1
|
Badami GD, Tamburini B, Mohammadnezhad L, Vaz-Rodrigues R, La Barbera L, de la Fuente J, Sireci G. Netosis and trained immunity in tick-borne diseases: a possible pathogenetic role. Cell Immunol 2024; 405-406:104881. [PMID: 39368167 DOI: 10.1016/j.cellimm.2024.104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Various types of pathogens transmitted by ticks elicit distinct immune responses just like the emerging α-Gal syndrome that is associated with allergic reactions to tick bites. The mechanisms of Neutrophil Extracellular Traps release (called NETosis) and trained immunity in response to tick-borne microbes have not been extensively investigated. In our paper, we explored the intricate interplay of NETosis and trained immunity within the realm of infectious diseases triggered by tick bites and their possible pathogenetic role in autoimmunity. We conducted an extensive literature search to identify studies for this review, considering articles and reviews published in English within the last years. Additionally, we scrutinized the references of all included papers and relevant review articles to ensure comprehensive coverage. We shed light on a plausible correlation between these innate immune responses and their potential implication in certain pathological conditions, with a specific focus on some autoimmune diseases. These findings offer new perspectives for a more profound comprehension of the immunopathogenesis of certain autoimmune-like signs where clinicians should include Tick-Borne Diseases (TBDs) in their differential diagnoses, in those geographical areas of tick infestation.
Collapse
Affiliation(s)
- Giusto Davide Badami
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| | - Bartolo Tamburini
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy
| | - Leila Mohammadnezhad
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy
| | - Rita Vaz-Rodrigues
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Lidia La Barbera
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater OK 74078, USA
| | - Guido Sireci
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
2
|
Gunasekara S, Tamil Selvan M, Murphy CL, Shatnawi S, Cowan S, More S, Ritchey J, Miller CA, Rudd JM. Characterization of Neutrophil Functional Responses to SARS-CoV-2 Infection in a Translational Feline Model for COVID-19. Int J Mol Sci 2024; 25:10054. [PMID: 39337543 PMCID: PMC11432149 DOI: 10.3390/ijms251810054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
There is a complex interplay between viral infection and host innate immune response regarding disease severity and outcomes. Neutrophil hyperactivation, including excessive release of neutrophil extracellular traps (NETs), is linked to exacerbated disease in acute COVID-19, notably in hospitalized patients. Delineating protective versus detrimental neutrophil responses is essential to developing targeted COVID-19 therapies and relies on high-quality translational animal models. In this study, we utilize a previously established feline model for COVID-19 to investigate neutrophil dysfunction in which experimentally infected cats develop clinical disease that mimics acute COVID-19. Specific pathogen-free cats were inoculated with SARS-CoV-2 (B.1.617.2; Delta variant) (n = 24) or vehicle (n = 6). Plasma, bronchoalveolar lavage fluid, and lung tissues were collected at various time points over 12 days post-inoculation. Systematic and temporal evaluation of the kinetics of neutrophil activation was conducted by measuring markers of activation including myeloperoxidase (MPO), neutrophil elastase (NE), and citrullinated histone H3 (citH3) in SARS-CoV-2-infected cats at 4 and 12 days post-inoculation (dpi) and compared to vehicle-inoculated controls. Cytokine profiling supported elevated innate inflammatory responses with specific upregulation of neutrophil activation and NET formation-related markers, namely IL-8, IL-18, CXCL1, and SDF-1, in infected cats. An increase in MPO-DNA complexes and cell-free dsDNA in infected cats compared to vehicle-inoculated was noted and supported by histopathologic severity in respiratory tissues. Immunofluorescence analyses further supported correlation of NET markers with tissue damage, especially 4 dpi. Differential gene expression analyses indicated an upregulation of genes associated with innate immune and neutrophil activation pathways. Transcripts involved in activation and NETosis pathways were upregulated by 4 dpi and downregulated by 12 dpi, suggesting peak activation of neutrophils and NET-associated markers in the early acute stages of infection. Correlation analyses conducted between NET-specific markers and clinical scores as well as histopathologic scores support association between neutrophil activation and disease severity during SARS-CoV-2 infection in this model. Overall, this study emphasizes the effect of neutrophil activation and NET release in SARS-CoV-2 infection in a feline model, prompting further investigation into therapeutic strategies aimed at mitigating excessive innate inflammatory responses in COVID-19.
Collapse
Affiliation(s)
- Sachithra Gunasekara
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chelsea L Murphy
- Department of Mathematical Sciences, College of Arts and Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shoroq Shatnawi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shannon Cowan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sunil More
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jerry Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Craig A Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jennifer M Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
3
|
Hobbs KJ, Cooper BL, Dembek K, Sheats MK. Investigation of Extracted Plasma Cell-Free DNA as a Biomarker in Foals with Sepsis. Vet Sci 2024; 11:346. [PMID: 39195800 PMCID: PMC11359113 DOI: 10.3390/vetsci11080346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Cell-free DNA (cfDNA) is fragmented extracellular DNA that is released from cells into various body fluids. Previously published data from adult horses supports cfDNA as a potential disease biomarker, but also shows that direct measurement in plasma is inaccurate due to matrix effect. It is currently unknown whether a similar matrix effect exists in foal plasma. Given this, the objectives of the current study were to investigate foal plasma for potential matrix effect during fluorescence measurement of cfDNA using a Qubit fluorometer, and to determine whether neat and/or extracted plasma cfDNA concentrations are significantly different in healthy, sick non-septic (SNS) or septic foals. We hypothesized that matrix effect would interfere with accurate fluorescent measurement of cfDNA in foal plasma. Further, we hypothesized that mean extracted cfDNA concentrations, and/or extracted cfDNA:neutrophil ratio, would be elevated in plasma of septic foals compared to healthy or SNS foals. Cell-free DNA was measured in neat plasma, and following DNA extraction with a commercial kit, from 60 foals. Foal plasma exhibited both autofluorescence and non-specific dye binding, confirming matrix effect. However, even with extraction, no significant difference was found in cfDNA concentrations, or cfDNA:neutrophil ratios, between healthy (sepsis score ≤ 5), SNS (sepsis score 6-11 and negative blood culture), or septic (sepsis score ≥ 12 ± positive blood culture) foals. Our data show that matrix effect interferes with accurate Qubit measurement of cfDNA in foal plasma and supports previous findings that plasma cfDNA concentrations are not associated with sepsis diagnosis in foals. Further research is needed to better understand neutrophil function and dysfunction in foal sepsis.
Collapse
Affiliation(s)
| | | | | | - M. Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA; (K.J.H.); (B.L.C.); (K.D.)
| |
Collapse
|
4
|
Duler L, Visser L, Nguyen N, Johnson LR, Stern JA, Li RHL. Platelet hyperresponsiveness and increased platelet-neutrophil aggregates in dogs with myxomatous mitral valve disease and pulmonary hypertension. J Vet Intern Med 2024; 38:2052-2063. [PMID: 38773707 PMCID: PMC11256165 DOI: 10.1111/jvim.17067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/25/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) in dogs with myxomatous mitral valve disease (MMVD) is caused by increased pulmonary venous pressure. Thrombosis, vascular remodeling, and vasoconstriction mediated by platelets could exacerbate PH. HYPOTHESIS Dogs with PH will exhibit a hypercoagulable state, characterized by increased platelet activation, platelet-leukocyte, and platelet-neutrophil aggregate formation. ANIMALS Eleven dogs (≥3.5 kg) diagnosed with MMVD and PH and 10 dogs with MMVD lacking PH. METHODS Prospective cohort ex vivo study. All dogs underwent echocardiographic examination, CBC, 3-view thoracic radiographs, and heartworm antigen testing. Severity of PH and MMVD were assessed by echocardiography. Viscoelastic monitoring of coagulation was assessed using thromboelastography (TEG). Platelet activation and platelet-leukocyte/platelet-neutrophil interactions were assessed using flow cytometry. Plasma serotonin concentrations were measured by ELISA. RESULTS Unstimulated platelets from dogs with MMVD and PH expressed more surface P-selectin than MMVD controls (P = .03). Platelets from dogs with MMVD and PH had persistent activation in response to agonists. The number of platelet-leukocyte aggregates was higher in dogs with MMVD and PH compared with MMVD controls (P = .01). Ex vivo stimulation of whole blood resulted in higher numbers of platelet-neutrophil aggregates in dogs with MMVD and PH (P = .01). Assessment of hypercoagulability based on TEG or plasma serotonin concentrations did not differ between groups. CONCLUSION AND CLINICAL IMPORTANCE Platelet hyperresponsiveness and increased platelet-neutrophil interaction occur in dogs with MMVD and PH, suggesting that platelets play a role of in the pathogenesis of PH. Clinical benefits of antiplatelet drugs in dogs with MMVD and PH require further investigation.
