1
|
Sivan SS, Bonstein I, Marmor YN, Pelled G, Gazit Z, Amit M. Encapsulation of Human-Bone-Marrow-Derived Mesenchymal Stem Cells in Small Alginate Beads Using One-Step Emulsification by Internal Gelation: In Vitro, and In Vivo Evaluation in Degenerate Intervertebral Disc Model. Pharmaceutics 2022; 14:pharmaceutics14061179. [PMID: 35745752 PMCID: PMC9228465 DOI: 10.3390/pharmaceutics14061179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/21/2022] Open
Abstract
Cell microencapsulation in gel beads contributes to many biomedical processes and pharmaceutical applications. Small beads (<300 µm) offer distinct advantages, mainly due to improved mass transfer and mechanical strength. Here, we describe, for the first time, the encapsulation of human-bone-marrow-derived mesenchymal stem cells (hBM-MSCs) in small-sized microspheres, using one-step emulsification by internal gelation. Small (127−257 µm) high-mannuronic-alginate microspheres were prepared at high agitation rates (800−1000 rpm), enabling control over the bead size and shape. The average viability of encapsulated hBM-MSCs after 2 weeks was 81 ± 4.3% for the higher agitation rates. hBM-MSC-loaded microspheres seeded within a glycosaminoglycan (GAG) analogue, which was previously proposed as a mechanically equivalent implant for degenerate discs, kept their viability, sphericity, and integrity for at least 6 weeks. A preliminary in vivo study of hBM-MSC-loaded microspheres implanted (via a GAG-analogue hydrogel) in a rat injured intervertebral disc model demonstrated long-lasting viability and biocompatibility for at least 8 weeks post-implantation. The proposed method offers an effective and reproducible way to maintain long-lasting viability in vitro and in vivo. This approach not only utilizes the benefits of a simple, mild, and scalable method, but also allows for the easy control of the bead size and shape by the agitation rate, which, overall, makes it a very attractive platform for regenerative-medicine applications.
Collapse
Affiliation(s)
- Sarit S. Sivan
- Department of Biotechnology Engineering, Braude College of Engineering, P.O. Box 78, Karmiel 2161002, Israel; (I.B.); (M.A.)
- Correspondence: ; Tel.: +972-4-990-1855
| | - Iris Bonstein
- Department of Biotechnology Engineering, Braude College of Engineering, P.O. Box 78, Karmiel 2161002, Israel; (I.B.); (M.A.)
| | - Yariv N. Marmor
- Department of Industrial Engineering and Management, Braude College of Engineering, P.O. Box 78, Karmiel 2161002, Israel;
| | - Gadi Pelled
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel; (G.P.); (Z.G.)
| | - Zulma Gazit
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel; (G.P.); (Z.G.)
| | - Michal Amit
- Department of Biotechnology Engineering, Braude College of Engineering, P.O. Box 78, Karmiel 2161002, Israel; (I.B.); (M.A.)
