced synaptic density in PD. Atypical Parkinsonian disorders are likely to have unique spatiotemporal patterns of synaptic density, differentiating them from PD. Therefore, quantification of synaptic density has the potential to support diagnoses, monitor disease progression, and treatment efficacy. Novel radiotracers for positron emission tomography which target the presynaptic vesicle protein SV2A have been developed to quantify presynaptic density. The radiotracers have successfully investigated synaptic density in preclinical models of PD and people with Parkinsonian disorders. Therefore, this review will summarize the preclinical and clinical utilization of SV2A radiotracers in people with Parkinsonian disorders. We will evaluate how SV2A abundance is associated with other imaging modalities and the considerations for interpreting SV2A in Parkinsonian pathology.
Collapse
Affiliation(s)
- Sarah L Martin
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Carme Uribe
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Unitat de Psicologia Medica, Departament de Medicina, Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
| | - Antonio P Strafella
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Edmond J. Safra Parkinson Disease Program, Neurology Division, Toronto Western Hospital & Krembil Brain Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Toyonaga T, Khattar N, Wu Y, Lu Y, Naganawa M, Gallezot JD, Matuskey D, Mecca AP, Pittman B, Dias M, Nabulsi NB, Finnema SJ, Chen MK, Arnsten A, Radhakrishnan R, Skosnik PD, D'Souza DC, Esterlis I, Huang Y, van Dyck CH, Carson RE. The regional pattern of age-related synaptic loss in the human brain differs from gray matter volume loss: in vivo PET measurement with [ 11C]UCB-J. Eur J Nucl Med Mol Imaging 2024; 51:1012-1022. [PMID: 37955791 DOI: 10.1007/s00259-023-06487-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Aging is a major societal concern due to age-related functional losses. Synapses are crucial components of neural circuits, and synaptic density could be a sensitive biomarker to evaluate brain function. [11C]UCB-J is a positron emission tomography (PET) ligand targeting synaptic vesicle glycoprotein 2A (SV2A), which can be used to evaluate brain synaptic density in vivo. METHODS We evaluated age-related changes in gray matter synaptic density, volume, and blood flow using [11C]UCB-J PET and magnetic resonance imaging (MRI) in a wide age range of 80 cognitive normal subjects (21-83 years old). Partial volume correction was applied to the PET data. RESULTS Significant age-related decreases were found in 13, two, and nine brain regions for volume, synaptic density, and blood flow, respectively. The prefrontal cortex showed the largest volume decline (4.9% reduction per decade: RPD), while the synaptic density loss was largest in the caudate (3.6% RPD) and medial occipital cortex (3.4% RPD). The reductions in caudate are consistent with previous SV2A PET studies and likely reflect that caudate is the site of nerve terminals for multiple major tracts that undergo substantial age-related neurodegeneration. There was a non-significant negative relationship between volume and synaptic density reductions in 16 gray matter regions. CONCLUSION MRI and [11]C-UCB-J PET showed age-related decreases of gray matter volume, synaptic density, and blood flow; however, the regional patterns of the reductions in volume and SV2A binding were different. Those patterns suggest that MR-based measures of GM volume may not be directly representative of synaptic density.
Collapse
Affiliation(s)
- Takuya Toyonaga
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Nikkita Khattar
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yanjun Wu
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yihuan Lu
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mika Naganawa
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jean-Dominique Gallezot
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - David Matuskey
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Dias
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Nabeel B Nabulsi
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sjoerd J Finnema
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ming-Kai Chen
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Amy Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University School of Medicine, New Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick D Skosnik
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Bouvé College of Health Sciences, Northeastern University Schools of Nursing & Pharmacy/Pharmaceutical Sciences, Boston, MA, USA
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
25
|
Betzel R, Puxeddu MG, Seguin C, Bazinet V, Luppi A, Podschun A, Singleton SP, Faskowitz J, Parakkattu V, Misic B, Markett S, Kuceyeski A, Parkes L. Controlling the human connectome with spatially diffuse input signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.581006. [PMID: 38463980 PMCID: PMC10925126 DOI: 10.1101/2024.02.27.581006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human brain is never at "rest"; its activity is constantly fluctuating over time, transitioning from one brain state-a whole-brain pattern of activity-to another. Network control theory offers a framework for understanding the effort - energy - associated with these transitions. One branch of control theory that is especially useful in this context is "optimal control", in which input signals are used to selectively drive the brain into a target state. Typically, these inputs are introduced independently to the nodes of the network (each input signal is associated with exactly one node). Though convenient, this input strategy ignores the continuity of cerebral cortex - geometrically, each region is connected to its spatial neighbors, allowing control signals, both exogenous and endogenous, to spread from their foci to nearby regions. Additionally, the spatial specificity of brain stimulation techniques is limited, such that the effects of a perturbation are measurable in tissue surrounding the stimulation site. Here, we adapt the network control model so that input signals have a spatial extent that decays exponentially from the input site. We show that this more realistic strategy takes advantage of spatial dependencies in structural connectivity and activity to reduce the energy (effort) associated with brain state transitions. We further leverage these dependencies to explore near-optimal control strategies such that, on a per-transition basis, the number of input signals required for a given control task is reduced, in some cases by two orders of magnitude. This approximation yields network-wide maps of input site density, which we compare to an existing database of functional, metabolic, genetic, and neurochemical maps, finding a close correspondence. Ultimately, not only do we propose a more efficient framework that is also more adherent to well-established brain organizational principles, but we also posit neurobiologically grounded bases for optimal control.
Collapse
Affiliation(s)
- Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
- Cognitive Science Program, Indiana University, Bloomington IN 47401
- Program in Neuroscience, Indiana University, Bloomington IN 47401
| | - Maria Grazia Puxeddu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
| | - Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Andrea Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | | | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
| | - Vibin Parakkattu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
- Cognitive Science Program, Indiana University, Bloomington IN 47401
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY
- Department of Computational Biology, Cornell University, Ithaca, NY
| | - Linden Parkes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
26
|
DiFilippo A, Jonaitis E, Makuch R, Gambetti B, Fleming V, Ennis G, Barnhart T, Engle J, Bendlin B, Johnson S, Handen B, Krinsky-McHale S, Hartley S, Christian B. Measurement of synaptic density in Down syndrome using PET imaging: a pilot study. Sci Rep 2024; 14:4676. [PMID: 38409349 PMCID: PMC10897336 DOI: 10.1038/s41598-024-54669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Down syndrome (DS) is the most prevalent genetic cause of intellectual disability, resulting from trisomy 21. Recently, positron emission tomography (PET) imaging has been used to image synapses in vivo. The motivation for this pilot study was to investigate whether synaptic density in low functioning adults with DS can be evaluated using the PET radiotracer [11C]UCB-J. Data were acquired from low functioning adults with DS (n = 4) and older neurotypical (NT) adults (n = 37). Motion during the scans required the use of a 10-minute acquisition window for the calculation of synaptic density using SUVR50-60,CS which was determined to be a suitable approximation for specific binding in this analysis using dynamic data from the NT group. Of the regions analyzed a large effect was observed when comparing DS and NT hippocampus and cerebral cortex synaptic density as well as hippocampus and cerebellum volumes. In this pilot study, PET imaging of [11C]UCB-J was successfully completed and synaptic density measured in low functioning DS adults. This work provides the basis for studies where synaptic density may be compared between larger groups of NT adults and adults with DS who have varying degrees of baseline cognitive status.