Collapse
Affiliation(s)
- Laetitia Duler
- William R. Pritchard Veterinary Medicine Teaching Hospital, School of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
| | - Lance Visser
- Department of Clinical SciencesCollege of Veterinary Medicine and Biomedical Sciences, Colorado State UniversityFort CollinsColoradoUSA
| | - Nghi Nguyen
- Department of Surgical and Radiological ScienceSchool of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
| | - Lynelle R. Johnson
- Department of Medicine and EpidemiologySchool of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
| | - Joshua A. Stern
- Department of Medicine and EpidemiologySchool of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
- Department of Clinical SciencesCollege of Veterinary Medicine, North Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ronald H. L. Li
- Department of Surgical and Radiological ScienceSchool of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
| |
Collapse
|
5
|
Fraser C, Wallace ML, Moorhead A, Tarigo J, Brainard BM. Evaluation of coagulation and platelet activation state and function in heartworm-infected dogs. Vet Clin Pathol 2024; 53:186-195. [PMID: 38782737 DOI: 10.1111/vcp.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Enhanced platelet responses have been demonstrated in heartworm-infected (HWI) dogs; however, the cause and clinical implications of altered platelet function have not been fully elucidated. OBJECTIVE This study evaluated platelet function in HWI dogs. METHODS Anticoagulated whole blood collected from eight HWI and eight uninfected dogs was evaluated using turbidometric platelet aggregometry, a platelet function analyzer (PFA-100), a total thrombus analysis system (T-TAS), tissue factor-activated and tissue plasminogen activator modified thromboelastography (TF- and tPA-TEG), CBC, von Willebrand Factor activity, and fibrinogen concentrations. Platelet activation state and the presence of reticulated platelets were assessed via flow cytometric expression of P-selection (CD-62P) and thiazole orange staining. RESULTS Platelet aggregation responses to adenosine diphosphate (ADP, 10 μM) or collagen (20 μg/mL), PFA-100 closure times, and T-TAS occlusion times did not differ between groups. TEG values TF-R, tPA-R, TF-K, and TF-LY60 were decreased (P = .025, P = .047, P = .038, P = .025) and TF-MA, tPA-MA, TF-G, tPA-G and TF-alpha angle were increased (P < .04) in HWI dogs. HWI dogs had higher fibrinogen concentrations (465.6 ± 161 mg/dL vs 284.5 ± 38 mg/dL, P = .008) and eosinophil counts (0.686 ± 0.27 × 103/μL vs 0.267 ± 0.20 × 103/μL, P = .003). There was no difference in hematocrit, activation state, or percent of reticulated platelets. Non-activated reticulated platelets exhibited higher CD62P expression compared with mature platelets. CONCLUSIONS Chronic canine heartworm disease was accompanied by hypercoagulability, hyperfibrinogenemia, and decreased fibrinolysis. Enhanced platelet activation was not identified in this group of HWI dogs.
Collapse
Affiliation(s)
- Carisa Fraser
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Mandy L Wallace
- Department of Small Animal Medicine & Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Andrew Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jaime Tarigo
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Benjamin M Brainard
- Department of Small Animal Medicine & Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Clarkin-Breslin RC, Brainard BM. Point-of-care and traditional erythrocyte sedimentation rate, point-of-care rheometry, and cell-free DNA concentration in dogs with or without systemic inflammation. J Vet Diagn Invest 2024; 36:177-186. [PMID: 38372154 DOI: 10.1177/10406387241226971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
RBC aggregation and deformability characteristics are altered by inflammatory, microcirculatory, and hemorheologic disease. These changes can be indirectly evaluated using the erythrocyte sedimentation rate (ESR). Newer point-of-care devices employ syllectometry to evaluate RBC rheology, which can give information beyond the ESR. We evaluated 2 point-of-care rheometers (iSED and MIZAR; Alcor Scientific) in 52 dogs presented to a university teaching hospital. Whole blood samples were analyzed for correlation between the ESR using the Westergren (ESRw) method (measured at 1 h and 24 h) and the predicted ESR using iSED. Plasma fibrinogen and cell-free DNA concentrations were also measured as probable markers of inflammation. The iSED-predicted ESR was positively correlated to the ESRw method at 1 h (r = 0.74; p < 0.001) and 24 h (r = 0.62; p < 0.001). Comparing dogs with or without inflammation (defined as plasma fibrinogen concentration >3.5 g/L [350 mg/dL]), significant differences were seen in the MIZAR parameters of base point, amplitude, integral, and half-time. Median cell-free DNA concentrations were higher in the group of dogs with inflammation (117 [range: 51-266] ng/mL vs. 82.7 [range: 19-206] ng/mL; p = 0.024). The iSED-predicted ESR is a good predictor of the ESRw and was obtained more rapidly. Rheometric parameters measured by MIZAR may be useful in detecting inflammation and monitoring secondary morphologic and functional changes in canine RBCs.
Collapse
Affiliation(s)
- Rachel C Clarkin-Breslin
- Department of Small Animal Medicine and Surgery, University of Georgia Veterinary Teaching Hospital, Athens, GA, USA
| | - Benjamin M Brainard
- Department of Small Animal Medicine and Surgery, University of Georgia Veterinary Teaching Hospital, Athens, GA, USA
| |
Collapse
|
7
|
Rieder JC, Steffensen N, Imker R, Lassnig S, de Buhr N. The effect of doxycycline on canine neutrophil functions. Vet Immunol Immunopathol 2024; 267:110701. [PMID: 38147695 DOI: 10.1016/j.vetimm.2023.110701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Doxycycline is a broad-spectrum tetracycline-class antibiotic that is frequently used to treat bacterial infections. Its use has also been described in immune-mediated diseases due to its immunomodulatory properties. The aim of this study was to evaluate the immunomodulatory effect of doxycycline on canine neutrophil functions. Therefore, the release of reactive oxygen species (ROS) and the formation of neutrophil extracellular traps (NETs) were determined after incubation of canine PMNs with doxycycline in three different concentrations (4 µg/mL, 20 µg/mL and 200 µg/mL) for one and three hours, respectively. Additionally, a neutrophil killing assay with a doxycycline-resistant Staphylococcus aureus was performed to determine the bactericidal effect of doxycycline treated PMNs in presence of plasma. Doxycycline significantly diminished the production of ROS. However, doxycycline concentrations of 4 µg/mL and 20 µg/mL significantly induced NETs. A synergistic bacteriostatic effect of PMNs and doxycycline on a doxycycline-resistant Staphylococcus aureus isolate was detectable. However, already PMNs and especially doxycycline alone inhibited the growth. In summary, doxycycline showed a concentration-dependent immunomodulatory property in canine PMNs with a reduced ROS production and increased NET-induction. This immunomodulatory effect resulted in a slightly increased elimination of a doxycycline-resistant Staphylococcus aureus by the doxycycline plasma concentrations achieved in dogs.
Collapse
Affiliation(s)
- Johanna C Rieder
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Bünteweg 9, 30559 Hannover, Germany.
| | - Nicole Steffensen
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Bünteweg 9, 30559 Hannover, Germany
| | - Rabea Imker
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany; Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany
| | - Simon Lassnig
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany; Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany
| | - Nicole de Buhr
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany; Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
8
|
Rogers E, Pothugunta S, Kosmider V, Stokes N, Bonomini L, Briggs GD, Lewis DP, Balogh ZJ. The Diagnostic, Therapeutic and Prognostic Relevance of Neutrophil Extracellular Traps in Polytrauma. Biomolecules 2023; 13:1625. [PMID: 38002307 PMCID: PMC10669581 DOI: 10.3390/biom13111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Neutrophil extracellular traps (NETs) represent a recently discovered polymorphonuclear leukocyte-associated ancient defence mechanism, and they have also been identified as part of polytrauma patients' sterile inflammatory response. This systematic review aimed to determine the clinical significance of NETs in polytrauma, focusing on potential prognostic, diagnostic and therapeutic relevance. The methodology covered all major databases and all study types, but was restricted to polytraumatised humans. Fourteen studies met the inclusion criteria, reporting on 1967 patients. Ten samples were taken from plasma and four from whole blood. There was no standardisation of methodology of NET detection among plasma studies; however, of all the papers that included a healthy control NET, proxies were increased. Polytrauma patients were consistently reported to have higher concentrations of NET markers in peripheral blood than those in healthy controls, but their diagnostic, therapeutic and prognostic utility is equivocal due to the diverse study population and methodology. After 20 years since the discovery of NETs, their natural history and potential clinical utility in polytrauma is undetermined, requiring further standardisation and research.
Collapse
Affiliation(s)
- Emily Rogers
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia (S.P.)
| | - Shevani Pothugunta
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia (S.P.)
| | - Veronika Kosmider
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia (S.P.)
| | - Natasha Stokes
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia (S.P.)
| | - Layla Bonomini
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia (S.P.)
| | - Gabrielle D. Briggs
- Discipline of Surgery, School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia; (G.D.B.)
- Injury and Trauma Research Program, Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Daniel P. Lewis
- Discipline of Surgery, School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia; (G.D.B.)
- Department of Traumatology, John Hunter Hospital, Newcastle, NSW 2308, Australia
| | - Zsolt J. Balogh
- Discipline of Surgery, School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia; (G.D.B.)
- Injury and Trauma Research Program, Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
- Department of Traumatology, John Hunter Hospital, Newcastle, NSW 2308, Australia
| |
Collapse
|
9
|
Shaverdian M, Li RHL. Preventing Cardiogenic Thromboembolism in Cats: Literature Gaps, Rational Recommendations, and Future Therapies. Vet Clin North Am Small Anim Pract 2023; 53:1309-1323. [PMID: 37516545 DOI: 10.1016/j.cvsm.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Cardiogenic arterial thromboembolism (CATE) is a devastating complication in cats with cardiomyopathies with significant morbidity and mortality. Despite recent advances in the diagnosis and treatment of CATE, its recurrence and mortality remain high. This highlights the urgent need for a greater understanding of CATE pathophysiology so that novel diagnostic tests and therapeutics can be developed. This comprehensive review aims to summarize existing literature on pathophysiology, clinical diagnosis, and current recommendations on the prevention and treatment of CATE. It also identifies and describes knowledge gaps and research priorities in the roles of immunothrombosis and procoagulant platelets in the pathogenesis of CATE.
