1
|
Rapid-acting antidepressants and the circadian clock. Neuropsychopharmacology 2022; 47:805-816. [PMID: 34837078 PMCID: PMC8626287 DOI: 10.1038/s41386-021-01241-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
A growing number of epidemiological and experimental studies has established that circadian disruption is strongly associated with psychiatric disorders, including major depressive disorder (MDD). This association is becoming increasingly relevant considering that modern lifestyles, social zeitgebers (time cues) and genetic variants contribute to disrupting circadian rhythms that may lead to psychiatric disorders. Circadian abnormalities associated with MDD include dysregulated rhythms of sleep, temperature, hormonal secretions, and mood which are modulated by the molecular clock. Rapid-acting antidepressants such as subanesthetic ketamine and sleep deprivation therapy can improve symptoms within 24 h in a subset of depressed patients, in striking contrast to conventional treatments, which generally require weeks for a full clinical response. Importantly, animal data show that sleep deprivation and ketamine have overlapping effects on clock gene expression. Furthermore, emerging data implicate the circadian system as a critical component involved in rapid antidepressant responses via several intracellular signaling pathways such as GSK3β, mTOR, MAPK, and NOTCH to initiate synaptic plasticity. Future research on the relationship between depression and the circadian clock may contribute to the development of novel therapeutic strategies for depression-like symptoms. In this review we summarize recent evidence describing: (1) how the circadian clock is implicated in depression, (2) how clock genes may contribute to fast-acting antidepressants, and (3) the mechanistic links between the clock genes driving circadian rhythms and neuroplasticity.
Collapse
|
2
|
Xu P, Berto S, Kulkarni A, Jeong B, Joseph C, Cox KH, Greenberg ME, Kim TK, Konopka G, Takahashi JS. NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron 2021; 109:3268-3282.e6. [PMID: 34416169 DOI: 10.1016/j.neuron.2021.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/12/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the master circadian pacemaker in mammals and is entrained by environmental light. However, the molecular basis of the response of the SCN to light is not fully understood. We used RNA/chromatin immunoprecipitation/single-nucleus sequencing with circadian behavioral assays to identify mouse SCN cell types and explore their responses to light. We identified three peptidergic cell types that responded to light in the SCN: arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), and cholecystokinin (CCK). In each cell type, light-responsive subgroups were enriched for expression of neuronal Per-Arnt-Sim (PAS) domain protein 4 (NPAS4) target genes. Further, mice lacking Npas4 had a longer circadian period under constant conditions, a damped phase response curve to light, and reduced light-induced gene expression in the SCN. Our data indicate that NPAS4 is necessary for normal transcriptional responses to light in the SCN and critical for photic phase-shifting of circadian behavior.
Collapse
Affiliation(s)
- Pin Xu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stefano Berto
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Byeongha Jeong
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chryshanthi Joseph
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly H Cox
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Tae-Kyung Kim
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Genevieve Konopka
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Aten S, Kalidindi A, Yoon H, Rumbaugh G, Hoyt KR, Obrietan K. SynGAP is expressed in the murine suprachiasmatic nucleus and regulates circadian-gated locomotor activity and light-entrainment capacity. Eur J Neurosci 2020; 53:732-749. [PMID: 33174316 DOI: 10.1111/ejn.15043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master circadian clock. The phasing of the SCN oscillator is locked to the daily solar cycle, and an intracellular signaling cassette from the small GTPase Ras to the p44/42 mitogen-activated protein kinase (ERK/MAPK) pathway is central to this entrainment process. Here, we analyzed the expression and function of SynGAP-a GTPase-activating protein that serves as a negative regulator of Ras signaling-within the murine SCN. Using a combination of immunohistochemical and Western blotting approaches, we show that SynGAP is broadly expressed throughout the SCN. In addition, temporal profiling assays revealed that SynGAP expression is regulated over the circadian cycle, with peak expression occurring during the circadian night. Further, time-of-day-gated expression of SynGAP was not observed in clock arrhythmic BMAL1 null mice, indicating that the daily oscillation in SynGAP is driven by the inherent circadian timing mechanism. We also show that SynGAP phosphorylation at serine 1138-an event that has been found to modulate its functional efficacy-is regulated by clock time and is responsive to photic input. Finally, circadian phenotypic analysis of Syngap1 heterozygous mice revealed enhanced locomotor activity, increased sensitivity to light-evoked clock entrainment, and elevated levels of light-evoked MAPK activity, which is consistent with the role of SynGAP as a negative regulator of MAPK signaling. These findings reveal that SynGAP functions as a modulator of SCN clock entrainment, an effect that may contribute to sleep and circadian abnormalities observed in patients with SYNGAP1 gene mutations.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Anisha Kalidindi
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Hyojung Yoon
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Gavin Rumbaugh
- Scripps Research, Department of Neuroscience, Jupiter, FL, USA.,Scripps Research, Department of Molecular Medicine, Jupiter, FL, USA
| | - Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Bauerfeld C, Talwar H, Zhang K, Liu Y, Samavati L. MKP-1 Modulates Mitochondrial Transcription Factors, Oxidative Phosphorylation, and Glycolysis. Immunohorizons 2020; 4:245-258. [PMID: 32414764 PMCID: PMC7646982 DOI: 10.4049/immunohorizons.2000015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
Sepsis is the leading cause of death in the world. Recent reports suggest that in response to sepsis, metabolism of macrophages switches from oxidative phosphorylation to aerobic glycolysis. MAPK phosphatase (MKP)–1 (also known as DUSP1) localized in the nucleus and preferentially dephosphorylates p38 and JNK. MKP-1 controls the expression of numerous inflammatory genes and transcription factors, thereby regulating innate and adaptive immunity. MKP-1–deficient animals exhibit aberrant metabolic responses following bacterial infections with a markedly increased mortality in response to sepsis. Because metabolic reprogramming modulates immune responses to TLR-4 activation, we investigated the effect of MKP-1 deficiency on mitochondrial electron transport chains involved in oxidative phosphorylation and transcription factors regulating mitochondrial biogenesis. Mitochondrial biogenesis is regulated by three nuclear-encoded proteins, including transcription factor A (TFAM), nuclear respiratory factors (NRF-1), and peroxisome proliferator–activated receptor γ coactivator-1-α (PGC-1α). We show that MKP-1–deficient mice/ macrophages exhibit, at baseline, higher expression of oxidative phosphorylation, TFAM, PGC-1α, and NRF-1 associated with increased respiration and production of reactive oxygen species as compared with wild-type mice. Surprisingly, MKP-1–deficient mice/macrophages responded to Escherichia coli sepsis or LPS with an impaired metabolic switch; despite enhanced glycolysis, a preserved mitochondrial function and biogenesis are exhibited. Furthermore, inhibition of p38 MAPK had no significant effect on TFAM and NRF-1 either in MKP-1–deficient macrophages or in wild-type macrophages. These findings support the conclusion that MKP-1 plays an important role in regulating proteins involved in glycolysis and oxidative phosphorylation and modulates expression of mitochondrial transcription factors.