Collapse
Affiliation(s)
- Alexandra DiFilippo
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| | - Erin Jonaitis
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Renee Makuch
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Brianna Gambetti
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Victoria Fleming
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Gilda Ennis
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Todd Barnhart
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Jonathan Engle
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Barbara Bendlin
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Sterling Johnson
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Benjamin Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sharon Krinsky-McHale
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Sigan Hartley
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Bradley Christian
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| |
Collapse
|
27
|
d’Orchymont F, Narvaez A, Raymond R, Sachdev P, Charil A, Krause S, Vasdev N. In vitro evaluation of PET radiotracers for imaging synaptic density, the acetylcholine transporter, AMPA-tarp-γ8 and muscarinic M4 receptors in Alzheimer's disease. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:1-12. [PMID: 38500748 PMCID: PMC10944377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
Several therapeutics and biomarkers that target Alzheimer's disease (AD) are under development. Our clinical positron emission tomography (PET) research programs are interested in six radiopharmaceuticals to image patients with AD and related dementias, specifically [11C]UCB-J and [18F]SynVesT-1 for synaptic vesicle glycoprotein 2A as a marker of synaptic density, two vesicular acetylcholine transporter PET radiotracers: [18F]FEOBV and [18F]VAT, as well as the transmembrane AMPA receptor regulatory protein (TARP)-γ8 tracer, [18F]JNJ-64511070, and the muscarinic acetylcholine receptor (mAChR) M4 tracer [11C]MK-6884. The goal of this study was to compare all six radiotracers (labeled with tritium or 18F) by measuring their density variability in pathologically diagnosed cases of AD, mild cognitive impairment (MCI) and normal healthy volunteer (NHV) human brains, using thin-section in vitro autoradiography (ARG). Region of interest analysis was used to quantify radioligand binding density and determine whether the radioligands provide a signal-to-noise ratio optimal for showing changes in binding. Our preliminary study confirmed that all six radiotracers show specific binding in MCI and AD. An expected decrease in their respective target density in human AD hippocampus tissues compared to NHV was observed with [3H]UCB-J, [3H]SynVesT-1, [3H]JNJ-64511070, and [3H]MK-6884. This preliminary study will be used to guide human PET imaging of SV2A, TARP-γ8 and the mAChR M4 subtype for imaging in AD and related dementias.
Collapse
Affiliation(s)
- Faustine d’Orchymont
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH)Toronto, ON, Canada
| | - Andrea Narvaez
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH)Toronto, ON, Canada
- Enigma Biomedical Group, Inc.Toronto, ON, Canada
| | - Roger Raymond
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH)Toronto, ON, Canada
| | | | | | | | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH)Toronto, ON, Canada
- Department of Psychiatry, University of TorontoToronto, ON, Canada
| |
Collapse
|
28
|
Vanderlinden G, Carron C, Vandenberghe R, Vandenbulcke M, Van Laere K. In vivo PET of synaptic density as potential diagnostic marker for cognitive disorders: prospective comparison with current imaging markers for neuronal dysfunction and relation to symptomatology - study protocol. BMC Med Imaging 2024; 24:41. [PMID: 38347458 PMCID: PMC10860316 DOI: 10.1186/s12880-024-01224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/05/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND 18F-FDG brain PET is clinically used for differential diagnosis in cognitive dysfunction of unclear etiology and for exclusion of a neurodegenerative cause in patients with cognitive impairment in late-life psychiatric disorders. 18F-FDG PET measures regional glucose metabolism, which represents a combination of neuronal/synaptic activity but also astrocytic activity and neuroinflammation. Recently, imaging of synaptic vesicle protein 2 A (SV2A) has become available and was shown to be a proxy of synaptic density. This prospective study will investigate the use of 18F-SynVesT-1 for imaging SV2A and its discriminative power for differential diagnosis in cognitive disorders in a head-to-head comparison to 18F-FDG PET. In addition, simultaneous PET/MR allows an evaluation of contributing factors and the additional value of advanced MRI imaging to FDG/SV2A PET imaging will be investigated. In this work, the study design and protocol are depicted. METHODS In this prospective, multimodal imaging study, 110 patients with uncertain diagnosis of cognitive impairment who are referred for 18F-FDG PET brain imaging in their diagnostic work-up in a tertiary memory clinic will be recruited. In addition, 40 healthy volunteers (HV) between 18 and 85 years (M/F) will be included. All study participants will undergo simultaneous 18F-SynVesT-1 PET/MR and an extensive neuropsychological evaluation. Amyloid status will be measured by PET using 18FNAV4694, in HV above 50 years of age. Structural T1-weighted and T2-weighted fluid-attenuated inversion recovery MR images, triple-tagging arterial spin labeling (ASL) and resting-state functional MRI (rs-fMRI) will be obtained. The study has been registered on ClinicalTrials.gov (NCT05384353) and is approved by the local Research Ethics Committee. DISCUSSION The main endpoint of the study will be the comparison of the diagnostic accuracy between 18F-SynVesT-1 and 18F-FDG PET in cognitive disorders with uncertain etiology and in exclusion of a neurodegenerative cause in patients with cognitive impairment in late-life psychiatric disorders. The strength of the relationship between cognition and imaging data will be assessed, as well as the potential incremental diagnostic value of including MR volumetry, ASL perfusion and rs-fMRI.
Collapse
Affiliation(s)
- Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, KU Leuven, Leuven, Belgium.