Collapse
Affiliation(s)
- Meg Shaverdian
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, 2108 Tupper Hall, One Shields Avenue, Davis, CA 95616, USA
| | - Ronald H L Li
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
10
|
Birckhead EM, Das S, Tidd N, Raidal SL, Raidal SR. Visualizing neutrophil extracellular traps in septic equine synovial and peritoneal fluid samples using immunofluorescence microscopy. J Vet Diagn Invest 2023; 35:751-760. [PMID: 37661696 PMCID: PMC10621558 DOI: 10.1177/10406387231196552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Septic synovitis and peritonitis are routinely diagnosed in horses based on clinical examination findings and laboratory assessment of synoviocentesis and abdominocentesis samples, respectively. Diagnosis is difficult in some cases because of an overlap in laboratory results for septic and non-septic inflammation. Neutrophil extracellular trap (NET) formation is part of the innate immune response against pathogens. Identifying and quantifying NETs, which have not been explored in clinical samples from horses with septic synovitis and peritonitis, to our knowledge, may be helpful in detecting infectious processes. Our main objective was to determine whether NETs could be visualized in septic equine synovial and peritoneal fluid cytology samples using immunofluorescence with antibodies against citrullinated histone H3 (Cit-H3) and myeloperoxidase (MPO). We analyzed 9 synovial and 4 peritoneal fluid samples. NET percentages were quantified using a simple counting technique, which is suitable for high-quality, well-preserved, and stained cytospin smears. NETs were evident in all septic samples and were absent in a non-septic sample; NETs were better visualized with Cit-H3 than with MPO immunolabeling. Overall, we believe that there is the potential for NETs and associated markers to be used to investigate and understand septic inflammation in horses.
Collapse
Affiliation(s)
- Emily M. Birckhead
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Naomie Tidd
- Veterinary Diagnostic Laboratory, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sharanne L. Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Shane R. Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
11
|
Leal PDS, Veeren IBL, Fonseca S, Machado CH, Lopes CWG. The importance of morphological changes in neutrophils in the diagnosis of bacterial infections in dogs with confirmed urinary tract infections in a Veterinary Care Service, Rio de Janeiro, Brazil. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2023; 45:e004022. [PMID: 37521363 PMCID: PMC10374294 DOI: 10.29374/2527-2179.bjvm0004022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 06/06/2023] [Indexed: 08/01/2023] Open
Abstract
Neutrophils (PMNs) are cellular markers used for diagnosing inflammation and/or infections. In this study, the objective was to highlight the importance of recording the toxic morphological alterations of the PMNs as markers of infection in 10 cases, positive bacterial isolation by culture due to dysuria, hematuria and/or fetid urine, as manifestations of urinary tract disease. Smear observations were performed by immersion for counting and morphological evaluations of 3,000 leukocytes in smears and in leukocyte concentrate. One (10.0%) of the dogs had leukocytosis, and two (20.0%) dogs had leukopenia. All animals showed toxic PMNs with positive bacterial culture. None of the cases in the study showed any quantitative alterations in PMNs such as: neutropenia or neutrophilia, where 100% had nuclear displacement of the regenerative type of PMNs to the left. 100% cases had toxic morphological changes: 90.0% had PMNs with toxic granulations, 80.0% had giant rod neutrophils, 70.0% had target PMNs, in 50.0% of those with vacuolation in the cytoplasm, in 40.0% of the animals, the presence of giant PMNs, 10.0% with Döhle bodies, and another animal 10.0% with karyorrhexis. All case studies had at least one association of two types of toxic changes. Toxic morphological alterations observed in PMNs through cystoscopy proved to be more reliable and sensitive in evidencing the diagnosis of infections than the quantitative alterations of absolute values of total leukocytes; therefore, they were essential in the laboratory diagnosis by blood count in the course of infections in dogs.
Collapse
Affiliation(s)
- Paulo Daniel Sant’Anna Leal
- Veterinarian, DSc., Programa de Pós-Graduação em Ciências Veterinárias (PPGCV), Departamento de Parasitologia Animal (DPA), Instituto de Veterinária (IV), Universidade Federal Rural do Rio de Janeiro (UFRRJ). Seropédica, RJ, Brazil.
| | - Ianna Barbosa Lima Veeren
- Veterinarian, autonomous. Rua Januário José Pinto de Oliveira, 735, Recreio dos Bandeirantes, RJ, Brazil.
| | - Solange Fonseca
- Microbiologist, Hospital Getúlio Vargas, Penha Circular, Rio de Janeiro, RJ, Brazil.
| | - Carlos Henrique Machado
- Veterinarian, DSc., Departamento de Clínica e Cirurgia Veterinária, IV, UFRRJ. Seropédica, RJ, Brazil.
| | | |
Collapse
|
12
|
Ball EE, Weiss CM, Liu H, Jackson K, Keel MK, Miller CJ, Van Rompay KKA, Coffey LL, Pesavento PA. Severe Acute Respiratory Syndrome Coronavirus 2 Vasculopathy in a Syrian Golden Hamster Model. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:690-701. [PMID: 36906263 PMCID: PMC9998130 DOI: 10.1016/j.ajpath.2023.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Clinical evidence of vascular dysfunction and hypercoagulability as well as pulmonary vascular damage and microthrombosis are frequently reported in severe cases of human coronavirus disease 2019 (COVID-19). Syrian golden hamsters recapitulate histopathologic pulmonary vascular lesions reported in patients with COVID-19. Herein, special staining techniques and transmission electron microscopy further define vascular pathologies in a Syrian golden hamster model of human COVID-19. The results show that regions of active pulmonary inflammation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are characterized by ultrastructural evidence of endothelial damage with platelet marginalization and both perivascular and subendothelial macrophage infiltration. SARS-CoV-2 antigen/RNA was not detectable within affected blood vessels. Taken together, these findings suggest that the prominent microscopic vascular lesions in SARS-CoV-2-inoculated hamsters likely occur due to endothelial damage followed by platelet and macrophage infiltration.
Collapse
Affiliation(s)
- Erin E Ball
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California; US Army Veterinary Corps, Washington, District of Columbia
| | - Christopher M Weiss
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - Hongwei Liu
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - Kenneth Jackson
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - M Kevin Keel
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - Christopher J Miller
- California National Primate Center, University of California, Davis, California; Center for Immunology and Infectious Diseases, University of California, Davis, California
| | - Koen K A Van Rompay
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California; California National Primate Center, University of California, Davis, California
| | - Lark L Coffey
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California.
| | - Patricia A Pesavento
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| |
Collapse
|
13
|
de Vries F, Huckriede J, Wichapong K, Reutelingsperger C, Nicolaes GAF. The role of extracellular histones in COVID-19. J Intern Med 2023; 293:275-292. [PMID: 36382685 PMCID: PMC10108027 DOI: 10.1111/joim.13585] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had spread from China and, within 2 months, became a global pandemic. The infection from this disease can cause a diversity of symptoms ranging from asymptomatic to severe acute respiratory distress syndrome with an increased risk of vascular hyperpermeability, pulmonary inflammation, extensive lung damage, and thrombosis. One of the host defense systems against coronavirus disease 2019 (COVID-19) is the formation of neutrophil extracellular traps (NETs). Numerous studies on this disease have revealed the presence of elevated levels of NET components, such as cell-free DNA, extracellular histones, neutrophil elastase, and myeloperoxidase, in plasma, serum, and tracheal aspirates of severe COVID-19 patients. Extracellular histones, a major component of NETs, are clinically very relevant as they represent promising biomarkers and drug targets, given that several studies have identified histones as key mediators in the onset and progression of various diseases, including COVID-19. However, the role of extracellular histones in COVID-19 per se remains relatively underexplored. Histones are nuclear proteins that can be released into the extracellular space via apoptosis, necrosis, or NET formation and are then regarded as cytotoxic damage-associated molecular patterns that have the potential to damage tissues and impair organ function. This review will highlight the mechanisms of extracellular histone-mediated cytotoxicity and focus on the role that histones play in COVID-19. Thereby, this paper facilitates a bench-to-bedside view of extracellular histone-mediated cytotoxicity, its role in COVID-19, and histones as potential drug targets and biomarkers for future theranostics in the clinical treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Femke de Vries
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Joram Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
14
|
Tan JH, Ahmad Azahari AHS, Ali A, Ismail NAS. Scoping Review on Epigenetic Mechanisms in Primary Immune Thrombocytopenia. Genes (Basel) 2023; 14:555. [PMID: 36980827 PMCID: PMC10048672 DOI: 10.3390/genes14030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Immune Thrombocytopenia (ITP) is an autoimmune blood disorder that involves multiple pathways responsible for the homeostasis of the immune system. Numerous pieces of literature have proposed the potential of immune-related genes as diagnostic and prognostic biomarkers, which mostly implicate the role of B cells and T cells in the pathogenesis of ITP. However, a more in-depth understanding is required of how these immune-related genes are regulated. Thus, this scoping review aims to collate evidence and further elucidate each possible epigenetics mechanism in the regulation of immunological pathways pertinent to the pathogenesis of ITP. This encompasses DNA methylation, histone modification, and non-coding RNA. A total of 41 studies were scrutinized to further clarify how each of the epigenetics mechanisms is related to the pathogenesis of ITP. Identifying epigenetics mechanisms will provide a new paradigm that may assist in the diagnosis and treatment of immune thrombocytopenia.