| |
Collapse
|
2
|
Mridha AR, Dargaville TR, Dalton PD, Carroll L, Morris MB, Vaithilingam V, Tuch BE. Prevascularized Retrievable Hybrid Implant to Enhance Function of Subcutaneous Encapsulated Islets. Tissue Eng Part A 2020; 28:212-224. [PMID: 33081600 DOI: 10.1089/ten.tea.2020.0179] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Replacement of pancreatic β-cells is one of the most promising treatment options for treatment of type 1 diabetes (T1D), even though, toxic immunosuppressive drugs are required. In this study, we aim to deliver allogeneic β-cell therapies without antirejection drugs using a bioengineered hybrid device that contains microencapsulated β-cells inside 3D polycaprolactone (PCL) scaffolds printed using melt electrospin writing (MEW). Mouse β-cell (MIN6) pseudoislets and QS mouse islets are encapsulated in alginate microcapsules, without affecting viability and insulin secretion. Microencapsulated MIN6 cells are then seeded within 3D MEW scaffolds, and these hybrid devices implanted subcutaneously in streptozotocin-treated diabetic NOD/SCID and BALB/c mice. Similar to NOD/SCID mice, blood glucose levels (BGL) are lowered from 30.1 to 4.8 mM in 25-41 days in BALB/c. In contrast, microencapsulated islets placed in prevascularized MEW scaffold 3 weeks after implantation in BALB/c mice normalize BGL (<12 mM) more rapidly, lasting for 60-105 days. The lowering of glucose levels is confirmed by an intraperitoneal glucose tolerance test. Vascularity within the implanted grafts is demonstrated and quantified by 3D-doppler ultrasound, with a linear increase over 4 weeks (r = 0.65). Examination of the device at 5 weeks shows inflammatory infiltrates of neutrophils, macrophages, and B-lymphocytes on the MEW scaffolds, but not on microcapsules, which have infrequent profibrotic walling. In conclusion, we demonstrate the fabrication of an implantable and retrievable hybrid device for vascularization and enhancing the survival of encapsulated islets implanted subcutaneously in an allotransplantation setting without immunosuppression. This study provides proof-of-concept for the application of such devices for human use, but, will require modifications to allow translation to people with T1D. Impact statement The retrievable 3D printed PCL scaffold we have produced promotes vascularization when implanted subcutaneously and allows seeded microencapsulated insulin-producing cells to normalize blood glucose of diabetic mice for at least 2 months, without the need for antirejection drugs to be administered. The scaffold is scalable for possible human use, but will require modification to ensure that normalization of blood glucose levels can be maintained long term.
Collapse
Affiliation(s)
- Auvro R Mridha
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Australian Foundation for Diabetes Research, Sydney, Australia.,Bosch Institute, The University of Sydney, Sydney, Australia
| | - Tim R Dargaville
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Paul D Dalton
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Luke Carroll
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Australian Foundation for Diabetes Research, Sydney, Australia.,Now Based at NHMRC Clinical Trials Centre, The University of Sydney, Sydney, Australia
| | - Michael B Morris
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Bosch Institute, The University of Sydney, Sydney, Australia
| | - Vijayaganapathy Vaithilingam
- Australian Foundation for Diabetes Research, Sydney, Australia.,Cell Biology Inspired Tissue Engineering (CBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Bernard E Tuch
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Australian Foundation for Diabetes Research, Sydney, Australia
| |
Collapse
|
3
|
Espona-Noguera A, Ciriza J, Cañibano-Hernández A, Orive G, Hernández RM, Saenz del Burgo L, Pedraz JL. Review of Advanced Hydrogel-Based Cell Encapsulation Systems for Insulin Delivery in Type 1 Diabetes Mellitus. Pharmaceutics 2019; 11:E597. [PMID: 31726670 PMCID: PMC6920807 DOI: 10.3390/pharmaceutics11110597] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
: Type 1 Diabetes Mellitus (T1DM) is characterized by the autoimmune destruction of β-cells in the pancreatic islets. In this regard, islet transplantation aims for the replacement of the damaged β-cells through minimally invasive surgical procedures, thereby being the most suitable strategy to cure T1DM. Unfortunately, this procedure still has limitations for its widespread clinical application, including the need for long-term immunosuppression, the lack of pancreas donors and the loss of a large percentage of islets after transplantation. To overcome the aforementioned issues, islets can be encapsulated within hydrogel-like biomaterials to diminish the loss of islets, to protect the islets resulting in a reduction or elimination of immunosuppression and to enable the use of other insulin-producing cell sources. This review aims to provide an update on the different hydrogel-based encapsulation strategies of insulin-producing cells, highlighting the advantages and drawbacks for a successful clinical application.