Collapse
Affiliation(s)
- Christian Bauerfeld
- Division of Critical Care, Department of Pediatrics, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201
| | - Harvinder Talwar
- Division of Pulmonary & Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Lobelia Samavati
- Division of Pulmonary & Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201; .,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201; and
| |
Collapse
|
5
|
Vasoactive intestinal peptide controls the suprachiasmatic circadian clock network via ERK1/2 and DUSP4 signalling. Nat Commun 2019; 10:542. [PMID: 30710088 PMCID: PMC6358603 DOI: 10.1038/s41467-019-08427-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) co-ordinates circadian behaviour and physiology in mammals. Its cell-autonomous circadian oscillations pivot around a well characterised transcriptional/translational feedback loop (TTFL), whilst the SCN circuit as a whole is synchronised to solar time by its retinorecipient cells that express and release vasoactive intestinal peptide (VIP). The cell-autonomous and circuit-level mechanisms whereby VIP synchronises the SCN are poorly understood. We show that SCN slices in organotypic culture demonstrate rapid and sustained circuit-level circadian responses to VIP that are mediated at a cell-autonomous level. This is accompanied by changes across a broad transcriptional network and by significant VIP-directed plasticity in the internal phasing of the cell-autonomous TTFL. Signalling via ERK1/2 and tuning by its negative regulator DUSP4 are critical elements of the VIP-directed circadian re-programming. In summary, we provide detailed mechanistic insight into VIP signal transduction in the SCN at the level of genes, cells and neural circuit. The suprachiasmatic nucleus (SCN) synchronises daily rhythms of behaviour and physiology to the light-dark cycle. Vasoactive intestinal peptide (VIP) is important for mediating SCN entrainment; however, the underlying mechanisms are incompletely understood. Here, the authors show that the effects of VIP on the SCN are mediated by ERK1/2 and DUSP4.
Collapse
|
6
|
Chao HW, Doi M, Fustin JM, Chen H, Murase K, Maeda Y, Hayashi H, Tanaka R, Sugawa M, Mizukuchi N, Yamaguchi Y, Yasunaga JI, Matsuoka M, Sakai M, Matsumoto M, Hamada S, Okamura H. Circadian clock regulates hepatic polyploidy by modulating Mkp1-Erk1/2 signaling pathway. Nat Commun 2017; 8:2238. [PMID: 29269828 PMCID: PMC5740157 DOI: 10.1038/s41467-017-02207-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Liver metabolism undergoes robust circadian oscillations in gene expression and enzymatic activity essential for liver homeostasis, but whether the circadian clock controls homeostatic self-renewal of hepatocytes is unknown. Here we show that hepatocyte polyploidization is markedly accelerated around the central vein, the site of permanent cell self-renewal, in mice deficient in circadian Period genes. In these mice, a massive accumulation of hyperpolyploid mononuclear and binuclear hepatocytes occurs due to impaired mitogen-activated protein kinase phosphatase 1 (Mkp1)-mediated circadian modulation of the extracellular signal-regulated kinase (Erk1/2) activity. Time-lapse imaging of hepatocytes suggests that the reduced activity of Erk1/2 in the midbody during cytokinesis results in abscission failure, leading to polyploidization. Manipulation of Mkp1 phosphatase activity is sufficient to change the ploidy level of hepatocytes. These data provide clear evidence that the Period genes not only orchestrate dynamic changes in metabolic activity, but also regulate homeostatic self-renewal of hepatocytes through Mkp1-Erk1/2 signaling pathway. Circadian clock regulates hepatic gene expression and functions. Here Chao et al. show that alteration of circadian clock genes by Period deletion induces polyploidy in hepatocytes due to impaired regulation of Erk signaling by mitogen-activated protein kinase phosphatase 1.
Collapse
Affiliation(s)
- Hsu-Wen Chao
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Jean-Michel Fustin
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Huatao Chen
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Kimihiko Murase
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.,The Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuki Maeda
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hida Hayashi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Rina Tanaka
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Maho Sugawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Naoki Mizukuchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan.,Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Mashito Sakai
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | | | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
7
|
Karimi J, Mohsenzadeh S. Expression of some Genes in Response to Cadmium Stress in <i>Triticum aestivum</i>. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2017. [DOI: 10.56431/p-5216ai] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heavy metal toxicity has become a universal threat to all life forms, including plants. The main purpose of this study was to identify the gene expression profiling of MAPK, Thioredoxin, and MnSOD genes in wheat seedlings as affected by cadmium treatment. For this experiment, the quantitative Real-Time PCR on RNA isolated from shoots of wheat exposed to CdCl2 at a concentration of 100 mg/L was used. Results showed that in wheat seedling that exposed to cadmium stress for six days of beginning constant cadmium stress, Thioredoxin gene expression showed a large rise compared with the control sample, MnSOD gene expression increased compared with non-treated wheat seedling at the same times, but unlike the Thioredoxin and MnSOD genes, MAPK gene expression has no significant changes. Of course, it is possible that other times of beginning treatments (instead of six days) cause a change in this gene expression.
Collapse
|
8
|
Karimi J, Mohsenzadeh S. Expression of some Genes in Response to Cadmium Stress in Triticum aestivum. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2017. [DOI: 10.18052/www.scipress.com/ilns.63.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heavy metal toxicity has become a universal threat to all life forms, including plants. The main purpose of this study was to identify the gene expression profiling of MAPK, Thioredoxin, and MnSOD genes in wheat seedlings as affected by cadmium treatment. For this experiment, the quantitative Real-Time PCR on RNA isolated from shoots of wheat exposed to CdCl2 at a concentration of 100 mg/L was used. Results showed that in wheat seedling that exposed to cadmium stress for six days of beginning constant cadmium stress, Thioredoxin gene expression showed a large rise compared with the control sample, MnSOD gene expression increased compared with non-treated wheat seedling at the same times, but unlike the Thioredoxin and MnSOD genes, MAPK gene expression has no significant changes. Of course, it is possible that other times of beginning treatments (instead of six days) cause a change in this gene expression.
Collapse
|
9
|
Arango-Lievano M, Peguet C, Catteau M, Parmentier ML, Wu S, Chao MV, Ginsberg SD, Jeanneteau F. Deletion of Neurotrophin Signaling through the Glucocorticoid Receptor Pathway Causes Tau Neuropathology. Sci Rep 2016; 6:37231. [PMID: 27849045 PMCID: PMC5110980 DOI: 10.1038/srep37231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/26/2016] [Indexed: 01/29/2023] Open
Abstract
Glucocorticoid resistance is a risk factor for Alzheimer's disease (AD). Molecular and cellular mechanisms of glucocorticoid resistance in the brain have remained unknown and are potential therapeutic targets. Phosphorylation of glucocorticoid receptors (GR) by brain-derived neurotrophic factor (BDNF) signaling integrates both pathways for remodeling synaptic structure and plasticity. The goal of this study is to test the role of the BDNF-dependent pathway on glucocorticoid signaling in a mouse model of glucocorticoid resistance. We report that deletion of GR phosphorylation at BDNF-responding sites and downstream signaling via the MAPK-phosphatase DUSP1 triggers tau phosphorylation and dendritic spine atrophy in mouse cortex. In human cortex, DUSP1 protein expression correlates with tau phosphorylation, synaptic defects and cognitive decline in subjects diagnosed with AD. These findings provide evidence for a causal role of BDNF-dependent GR signaling in tau neuropathology and indicate that DUSP1 is a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Margarita Arango-Lievano
- Inserm, U1191, Institute of Functional Genomics, F-34000 Montpellier, France
- CNRS, UMR-5203, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Camille Peguet
- Inserm, U1191, Institute of Functional Genomics, F-34000 Montpellier, France
- CNRS, UMR-5203, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Matthias Catteau
- Inserm, U1191, Institute of Functional Genomics, F-34000 Montpellier, France
- CNRS, UMR-5203, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Marie-Laure Parmentier
- Inserm, U1191, Institute of Functional Genomics, F-34000 Montpellier, France
- CNRS, UMR-5203, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Synphen Wu
- Skirball Institute of biomolecular medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Moses V Chao
- Skirball Institute of biomolecular medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Departments of Psychiatry, Neuroscience & Physiology, New York University Langone Medical Center, Orangeburg, NY 10962, USA
| | - Freddy Jeanneteau
- Inserm, U1191, Institute of Functional Genomics, F-34000 Montpellier, France
- CNRS, UMR-5203, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| |
Collapse
|
10
|
Benítez-Burraco A, Lattanzi W, Murphy E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 2016; 10:373. [PMID: 27621700 PMCID: PMC5002430 DOI: 10.3389/fnins.2016.00373] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest.