Collapse
Affiliation(s)
- Jian Hong Tan
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Hazim Syakir Ahmad Azahari
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Adli Ali
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Noor Akmal Shareela Ismail
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
15
|
Pathogenesis of Anemia in Canine Babesiosis: Possible Contribution of Pro-Inflammatory Cytokines and Chemokines-A Review. Pathogens 2023; 12:pathogens12020166. [PMID: 36839438 PMCID: PMC9962459 DOI: 10.3390/pathogens12020166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Canine babesiosis is a tick-borne protozoan disease caused by intraerythrocytic parasites of the genus Babesia. The infection may lead to anemia in infected dogs. However, anemia is not directly caused by the pathogen. The parasite's developmental stages only have a marginal role in contributing to a decreased red blood cell (RBC) count. The main cause of anemia in affected dogs is the immune response to the infection. This response includes antibody production, erythrophagocytosis, oxidative damage of RBCs, complement activation, and antibody-dependent cellular cytotoxicity. Moreover, both infected and uninfected erythrocytes are retained in the spleen and sequestered in micro-vessels. All these actions are driven by pro-inflammatory cytokines and chemokines, especially IFN-γ, TNF-α, IL-6, and IL-8. Additionally, imbalance between the actions of pro- and anti-inflammatory cytokines plays a role in patho-mechanisms leading to anemia in canine babesiosis. This article is a review of the studies on the pathogenesis of anemia in canine babesiosis and related diseases, such as bovine or murine babesiosis and human or murine malaria, and the role of pro-inflammatory cytokines and chemokines in the mechanisms leading to anemia in infected dogs.
Collapse
|
16
|
Zhang JG, Chen W, Zhou CK, Ma K, Liu ZZ, Gao Y, Lin XQ, Yang YJ. IFI204 protects host defense against Staphylococcus aureus-induced pneumonia by promoting extracellular traps formation. Exp Cell Res 2023; 422:113415. [PMID: 36379277 DOI: 10.1016/j.yexcr.2022.113415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Interferon-inducible protein 204 (IFI204) is an intracellular DNA receptor that can recognize DNA viruses and intracellular bacteria. Extracellular traps (ETs) have been recognized as an indispensable antimicrobial barrier that play an indispensable role in bacterial, fungal, parasitic, and viral infections. However, how ETs form and the mechanisms by which IFI204 function in Staphylococcus aureus pneumonia are still unclear. Moreover, by in vitro experiments, we proved that IFI204 deficiency decreases the formation of ETs induced by Staphylococcus aureus in a NOX-independent manner. More importantly, Deoxyribonuclease I (DNase I) treatment significantly inhibited the formation of ETs. IFI204 contributed to ETs formation by promoting citrullination of histone H3 and the expression of PAD4 (peptidylarginine deiminase 4). Altogether, these findings highlight the potential importance of IFI204 for host defense against S. aureus USA300-TCH1516 infection.
Collapse
Affiliation(s)
- Jian-Gang Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Wei Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Cheng-Kai Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ke Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhen-Zhen Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yu Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiao-Qi Lin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yong-Jun Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
17
|
Che H, Jatsenko T, Lannoo L, Stanley K, Dehaspe L, Vancoillie L, Brison N, Parijs I, Van Den Bogaert K, Devriendt K, Severi S, De Langhe E, Vermeire S, Verstockt B, Van Calsteren K, Vermeesch JR. Machine learning-based detection of immune-mediated diseases from genome-wide cell-free DNA sequencing datasets. NPJ Genom Med 2022; 7:55. [PMID: 36100603 PMCID: PMC9470560 DOI: 10.1038/s41525-022-00325-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
The early detection of tissue and organ damage associated with autoimmune diseases (AID) has been identified as key to improve long-term survival, but non-invasive biomarkers are lacking. Elevated cell-free DNA (cfDNA) levels have been observed in AID and inflammatory bowel disease (IBD), prompting interest to use cfDNA as a potential non-invasive diagnostic and prognostic biomarker. Despite these known disease-related changes in concentration, it remains impossible to identify AID and IBD patients through cfDNA analysis alone. By using unsupervised clustering on large sets of shallow whole-genome sequencing (sWGS) cfDNA data, we uncover AID- and IBD-specific genome-wide patterns in plasma cfDNA in both the obstetric and general AID and IBD populations. We demonstrate that pregnant women with AID and IBD have higher odds of receiving inconclusive non-invasive prenatal screening (NIPS) results. Supervised learning of the genome-wide patterns allows AID prediction with 50% sensitivity at 95% specificity. Importantly, the method has the potential to identify pregnant women with AID during routine NIPS. Since AID pregnancies have an increased risk of severe complications, early recognition or detection of new-onset AID can redirect pregnancy management and limit potential adverse events. This method opens up new avenues for screening, diagnosis and monitoring of AID and IBD.
Collapse
Affiliation(s)
- Huiwen Che
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium
| | - Tatjana Jatsenko
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium
| | - Lore Lannoo
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Kate Stanley
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium
| | - Luc Dehaspe
- Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Leen Vancoillie
- Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Nathalie Brison
- Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Ilse Parijs
- Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Sabien Severi
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Ellen De Langhe
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Severine Vermeire
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, TARGID-IBD, KU Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, TARGID-IBD, KU Leuven, Leuven, Belgium
| | - Kristel Van Calsteren
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Joris Robert Vermeesch
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium.
- Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Yang S, Zou X, Li J, Yang H, Zhang A, Zhu Y, Zhu L, Zhang L. Immunoregulation and clinical significance of neutrophils/NETs-ANGPT2 in tumor microenvironment of gastric cancer. Front Immunol 2022; 13:1010434. [PMID: 36172371 PMCID: PMC9512293 DOI: 10.3389/fimmu.2022.1010434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Although significant progress has been made in the study of gastric cancer (GC), clinicians lack reliable protein markers for accurate diagnosis and tumor stratification. Neutrophil extracellular traps (NETs) are networks of extracellular fibers composed of DNA from neutrophils. We have previously reported that abundant NETs are deposited in GC, damaging human umbilical vein endothelial cells (HUVECs) and triggering the release of tissue factors, leading to a hypercoagulable state in GC. However, the specific effects of NETs on HUVECs are unclear. We aimed to explore the functional changes caused by NETs on HUVECs, providing evidence that NETs may fuel GC progression. Through quantitative proteomics, we identified 6182 differentially expressed proteins in NET-stimulated HUVECs by TMT. The reliability of the TMT technique was confirmed by parallel reaction monitoring (PRM) analysis of 17 differentially expressed proteins. Through bioinformatics analysis, we found that NETs upregulate ANGPT2 in HUVECs. We comprehensively analyzed the prognosis, biological function, immune response, and therapeutic value of ANGPT2 in GC. We found that overexpression of ANGPT2 in GC is associated with poor prognosis and potentially regulates multiple biological functions. At the same time, ANGPT2 also predicted immunotherapeutic and chemotherapeutic responses in GC. In conclusion, NETs promoted ANGPT2 overexpression in the GC microenvironment. In the future, the neutrophil/NETs-ANGPT2 axis may provide a new target for the treatment of GC.
Collapse
Affiliation(s)
- Shifeng Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Xiaoming Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaoming Zou, ; Jiacheng Li,
| | - Jiacheng Li
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
- *Correspondence: Xiaoming Zou, ; Jiacheng Li,
| | - Hao Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ange Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Yanli Zhu
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Lei Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lisha Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Hassan S, Shehzad A, Khan SA, Miran W, Khan S, Lee YS. Diagnostic and Therapeutic Potential of Circulating-Free DNA and Cell-Free RNA in Cancer Management. Biomedicines 2022; 10:2047. [PMID: 36009594 PMCID: PMC9405989 DOI: 10.3390/biomedicines10082047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 11/20/2022] Open
Abstract
Over time, molecular biology and genomics techniques have been developed to speed up the early diagnosis and clinical management of cancer. These therapies are often most effective when administered to the subset of malignancies harboring the target identified by molecular testing. Important advances in applying molecular testing involve circulating-free DNA (cfDNA)- and cell-free RNA (cfRNA)-based liquid biopsies for the diagnosis, prognosis, prediction, and treatment of cancer. Both cfDNA and cfRNA are sensitive and specific biomarkers for cancer detection, which have been clinically proven through multiple randomized and prospective trials. These help in cancer management based on the noninvasive evaluation of size, quantity, and point mutations, as well as copy number alterations at the tumor site. Moreover, personalized detection of ctDNA helps in adjuvant therapeutics and predicts the chances of recurrence of cancer and resistance to cancer therapy. Despite the controversial diagnostic values of cfDNA and cfRNA, many clinical trials have been completed, and the Food and Drug Administration has approved many multigene assays to detect genetic alterations in the cfDNA of cancer patients. In this review, we underpin the recent advances in the physiological roles of cfDNA and cfRNA, as well as their roles in cancer detection by highlighting recent clinical trials and their roles as prognostic and predictive markers in cancer management.