Collapse
Affiliation(s)
- Albert Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Alberto Cañibano-Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01006 Vitoria, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Rosa María Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Laura Saenz del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
4
|
Eudragit ®-based microcapsules of probucol with a gut-bacterial processed secondary bile acid. Ther Deliv 2019; 9:811-821. [PMID: 30444461 DOI: 10.4155/tde-2018-0036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM Deoxycholic acid (DCA) has improved gliclazide oral absorption, while Eudragit® (ED) polymers have improved formulation stability of antidiabetic drugs. The aim of the study is to test if DCA and ED encapsulation will optimize the release and stability of the potential antidiabetic drug probucol (PB). MATERIALS & METHODS The PB formulations were prepared using ED polymers and DCA, and formulations were analyzed for their rheological and biological properties. RESULTS Rheological properties and size distribution were similar among all groups. β-cell survival and biological activities were best with NM30D microcapsules. The inflammatory profile and oxidative stress effects of microcapsules remained similar among all groups. CONCLUSION ED NM30D and DCA incorporation can exert positive and stabilizing effects on PB oral microcapsules.
Collapse
|
5
|
Park H, Haque MR, Park JB, Lee KW, Lee S, Kwon Y, Lee HS, Kim GS, Shin DY, Jin SM, Kim JH, Kang HJ, Byun Y, Kim SJ. Polymeric nano-shielded islets with heparin-polyethylene glycol in a non-human primate model. Biomaterials 2018; 171:164-177. [PMID: 29698867 DOI: 10.1016/j.biomaterials.2018.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 10/17/2022]
Abstract
Intraportal pancreatic islet transplantation incurs huge cell losses during its early stages due to instant blood-mediated inflammatory reactions (IBMIRs), which may also drive regulation of the adaptive immune system. Therefore, a method that evades IBMIR will improve clinical islet transplantation. We used a layer-by-layer approach to shield non-human primate (NHP) islets with polyethylene glycol (nano-shielded islets, NSIs) and polyethylene glycol plus heparin (heparin nano-shielded islets; HNSIs). Islets ranging from 10,000 to 20,000 IEQ/kg body weight were transplanted into 19 cynomolgus monkeys (n = 4, control; n = 5, NSI; and n = 10, HNSI). The mean C-peptide positive graft survival times were 68.5, 64 and 108 days for the control, NSI and HNSI groups, respectively (P = 0.012). HNSI also reduced the factors responsible for IBMIR in vitro. Based on these data, HNSIs in conjunction with clinically established immunosuppressive drug regimens will result in superior outcomes compared to those achieved with the current protocol for clinical islet transplantation.
Collapse
Affiliation(s)
- Hyojun Park
- Department of Surgery, VHS Medical Center, Seoul 05368, Republic of Korea
| | - Muhammad R Haque
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Sanghoon Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Yeongbeen Kwon
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Han Sin Lee
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Geun-Soo Kim
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Du Yeon Shin
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang-si, Republic of Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; Transplantation Research Center, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea.
| |
Collapse
|
6
|
Zhu H, Li W, Liu Z, Li W, Chen N, Lu L, Zhang W, Wang Z, Wang B, Pan K, Zhang X, Chen G. Selection of Implantation Sites for Transplantation of Encapsulated Pancreatic Islets. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:191-214. [PMID: 29048258 DOI: 10.1089/ten.teb.2017.0311] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic islet transplantation has been validated as a valuable therapy for type 1 diabetes mellitus patients with exhausted insulin treatment. However, this therapy remains limited by the shortage of donor and the requirement of lifelong immunosuppression. Islet encapsulation, as an available bioartificial pancreas (BAP), represents a promising approach to enable protecting islet grafts without or with minimal immunosuppression and possibly expanding the donor pool. To develop a clinically implantable BAP, some key aspects need to be taken into account: encapsulation material, capsule design, and implant site. Among them, the implant site exerts an important influence on the engraftment, stability, and biocompatibility of implanted BAP. Currently, an optimal site for encapsulated islet transplantation may include sufficient capacity to host large graft volumes, portal drainage, ease of access using safe and reproducible procedure, adequate blood/oxygen supply, minimal immune/inflammatory reaction, pliable for noninvasive imaging and biopsy, and potential of local microenvironment manipulation or bioengineering. Varying degrees of success have been confirmed with the utilization of liver or extrahepatic sites in an experimental or preclinical setting. However, the ideal implant site remains to be further engineered or selected for the widespread application of encapsulated islet transplantation.