Collapse
Affiliation(s)
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
11
|
Delayed Effect of the Light Pulse on Phosphorylated ERK1/2 and GSK3β Kinases in the Ventrolateral Suprachiasmatic Nucleus of Rat. J Mol Neurosci 2015; 56:371-6. [PMID: 25894767 DOI: 10.1007/s12031-015-0563-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
The intrinsic period of circadian clock in the suprachiasmatic nucleus is entrained to a 24-h cycle by external cues, mainly light. Previous studies have shown that light applied at night induces robust phosphorylation of extracellular-signal-regulated kinase that is necessary to process the light pulse into the phase shift of the clock phase. In this study, we show the persistent downregulation of phosphorylated extracellular-signal-regulated kinase and transient downregulation of phosphorylated glycogen synthase kinase-3beta in the ventrolateral part of the suprachiasmatic nucleus to photic stimuli starting at 2 h after the beginning of the light pulse. As both kinases are involved in regulation of circadian clockwork, we hypothesize that these changes may contribute to the phase-shifting effect of light at night.
Collapse
|
12
|
Boeckx C, Benítez-Burraco A. Globularity and language-readiness: generating new predictions by expanding the set of genes of interest. Front Psychol 2014; 5:1324. [PMID: 25505436 PMCID: PMC4243498 DOI: 10.3389/fpsyg.2014.01324] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/31/2014] [Indexed: 12/30/2022] Open
Abstract
This study builds on the hypothesis put forth in Boeckx and Benítez-Burraco (2014), according to which the developmental changes expressed at the levels of brain morphology and neural connectivity that resulted in a more globular braincase in our species were crucial to understand the origins of our language-ready brain. Specifically, this paper explores the links between two well-known 'language-related' genes like FOXP2 and ROBO1 implicated in vocal learning and the initial set of genes of interest put forth in Boeckx and Benítez-Burraco (2014), with RUNX2 as focal point. Relying on the existing literature, we uncover potential molecular links that could be of interest to future experimental inquiries into the biological foundations of language and the testing of our initial hypothesis. Our discussion could also be relevant for clinical linguistics and for the interpretation of results from paleogenomics.
Collapse
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA)Barcelona, Spain
- Department of Linguistics, Universitat de BarcelonaBarcelona, Spain
| | | |
Collapse
|
13
|
Angiotensin II triggers expression of the adrenal gland zona glomerulosa-specific 3β-hydroxysteroid dehydrogenase isoenzyme through de novo protein synthesis of the orphan nuclear receptors NGFIB and NURR1. Mol Cell Biol 2014; 34:3880-94. [PMID: 25092869 DOI: 10.1128/mcb.00852-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The 3β-hydroxysteroid dehydrogenase (3β-HSD) is an enzyme crucial for steroid synthesis. Two different 3β-HSD isoforms exist in humans. Classically, HSD3B2 was considered the principal isoform present in the adrenal. However, we recently showed that the alternative isoform, HSD3B1, is expressed specifically within the adrenal zona glomerulosa (ZG), where aldosterone is produced, raising the question of why this isozyme needs to be expressed in this cell type. Here we show that in both human and mouse, expression of the ZG isoform 3β-HSD is rapidly induced upon angiotensin II (AngII) stimulation. AngII is the key peptide hormone regulating the capacity of aldosterone synthesis. Using the human adrenocortical H295R cells as a model system, we show that the ZG isoform HSD3B1 differs from HSD3B2 in the ability to respond to AngII. Mechanistically, the induction of HSD3B1 involves de novo protein synthesis of the nuclear orphan receptors NGFIB and NURR1. The HSD3B1 promoter contains a functional NGFIB/NURR1-responsive element to which these proteins bind in response to AngII. Knockdown of these proteins and overexpression of a dominant negative NGFIB both reduce the AngII responsiveness of HSD3B1. Thus, the AngII-NGFIB/NURR1 pathway controls HSD3B1. Our work reveals HSD3B1 as a new regulatory target of AngII.
Collapse
|
14
|
Adachi K, Goto M, Onoue T, Tsunekawa T, Shibata M, Hagimoto S, Ito Y, Banno R, Suga H, Sugimura Y, Oiso Y, Arima H. Mitogen-activated protein kinase phosphatase 1 negatively regulates MAPK signaling in mouse hypothalamus. Neurosci Lett 2014; 569:49-54. [PMID: 24686178 DOI: 10.1016/j.neulet.2014.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/09/2023]
Abstract
Mitogen-activated protein kinase phosphatase 1 (MKP-1) is shown to negatively regulate MAPK signaling in various peripheral tissues as well as the central nervous system such as cortex, striatum and hippocampus. In this study, we examined whether MKP-1 regulates MAPK signaling in the mouse hypothalamus. Intraperitoneal injection of TNFα significantly increased MKP-1 mRNA expression in paraventricular and arcuate nuclei in the hypothalamus. TNFα treatment induced increases in MKP-1 expression at both mRNA and protein levels, accompanied by the inactivation of MAPK signaling in mouse hypothalamic explants. Inhibition of MKP-1 by its inhibitor or siRNA increased MAPK activity in the explants. Our data indicate that MKP-1 negatively regulates MAPK signaling in the mouse hypothalamus.
Collapse
Affiliation(s)
- Koichi Adachi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Motomitsu Goto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan.
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Miyuki Shibata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Shigeru Hagimoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
15
|
Presence of multiple peripheral circadian oscillators in the tissues controlling voiding function in mice. Exp Mol Med 2014; 46:e81. [PMID: 24603368 PMCID: PMC3972783 DOI: 10.1038/emm.2013.153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/28/2013] [Accepted: 11/08/2013] [Indexed: 01/23/2023] Open
Abstract
Circadian clocks are the endogenous oscillators that harmonize a variety of physiological processes within the body. Although many urinary functions exhibit clear daily or circadian variation in diurnal humans and nocturnal rodents, the precise mechanisms of these variations are as yet unclear. In the present study, we demonstrate that Per2 promoter activity clearly oscillates in neonate and adult bladders cultured ex vivo from Per2::Luc knock-in mice. In subsequent experiments, we show that multiple local oscillators are operating in all the bladder tissues (detrusor, sphincter and urothelim) and the lumbar spinal cord (L4–5) but not in the pontine micturition center or the ventrolateral periaqueductal gray of the brain. Accordingly, the water intake and urine volume exhibited daily and circadian variations in young adult wild-type mice but not in Per1−/−Per2−/− mice, suggesting a functional clock-dependent nature of the micturition rhythm. Particularly in PDK mice, the water intake and urinary excretion displayed an arrhythmic pattern under constant darkness, and the amount of water consumed and excreted significantly increased compared with those of WT mice. These results suggest that local circadian clocks reside in three types of bladder tissue and the lumbar spinal cord and may have important roles in the circadian control of micturition function.