| | - Charles Carron
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Research Group Psychiatry, KU Leuven, Leuven, Belgium
- Department of Old-Age Psychiatry, University Hospitals UZ Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
29
|
Visser M, O'Brien JT, Mak E. In vivo imaging of synaptic density in neurodegenerative disorders with positron emission tomography: A systematic review. Ageing Res Rev 2024; 94:102197. [PMID: 38266660 DOI: 10.1016/j.arr.2024.102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Positron emission tomography (PET) with radiotracers that bind to synaptic vesicle glycoprotein 2 A (SV2A) enables quantification of synaptic density in the living human brain. Assessing the regional distribution and severity of synaptic density loss will contribute to our understanding of the pathological processes that precede atrophy in neurodegeneration. In this systematic review, we provide a discussion of in vivo SV2A PET imaging research for quantitative assessment of synaptic density in various dementia conditions: amnestic Mild Cognitive Impairment and Alzheimer's disease, Frontotemporal dementia, Progressive supranuclear palsy and Corticobasal degeneration, Parkinson's disease and Dementia with Lewy bodies, Huntington's disease, and Spinocerebellar Ataxia. We discuss the main findings concerning group differences and clinical-cognitive correlations, and explore relations between SV2A PET and other markers of pathology. Additionally, we touch upon synaptic density in healthy ageing and outcomes of radiotracer validation studies. Studies were identified on PubMed and Embase between 2018 and 2023; last searched on the 3rd of July 2023. A total of 36 studies were included, comprising 5 on normal ageing, 21 clinical studies, and 10 validation studies. Extracted study characteristics were participant details, methodological aspects, and critical findings. In summary, the small but growing literature on in vivo SV2A PET has revealed different spatial patterns of synaptic density loss among various neurodegenerative disorders that correlate with cognitive functioning, supporting the potential role of SV2A PET imaging for differential diagnosis. SV2A PET imaging shows tremendous capability to provide novel insights into the aetiology of neurodegenerative disorders and great promise as a biomarker for synaptic density reduction. Novel directions for future synaptic density research are proposed, including (a) longitudinal imaging in larger patient cohorts of preclinical dementias, (b) multi-modal mapping of synaptic density loss onto other pathological processes, and (c) monitoring therapeutic responses and assessing drug efficacy in clinical trials.
Collapse
Affiliation(s)
- Malouke Visser
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom; Neuropsychology and Rehabilitation Psychology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Elijah Mak
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom.
| |
Collapse
|
30
|
van Dyck CH, Mecca AP, O'Dell RS, Bartlett HH, Diepenbrock NG, Huang Y, Hamby ME, Grundman M, Catalano SM, Caggiano AO, Carson RE. A pilot study to evaluate the effect of CT1812 treatment on synaptic density and other biomarkers in Alzheimer's disease. Alzheimers Res Ther 2024; 16:20. [PMID: 38273408 PMCID: PMC10809445 DOI: 10.1186/s13195-024-01382-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/01/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Effective, disease-modifying therapeutics for the treatment of Alzheimer's disease (AD) remain a large unmet need. Extensive evidence suggests that amyloid beta (Aβ) is central to AD pathophysiology, and Aβ oligomers are among the most toxic forms of Aβ. CT1812 is a novel brain penetrant sigma-2 receptor ligand that interferes with the binding of Aβ oligomers to neurons. Preclinical studies of CT1812 have demonstrated its ability to displace Aβ oligomers from neurons, restore synapses in cell cultures, and improve cognitive measures in mouse models of AD. CT1812 was found to be generally safe and well tolerated in a placebo-controlled phase 1 clinical trial in healthy volunteers and phase 1a/2 clinical trials in patients with mild to moderate dementia due to AD. The unique objective of this study was to incorporate synaptic positron emission tomography (PET) imaging as an outcome measure for CT1812 in AD patients. METHODS The present phase 1/2 study was a randomized, double-blind, placebo-controlled, parallel-group trial conducted in 23 participants with mild to moderate dementia due to AD to primarily evaluate the safety of CT1812 and secondarily its pharmacodynamic effects. Participants received either placebo or 100 mg or 300 mg per day of oral CT1812 for 24 weeks. Pharmacodynamic effects were assessed using the exploratory efficacy endpoints synaptic vesicle glycoprotein 2A (SV2A) PET, fluorodeoxyglucose (FDG) PET, volumetric MRI, cognitive clinical measures, as well as cerebrospinal fluid (CSF) biomarkers of AD pathology and synaptic degeneration. RESULTS No treatment differences relative to placebo were observed in the change from baseline at 24 weeks in either SV2A or FDG PET signal, the cognitive clinical rating scales, or in CSF biomarkers. Composite region volumetric MRI revealed a trend towards tissue preservation in participants treated with either dose of CT1812, and nominally significant differences with both doses of CT1812 compared to placebo were found in the pericentral, prefrontal, and hippocampal cortices. CT1812 was safe and well tolerated. CONCLUSIONS The safety findings of this 24-week study and the observed changes on volumetric MRI with CT1812 support its further clinical development. TRIAL REGISTRATION The clinical trial described in this manuscript is registered at clinicaltrials.gov (NCT03493282).
Collapse
Affiliation(s)
- Christopher H van Dyck
- Alzheimer's Disease Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Adam P Mecca
- Alzheimer's Disease Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan S O'Dell
- Alzheimer's Disease Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Hugh H Bartlett
- Alzheimer's Disease Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nina G Diepenbrock
- Alzheimer's Disease Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Mary E Hamby
- Cognition Therapeutics Inc., Pittsburgh, PA, USA
| | - Michael Grundman
- Global R&D Partners, LLC, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, USA
| | | | | | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
31
|
Fang L, Zhang B, Li B, Zhang X, Zhou X, Yang J, Li A, Shi X, Liu Y, Kreissl M, D'Ascenzo N, Xiao P, Xie Q. Development and evaluation of a new high-TOF-resolution all-digital brain PET system. Phys Med Biol 2024; 69:025019. [PMID: 38100841 DOI: 10.1088/1361-6560/ad164d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Objective.Time-of-flight (TOF) capability and high sensitivity are essential for brain-dedicated positron emission tomography (PET) imaging, as they improve the contrast and the signal-to-noise ratio (SNR) enabling a precise localization of functional mechanisms in the different brain regions.Approach.We present a new brain PET system with transverse and axial field-of-view (FOV) of 320 mm and 255 mm, respectively. The system head is an array of 6 × 6 detection elements, each consisting of a 3.9 × 3.9 × 20 mm3lutetium-yttrium oxyorthosilicate crystal coupled with a 3.93 × 3.93 mm2SiPM. The SiPMs analog signals are individually digitized using the multi-voltage threshold (MVT) technology, employing a 1:1:1 coupling configuration.Main results.The brain PET system exhibits a TOF resolution of 249 ps at 5.3 kBq ml-1, an average sensitivity of 22.1 cps kBq-1, and a noise equivalent count rate (NECR) peak of 150.9 kcps at 8.36 kBq ml-1. Furthermore, the mini-Derenzo phantom study demonstrated the system's ability to distinguish rods with a diameter of 2.0 mm. Moreover, incorporating the TOF reconstruction algorithm in an image quality phantom study optimizes the background variability, resulting in reductions ranging from 44% (37 mm) to 75% (10 mm) with comparable contrast. In the human brain imaging study, the SNR improved by a factor of 1.7 with the inclusion of TOF, increasing from 27.07 to 46.05. Time-dynamic human brain imaging was performed, showing the distinctive traits of cortex and thalamus uptake, as well as of the arterial and venous flow with 2 s per time frame.Significance.The system exhibited a good TOF capability, which is coupled with the high sensitivity and count rate performance based on the MVT digital sampling technique. The developed TOF-enabled brain PET system opens the possibility of precise kinetic brain PET imaging, towards new quantitative predictive brain diagnostics.