Collapse
Affiliation(s)
- Sadia Hassan
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Adeeb Shehzad
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Waheed Miran
- Department of Chemical Engineering, School of Chemical and Materials Engineering National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Salman Khan
- Department of pharmacy, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Young-Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
20
|
Zhou X, Jin S, Pan J, Lin Q, Yang S, Ambe PC, Basharat Z, Zimmer V, Wang W, Hong W. Damage associated molecular patterns and neutrophil extracellular traps in acute pancreatitis. Front Cell Infect Microbiol 2022; 12:927193. [PMID: 36034701 PMCID: PMC9411527 DOI: 10.3389/fcimb.2022.927193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
Previous researches have emphasized a trypsin-centered theory of acute pancreatitis (AP) for more than a century. With additional studies into the pathogenesis of AP, new mechanisms have been explored. Among them, the role of immune response bears great importance. Pro-inflammatory substances, especially damage-associated molecular patterns (DAMPs), play an essential role in activating, signaling, and steering inflammation. Meanwhile, activated neutrophils attach great importance to the immune defense by forming neutrophil extracellular traps (NETs), which cause ductal obstruction, premature trypsinogen activation, and modulate inflammation. In this review, we discuss the latest advances in understanding the pathological role of DAMPs and NETs in AP and shed light on the flexible crosstalk between these vital inflammatory mediators. We, then highlight the potentially promising treatment for AP targeting DAMPs and NETs, with a focus on novel insights into the mechanism, diagnosis, and management of AP.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shengchun Jin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyi Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingyi Lin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shaopeng Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peter C. Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Bensberg, Germany
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, Neunkirchen, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| |
Collapse
|
21
|
Ferchiou S, Caza F, de Boissel PGJ, Villemur R, St-Pierre Y. Applying the concept of liquid biopsy to monitor the microbial biodiversity of marine coastal ecosystems. ISME COMMUNICATIONS 2022; 2:61. [PMID: 37938655 PMCID: PMC9723566 DOI: 10.1038/s43705-022-00145-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 10/04/2023]
Abstract
Liquid biopsy (LB) is a concept that is rapidly gaining ground in the biomedical field. Its concept is largely based on the detection of circulating cell-free DNA (ccfDNA) fragments that are mostly released as small fragments following cell death in various tissues. A small percentage of these fragments are from foreign (nonself) tissues or organisms. In the present work, we applied this concept to mussels, a sentinel species known for its high filtration capacity of seawater. We exploited the capacity of mussels to be used as natural filters to capture environmental DNA fragments of different origins to provide information on the biodiversity of marine coastal ecosystems. Our results showed that hemolymph of mussels contains DNA fragments that varied considerably in size, ranging from 1 to 5 kb. Shotgun sequencing revealed that a significant amount of DNA fragments had a nonself microbial origin. Among these, we found DNA fragments derived from bacteria, archaea, and viruses, including viruses known to infect a variety of hosts that commonly populate coastal marine ecosystems. Taken together, our study shows that the concept of LB applied to mussels provides a rich and yet unexplored source of knowledge regarding the microbial biodiversity of a marine coastal ecosystem.
Collapse
Affiliation(s)
- Sophia Ferchiou
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada
| | - France Caza
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada
| | | | - Richard Villemur
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada
| | - Yves St-Pierre
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada.
| |
Collapse
|
22
|
Pfister H. Neutrophil Extracellular Traps and Neutrophil-Derived Extracellular Vesicles: Common Players in Neutrophil Effector Functions. Diagnostics (Basel) 2022; 12:diagnostics12071715. [PMID: 35885618 PMCID: PMC9323717 DOI: 10.3390/diagnostics12071715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Neutrophil granulocytes are a central component of the innate immune system. In recent years, they have gained considerable attention due to newly discovered biological effector functions and their involvement in various pathological conditions. They have been shown to trigger mechanisms that can either promote or inhibit the development of autoimmunity, thrombosis, and cancer. One mechanism for their modulatory effect is the release of extracellular vesicles (EVs), that trigger appropriate signaling pathways in immune cells and other target cells. In addition, activated neutrophils can release bactericidal DNA fibers decorated with proteins from neutrophil granules (neutrophil extracellular traps, NETs). While NETs are very effective in limiting pathogens, they can also cause severe damage if released in excess or cleared inefficiently. Since NETs and EVs share a variety of neutrophil molecules and initially act in the same microenvironment, differential biochemical and functional analysis is particularly challenging. This review focuses on the biochemical and functional parallels and the extent to which the overlapping spectrum of effector molecules has an impact on biological and pathological effects.
Collapse
Affiliation(s)
- Heiko Pfister
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich, Technical University Munich, D-80636 Munich, Germany
| |
Collapse
|
23
|
Feasibility of Cell-Free DNA Measurement from the Earlobe during Physiological Exercise Testing. Diagnostics (Basel) 2022; 12:diagnostics12061379. [PMID: 35741187 PMCID: PMC9222055 DOI: 10.3390/diagnostics12061379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Circulating, cell-free DNA (cfDNA) has been discussed as an upcoming blood-based biomarker in exercise physiology, reflecting important aspects of exercise load. cfDNA blood sampling has evolved from elaborate venous to efficient capillary sampling from the fingertips. In this study, we aimed to evaluate the principal feasibility of cfDNA blood sampling from the earlobe. Therefore, we obtained cfDNA concentrations from the fingertips, earlobe, and the antecubital vein during physiological exercise testing. Significantly higher concentrations were obtained from the earlobe compared to fingertip samples. All of the measurement methods showed good to excellent repeatability (ICCs of 0.85 to 0.93). In addition, the control experiments revealed that repeated sampling from the earlobe but not from the fingertips increased cfDNA at rest. In summary, cfDNA sampling is feasible for all sampling sources. However, at rest, cfDNA collected from the earlobe tend to increase over time in the absence of physical load, potentially limiting this sampling method.
Collapse
|
24
|
Zhou Y, Xu Z, Liu Z. Impact of Neutrophil Extracellular Traps on Thrombosis Formation: New Findings and Future Perspective. Front Cell Infect Microbiol 2022; 12:910908. [PMID: 35711663 PMCID: PMC9195303 DOI: 10.3389/fcimb.2022.910908] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Thrombotic diseases seriously endanger human health, neutrophils and neutrophil extracellular traps (NETs) play an important role in abnormal thrombus formation. NETs are extracellular structures released by neutrophils upon stimulation by pathogens. NETs include neutrophil elastase (NE), myeloperoxidase (MPO), cathepsin G and other active substances. The network structure provided by NETs can prevent the spread of pathogens and effectively kill and eliminate pathogens. However, the components of NETs can also abnormally activate the coagulation pathway and participate in the formation of pathological thrombi. This review aims to summarize the mechanisms of NETs formation in detail; the research progress of NETs in venous thrombosis, arterial thrombosis, acquired disease-associated thrombosis, sepsis coagulation disorder; as well as the strategies to target NETs in thrombosis prevention and treatment.
Collapse
Affiliation(s)
| | - Zhendong Xu
- *Correspondence: Zhiqiang Liu, ; Zhendong Xu,
| | | |
Collapse
|
25
|
Wohlsein JC, Meurer M, Neßler J, Wohlsein P, von Köckritz-Blickwede M, Baumgärtner W, Tipold A. Detection of Extracellular Traps in Canine Steroid-Responsive Meningitis-Arteritis. Front Vet Sci 2022; 9:863579. [PMID: 35591872 PMCID: PMC9111528 DOI: 10.3389/fvets.2022.863579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Extracellular traps (ETs) are DNA networks formed by immune cells to fight infectious diseases by catching and attacking pathogenic microorganisms. Uncontrolled ET formation or impaired ET clearance can cause tissue and organ damage. Steroid-responsive meningitis-arteritis (SRMA) represents an immune-mediated, presumably non-infectious, purulent leptomeningitis and fibrinoid-necrotizing arteritis and periarteritis of young-adult dogs. Chronic and recurrent cases of SRMA are characterized by lymphohistiocytic inflammatory cell infiltration in the meninges and perivascular tissue. This study aimed to identify extracellular traps in dogs with SRMA, a model for immune-mediated diseases in the central nervous system (CNS). Hematoxylin and eosin-stained samples of two young dogs with chronic, recurrent SRMA were examined by light microscopy for characteristic lesions and consecutive slices of affected tissues were stained for detection of ETs by immunofluorescence microscopy using antibodies against DNA–histone-1 complexes, myeloperoxidase, and citrullinated histone H3. Histology revealed purulent and lymphohistiocytic leptomeningitis (n = 2/2) with meningeal periarteritis (n = 2/2) and periadrenal located lymphohistiocytic periarteritis (n = 1). Extracellular DNA networks and inflammatory cell infiltrates of macrophages, neutrophil granulocytes, and lymphocytes were detected in the subarachnoid space of the leptomeninx (n = 2/2) and perivascularly in meningeal (n = 2/2) as well as periadrenal vessels (n = 1/1). In summary, extracellular DNA fibers and attached ET markers are detectable in affected perivascular and meningeal tissues of dogs suffering from SRMA. The proof of principle could be confirmed that ETs are present in canine, inflammatory, and non-infectious CNS diseases and possibly play a role in the pathogenesis of SRMA.