Collapse
|
16
|
Han DH, Lee YJ, Kim K, Kim CJ, Cho S. Modulation of glucocorticoid receptor induction properties by core circadian clock proteins. Mol Cell Endocrinol 2014; 383:170-80. [PMID: 24378737 DOI: 10.1016/j.mce.2013.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 11/28/2022]
Abstract
Glucocorticoid (GC) plays important roles in diverse physiological processes including metabolism and immune functions. While circadian control of GC synthesis and secretion is relatively well appreciated, circadian control of GC action within target tissues remains poorly understood. Here, we demonstrate that CLOCK/BMAL1, the core circadian clock components, reduces maximal GR transactivation (A(max)) as well as efficacy (EC₅₀) by a novel mechanism that requires binding to DNA and transactivation of target genes. Accordingly, we observe that PER1 and CRY1, the primary targets of CLOCK/BMAL1 action, reduce maximal GR transactivation while not affecting the efficacy. Moreover, we observe hyper-activations of GRE-dependent transcription in BMAL1- or PERs-deficient MEFs. In addition, endogenous GC target genes expression negatively correlates with the CLOCK/BMAL1 activity. Considering that GC sensitivity is widely implicated in human health and diseases, these results provide valuable insights into plethora of GC-related physiology and pathology.
Collapse
Affiliation(s)
- Dong-Hee Han
- Department of Neuroscience & Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Yeon-Ju Lee
- Department of Neuroscience & Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Kyungjin Kim
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Sehyung Cho
- Department of Neuroscience & Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Republic of Korea; Department of Physiology, Kyung Hee University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Osterlund CD, Thompson V, Hinds L, Spencer RL. Absence of glucocorticoids augments stress-induced Mkp1 mRNA expression within the hypothalamic-pituitary-adrenal axis. J Endocrinol 2014; 220:1-11. [PMID: 24287620 PMCID: PMC3869093 DOI: 10.1530/joe-13-0365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stress-induced activation of hypothalamic paraventricular nucleus (PVN) corticotropin-releasing hormone (CRH) neurons trigger CRH release and synthesis. Recent findings have suggested that this process depends on the intracellular activation (phosphorylation) of ERK1/2 within CRH neurons. We have recently shown that the presence of glucocorticoids constrains stress-stimulated phosphorylation of PVN ERK1/2. In some peripheral cell types, dephosphorylation of ERK has been shown to be promoted by direct glucocorticoid upregulation of the MAP kinase phosphatase 1 (Mkp1) gene. In this study, we tested the hypothesis that glucocorticoids regulate Mkp1 mRNA expression in the neural forebrain (medial prefrontal cortex, mPFC, and PVN) and endocrine tissue (anterior pituitary) by subjecting young adult male Sprague-Dawley rats to various glucocorticoid manipulations with or without acute psychological stress (restraint). Restraint led to a rapid increase in Mkp1 mRNA within the mPFC, PVN, and anterior pituitary, and this increase did not require glucocorticoid activity. In contrast to glucocorticoid upregulation of Mkp1 gene expression in the peripheral tissues, we found that the absence of glucocorticoids (as a result of adrenalectomy) augmented basal mPFC and stress-induced PVN and anterior pituitary Mkp1 gene expression. Taken together, this study indicates that the presence of glucocorticoids may constrain Mkp1 gene expression in the neural forebrain and endocrine tissues. This possible constraint may be an indirect consequence of the inhibitory influence of glucocorticoids on stress-induced activation of ERK1/2, a known upstream positive regulator of Mkp1 gene transcription.
Collapse
Affiliation(s)
- Chad D Osterlund
- Department of Psychology and Neuroscience, University of Colorado, UCB 345, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
18
|
Jagannath A, Butler R, Godinho SIH, Couch Y, Brown LA, Vasudevan SR, Flanagan KC, Anthony D, Churchill GC, Wood MJA, Steiner G, Ebeling M, Hossbach M, Wettstein JG, Duffield GE, Gatti S, Hankins MW, Foster RG, Peirson SN. The CRTC1-SIK1 pathway regulates entrainment of the circadian clock. Cell 2013; 154:1100-1111. [PMID: 23993098 PMCID: PMC3898689 DOI: 10.1016/j.cell.2013.08.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/24/2013] [Accepted: 07/29/2013] [Indexed: 11/09/2022]
Abstract
Retinal photoreceptors entrain the circadian system to the solar day. This photic resetting involves cAMP response element binding protein (CREB)-mediated upregulation of Per genes within individual cells of the suprachiasmatic nuclei (SCN). Our detailed understanding of this pathway is poor, and it remains unclear why entrainment to a new time zone takes several days. By analyzing the light-regulated transcriptome of the SCN, we have identified a key role for salt inducible kinase 1 (SIK1) and CREB-regulated transcription coactivator 1 (CRTC1) in clock re-setting. An entrainment stimulus causes CRTC1 to coactivate CREB, inducing the expression of Per1 and Sik1. SIK1 then inhibits further shifts of the clock by phosphorylation and deactivation of CRTC1. Knockdown of Sik1 within the SCN results in increased behavioral phase shifts and rapid re-entrainment following experimental jet lag. Thus SIK1 provides negative feedback, acting to suppress the effects of light on the clock. This pathway provides a potential target for the regulation of circadian rhythms. Nocturnal light induces widespread transcriptional changes in the SCN The CRTC1-SIK1 cascade regulates entrainment of the circadian clock Negative feedback by SIK1 limits the effects of light on the clock Homeostatic regulation of entrainment ensures gradual adaptation to a new time zone
Collapse
Affiliation(s)
- Aarti Jagannath
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Rachel Butler
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Sofia I H Godinho
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Yvonne Couch
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Laurence A Brown
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Sridhar R Vasudevan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Kevin C Flanagan
- Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences Center, Notre Dame, IN 46556, USA
| | - Daniel Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Grant C Churchill
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Guido Steiner
- pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Martin Ebeling
- pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Markus Hossbach
- Axolabs GmbH Fritz-Hornschuch-Straße 9, 95326 Kulmbach, Germany
| | - Joseph G Wettstein
- pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Giles E Duffield
- Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences Center, Notre Dame, IN 46556, USA
| | - Silvia Gatti
- pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Mark W Hankins
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Russell G Foster
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
19
|
TSUCHIYA Y, MINAMI I, KADOTANI H, TODO T, NISHIDA E. Circadian clock-controlled diurnal oscillation of Ras/ERK signaling in mouse liver. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2013; 89:59-65. [PMID: 23318682 PMCID: PMC3611956 DOI: 10.2183/pjab.89.59] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/09/2012] [Indexed: 06/01/2023]
Abstract
Accumulating evidence indicates that ERK MAP kinase signaling plays an important role in the regulation of the circadian clock, especially in the clock-resetting mechanism in the suprachiasmatic nucleus (SCN) in mammals. Previous studies have also shown that ERK phosphorylation exhibits diurnal variation in the SCN. However, little is known about circadian regulation of ERK signaling in peripheral tissues. Here we show that the activity of Ras/ERK signaling exhibits circadian rhythms in mouse liver. We demonstrate that Ras activation, MEK phosphorylation, and ERK phosphorylation oscillate in a circadian manner. As the oscillation of ERK phosphorylation is lost in Cry1/Cry2 double-knockout mice, Ras/ERK signaling should be under the control of the circadian clock. Furthermore, expression of MAP kinase phosphatase-1 (Mkp-1) shows diurnal changes in liver. These results indicate that Ras/ERK signaling is strictly regulated by the circadian clock in liver, and suggest that the circadian oscillation of the activities of Ras, MEK, and ERK may regulate diurnal variation of liver function and/or homeostasis.(Communicated by Shigekazu NAGATA, M.J.A.).