Collapse
Affiliation(s)
- Lei Fang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bo Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bingxuan Li
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, People's Republic of China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyun Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ang Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xinchong Shi
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yuqing Liu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, People's Republic of China
| | - Michael Kreissl
- Division of Nuclear Medicine, Deprtment of Radiology and Nuclear Medicine, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Nicola D'Ascenzo
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Department of Innovation in Engineering and Physics, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S., Pozzilli, Italy
| | - Peng Xiao
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Qingguo Xie
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Department of Innovation in Engineering and Physics, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S., Pozzilli, Italy
| |
Collapse
|
32
|
Silva-Rudberg JA, Salardini E, O'Dell RS, Chen MK, Ra J, Georgelos JK, Morehouse MR, Melino KP, Varma P, Toyonaga T, Nabulsi NB, Huang Y, Carson RE, van Dyck CH, Mecca AP. Assessment of Gray Matter Microstructure and Synaptic Density in Alzheimer's Disease: A Multimodal Imaging Study With DTI and SV2A PET. Am J Geriatr Psychiatry 2024; 32:17-28. [PMID: 37673749 PMCID: PMC10840732 DOI: 10.1016/j.jagp.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVE Multimodal imaging techniques have furthered our understanding of how different aspects of Alzheimer's disease (AD) pathology relate to one another. Diffusion tensor imaging (DTI) measures such as mean diffusivity (MD) may be a surrogate measure of the changes in gray matter structure associated with AD. Positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) has been used to quantify synaptic loss, which is the major pathological correlate of cognitive impairment in AD. In this study, we investigated the relationship between gray matter microstructure and synaptic density. METHODS DTI was used to measure MD and [11C]UCB-J PET to measure synaptic density in 33 amyloid-positive participants with AD and 17 amyloid-negative cognitively normal (CN) participants aged 50-83. Univariate regression analyses were used to assess the association between synaptic density and MD in both the AD and CN groups. RESULTS Hippocampal MD was inversely associated with hippocampal synaptic density in participants with AD (r = -0.55, p <0.001, df = 31) but not CN (r = 0.13, p = 0.62, df = 15). Exploratory analyses across other regions known to be affected in AD suggested widespread inverse associations between synaptic density and MD in the AD group. CONCLUSION In the setting of AD, an increase in gray matter MD is inversely associated with synaptic density. These co-occurring changes may suggest a link between synaptic loss and gray matter microstructural changes in AD. Imaging studies of gray matter microstructure and synaptic density may allow important insights into AD-related neuropathology.
Collapse
Affiliation(s)
- Jason A Silva-Rudberg
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT.
| | - Elaheh Salardini
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Ryan S O'Dell
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Jocelyn Ra
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Jamie K Georgelos
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Mackenzie R Morehouse
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Kaitlyn P Melino
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Pradeep Varma
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Neuroscience (CHvD), Yale University School of Medicine, New Haven, CT; Department of Neurology (CHvD), Yale University School of Medicine, New Haven, CT
| | - Adam P Mecca
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
33
|
Ozolmez N, Silindir-Gunay M, Volkan-Salanci B. An overview: Radiotracers and nano-radiopharmaceuticals for diagnosis of Parkinson's disease. Appl Radiat Isot 2024; 203:111110. [PMID: 37989065 DOI: 10.1016/j.apradiso.2023.111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Parkinson's disease (PD) is a widespread progressive neurodegenerative disease. Clinical diagnosis approaches are insufficient to provide an early and accurate diagnosis before a substantial of loss of dopaminergic neurons. PET and SPECT can be used for accurate and early diagnosis of PD by using target-specific radiotracers. Additionally, the importance of BBB penetrating targeted nanosystems has increased in recent years. This article reviews targeted radiopharmaceuticals used in clinics and novel nanocarriers for research purposes of PD imaging.
Collapse
Affiliation(s)
- Nur Ozolmez
- Hacettepe University, Faculty of Pharmacy, Department of Radiopharmacy, Ankara, Turkey.
| | - Mine Silindir-Gunay
- Hacettepe University, Faculty of Pharmacy, Department of Radiopharmacy, Ankara, Turkey.
| | - Bilge Volkan-Salanci
- Hacettepe University, Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey.
| |
Collapse
|
34
|
Hobbs NZ, Papoutsi M, Delva A, Kinnunen KM, Nakajima M, Van Laere K, Vandenberghe W, Herath P, Scahill RI. Neuroimaging to Facilitate Clinical Trials in Huntington's Disease: Current Opinion from the EHDN Imaging Working Group. J Huntingtons Dis 2024; 13:163-199. [PMID: 38788082 PMCID: PMC11307036 DOI: 10.3233/jhd-240016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Neuroimaging is increasingly being included in clinical trials of Huntington's disease (HD) for a wide range of purposes from participant selection and safety monitoring, through to demonstration of disease modification. Selection of the appropriate modality and associated analysis tools requires careful consideration. On behalf of the EHDN Imaging Working Group, we present current opinion on the utility and future prospects for inclusion of neuroimaging in HD trials. Covering the key imaging modalities of structural-, functional- and diffusion- MRI, perfusion imaging, positron emission tomography, magnetic resonance spectroscopy, and magnetoencephalography, we address how neuroimaging can be used in HD trials to: 1) Aid patient selection, enrichment, stratification, and safety monitoring; 2) Demonstrate biodistribution, target engagement, and pharmacodynamics; 3) Provide evidence for disease modification; and 4) Understand brain re-organization following therapy. We also present the challenges of translating research methodology into clinical trial settings, including equipment requirements and cost, standardization of acquisition and analysis, patient burden and invasiveness, and interpretation of results. We conclude, that with appropriate consideration of modality, study design and analysis, imaging has huge potential to facilitate effective clinical trials in HD.
Collapse
Affiliation(s)
- Nicola Z. Hobbs
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
| | - Marina Papoutsi
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
- IXICO plc, London, UK
| | - Aline Delva
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | | - Koen Van Laere
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | |
Collapse
|
35
|
Li A, Yang B, Naganawa M, Fontaine K, Toyonaga T, Carson RE, Tang J. Dose reduction in dynamic synaptic vesicle glycoprotein 2A PET imaging using artificial neural networks. Phys Med Biol 2023; 68:245006. [PMID: 37857316 PMCID: PMC10739622 DOI: 10.1088/1361-6560/ad0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Objective. Reducing dose in positron emission tomography (PET) imaging increases noise in reconstructed dynamic frames, which inevitably results in higher noise and possible bias in subsequently estimated images of kinetic parameters than those estimated in the standard dose case. We report the development of a spatiotemporal denoising technique for reduced-count dynamic frames through integrating a cascade artificial neural network (ANN) with the highly constrained back-projection (HYPR) scheme to improve low-dose parametric imaging.Approach. We implemented and assessed the proposed method using imaging data acquired with11C-UCB-J, a PET radioligand bound to synaptic vesicle glycoprotein 2A (SV2A) in the human brain. The patch-based ANN was trained with a reduced-count frame and its full-count correspondence of a subject and was used in cascade to process dynamic frames of other subjects to further take advantage of its denoising capability. The HYPR strategy was then applied to the spatial ANN processed image frames to make use of the temporal information from the entire dynamic scan.Main results. In all the testing subjects including healthy volunteers and Parkinson's disease patients, the proposed method reduced more noise while introducing minimal bias in dynamic frames and the resulting parametric images, as compared with conventional denoising methods.Significance. Achieving 80% noise reduction with a bias of -2% in dynamic frames, which translates into 75% and 70% of noise reduction in the tracer uptake (bias, -2%) and distribution volume (bias, -5%) images, the proposed ANN+HYPR technique demonstrates the denoising capability equivalent to a 11-fold dose increase for dynamic SV2A PET imaging with11C-UCB-J.