Collapse
Affiliation(s)
- Jan C. Wohlsein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- *Correspondence: Jan C. Wohlsein
| | - Marita Meurer
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center of Emerging Diseases and Zoonosis, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jasmin Neßler
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center of Emerging Diseases and Zoonosis, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
26
|
Goggs R, Robbins SN, LaLonde‐Paul DM, Menard JM. Serial analysis of blood biomarker concentrations in dogs with pneumonia, septic peritonitis, and pyometra. J Vet Intern Med 2022; 36:549-564. [PMID: 35103342 PMCID: PMC8965213 DOI: 10.1111/jvim.16374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Prolonged antimicrobial drug (AMD) treatment is associated with antimicrobial resistance development. Biomarker measurement may aid treatment decision-making. OBJECTIVES Investigate temporal changes in blood biomarker concentrations in dogs undergoing treatment for pulmonary and intra-abdominal infections; compare time to biomarker concentration normalization with duration of clinician-directed AMD treatment. ANIMALS Forty-two client-owned dogs with pneumonia (n = 22), septic peritonitis (n = 10), or pyometra (n = 10). METHODS Plasma concentrations of C-reactive protein (CRP), serum amyloid A (SAA), haptoglobin, procalcitonin, nucleosomes, cell-free DNA (cfDNA), high-mobility group box-1 (HMGB1), CC-motif chemokine ligand-2 (CCL2), CXC-motif chemokine ligand-8 (CXCL8), and keratinocyte chemoattractant-like (KC-Like) were quantitated in samples collected on days 1, 3, 7, 14, 28, and 60. Treatment was directed by clinicians blinded to biomarker concentrations. RESULTS Concentrations of CCL2, CRP, and KC-Like were maximal on D1, concentrations of SAA, cfDNA, HMGB1, and nucleosomes were maximal on D3 and haptoglobin concentrations were maximal on D7. These maximal concentrations were significantly different from those on D60. Concentrations of CRP and SAA decreased by 80% from peak and into respective reference intervals before AMDs were discontinued. For CRP, the median (interquartile range [IQR]) times to 20% peak and normal were 7 (6-9) and 7 (6-12) days, respectively, and for SAA they were 4 (4, 5) and 6 (5-8) days, respectively, compared to a median (IQR) duration of AMD prescribing of 16 (12-23) days (all P < .0001). CONCLUSIONS AND CLINICAL IMPORTANCE Biomarker concentrations normalized within 7 to 14 days. Serial measurements of CRP and SAA might aid identification of disease resolution and could help guide AMD prescription decision-making.
Collapse
Affiliation(s)
- Robert Goggs
- Department of Clinical Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Sarah N. Robbins
- Department of Clinical Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Denise M. LaLonde‐Paul
- Department of Clinical Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Julie M. Menard
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
27
|
Theuerkauf K, Obach-Schröck C, Staszyk C, Moritz A, Roscher KA. Activated platelets and platelet-leukocyte aggregates in the equine systemic inflammatory response syndrome. J Vet Diagn Invest 2022; 34:448-457. [PMID: 35168432 PMCID: PMC9066687 DOI: 10.1177/10406387221077969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In humans, activated platelets contribute to sepsis complications and to multiple organ failure. In our prospective analytical study of cases of the equine systemic inflammatory response syndrome (SIRS), we adapted a standard human protocol for the measurement of activated platelets and platelet-leukocyte aggregates (PLAs) in equine platelet-leukocyte-rich plasma (PLRP) by flow cytometry, and we investigated the hypothesis that activated platelets and PLAs are increased in clinical cases of SIRS. We included 17 adult horses and ponies fulfilling at least 2 SIRS criteria, and 10 healthy equids as controls. Activation of platelets was determined by increased expression of CD62P on platelets. Activated platelets and PLAs were measured before and after in vitro activation of platelets with collagen. Median expression of CD62P on platelets was significantly increased after activation in the control group: 1.45% (interquartile range [IQR]: 1.08-1.99%) initially versus 8.78% (IQR: 6.79-14.78%, p = 0.002) after activation. The equids with SIRS had significantly more activated platelets and PLAs in native PLRP than controls: CD62P 4.92% (median, IQR: 2.21-12.41%) versus 1.45% in controls (median, IQR: 1.08-1.99%, p = 0.0007), and PLAs 4.16% (median, IQR: 2.50-8.58%) versus 2.95% in controls (median, IQR: 1.57-3.22%, p = 0.048). To our knowledge, increased platelet activation and PLAs have not been demonstrated previously with flow cytometry in clinical cases of equine SIRS.
Collapse
Affiliation(s)
| | - Carmen Obach-Schröck
- Equine Clinic, Internal Medicine, Department of Veterinary Clinical Science (Theuerkauf, Roscher), Institute of Veterinary-Anatomy, -Histology and -Embryology (Obach-Schröck, Staszyk), Clinical Pathophysiology and Veterinary Clinical Pathology, Department of Veterinary Clinical Science (Moritz), Justus-Liebig-University, Giessen, Germany
| | - Carsten Staszyk
- Equine Clinic, Internal Medicine, Department of Veterinary Clinical Science (Theuerkauf, Roscher), Institute of Veterinary-Anatomy, -Histology and -Embryology (Obach-Schröck, Staszyk), Clinical Pathophysiology and Veterinary Clinical Pathology, Department of Veterinary Clinical Science (Moritz), Justus-Liebig-University, Giessen, Germany
| | - Andreas Moritz
- Equine Clinic, Internal Medicine, Department of Veterinary Clinical Science (Theuerkauf, Roscher), Institute of Veterinary-Anatomy, -Histology and -Embryology (Obach-Schröck, Staszyk), Clinical Pathophysiology and Veterinary Clinical Pathology, Department of Veterinary Clinical Science (Moritz), Justus-Liebig-University, Giessen, Germany
| | - Katja A Roscher
- Equine Clinic, Internal Medicine, Department of Veterinary Clinical Science (Theuerkauf, Roscher), Institute of Veterinary-Anatomy, -Histology and -Embryology (Obach-Schröck, Staszyk), Clinical Pathophysiology and Veterinary Clinical Pathology, Department of Veterinary Clinical Science (Moritz), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
28
|
Dong Z, Dai H, Liu W, Jiang H, Feng Z, Liu F, Zhao Q, Rui H, Liu WJ, Liu B. Exploring the Differences in Molecular Mechanisms and Key Biomarkers Between Membranous Nephropathy and Lupus Nephritis Using Integrated Bioinformatics Analysis. Front Genet 2022; 12:770902. [PMID: 35047003 PMCID: PMC8762271 DOI: 10.3389/fgene.2021.770902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Both membranous nephropathy (MN) and lupus nephritis (LN) are autoimmune kidney disease. In recent years, with the deepening of research, some similarities have been found in the pathogenesis of these two diseases. However, the mechanism of their interrelationship is not clear. The purpose of this study was to investigate the differences in molecular mechanisms and key biomarkers between MN and LN. Method: The expression profiles of GSE99325, GSE99339, GSE104948 and GSE104954 were downloaded from GEO database, and the differentially expressed genes (DEGs) of MN and LN samples were obtained. We used Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for enrichment analysis of DEGs. A protein-protein interaction (PPI) network of DEGs was constructed using Metascape. We filtered DEGs with NetworkAnalyst. Finally, we used receiver operating characteristic (ROC) analysis to identify the most significant DEGs for MN and LN. Result: Compared with LN in the glomerulus, 14 DEGs were up-regulated and 77 DEGs were down-regulated in MN. Compared with LN in renal tubules, 21 DEGs were down-regulated, but no up-regulated genes were found in MN. According to the result of GO and KEGG enrichment, PPI network and Networkanalyst, we screened out six genes (IFI6, MX1, XAF1, HERC6, IFI44L, IFI44). Interestingly, among PLA2R, THSD7A and NELL1, which are the target antigens of podocyte in MN, the expression level of NELL1 in MN glomerulus is significantly higher than that of LN, while there is no significant difference in the expression level of PLA2R and THSD7A. Conclusion: Our study provides new insights into the pathogenesis of MN and LN by analyzing the differences in gene expression levels between MN and LN kidney samples, and is expected to be used to prepare an animal model of MN that is more similar to human.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhendong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, Beijing, China
| | - Fei Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Capital Medical University, Beijing, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wei Jing Liu
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
29
|
NETosis in ischemic/reperfusion injuries: An organ-based review. Life Sci 2021; 290:120158. [PMID: 34822798 DOI: 10.1016/j.lfs.2021.120158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Neutrophil extracellular trap (NETosis), the web-like structures induced by neutrophil death, is an important inflammatory mechanism of the immune system leading to reactive oxygen species production/coagulopathy, endothelial dysfunction, atherosclerosis, and ischemia. NETosis exerts its role through different mechanisms such as triggering Toll-like receptors, inflammatory cytokines, platelet aggregation, neutrophil activation/infiltration, and vascular impairment. NETosis plays a key role in the prognosis of coronary artery disease, ischemic injury of kidney, lung, gastrointestinal tract and skeletal muscles. In this review, we explored the molecular mechanisms involved in NETosis, and ischemic/reperfusion injuries in body organs.
Collapse
|
30
|
The Dog as a Model to Study the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:123-152. [PMID: 34664237 DOI: 10.1007/978-3-030-73119-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cancer is a complex and dynamic disease with an outcome that depends on a strict crosstalk between tumor cells and other components in tumor microenvironment, namely, tumor-infiltrating immune cells, fibroblasts, cancer stem cells, adipocytes, and endothelial cells. Within the tumor microenvironment, macrophages and T-lymphocytes appear to be key effectors during the several steps of tumor initiation and progression. Tumor cells, through the release of a plethora of signaling molecules, can induce immune tolerance, by avoiding immune surveillance, and inhibit immune cells cytotoxic functions. Furthermore, as the tumor grows, tumor microenvironment reveals a series of dysfunctional conditions that potentiate a polarization of harmful humoral Th2 and Th17, an upregulation of Treg cells, and a differentiation of macrophages into the M2 subtype, which contribute to the activation of several signaling pathways involving important tissue biomarkers (COX-2, EGFR, VEGF) implicated in cancer aggressiveness and poor clinical outcomes. In order to maintain the tumor growth, cancer cells acquire several adaptations such as neovascularization and metabolic reprogramming. An extensive intracellular production of lactate and protons is observed in tumor cells as a result of their high glycolytic metabolism. This contributes not only for the microenvironment pH alteration but also to shape the immune response that ultimately impairs immune cells capabilities and effector functions.In this chapter, the complexity of tumor microenvironment, with special focus on macrophages, T-lymphocytes, and the impact of lactate efflux, was reviewed, always trying to demonstrate the strong similarities between data from studies of humans and dogs, a widely proposed model for comparative oncology studies.