Collapse
Affiliation(s)
- Yoshiki TSUCHIYA
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Present address: Department of Neuroscience and Cell Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Itsunari MINAMI
- Unit of Sleep Disorder Research, HMRO, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Present address: Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Hiroshi KADOTANI
- Unit of Sleep Disorder Research, HMRO, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- PRESTO, JST, Saitama, Japan
- Present address: Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi TODO
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eisuke NISHIDA
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Lee YJ, Han DH, Pak YK, Cho SH. Circadian regulation of low density lipoprotein receptor promoter activity by CLOCK/BMAL1, Hes1 and Hes6. Exp Mol Med 2012; 44:642-52. [PMID: 22913986 PMCID: PMC3509181 DOI: 10.3858/emm.2012.44.11.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2012] [Indexed: 12/28/2022] Open
Abstract
Low density lipoprotein receptor (LDLR) plays an important role in the cholesterol homeostasis. We examined the possible circadian regulation of LDLR and mechanism(s) underlying it. In mice, blood glucose and plasma triglyceride, total and high density lipoprotein cholesterol varied distinctively throughout a day. In addition, LDLR mRNA oscillated in the liver in a functional clock-dependent manner. Accordingly, analysis of human LDLR promoter sequence revealed three putative E-boxes, raising the possible regulation of LDLR expression by E-box-binding transcription factors. To test this possibility, human LDLR promoter reporter constructs were transfected into HepG2 cells and the effects of CLOCK/BMAL1, Hes1, and Hes6 expression were analyzed. It was found that positive circadian transcription factor complex CLOCK/BMAL1 upregulated human LDLR promoter activity in a serum-independent manner, while Hes family members Hes1 and Hes6 downregulated it only under serum-depleted conditions. Both effects were mapped to proximal promoter region of human LDLR, where mutation or deletion of well-known sterol regulatory element (SRE) abolished only the repressive effect of Hes1. Interestingly, hes6 and hes1 mRNA oscillated in an anti-phasic manner in the wild-type but not in the per1-/-per2 -/- mouse. Comparative analysis of mouse, rat and human hes6 genes revealed that three E-boxes are conserved among three species. Transfection and site-directed mutagenesis studies with hes6 reporter constructs confirmed that the third E-box in the exon IV is functionally induced by CLOCK/BMAL1. Taken together, these results suggest that LDLR expression is under circadian control involving CLOCK/BMAL1 and Hes family members Hes1 and Hes6.
Collapse
Affiliation(s)
- Yeon Ju Lee
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | |
Collapse
|
21
|
Yoon JA, Han DH, Noh JY, Kim MH, Son GH, Kim K, Kim CJ, Pak YK, Cho S. Meal time shift disturbs circadian rhythmicity along with metabolic and behavioral alterations in mice. PLoS One 2012; 7:e44053. [PMID: 22952870 PMCID: PMC3428308 DOI: 10.1371/journal.pone.0044053] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
In modern society, growing numbers of people are engaged in various forms of shift works or trans-meridian travels. Such circadian misalignment is known to disturb endogenous diurnal rhythms, which may lead to harmful physiological consequences including metabolic syndrome, obesity, cancer, cardiovascular disorders, and gastric disorders as well as other physical and mental disorders. However, the precise mechanism(s) underlying these changes are yet unclear. The present work, therefore examined the effects of 6 h advance or delay of usual meal time on diurnal rhythmicities in home cage activity (HCA), body temperature (BT), blood metabolic markers, glucose homeostasis, and expression of genes that are involved in cholesterol homeostasis by feeding young adult male mice in a time-restrictive manner. Delay of meal time caused locomotive hyperactivity in a significant portion (42%) of subjects, while 6 h advance caused a torpor-like symptom during the late scotophase. Accordingly, daily rhythms of blood glucose and triglyceride were differentially affected by time-restrictive feeding regimen with concurrent metabolic alterations. Along with these physiological changes, time-restrictive feeding also influenced the circadian expression patterns of low density lipoprotein receptor (LDLR) as well as most LDLR regulatory factors. Strikingly, chronic advance of meal time induced insulin resistance, while chronic delay significantly elevated blood glucose levels. Taken together, our findings indicate that persistent shifts in usual meal time impact the diurnal rhythms of carbohydrate and lipid metabolisms in addition to HCA and BT, thereby posing critical implications for the health and diseases of shift workers.
Collapse
Affiliation(s)
- Ji-Ae Yoon
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
| | - Dong-Hee Han
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
| | - Jong-Yun Noh
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
| | - Mi-Hee Kim
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
| | - Gi Hoon Son
- Department of Legal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyungjin Kim
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Chang-Ju Kim
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Youngmi Kim Pak
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Sehyung Cho
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
22
|
Comalada M, Lloberas J, Celada A. MKP-1: A critical phosphatase in the biology of macrophages controlling the switch between proliferation and activation. Eur J Immunol 2012; 42:1938-48. [DOI: 10.1002/eji.201242441] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mònica Comalada
- Macrophage Biology Group; Institute for Research in Biomedicine (IRB Barcelona); Barcelona; Spain
| | | | | |
Collapse
|
23
|
Regulation of MAPK/ERK signaling and photic entrainment of the suprachiasmatic nucleus circadian clock by Raf kinase inhibitor protein. J Neurosci 2012; 32:4867-77. [PMID: 22492043 DOI: 10.1523/jneurosci.5650-11.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of the MAPK/ERK signaling cascade in the suprachiasmatic nucleus (SCN) is a key event that couples light to circadian clock entrainment. However, we do not fully understand the mechanisms that shape the properties of MAPK/ERK signaling in the SCN, and how these mechanisms may influence overt circadian rhythms. Here we show that Raf kinase inhibitor protein (RKIP) controls the kinetics of light-induced MAPK/ERK activity in the SCN and photic entrainment of behavioral rhythms. Light triggers robust phosphorylation of RKIP in the murine SCN and dissociation of RKIP and c-Raf. Overexpression of a nonphosphorylatable form of RKIP in the SCN of transgenic mice blocks light-induced ERK1/2 activation in the SCN and severely dampens light-induced phase delays in behavioral rhythms. Conversely, in RKIP knock-out (RKIP(-/-)) mice, light-induced ERK1/2 activity in the SCN is prolonged in the early and late subjective night, resulting in augmentation of the phase-delaying and -advancing effects of light. Reentrainment to an advancing light cycle was also accelerated in RKIP(-/-) mice. In relation to the molecular clockwork, genetic deletion of RKIP potentiated light-evoked PER1 and PER2 protein expression in the SCN in the early night. Additionally, RKIP(-/-) mice displayed enhanced transcriptional activation of mPeriod1 and the immediate early gene c-Fos in the SCN in response to a phase-delaying light pulse. Collectively, our data reveal an important role of RKIP in the regulation of MAPK/ERK signaling in the SCN and photic entrainment of the SCN clock.