Collapse
Affiliation(s)
- Andi Li
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| | - Bao Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Mika Naganawa
- Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Kathryn Fontaine
- Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Takuya Toyonaga
- Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Richard E Carson
- Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Jing Tang
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| |
Collapse
|
36
|
Bazinet V, Hansen JY, Misic B. Towards a biologically annotated brain connectome. Nat Rev Neurosci 2023; 24:747-760. [PMID: 37848663 DOI: 10.1038/s41583-023-00752-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
The brain is a network of interleaved neural circuits. In modern connectomics, brain connectivity is typically encoded as a network of nodes and edges, abstracting away the rich biological detail of local neuronal populations. Yet biological annotations for network nodes - such as gene expression, cytoarchitecture, neurotransmitter receptors or intrinsic dynamics - can be readily measured and overlaid on network models. Here we review how connectomes can be represented and analysed as annotated networks. Annotated connectomes allow us to reconceptualize architectural features of networks and to relate the connection patterns of brain regions to their underlying biology. Emerging work demonstrates that annotated connectomes help to make more veridical models of brain network formation, neural dynamics and disease propagation. Finally, annotations can be used to infer entirely new inter-regional relationships and to construct new types of network that complement existing connectome representations. In summary, biologically annotated connectomes offer a compelling way to study neural wiring in concert with local biological features.
Collapse
Affiliation(s)
- Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
37
|
Asch RH, Naganawa M, Nabulsi N, Huan Y, Esterlis I, Carson RE. Evaluating infusion methods and simplified quantification of synaptic density in vivo with [ 11C]UCB-J and [ 18F]SynVesT-1 PET. J Cereb Blood Flow Metab 2023; 43:2120-2129. [PMID: 37669455 PMCID: PMC10925870 DOI: 10.1177/0271678x231200423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 09/07/2023]
Abstract
For some positron emission tomography studies, radiotracer is administered as bolus plus continuous infusion (B/I) to achieve a state of equilibrium. This approach can reduce scanning time and simplify data analysis; however, the method must be validated and optimized for each tracer. This study aimed to validate a B/I method for in vivo quantification of synaptic density using radiotracers which target the synaptic vesicle glycoprotein 2 A: [11C]UCB-J and [18F]SynVesT-1. Observed mean standardized uptake values (SUV) in target tissue relative to that in plasma (CT/CP) or a reference tissue (SUVR-1) were calculated for 30-minute intervals across 120 or 150-minute dynamic scans and compared against one-tissue compartment (1TC) model estimates of volume of distribution (VT) and binding potential (BPND), respectively. We were unable to reliably achieve a state of equilibrium with [11C]UCB-J, and all 30-minute windows yielded overly large bias and/or variability for CT/CP and SUVR-1. With [18F]SynVesT-1, a 30-minute scan 90-120 minutes post-injection yielded CT/CP and SUVR-1 values that estimated their respective kinetic parameter with sufficient accuracy and precision (within 7± 6%) . This B/I approach allows a clinically feasible scan at equilibrium with potentially better accuracy than a static scan SUVR following a bolus injection.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Yiyun Huan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
38
|
Matheson GJ, Ge L, Zhang M, Sun B, Tu Y, Zanderigo F, Forsberg Morèn A, Ogden RT. Parametric and non-parametric Poisson regression for modelling of the arterial input function in positron emission tomography. EJNMMI Phys 2023; 10:72. [PMID: 37987874 PMCID: PMC10663416 DOI: 10.1186/s40658-023-00591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Full quantification of Positron Emission Tomography (PET) requires an arterial input function (AIF) for measurement of certain targets, or using particular radiotracers, or for the quantification of specific outcome measures. The AIF represents the measurement of radiotracer concentrations in the arterial blood plasma over the course of the PET examination. Measurement of the AIF is prone to error as it is a composite measure created from the combination of multiple measurements of different samples with different equipment, each of which can be sources of measurement error. Moreover, its measurement requires a high degree of temporal granularity for early time points, which necessitates a compromise between quality and quantity of recorded samples. For these reasons, it is often desirable to fit models to this data in order to improve its quality before using it for quantification of radiotracer binding in the tissue. The raw observations of radioactivity in arterial blood and plasma samples are derived from radioactive decay, which is measured as a number of recorded counts. Count data have several specific properties, including the fact that they cannot be negative as well as a particular mean-variance relationship. Poisson regression is the most principled modelling strategy for working with count data, as it both incorporates and exploits these properties. However, no previous studies to our knowledge have taken this approach, despite the advantages of greater efficiency and accuracy which result from using the appropriate distributional assumptions. Here, we implement a Poisson regression modelling approach for the AIF as proof-of-concept of its application. We applied both parametric and non-parametric models for the input function curve. We show that a negative binomial distribution is a more appropriate error distribution for handling overdispersion. Furthermore, we extend this approach to a hierarchical non-parametric model which is shown to be highly resilient to missing data. We thus demonstrate that Poisson regression is both feasible and effective when applied to AIF data, and propose that this is a promising strategy for modelling blood count data for PET in future.
Collapse
Affiliation(s)
- Granville J Matheson
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, 10032, USA.
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, 171 76, Sweden.