Collapse
Affiliation(s)
- Haitao Zhu
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China .,2 Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University , Xi'an, China
| | - Wenjing Li
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Zhongwei Liu
- 3 Department of Cardiology, Shaanxi Provincial People's Hospital , Xi'an, China
| | - Wenliang Li
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Niuniu Chen
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Linlin Lu
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Wei Zhang
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Zhen Wang
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Bo Wang
- 2 Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University , Xi'an, China .,4 Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University , Xi'an, China
| | - Kaili Pan
- 5 Department of Pediatrics (No. 2 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Xiaoge Zhang
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Guoqiang Chen
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| |
Collapse
|
7
|
Barra JM, Tse HM. Redox-Dependent Inflammation in Islet Transplantation Rejection. Front Endocrinol (Lausanne) 2018; 9:175. [PMID: 29740396 PMCID: PMC5924790 DOI: 10.3389/fendo.2018.00175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease that results in the progressive destruction of insulin-producing pancreatic β-cells inside the islets of Langerhans. The loss of this vital population leaves patients with a lifelong dependency on exogenous insulin and puts them at risk for life-threatening complications. One method being investigated to help restore insulin independence in these patients is islet cell transplantation. However, challenges associated with transplant rejection and islet viability have prevented long-term β-cell function. Redox signaling and the production of reactive oxygen species (ROS) by recipient immune cells and transplanted islets themselves are key players in graft rejection. Therefore, dissipation of ROS generation is a viable intervention that can protect transplanted islets from immune-mediated destruction. Here, we will discuss the newly appreciated role of redox signaling and ROS synthesis during graft rejection as well as new strategies being tested for their efficacy in redox modulation during islet cell transplantation.
Collapse
|
8
|
Haque MR, Kim J, Park H, Lee HS, Lee KW, Al-Hilal TA, Jeong JH, Ahn CH, Lee DS, Kim SJ, Byun Y. Xenotransplantation of layer-by-layer encapsulated non-human primate islets with a specified immunosuppressive drug protocol. J Control Release 2017; 258:10-21. [DOI: 10.1016/j.jconrel.2017.04.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/14/2017] [Indexed: 12/21/2022]
|
9
|
Therapeutic cell encapsulation techniques and applications in diabetes. Adv Drug Deliv Rev 2014; 67-68:74-83. [PMID: 24103903 DOI: 10.1016/j.addr.2013.09.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 12/27/2022]
Abstract
The encapsulation of therapeutic cells permits the implantation of allogeneic and xenogeneic cells for the regulation of certain physiological processes damaged by the death or senescence of host tissues. The encapsulation of pancreatic cells for the treatment of diabetes is emphasized; however, many of the techniques are applicable to a wide array of mammalian cell applications. The summary of both established and novel encapsulation techniques, clinical trials, and commercial product developments highlights the metered but steady pace of therapeutic cell encapsulation towards implementation.
Collapse
|
10
|
A three-dimensional microfluidic approach to scaling up microencapsulation of cells. Biomed Microdevices 2012; 14:461-9. [PMID: 22245953 DOI: 10.1007/s10544-011-9623-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Current applications of the microencapsulation technique include the use of encapsulated islet cells to treat Type 1 diabetes, and encapsulated hepatocytes for providing temporary but adequate metabolic support to allow spontaneous liver regeneration, or as a bridge to liver transplantation for patients with chronic liver disease. Also, microcapsules can be used for controlled delivery of therapeutic drugs. The two most widely used devices for microencapsulation are the air-syringe pump droplet generator and the electrostatic bead generator, each of which is fitted with a single needle through which droplets of cells suspended in alginate solution are produced and cross-linked into microbeads. A major drawback in the design of these instruments is that they are incapable of producing sufficient numbers of microcapsules in a short-time period to permit mass production of encapsulated and viable cells for transplantation in large animals and humans. We present in this paper a microfluidic approach to scaling up cell and protein encapsulations. The microfluidic chip consists of a 3D air supply and multi-nozzle outlet for microcapsule generation. It has one alginate inlet and one compressed air intlet. The outlet has 8 nozzles, each having 380 micrometers inner diameter, which produce hydrogel microspheres ranging from 500 to 700 μm in diameter. These nozzles are concentrically surrounded by air nozzles with 2 mm inner diameter. There are two tubes connected at the top to allow the air to escape as the alginate solution fills up the chamber. A variable flow pump 115 V is used to pump alginate solution and Tygon® tubing is used to connect in-house air supply to the air channel and peristaltic/syringe pump to the alginate chamber. A pressure regulator is used to control the flow rate of air. We have encapsulated islets and proteins with this high throughput device, which is expected to improve product quality control in microencapsulation of cells, and hence the outcome of their transplantation.