Collapse
|
31
|
Tollis M, Ferris E, Campbell MS, Harris VK, Rupp SM, Harrison TM, Kiso WK, Schmitt DL, Garner MM, Aktipis CA, Maley CC, Boddy AM, Yandell M, Gregg C, Schiffman JD, Abegglen LM. Elephant Genomes Reveal Accelerated Evolution in Mechanisms Underlying Disease Defenses. Mol Biol Evol 2021; 38:3606-3620. [PMID: 33944920 PMCID: PMC8383897 DOI: 10.1093/molbev/msab127] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disease susceptibility and resistance are important factors for the conservation of endangered species, including elephants. We analyzed pathology data from 26 zoos and report that Asian elephants have increased neoplasia and malignancy prevalence compared with African bush elephants. This is consistent with observed higher susceptibility to tuberculosis and elephant endotheliotropic herpesvirus (EEHV) in Asian elephants. To investigate genetic mechanisms underlying disease resistance, including differential responses between species, among other elephant traits, we sequenced multiple elephant genomes. We report a draft assembly for an Asian elephant, and defined 862 and 1,017 conserved potential regulatory elements in Asian and African bush elephants, respectively. In the genomes of both elephant species, conserved elements were significantly enriched with genes differentially expressed between the species. In Asian elephants, these putative regulatory regions were involved in immunity pathways including tumor-necrosis factor, which plays an important role in EEHV response. Genomic sequences of African bush, forest, and Asian elephant genomes revealed extensive sequence conservation at TP53 retrogene loci across three species, which may be related to TP53 functionality in elephant cancer resistance. Positive selection scans revealed outlier genes related to additional elephant traits. Our study suggests that gene regulation plays an important role in the differential inflammatory response of Asian and African elephants, leading to increased infectious disease and cancer susceptibility in Asian elephants. These genomic discoveries can inform future functional and translational studies aimed at identifying effective treatment approaches for ill elephants, which may improve conservation.
Collapse
Affiliation(s)
- Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
| | - Elliott Ferris
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | | | - Valerie K Harris
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Shawn M Rupp
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Tara M Harrison
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Wendy K Kiso
- Ringling Bros Center for Elephant Conservation, Polk City, FL, USA
| | - Dennis L Schmitt
- Ringling Bros Center for Elephant Conservation, Polk City, FL, USA
- William H. Darr College of Agriculture, Missouri State University, Springfield, MO, USA
| | | | - Christina Athena Aktipis
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Amy M Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Mark Yandell
- Department of Genetics, University of Utah, Salt Lake City, UT, USA
| | - Christopher Gregg
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Joshua D Schiffman
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- PEEL Therapeutics, Inc., Salt Lake City, UT, USA & Haifa, Israel
| | - Lisa M Abegglen
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- PEEL Therapeutics, Inc., Salt Lake City, UT, USA & Haifa, Israel
| |
Collapse
|
32
|
Methylprednisolone Induces Extracellular Trap Formation and Enhances Bactericidal Effect of Canine Neutrophils. Int J Mol Sci 2021; 22:ijms22147734. [PMID: 34299355 PMCID: PMC8304006 DOI: 10.3390/ijms22147734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Methylprednisolone is a glucocorticoid and can negatively influence immune defense mechanisms. During bacterial infections in the dog, neutrophils infiltrate infected tissue and mediate antimicrobial effects with different mechanisms such as phagocytosis and neutrophil extracellular trap (NET) formation. Here, we investigated the influence of methylprednisolone on canine NET formation and neutrophil killing efficiency of Gram positive and Gram negative bacteria. Therefore, canine blood derived neutrophils were treated with different concentrations of methylprednisolone over time. The survival factor of Staphylococcus pseudintermedius, Streptococcus canis or Escherichia coli was determined in presence of stimulated neutrophils. Additionally, free DNA and nucleosomes as NET marker were analyzed in supernatants and neutrophils were assessed for NET formation by immunofluorescence microscopy. Methylprednisolone concentrations of 62.5 and 625 µg/mL enhanced the neutrophil killing of Gram positive bacteria, whereas no significant influence was detected for the Gram negative Escherichia coli. Interestingly, higher amounts of free DNA were detected under methylprednisolone stimulation in a concentration dependency and in the presence of Streptococcus canis and Escherichia coli. The nucleosome release by neutrophils is induced by bacterial infection and differs depending on the concentration of methylprednisolone. Furthermore, immunofluorescence microscopy analysis identified methylprednisolone at a concentration of 62.5 µg/mL as a NET inducer. In summary, methylprednisolone enhances NET-formation and time-dependent and concentration-dependent the bactericidal effect of canine neutrophils on Gram positive bacteria.
Collapse
|
33
|
Santagostino SF, Assenmacher CA, Tarrant JC, Adedeji AO, Radaelli E. Mechanisms of Regulated Cell Death: Current Perspectives. Vet Pathol 2021; 58:596-623. [PMID: 34039100 DOI: 10.1177/03009858211005537] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Balancing cell survival and cell death is fundamental to development and homeostasis. Cell death is regulated by multiple interconnected signaling pathways and molecular mechanisms. Regulated cell death (RCD) is implicated in fundamental processes such as organogenesis and tissue remodeling, removal of unnecessary structures or cells, and regulation of cell numbers. RCD can also be triggered by exogenous perturbations of the intracellular or extracellular microenvironment when the adaptive processes that respond to stress fail. During the past few years, many novel forms of non-apoptotic RCD have been identified, and the characterization of RCD mechanisms at a molecular level has deepened our understanding of diseases encountered in human and veterinary medicine. Given the complexity of these processes, it has become clear that the identification of RCD cannot be based simply on morphologic characteristics and that descriptive and diagnostic terms presently used by pathologists-such as individual cell apoptosis or necrosis-appear inadequate and possibly misleading. In this review, the current understanding of the molecular machinery of each type of non-apoptotic RCD mechanisms is outlined. Due to the continuous discovery of new mechanisms or nuances of previously described processes, the limitations of the terms apoptosis and necrosis to indicate microscopic findings are also reported. In addition, the need for a standard panel of biomarkers and functional tests to adequately characterize the underlying RCD and its role as a mechanism of disease is considered.
Collapse
Affiliation(s)
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| | - James C Tarrant
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| | | | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Yuwono NL, Henry CE, Ford CE, Warton K. Total and endothelial cell-derived cell-free DNA in blood plasma does not change during menstruation. PLoS One 2021; 16:e0250561. [PMID: 33901234 PMCID: PMC8075187 DOI: 10.1371/journal.pone.0250561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Assays measuring cell-free DNA (cfDNA) in blood have widespread potential in modern medicine. However, a comprehensive understanding of cfDNA dynamics in healthy individuals is required to assist in the design of assays that maximise the signal driven by pathological changes, while excluding fluctuations that are part of healthy physiological processes. The menstrual cycle involves major remodelling of endometrial tissue and associated apoptosis, yet there has been little investigation of the impact of the menstrual cycle on cfDNA levels. Paired plasma samples were collected from 40 healthy women on menstruating (M) and non-menstruating (NM) days of their cycle. We measured total cfDNA by targeting ALU repetitive sequences and measured endothelial-derived cfDNA by methylation-specific qPCR targeting an endothelium-unique unmethylated CDH5 DNA region. CfDNA integrity and endothelial cfDNA concentration, but not total cfDNA, are consistent across time between NM and M. No significant changes in total (ALU-115 p = 0.273; ALU-247 p = 0.385) or endothelial cell specific (p = 0.301) cfDNA were observed, leading to the conclusion that menstrual status at the time of diagnostic blood collection should not have a significant impact on the quantitation of total cfDNA and methylation-based cancer assays.
Collapse
Affiliation(s)
- Nicole Laurencia Yuwono
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Claire Elizabeth Henry
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Caroline Elizabeth Ford
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Kristina Warton
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
35
|
Colmer SF, Luethy D, Abraham M, Stefanovski D, Hurcombe SD. Utility of cell-free DNA concentrations and illness severity scores to predict survival in critically ill neonatal foals. PLoS One 2021; 16:e0242635. [PMID: 33901192 PMCID: PMC8075268 DOI: 10.1371/journal.pone.0242635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/13/2021] [Indexed: 11/18/2022] Open
Abstract
Plasma cell-free DNA (cfDNA) levels have been associated with disease and survival status in septic humans and dogs. To date, studies investigating cfDNA levels in association with critical illness in foals are lacking. We hypothesized that cfDNA would be detectable in the plasma of foals, that septic and sick-nonseptic foals would have significantly higher cfDNA levels compared to healthy foals, and that increased cfDNA levels would be associated with non-survival. Animals used include 80 foals of 10 days of age or less admitted to a tertiary referral center between January and July, 2020 were stratified into three categories: healthy (n = 34), sick non-septic (n = 11) and septic (n = 35) based on specific criteria. This was a prospective clinical study. Blood was collected from critically ill foals at admission or born in hospital for cfDNA quantification and blood culture. Previously published sepsis score (SS) and neonatal SIRS score (NSIRS) were also calculated. SS, NSIRS, blood culture status and cfDNA concentrations were evaluated to predict survival. Continuous variables between groups were compared using Kruskal-Wallis ANOVA with Dunn’s post hoc test. Comparisons between two groups were assessed using the Mann-Whitney U-test or Spearman rank for correlations. The performance of cfDNA, sepsis score and NSIRS score to predict survival was assessed by receiver operator characteristic (ROC) curve analysis including area under the curve, sensitivity and specificity using cutoffs. Plasma cfDNA was detectable in all foals. No significant differences in cfDNA concentration were detected between healthy foals and septic foals (P = 0.65) or healthy foals and sick non-septic foals (P = 0.88). There was no significant association between cfDNA and culture status, SS, NSIRS or foal survival. SS (AUC 0.85) and NSIRS (AUC 0.83) were superior to cfDNA (AUC 0.64) in predicting survival. Although cfDNA was detectable in foal plasma, it offers negligible utility to diagnose sepsis or predict survival in critical illness in neonates.