| | - Liner Ge
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, 10032, USA
| | - Mengyu Zhang
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, 10032, USA
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Bingyu Sun
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, 10032, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yuqi Tu
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, 10032, USA
| | - Francesca Zanderigo
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Anton Forsberg Morèn
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, 171 76, Sweden
| | - R Todd Ogden
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, 10032, USA
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, 10032, USA
| |
Collapse
|
39
|
Hou J, Xiao Q, Zhou M, Xiao L, Yuan M, Zhong N, Long J, Luo T, Hu S, Dong H. Lower synaptic density associated with gaming disorder: an 18F-SynVesT-1 PET imaging study. Gen Psychiatr 2023; 36:e101112. [PMID: 37829163 PMCID: PMC10565144 DOI: 10.1136/gpsych-2023-101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023] Open
Abstract
Background Internet gaming disorder (IGD) is an ideal model to study the mechanisms underlying synaptic deficits in addiction as it eliminates the confounding effects of substance use. Synaptic loss and deficits are hypothesised to underlie the enduring maladaptive behaviours and impaired cognitive function that contribute to IGD. Aims This study aimed to determine whether subjects with IGD have lower synaptic density than control subjects and the relationship between synaptic density and IGD severity. Methods Eighteen unmedicated subjects diagnosed with current IGD according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria and 16 demographically matched healthy controls (HCs) participated in the study and underwent 18F-labelled difluoro-analogue of UCB-J (18F-SynVesT-1) positron emission tomography scans to assess the density of synaptic vesicle glycoprotein 2A (SV2A). The Internet Gaming Disorder Scale-Short Form (IGDS9-SF), Hamilton Rating Scale for Depression (HAMD), Hamilton Anxiety Rating Scale (HAMA), Barratt Impulsiveness Scale Version 11 (BIS-11), Stroop Colour-Word Test (SCWT), stop-signal paradigms and N-back tasks were administered to all subjects. Results Patients with IGD had significantly higher scores on the IGDS9-SF, HAMD, HAMA and BIS-11 than HCs. HCs performed better on the two-back and SCWT tests as well as in terms of stop-signal reaction times (SSRTs) in the stop-signal paradigms than patients with IGD. Lower uptake was found in the bilateral putamen, right pregenual anterior cingulate cortex and Rolandic operculum of patients with IGD compared with HCs. Furthermore, in the IGD group, IGDS9-SF scores and daily gaming hours were negatively correlated with the standardised uptake value ratios of 18F-SynVesT-1 in the bilateral putamen. Longer SSRTs were significantly associated with lower SV2A density in the right pregenual anterior cingulate cortex and right Rolandic operculum. Conclusions The in vivo results in this study suggest that lower synaptic density contributes to the severity and impairments in inhibitory control of IGD. These findings may provide further incentive to evaluate interventions that restore synaptic transmission and plasticity to treat IGD.
Collapse
Affiliation(s)
- Jiale Hou
- Department of Nuclear Medicine, Central South University, Changsha, Hunan, China
| | - Qian Xiao
- Mental Health Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Department of Nuclear Medicine, Central South University, Changsha, Hunan, China
| | - Ling Xiao
- Department of Nuclear Medicine, Central South University, Changsha, Hunan, China
| | - Ming Yuan
- Department of Applied Psychology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Na Zhong
- Department of Substance Use and Addictive Behaviors Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Long
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Tao Luo
- Department of Psychology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shuo Hu
- Department of Nuclear Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan, China
| | - Huixi Dong
- Mental Health Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
40
|
Johansen A, Armand S, Plavén-Sigray P, Nasser A, Ozenne B, Petersen IN, Keller SH, Madsen J, Beliveau V, Møller K, Vassilieva A, Langley C, Svarer C, Stenbæk DS, Sahakian BJ, Knudsen GM. Effects of escitalopram on synaptic density in the healthy human brain: a randomized controlled trial. Mol Psychiatry 2023; 28:4272-4279. [PMID: 37814129 PMCID: PMC10827655 DOI: 10.1038/s41380-023-02285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are widely used for treating neuropsychiatric disorders. However, the exact mechanism of action and why effects can take several weeks to manifest is not clear. The hypothesis of neuroplasticity is supported by preclinical studies, but the evidence in humans is limited. Here, we investigate the effects of the SSRI escitalopram on presynaptic density as a proxy for synaptic plasticity. In a double-blind placebo-controlled study (NCT04239339), 32 healthy participants with no history of psychiatric or cognitive disorders were randomized to receive daily oral dosing of either 20 mg escitalopram (n = 17) or a placebo (n = 15). After an intervention period of 3-5 weeks, participants underwent a [11C]UCB-J PET scan (29 with full arterial input function) to quantify synaptic vesicle glycoprotein 2A (SV2A) density in the hippocampus and the neocortex. Whereas we find no statistically significant group difference in SV2A binding after an average of 29 (range: 24-38) days of intervention, our secondary analyses show a time-dependent effect of escitalopram on cerebral SV2A binding with positive associations between [11C]UCB-J binding and duration of escitalopram intervention. Our findings suggest that brain synaptic plasticity evolves over 3-5 weeks in healthy humans following daily intake of escitalopram. This is the first in vivo evidence to support the hypothesis of neuroplasticity as a mechanism of action for SSRIs in humans and it offers a plausible biological explanation for the delayed treatment response commonly observed in patients treated with SSRIs. While replication is warranted, these results have important implications for the design of future clinical studies investigating the neurobiological effects of SSRIs.
Collapse
Affiliation(s)
- Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophia Armand
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pontus Plavén-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Ida N Petersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sune H Keller
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jacob Madsen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Vincent Beliveau
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kirsten Møller
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroanaesthesiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Alexandra Vassilieva
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroanaesthesiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Dea S Stenbæk
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
41
|
Shafiei G, Fulcher BD, Voytek B, Satterthwaite TD, Baillet S, Misic B. Neurophysiological signatures of cortical micro-architecture. Nat Commun 2023; 14:6000. [PMID: 37752115 PMCID: PMC10522715 DOI: 10.1038/s41467-023-41689-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Systematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown. Here we extensively profile regional neurophysiological dynamics across the human brain by estimating over 6800 time-series features from the resting state magnetoencephalography (MEG) signal. We then map regional time-series profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-architecture, including microstructure, metabolism, neurotransmitter receptors, cell types and laminar differentiation. We find that the dominant axis of neurophysiological dynamics reflects characteristics of power spectrum density and linear correlation structure of the signal, emphasizing the importance of conventional features of electromagnetic dynamics while identifying additional informative features that have traditionally received less attention. Moreover, spatial variation in neurophysiological dynamics is co-localized with multiple micro-architectural features, including gene expression gradients, intracortical myelin, neurotransmitter receptors and transporters, and oxygen and glucose metabolism. Collectively, this work opens new avenues for studying the anatomical basis of neural activity.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ben D Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
42
|
Laurell GL, Plavén-Sigray P, Johansen A, Raval NR, Nasser A, Aabye Madsen C, Madsen J, Hansen HD, Donovan LL, Knudsen GM, Lammertsma AA, Ogden RT, Svarer C, Schain M. Kinetic models for estimating occupancy from single-scan PET displacement studies. J Cereb Blood Flow Metab 2023; 43:1544-1556. [PMID: 37070382 PMCID: PMC10414003 DOI: 10.1177/0271678x231168591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 04/19/2023]
Abstract
The traditional design of PET target engagement studies is based on a baseline scan and one or more scans after drug administration. We here evaluate an alternative design in which the drug is administered during an on-going scan (i.e., a displacement study). This approach results both in lower radiation exposure and lower costs. Existing kinetic models assume steady state. This condition is not present during a drug displacement and consequently, our aim here was to develop kinetic models for analysing PET displacement data. We modified existing compartment models to accommodate a time-variant increase in occupancy following the pharmacological in-scan intervention. Since this implies the use of differential equations that cannot be solved analytically, we developed instead one approximate and one numerical solution. Through simulations, we show that if the occupancy is relatively high, it can be estimated without bias and with good accuracy. The models were applied to PET data from six pigs where [11C]UCB-J was displaced by intravenous brivaracetam. The dose-occupancy relationship estimated from these scans showed good agreement with occupancies calculated with Lassen plot applied to baseline-block scans of two pigs. In summary, the proposed models provide a framework to determine target occupancy from a single displacement scan.