Collapse
|
24
|
Zhao Y, Zhang Y, Zhou M, Wang S, Hua Z, Zhang J. Loss ofmPer2increases plasma insulin levels by enhanced glucose-stimulated insulin secretion and impaired insulin clearance in mice. FEBS Lett 2012; 586:1306-11. [DOI: 10.1016/j.febslet.2012.03.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 11/25/2022]
|
25
|
Zuo X, Liu S, Lin Q, Li N, Chan P, Cai Y. Circadian E-boxes and surrounding CpG islands are free from methylation throughout the day. BIOL RHYTHM RES 2012. [DOI: 10.1080/09291016.2010.548924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Sauermann R, Schmidt WM, Krebs M, Brunner M, Müller M. Ramipril modulates circadian gene expression in skeletal muscle. Pharmacogenet Genomics 2012; 21:751-9. [PMID: 21881539 DOI: 10.1097/fpc.0b013e32834a8621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Treatment with angiotensin converting enzyme (ACE)-inhibitors favorably affects glucose metabolism and the development of diabetes mellitus by largely elusive mechanisms. To identify these mechanisms, we studied the effect of ACE-inhibition on gene expression in skeletal muscle, a primary target tissue for insulin in glucose homeostasis. METHODS A subject-blinded and analyst-blinded, placebo-controlled study was conducted in nine healthy men. Two consecutive muscle biopsies were conducted before and 9 h after a single dose of either 10-mg ramipril (n=6) or placebo (n=3), (randomly allocated). Muscle ribonucleic acid was subjected to transcriptome profiling. RESULTS In both ramipril-treated or placebo-treated individuals, the majority of genes with differential expression between the two time points belonged to the family of diurnally regulated genes, such as the NR1D1 and NR1D2 genes (nuclear receptor subfamily 1, group D, members 1 and 2) or members of the period homolog family (PER1-3). Ramipril significantly modulated the expression of other diurnally regulated genes, such as aryl hydrocarbon receptor nuclear translocator-like (ARNTL), encoding aryl hydrocarbon receptor nuclear translocator-like, a core component of the circadian clock (P=0.02). Concomitant attenuation of NR1D1 downregulation (-2.4-fold compared with -4.1-fold in placebo; P=0.04), a transcriptional repressor of ARNTL, supported the view that ramipril might modulate glucose homeostasis pathways involving the NR1D1 ARNTL axis. CONCLUSION As circadian rhythms are deranged in patients who are diabetic, modulated expression of circadian clock genes by ramipril could explain the favorable metabolic effects of therapeutic ACE-inhibition.
Collapse
Affiliation(s)
- Robert Sauermann
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
27
|
Jeanneteau F, Deinhardt K. Fine-tuning MAPK signaling in the brain: The role of MKP-1. Commun Integr Biol 2011; 4:281-3. [PMID: 21980558 DOI: 10.4161/cib.4.3.14766] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 12/30/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling influences a variety of neuronal properties, including structural characteristics such as spine density, and physiological features like long-term potentiation. Spatiotemporal control of MAPK signaling is crucial to generate specific changes in neuronal physiology. However, while many studies have concentrated on the activation of MAPK signaling by trophic factors such as BDNF and neuronal activity, the mechanisms that lead to its termination have not been well described. Two recent reports begin to address this question by focusing on the role of the MAPK phosphatase, MKP-1, in neuronal function. The first study provides a cellular mechanism underlying MKP-1 action in the brain.1 The second study describes potential roles of MKP-1 during stress and major depression.2.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Molecular Neurobiology Program; Skirball Institute of Biomolecular Medicine; New York University Langone School of Medicine; New York, NY USA
| | | |
Collapse
|
28
|
Circadian rhythms in urinary functions: possible roles of circadian clocks? Int Neurourol J 2011; 15:64-73. [PMID: 21811695 PMCID: PMC3138846 DOI: 10.5213/inj.2011.15.2.64] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/20/2011] [Indexed: 12/12/2022] Open
Abstract
Circadian clocks are the endogenous oscillators that harmonize a variety of physiological processes within the body. Although many urinary functions exhibit clear daily or circadian variation in diurnal humans and nocturnal rodents, the precise mechanisms of these variations are as yet unclear. In this review, we briefly introduce circadian clocks and their organization in mammals. We then summarize known daily or circadian variations in urinary function. Importantly, recent findings by others as well as results obtained by us suggest an active role of circadian clock genes in various urinary functions. Finally, we discuss possible research avenues for the circadian control of urinary function.
Collapse
|
29
|
Kinases and phosphatases in the mammalian circadian clock. FEBS Lett 2011; 585:1393-9. [DOI: 10.1016/j.febslet.2011.02.038] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 12/28/2022]
|
30
|
Jeanneteau F, Deinhardt K, Miyoshi G, Bennett AM, Chao MV. The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching. Nat Neurosci 2010; 13:1373-9. [PMID: 20935641 PMCID: PMC2971689 DOI: 10.1038/nn.2655] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/08/2010] [Indexed: 12/20/2022]
Abstract
The refinement of neural circuits during development depends upon a dynamic process of branching of axons and dendrites that leads to synapse formation and connectivity. The neurotrophin BDNF plays an essential role in the outgrowth and activity-dependent remodeling of axonal arbors in vivo. However, the mechanisms that translate extracellular signals into axonal branch formation are incompletely understood. Here we report that the MAP kinase phosphatase-1 (MKP-1) controls axon branching. MKP-1 expression induced by BDNF signaling exerts spatio-temporal deactivation of JNK, which negatively regulates the phosphorylation of JNK substrates that impinge upon microtubule destabilization. Indeed, neurons from mkp-1 null mice were unable to produce axon branches in response to BDNF. Our results indicate a heretofore-unknown signaling mechanism to regulate axonal branching and provide a framework for studying the molecular mechanism of innervation and axonal remodeling under normal and pathological conditions.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York, New York, USA.
| | | | | | | | | |
Collapse
|
31
|
Horita H, Wada K, Rivas MV, Hara E, Jarvis ED. The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons. J Comp Neurol 2010; 518:2873-901. [PMID: 20506480 DOI: 10.1002/cne.22370] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many immediate early genes (IEGs) have activity-dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic-recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen-activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic-recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor-associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic-recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus-induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons.