Collapse
Affiliation(s)
- Sarah Florence Colmer
- Department of Clinical Sciences, The University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Philadelphia, Pennsylvania, United States of America
| | - Daniela Luethy
- Department of Clinical Sciences, The University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Philadelphia, Pennsylvania, United States of America
| | - Michelle Abraham
- Department of Clinical Sciences, The University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Philadelphia, Pennsylvania, United States of America
| | - Darko Stefanovski
- Department of Clinical Sciences, The University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Philadelphia, Pennsylvania, United States of America
| | - Samuel David Hurcombe
- Department of Clinical Sciences, The University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
36
|
Yang Y, Wang N, Zhu Y, Lu Y, Chen Q, Fan S, Huang Q, Chen X, Xia L, Wei Y, Zheng J, Liu X. Gold nanoparticles synergize with bacterial lipopolysaccharide to enhance class A scavenger receptor dependent particle uptake in neutrophils and augment neutrophil extracellular traps formation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111900. [PMID: 33440266 DOI: 10.1016/j.ecoenv.2021.111900] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 02/05/2023]
Abstract
Gold nanoparticles (AuNPs) are extensively utilized in biomedical fields. However, their potential interaction with host cells has not been comprehensively elucidated. In this study, we demonstrated a size-dependent effect of AuNPs to synergize with bacterial lipopolysaccharide (LPS) in promoting neutrophil extracellular traps (NETs) release in human peripheral neutrophils. Mechanistically, LPS was more efficient to contact with 10 nm AuNPs and promote their uptake in neutrophils compared to 40 and 100 nm AuNPs, leading to a synergistic upregulation of class A scavenger receptor (SRA) which mediated AuNPs uptake and triggered activation of extracellular regulated protein kinase (ERK) and p38. Blocking SRA or inhibiting ERK and p38 activation remarkably abrogated the effect of AuNPs and LPS to induce NETs formation. Further experiments demonstrated that AuNPs and LPS augmented the production of cytosolic reactive oxygen species (ROS) in p38 and ERK dependent manner, through upregulating and activating NADPH oxidase 2 (NOX2). Accordingly, scavenging of ROS or inhibiting the NOX2 dampened NETs release induced by combined AuNPs and LPS treatment. AuNPs and LPS also synergized to upregulate reactive oxygen species modulator 1 (ROMO1) via activating ERK, thereby increasing mitochondrial ROS generation and promoting the release of NETs. In summary, we provide new evidences about the synergy of AuNPs and LPS to augment cellular responses in neutrophils, which implicates the need to consider the amplifying effect by pathogenic stimuli when utilizing nanomaterials in infectious or inflammatory conditions.
Collapse
Affiliation(s)
- Yongjun Yang
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Ning Wang
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China; West China Biopharm Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuanfeng Zhu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Qianying Huang
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Xiaoli Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Lin Xia
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Yan Wei
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China.
| |
Collapse
|
37
|
Toledano-Fonseca M, Cano MT, Inga E, Gómez-España A, Guil-Luna S, García-Ortiz MV, Mena-Osuna R, De la Haba-Rodriguez JR, Rodríguez-Ariza A, Aranda E. The Combination of Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio with Liquid Biopsy Biomarkers Improves Prognosis Prediction in Metastatic Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13061210. [PMID: 33802006 PMCID: PMC7998484 DOI: 10.3390/cancers13061210] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a highly inflammatory microenvironment and liquid biopsy has emerged as a promising tool for the noninvasive analysis of this tumor. In this study, plasma was obtained from 58 metastatic PDAC patients, and neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), circulating cell-free DNA (cfDNA) concentration, and circulating RAS mutation were determined. We found that NLR was significantly associated with both overall survival (OS) and progression-free survival. Remarkably, NLR was an independent risk factor for poor OS. Moreover, NLR and PLR positively correlated, and combination of both inflammatory markers significantly improved the prognostic stratification of metastatic PDAC patients. NLR also showed a positive correlation with cfDNA levels and RAS mutant allelic fraction (MAF). Besides, we found that neutrophil activation contributed to cfDNA content in the plasma of metastatic PDAC patients. Finally, a multi-parameter prognosis model was designed by combining NLR, PLR, cfDNA levels, RAS mutation, RAS MAF, and CA19-9, which performs as a promising tool to predict the prognosis of metastatic PDAC patients. In conclusion, our study supports the idea that the use of systemic inflammatory markers along with circulating tumor-specific markers may constitute a valuable tool for the clinical management of metastatic PDAC patients.
Collapse
Affiliation(s)
- Marta Toledano-Fonseca
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - M. Teresa Cano
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Elizabeth Inga
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Auxiliadora Gómez-España
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Silvia Guil-Luna
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - María Victoria García-Ortiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - Rafael Mena-Osuna
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - Juan R. De la Haba-Rodriguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
- Department of Medicine, Faculty of Medicine, University of Córdoba, 14004 Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
- Correspondence:
| | - Enrique Aranda
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
- Department of Medicine, Faculty of Medicine, University of Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
38
|
Bronkhorst AJ, Ungerer V, Diehl F, Anker P, Dor Y, Fleischhacker M, Gahan PB, Hui L, Holdenrieder S, Thierry AR. Towards systematic nomenclature for cell-free DNA. Hum Genet 2020; 140:565-578. [PMID: 33123832 PMCID: PMC7981329 DOI: 10.1007/s00439-020-02227-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Cell-free DNA (cfDNA) has become widely recognized as a promising candidate biomarker for minimally invasive characterization of various genomic disorders and other clinical scenarios. However, among the obstacles that currently challenge the general progression of the research field, there remains an unmet need for unambiguous universal cfDNA nomenclature. To address this shortcoming, we classify in this report the different types of cfDNA molecules that occur in the human body based on its origin, genetic traits, and locality. We proceed by assigning existing terms to each of these cfDNA subtypes, while proposing new terms and abbreviations where clarity is lacking and more precise stratification would be beneficial. We then suggest the proper usage of these terms within different contexts and scenarios, focusing mainly on the nomenclature as it relates to the domains of oncology, prenatal testing, and post-transplant surgery surveillance. We hope that these recommendations will serve as useful considerations towards the establishment of universal cfDNA nomenclature in the future. In addition, it is conceivable that many of these recommendations can be transposed to cell-free RNA nomenclature by simply exchanging “DNA” with “RNA” in each acronym/abbreviation. Similarly, when describing DNA and RNA collectively, the suffix can be replaced with “NAs” to indicate nucleic acids.
Collapse
Affiliation(s)
- Abel J Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
| | - Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
| | - Frank Diehl
- Thrive Earlier Detection Corp., Cambridge, MA, USA
| | - Philippe Anker
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Michael Fleischhacker
- DRK Kliniken Berlin Mitte, Klinik für Innere Medizin, Pneumologie und Schlafmedizin, Drontheimer Str. 39-40, 13359, Berlin, Germany
| | - Peter B Gahan
- Fondazione "Enrico Puccinelli" Onlus, 06126, Perugia, Italy
| | - Lisa Hui
- Reproductive Epidemiology Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Department of Perinatal Medicine, Mercy Hospital for Women, Heidelberg, VIC, Australia
- Department of Obstetrics and Gynaecology, The Northern Hospital, Epping, VIC, Australia
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
| | - Alain R Thierry
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier, France.
- INSERM, U1194, Montpellier, France.
- University of Montpellier, Montpellier, France.
- ICM, Regional Institute of Cancer of Montpellier, Montpellier, France.
| |
Collapse
|
39
|
Fagerhol MK, Johnson E, Tangen JM, Hollan I, Mirlashari MR, Nissen-Meyer LSH, Hetland G. NETs analysed by novel calprotectin-based assays in blood donors and patients with multiple myeloma or rheumatoid arthritis: A pilot study. Scand J Immunol 2020; 91:e12870. [PMID: 32034957 DOI: 10.1111/sji.12870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 11/27/2022]
Abstract
Two novel enzyme-linked immunosorbent assays (ELISAs), designed to detect complexes containing DNA, leucocyte calprotectin and S100A12 proteins, were generated for improved specificity and rapid measurement of neutrophil extracellular traps (NETs). The assays were applied on plasma and serum samples from blood donors for establishment of reference values, and from patients with multiple myeloma (MM) or rheumatoid arthritis (RA) in order to examine putatively increased values in the two different inflammatory conditions. Although NETs were hardly detectable in healthy individuals, NET levels were as expected highly and statistically significantly increased in RA patients. The detection of statistically significantly increased NET levels in MM is a novel finding.
Collapse
Affiliation(s)
| | - Egil Johnson
- Department of Gastroenterological and Pediatric Surgery, OUH, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Ivana Hollan
- Lillehammer Hospital for Rheumatic Diseases, Lillehammer, Norway.,Department of Medicine, Brigham and Women's Hospital, Boston, USA
| | | | | | - Geir Hetland
- Department of Immunology and Transfusion Medicine, Oslo University Hospital (OUH), Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|