Collapse
Affiliation(s)
- Gjertrud Louise Laurell
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | | | - Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Clara Aabye Madsen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Jacob Madsen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University, Copenhagen, Denmark
| | - Hanne Demant Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Lene Lundgaard Donovan
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Adriaan A Lammertsma
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - R Todd Ogden
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Molecular Imaging and Neuropathology Division, The New York State Psychiatric Institute, New York, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, USA
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Martin Schain
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Antaros Medical, Mölndal, Sweden
| |
Collapse
|
43
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
44
|
Delva A, Van Laere K, Vandenberghe W. Longitudinal Imaging of Regional Brain Volumes, SV2A, and Glucose Metabolism In Huntington's Disease. Mov Disord 2023; 38:1515-1526. [PMID: 37382295 DOI: 10.1002/mds.29501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Development of disease-modifying treatments for Huntington's disease (HD) could be aided by the use of imaging biomarkers of disease progression. Positron emission tomography (PET) with 11 C-UCB-J, a radioligand for the brain-wide presynaptic marker synaptic vesicle protein 2A (SV2A), detects more widespread brain changes in early HD than volumetric magnetic resonance imaging (MRI) and 18 F-fludeoxyglucose (18 F-FDG) PET, but longitudinal 11 C-UCB-J PET data have not been reported. The aim of this study was to compare the sensitivity of 11 C-UCB-J PET, 18 F-FDG PET, and volumetric MRI for detection of longitudinal changes in early HD. METHODS Seventeen HD mutation carriers (six premanifest and 11 early manifest) and 13 healthy controls underwent 11 C-UCB-J PET, 18 F-FDG PET, and volumetric MRI at baseline (BL) and after 21.4 ± 2.7 months (Y2). Within-group and between-group longitudinal clinical and imaging changes were assessed. RESULTS The HD group showed significant 2-year worsening of Unified Huntington's Disease Rating Scale motor scores. There was significant longitudinal volume loss within the HD group in caudate (-4.5% ± 3.8%), putamen (-3.6% ± 3.5%), pallidum (-3.0% ± 2.7%), and frontal cortex (-2.0% ± 2.1%) (all P < 0.001). Within the HD group there was longitudinal loss of putaminal SV2A binding (6.4% ± 8.8%, P = 0.01) and putaminal glucose metabolism (-2.8% ± 4.4%, P = 0.008), but these changes were not significant after correction for multiple comparisons. Premanifest subjects at BL only had significantly lower SV2A binding than controls in basal ganglia structures, but at Y2 additionally had significant SV2A loss in frontal and parietal cortex, indicating spread of SV2A loss from subcortical to cortical regions. CONCLUSIONS Volumetric MRI may be more sensitive than 11 C-UCB-J PET and 18 F-FDG PET for detection of 2-year brain changes in early HD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aline Delva
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Van Laere
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
45
|
O'Dell RS, Higgins-Chen A, Gupta D, Chen MK, Naganawa M, Toyonaga T, Lu Y, Ni G, Chupak A, Zhao W, Salardini E, Nabulsi NB, Huang Y, Arnsten AFT, Carson RE, van Dyck CH, Mecca AP. Principal component analysis of synaptic density measured with [ 11C]UCB-J PET in early Alzheimer's disease. Neuroimage Clin 2023; 39:103457. [PMID: 37422964 PMCID: PMC10338149 DOI: 10.1016/j.nicl.2023.103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/01/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Synaptic loss is considered an early pathological event and major structural correlate of cognitive impairment in Alzheimer's disease (AD). We used principal component analysis (PCA) to identify regional patterns of covariance in synaptic density using [11C]UCB-J PET and assessed the association between principal components (PC) subject scores with cognitive performance. METHODS [11C]UCB-J binding was measured in 45 amyloid + participants with AD and 19 amyloid- cognitively normal participants aged 55-85. A validated neuropsychological battery assessed performance across five cognitive domains. PCA was applied to the pooled sample using distribution volume ratios (DVR) standardized (z-scored) by region from 42 bilateral regions of interest (ROI). RESULTS Parallel analysis determined three significant PCs explaining 70.2% of the total variance. PC1 was characterized by positive loadings with similar contributions across the majority of ROIs. PC2 was characterized by positive and negative loadings with strongest contributions from subcortical and parietooccipital cortical regions, respectively, while PC3 was characterized by positive and negative loadings with strongest contributions from rostral and caudal cortical regions, respectively. Within the AD group, PC1 subject scores were positively correlated with performance across all cognitive domains (Pearson r = 0.24-0.40, P = 0.06-0.006), PC2 subject scores were inversely correlated with age (Pearson r = -0.45, P = 0.002) and PC3 subject scores were significantly correlated with CDR-sb (Pearson r = 0.46, P = 0.04). No significant correlations were observed between cognitive performance and PC subject scores in CN participants. CONCLUSIONS This data-driven approach defined specific spatial patterns of synaptic density correlated with unique participant characteristics within the AD group. Our findings reinforce synaptic density as a robust biomarker of disease presence and severity in the early stages of AD.
Collapse
Affiliation(s)
- Ryan S O'Dell
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA.
| | - Albert Higgins-Chen
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA; Pain Research, Informatics, Multi-morbidities, and Education Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dhruva Gupta
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Yihuan Lu
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Gessica Ni
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Anna Chupak
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Wenzhen Zhao
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Elaheh Salardini
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, P.O. Box 208001, New Haven, CT 06520, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, P.O. Box 208001, New Haven, CT 06520, USA; Department of Neurology, Yale University School of Medicine, P.O. Box 208018, New Haven, CT 06520, USA
| | - Adam P Mecca
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA.
| |
Collapse
|
46
|
Yu Y, Akif A, Herman P, Cao M, Rothman DL, Carson RE, Agarwal D, Evans AC, Hyder F. A 3D atlas of functional human brain energetic connectome based on neuropil distribution. Cereb Cortex 2023; 33:3996-4012. [PMID: 36104858 PMCID: PMC10068297 DOI: 10.1093/cercor/bhac322] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The human brain is energetically expensive, yet the key factors governing its heterogeneous energy distributions across cortical regions to support its diversity of functions remain unexplored. Here, we built up a 3D digital cortical energy atlas based on the energetic costs of all neuropil activities into a high-resolution stereological map of the human cortex with cellular and synaptic densities derived, respectively, from ex vivo histological staining and in vivo PET imaging. The atlas was validated with PET-measured glucose oxidation at the voxel level. A 3D cortical activity map was calculated to predict the heterogeneous activity rates across all cortical regions, which revealed that resting brain is indeed active with heterogeneous neuronal activity rates averaging around 1.2 Hz, comprising around 70% of the glucose oxidation of the cortex. Additionally, synaptic density dominates spatial patterns of energetics, suggesting that the cortical energetics rely heavily on the distribution of synaptic connections. Recent evidence from functional imaging studies suggests that some cortical areas act as hubs (i.e., interconnecting distinct and functionally active regions). An inverse allometric relationship was observed between hub metabolic rates versus hub volumes. Hubs with smaller volumes have higher synapse density, metabolic rate, and activity rates compared to nonhubs. The open-source BrainEnergyAtlas provides a granular framework for exploring revealing design principles in energy-constrained human cortical circuits across multiple spatial scales.