Collapse
Affiliation(s)
- Haruhito Horita
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
32
|
Ralph JA, Ahmed AU, Santos LL, Clark AR, McMorrow J, Murphy EP, Morand EF. Identification of NURR1 as a mediator of MIF signaling during chronic arthritis: effects on glucocorticoid-induced MKP1. THE AMERICAN JOURNAL OF PATHOLOGY 2010. [PMID: 20829434 DOI: 10.2353/ajpath.2010.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Elucidation of factors regulating glucocorticoid (GC) sensitivity is required for the development of "steroid-sparing" therapies for chronic inflammatory diseases, including rheumatoid arthritis (RA). Accumulating evidence suggests that macrophage migration inhibitory factor (MIF) counterregulates the GC-induction of anti-inflammatory mediators, including mitogen-activated protein kinase phosphatase 1 (MKP1), a critical mitogen-activated protein kinase signaling inhibitor. This observation has yet to be extended to human disease; the molecular mechanisms remain unknown. We investigated NURR1, a GC-responsive transcription factor overexpressed in RA, as a MIF signaling target. We reveal abrogation by recombinant MIF (rMIF) of GC-induced MKP1 expression in RA fibroblast-like synoviocytes (FLS). rMIF enhanced NURR1 expression, artificial NBRE (orphan receptor DNA-binding site) reporter transactivation, and reversed GC-inhibition of NURR1. NURR1 expression was reduced during experimental arthritis in MIF-/- synovium, and silencing MIF reduced RA FLS NURR1 mRNA. Consistent with NBRE identification on the MKP1 gene, MKP1 mRNA was reduced in FLS that ectopically express NURR1, and silencing NURR1 enhanced MKP1 mRNA in RA FLS. rMIF enhanced NBRE binding on the MKP1 gene, and the absence of the NBRE prevented NURR1-repressive effects on basal and GC-induced MKP1 transactivation. This study defines NURR1 as a novel MIF target in chronic inflammation and demonstrates a role for NURR1 in regulating the anti-inflammatory mediator, MKP1. We propose a MIF-NURR1 signaling axis as a regulator of the GC sensitivity of MKP1.
Collapse
Affiliation(s)
- Jennifer A Ralph
- Centre for Inflammatory Diseases, Monash University, Department of Medicine, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
Ralph JA, Ahmed AU, Santos LL, Clark AR, McMorrow J, Murphy EP, Morand EF. Identification of NURR1 as a mediator of MIF signaling during chronic arthritis: effects on glucocorticoid-induced MKP1. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2366-78. [PMID: 20829434 DOI: 10.2353/ajpath.2010.091204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Elucidation of factors regulating glucocorticoid (GC) sensitivity is required for the development of "steroid-sparing" therapies for chronic inflammatory diseases, including rheumatoid arthritis (RA). Accumulating evidence suggests that macrophage migration inhibitory factor (MIF) counterregulates the GC-induction of anti-inflammatory mediators, including mitogen-activated protein kinase phosphatase 1 (MKP1), a critical mitogen-activated protein kinase signaling inhibitor. This observation has yet to be extended to human disease; the molecular mechanisms remain unknown. We investigated NURR1, a GC-responsive transcription factor overexpressed in RA, as a MIF signaling target. We reveal abrogation by recombinant MIF (rMIF) of GC-induced MKP1 expression in RA fibroblast-like synoviocytes (FLS). rMIF enhanced NURR1 expression, artificial NBRE (orphan receptor DNA-binding site) reporter transactivation, and reversed GC-inhibition of NURR1. NURR1 expression was reduced during experimental arthritis in MIF-/- synovium, and silencing MIF reduced RA FLS NURR1 mRNA. Consistent with NBRE identification on the MKP1 gene, MKP1 mRNA was reduced in FLS that ectopically express NURR1, and silencing NURR1 enhanced MKP1 mRNA in RA FLS. rMIF enhanced NBRE binding on the MKP1 gene, and the absence of the NBRE prevented NURR1-repressive effects on basal and GC-induced MKP1 transactivation. This study defines NURR1 as a novel MIF target in chronic inflammation and demonstrates a role for NURR1 in regulating the anti-inflammatory mediator, MKP1. We propose a MIF-NURR1 signaling axis as a regulator of the GC sensitivity of MKP1.
Collapse
Affiliation(s)
- Jennifer A Ralph
- Centre for Inflammatory Diseases, Monash University, Department of Medicine, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Mammalian circadian rhythms are controlled by endogenous biological oscillators, including a master clock located in the hypothalamic suprachiasmatic nuclei (SCN). Since the period of this oscillation is of approximately 24 h, to keep synchrony with the environment, circadian rhythms need to be entrained daily by means of Zeitgeber ("time giver") signals, such as the light-dark cycle. Recent advances in the neurophysiology and molecular biology of circadian rhythmicity allow a better understanding of synchronization. In this review we cover several aspects of the mechanisms for photic entrainment of mammalian circadian rhythms, including retinal sensitivity to light by means of novel photopigments as well as circadian variations in the retina that contribute to the regulation of retinal physiology. Downstream from the retina, we examine retinohypothalamic communication through neurotransmitter (glutamate, aspartate, pituitary adenylate cyclase-activating polypeptide) interaction with SCN receptors and the resulting signal transduction pathways in suprachiasmatic neurons, as well as putative neuron-glia interactions. Finally, we describe and analyze clock gene expression and its importance in entrainment mechanisms, as well as circadian disorders or retinal diseases related to entrainment deficits, including experimental and clinical treatments.
Collapse
Affiliation(s)
- Diego A Golombek
- Laboratory of Chronobiology, Department of Science and Technology, University of Quilmes/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Quilmes, Argentina.
| | | |
Collapse
|
35
|
Abstract
In mammals, many physiological processes present diurnal variations, and most of these rhythms persist even in absence of environmental timing cues. These endogenous circadian rhythms are generated by intracellular timing mechanisms termed circadian clocks. In mammals, the master clock is located in the suprachiasmatic nuclei (SCN), but other brain regions and most peripheral tissues contain circadian clocks. These clocks are responsive to environmental cues, in particular light/dark and feeding/fasting cycles. In the last few years, tissue-specific knock-out and transgenic mouse models have helped to define the physiological roles of specific clocks. Recent reports indicate that the clock-physiology connection is bi-directional, and physiological cues, in particular the energetic status of the cell, can feed into the clockwork. This effect was discovered unexpectedly in molecular analyses of clock protein modifications. Beyond the positive and negative transcription/translation feedback loops of the molecular oscillator lies another level of complexity. Post-translational modifications of clock proteins are both critical for the timing of the clock feedback mechanism and to provide regulatory fine-tuning. This review summarizes recent advances in our understanding of the roles of peripheral clocks and of post-translational modifications occurring on clock proteins. These two matters are at the intersection of physiology, metabolism, and the circadian system.
Collapse
Affiliation(s)
- David Duguay
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, 6875 LaSalle Blvd., Montreal, QC, Canada
| | | |
Collapse
|
36
|
Antle MC, Smith VM, Sterniczuk R, Yamakawa GR, Rakai BD. Physiological responses of the circadian clock to acute light exposure at night. Rev Endocr Metab Disord 2009; 10:279-91. [PMID: 19768549 DOI: 10.1007/s11154-009-9116-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Circadian rhythms in physiological, endocrine and metabolic functioning are controlled by a neural clock located in the suprachiasmatic nucleus (SCN). This structure is endogenously rhythmic and the phase of this rhythm can be reset by light information from the eye. A key feature of the SCN is that while it is a small structure containing on the order of about 20,000 cells, it is amazingly heterogeneous. It is likely that anatomical heterogeneity reflects an underlying functional heterogeneity. In this review, we examine the physiological responses of cells in the SCN to light stimuli that reset the phase of the circadian clock, highlighting where possible the spatial pattern of such responses. Increases in intracellular calcium are an important signal in response to light, and this increase triggers many biochemical cascades that mediate responses to light. Furthermore, only some cells in the SCN are actually endogenously rhythmic, and these cells likely do not receive strong direct input from the retina. Therefore, this review also considers how light information is conveyed from the retinorecipient cells to the endogenously rhythmic cells that track circadian phase. A number of neuropeptides, including vasoactive intestinal polypeptide, gastrin-releasing peptide and substance P, may be particularly important in relaying such signals, but other neurochemicals such as GABA and nitric oxide may participate as well. A thorough understanding of the intracellular and intercellular responses to light, as well as the spatial arrangements of such responses may help identify important pharmacological targets for therapeutic interventions to treat sleep and circadian disorders.
Collapse
Affiliation(s)
- Michael C Antle
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | | | | | | | | |
Collapse
|
37
|
Ospeck MC, Coffey B, Freeman D. Light-dark cycle memory in the mammalian suprachiasmatic nucleus. Biophys J 2009; 97:1513-24. [PMID: 19751655 DOI: 10.1016/j.bpj.2009.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 05/18/2009] [Accepted: 06/08/2009] [Indexed: 11/15/2022] Open
Abstract
The mammalian circadian oscillator, or suprachiasmatic nucleus (SCN), contains several thousand clock neurons in its ventrolateral division, many of which are spontaneous oscillators with period lengths that range from 22 to 28 h. In complete darkness, this network synchronizes through the exchange of action potentials that release vasoactive intestinal polypeptide, striking a compromise, free-running period close to 24 h long. We entrained Siberian hamsters to various light-dark cycles and then tracked their activity into constant darkness to show that they retain a memory of the previous light-dark cycle before returning to their own free-running period. Employing Leloup-Goldbeter mammalian clock neurons we model the ventrolateral SCN network and show that light acting weakly upon a strongly rhythmic vasoactive intestinal polypeptide oscillation can explain the observed light-dark cycle memory. In addition, light is known to initiate a mitogen-activated protein kinase signaling cascade that induces transcription of both per and mkp1 phosphatase. We show that the ensuing phosphatase-kinase interaction can account for the dead zone in the mammalian phase response curve and hypothesize that the SCN behaves like a lock-in amplifier to entrain to the light edges of the circadian day.
Collapse
Affiliation(s)
- Mark C Ospeck
- Physics Department, University of Memphis, Memphis, Tennessee, USA.
| | | | | |
Collapse
|
38
|
Porterfield VM, Mintz EM. Temporal patterns of light-induced immediate-early gene expression in the suprachiasmatic nucleus. Neurosci Lett 2009; 463:70-3. [PMID: 19638298 DOI: 10.1016/j.neulet.2009.07.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/06/2009] [Accepted: 07/23/2009] [Indexed: 12/11/2022]
Abstract
Exposing an animal to light during the normal dark period of its daily cycle induces shifts in the animal's circadian rhythm of activity. These shifts are preceded by an increase in the expression of an array of immediate early genes in the suprachiasmatic nucleus, the location of the primary circadian clock in the brain. For most of these genes, little is known about the physiological significance of their expression in the SCN. In order to characterize the expression of these genes, laser capture microscopy, and real-time PCR were used to measure the time course of expression of immediate-early genes in the SCN after a 30-min light pulse during the early portion of the night. Most of the measured genes show peak expression shortly after the end of the stimulus and then decline back to baseline after 2h. However, a few genes, including Rrad, Egr3, and Jun, show a more sustained elevation in expression. Analysis of the function of light-induced genes in other cellular systems suggests a possible role for these genes in reducing the SCN to subsequent photic stimuli and in protecting the SCN from excitotoxicity.
Collapse
|
39
|
Ralph JA, Morand EF. MAPK phosphatases as novel targets for rheumatoid arthritis. Expert Opin Ther Targets 2008; 12:795-808. [PMID: 18554149 DOI: 10.1517/14728222.12.7.795] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) represents a challenge for therapeutic interventions due to complex inflammatory signalling pathways underlying its pathogenesis. The MAPK signalling network, a major effector limb of the inflammatory lesion, is an attractive therapeutic target. MAPK phosphatases (MKPs), endogenous negative regulators of MAPK signalling, have received increasing recognition as modulators of inflammatory and immune responses, and hence as a potential therapeutic avenue for RA. OBJECTIVE To present the rationale for therapeutically targeting MAPK signalling and explore the case for addressing MKP1 as a novel therapeutic strategy for RA. METHODS We summarise literature describing the importance of MAPK signalling in RA and review reports describing the roles of MKPs in modulating innate and adaptive immune responses. Finally we expand on the role of MKP1 in RA pathogenesis and explore data defining MKP1 as a mediator of glucocorticoid action. CONCLUSION MKP1 constitutes an exciting, novel potential therapeutic target for RA.
Collapse
Affiliation(s)
- Jennifer A Ralph
- Monash University, Department of Medicine, Centre for Inflammatory Diseases, Monash Medical Centre, 246 Clayton Road, Clayton, Melbourne 3168, Australia
| | | |
Collapse
|
40
|
Photic Regulation of Map Kinase Phosphatases MKP1/2 and MKP3 in the Hamster Suprachiasmatic Nuclei. J Mol Neurosci 2007; 34:187-92. [DOI: 10.1007/s12031-007-9021-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
|
41
|
Porterfield VM, Piontkivska H, Mintz EM. Identification of novel light-induced genes in the suprachiasmatic nucleus. BMC Neurosci 2007; 8:98. [PMID: 18021443 PMCID: PMC2216081 DOI: 10.1186/1471-2202-8-98] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 11/19/2007] [Indexed: 11/16/2022] Open
Abstract
Background The transmission of information about the photic environment to the circadian clock involves a complex array of neurotransmitters, receptors, and second messenger systems. Exposure of an animal to light during the subjective night initiates rapid transcription of a number of immediate-early genes in the suprachiasmatic nucleus of the hypothalamus. Some of these genes have known roles in entraining the circadian clock, while others have unknown functions. Using laser capture microscopy, microarray analysis, and quantitative real-time PCR, we performed a comprehensive screen for changes in gene expression immediately following a 30 minute light pulse in suprachiasmatic nucleus of mice. Results The results of the microarray screen successfully identified previously known light-induced genes as well as several novel genes that may be important in the circadian clock. Newly identified light-induced genes include early growth response 2, proviral integration site 3, growth-arrest and DNA-damage-inducible 45 beta, and TCDD-inducible poly(ADP-ribose) polymerase. Comparative analysis of promoter sequences revealed the presence of evolutionarily conserved CRE and associated TATA box elements in most of the light-induced genes, while other core clock genes generally lack this combination of promoter elements. Conclusion The photic signalling cascade in the suprachiasmatic nucleus activates an array of immediate-early genes, most of which have unknown functions in the circadian clock. Detected evolutionary conservation of CRE and TATA box elements in promoters of light-induced genes suggest that the functional role of these elements has likely remained the same over evolutionary time across mammalian orders.
Collapse
|