Collapse
Affiliation(s)
- Yuguo Yu
- Shanghai Artificial Intelligence Laboratory, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Research Institute of Intelligent and Complex Systems, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200032, China
| | - Adil Akif
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
- Magnetic Resonance Research Center, Yale University, New Haven, CT 06520, USA
| | - Miao Cao
- Shanghai Artificial Intelligence Laboratory, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Research Institute of Intelligent and Complex Systems, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200032, China
| | - Douglas L Rothman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
- Magnetic Resonance Research Center, Yale University, New Haven, CT 06520, USA
| | - Richard E Carson
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
- PET Center, Yale University, New Haven, CT 06520, USA
| | - Divyansh Agarwal
- Department of Surgery, MGH, Harvard University, Boston, MA 02114, USA
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
- Magnetic Resonance Research Center, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
47
|
Fang XT, Volpi T, Holmes SE, Esterlis I, Carson RE, Worhunsky PD. Linking resting-state network fluctuations with systems of coherent synaptic density: A multimodal fMRI and 11C-UCB-J PET study. Front Hum Neurosci 2023; 17:1124254. [PMID: 36908710 PMCID: PMC9995441 DOI: 10.3389/fnhum.2023.1124254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Resting-state network (RSN) connectivity is a widely used measure of the brain's functional organization in health and disease; however, little is known regarding the underlying neurophysiology of RSNs. The aim of the current study was to investigate associations between RSN connectivity and synaptic density assessed using the synaptic vesicle glycoprotein 2A radioligand 11C-UCB-J PET. Methods: Independent component analyses (ICA) were performed on resting-state fMRI and PET data from 34 healthy adult participants (16F, mean age: 46 ± 15 years) to identify a priori RSNs of interest (default-mode, right frontoparietal executive-control, salience, and sensorimotor networks) and select sources of 11C-UCB-J variability (medial prefrontal, striatal, and medial parietal). Pairwise correlations were performed to examine potential intermodal associations between the fractional amplitude of low-frequency fluctuations (fALFF) of RSNs and subject loadings of 11C-UCB-J source networks both locally and along known anatomical and functional pathways. Results: Greater medial prefrontal synaptic density was associated with greater fALFF of the anterior default-mode, posterior default-mode, and executive-control networks. Greater striatal synaptic density was associated with greater fALFF of the anterior default-mode and salience networks. Post-hoc mediation analyses exploring relationships between aging, synaptic density, and RSN activity revealed a significant indirect effect of greater age on fALFF of the anterior default-mode network mediated by the medial prefrontal 11C-UCB-J source. Discussion: RSN functional connectivity may be linked to synaptic architecture through multiple local and circuit-based associations. Findings regarding healthy aging, lower prefrontal synaptic density, and lower default-mode activity provide initial evidence of a neurophysiological link between RSN activity and local synaptic density, which may have relevance in neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Xiaotian T. Fang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Tommaso Volpi
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Sophie E. Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Richard E. Carson
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
48
|
Singh P, Singh D, Srivastava P, Mishra G, Tiwari AK. Evaluation of advanced, pathophysiologic new targets for imaging of CNS. Drug Dev Res 2023; 84:484-513. [PMID: 36779375 DOI: 10.1002/ddr.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/31/2022] [Indexed: 02/14/2023]
Abstract
The inadequate information about the in vivo pathological, physiological, and neurological impairments, as well as the absence of in vivo tools for assessing brain penetrance and the efficiency of newly designed drugs, has hampered the development of new techniques for the treatment for variety of new central nervous system (CNS) diseases. The searching sites such as Science Direct and PubMed were used to find out the numerous distinct tracers across 16 CNS targets including tau, synaptic vesicle glycoprotein, the adenosine 2A receptor, the phosphodiesterase enzyme PDE10A, and the purinoceptor, among others. Among the most encouraging are [18 F]FIMX for mGluR imaging, [11 C]Martinostat for Histone deacetylase, [18 F]MNI-444 for adenosine 2A imaging, [11 C]ER176 for translocator protein, and [18 F]MK-6240 for tau imaging. We also reviewed the findings for each tracer's features and potential for application in CNS pathophysiology and therapeutic evaluation investigations, including target specificity, binding efficacy, and pharmacokinetic factors. This review aims to present a current evaluation of modern positron emission tomography tracers for CNS targets, with a focus on recent advances for targets that have newly emerged for imaging in humans.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pooja Srivastava
- Division of Cyclotron and Radiopharmaceuticals Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Gauri Mishra
- Department of Zoology, Swami Shraddhananad College, University of Delhi, Alipur, Delhi, India
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
49
|
Hoenig MC, Drzezga A. Clear-headed into old age: Resilience and resistance against brain aging-A PET imaging perspective. J Neurochem 2023; 164:325-345. [PMID: 35226362 DOI: 10.1111/jnc.15598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
With the advances in modern medicine and the adaptation towards healthier lifestyles, the average life expectancy has doubled since the 1930s, with individuals born in the millennium years now carrying an estimated life expectancy of around 100 years. And even though many individuals around the globe manage to age successfully, the prevalence of aging-associated neurodegenerative diseases such as sporadic Alzheimer's disease has never been as high as nowadays. The prevalence of Alzheimer's disease is anticipated to triple by 2050, increasing the societal and economic burden tremendously. Despite all efforts, there is still no available treatment defeating the accelerated aging process as seen in this disease. Yet, given the advances in neuroimaging techniques that are discussed in the current Review article, such as in positron emission tomography (PET) or magnetic resonance imaging (MRI), pivotal insights into the heterogenous effects of aging-associated processes and the contribution of distinct lifestyle and risk factors already have and are still being gathered. In particular, the concepts of resilience (i.e. coping with brain pathology) and resistance (i.e. avoiding brain pathology) have more recently been discussed as they relate to mechanisms that are associated with the prolongation and/or even stop of the progressive brain aging process. Better understanding of the underlying mechanisms of resilience and resistance may one day, hopefully, support the identification of defeating mechanism against accelerating aging.
Collapse
Affiliation(s)
- Merle C Hoenig
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Alexander Drzezga
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany
| |
Collapse
|
50
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|