Collapse
|
11
|
Wilson JT, Cui W, Kozlovskaya V, Kharlampieva E, Pan D, Qu Z, Krishnamurthy VR, Mets J, Kumar V, Wen J, Song Y, Tsukruk VV, Chaikof EL. Cell surface engineering with polyelectrolyte multilayer thin films. J Am Chem Soc 2011; 133:7054-64. [PMID: 21491937 DOI: 10.1021/ja110926s] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Layer-by-layer assembly of polyelectrolyte multilayer (PEM) films represents a bottom-up approach for re-engineering the molecular landscape of cell surfaces with spatially continuous and molecularly uniform ultrathin films. However, fabricating PEMs on viable cells has proven challenging owing to the high cytotoxicity of polycations. Here, we report the rational engineering of a new class of PEMs with modular biological functionality and tunable physicochemical properties which have been engineered to abrogate cytotoxicity. Specifically, we have discovered a subset of cationic copolymers that undergoes a conformational change, which mitigates membrane disruption and facilitates the deposition of PEMs on cell surfaces that are tailorable in composition, reactivity, thickness, and mechanical properties. Furthermore, we demonstrate the first successful in vivo application of PEM-engineered cells, which maintained viability and function upon transplantation and were used as carriers for in vivo delivery of PEMs containing biomolecular payloads. This new class of polymeric film and the design strategies developed herein establish an enabling technology for cell transplantation and other therapies based on engineered cells.
Collapse
Affiliation(s)
- John T Wilson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Barnett BP, Ruiz-Cabello J, Hota P, Liddell R, Walczak P, Howland V, Chacko VP, Kraitchman DL, Arepally A, Bulte JWM. Fluorocapsules for improved function, immunoprotection, and visualization of cellular therapeutics with MR, US, and CT imaging. Radiology 2010; 258:182-91. [PMID: 20971778 DOI: 10.1148/radiol.10092339] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To develop novel immunoprotective alginate microcapsule formulations containing perfluorocarbons (PFCs) that may increase cell function, provide immunoprotection for xenografted cells, and simultaneously enable multimodality imaging. MATERIALS AND METHODS All animal experiments were approved by an Institutional Animal Care and Use Committee. Cadaveric human islet cells were encapsulated with alginate, poly-l-lysine, and perfluorooctyl bromide (PFOB) or perfluoropolyether (PFPE). In vitro viability and the glucose-stimulation index for insulin were determined over the course of 2 weeks and analyzed by using a cross-sectional time series regression model. The sensitivity of multimodality (computed tomography [CT], ultrasonography [US], and fluorine 19 [(19)F] magnetic resonance [MR] imaging) detection was determined for fluorocapsules embedded in gel phantoms. C57BL/6 mice intraperitoneally receiving 6000 PFOB-labeled (n = 6) or 6000 PFPE-labeled (n = 6) islet-containing fluorocapsules and control mice intraperitoneally receiving 6000 PFOB-labeled (n = 6) or 6000 PFPE-labeled (n = 6) fluorocapsules without islets were monitored for human C-peptide (insulin) secretion during a period of 55 days. Mice underwent (19)F MR imaging at 9.4 T and micro-CT. Swine (n = 2) receiving 9000 PFOB capsules through renal artery catheterization were imaged with a clinical multidetector CT scanner. Signal intensity was evaluated by using a paired t test. RESULTS Compared with nonfluorinated alginate microcapsules, PFOB fluorocapsules increased insulin secretion of encapsulated human islets, with values up to 18.5% (3.78 vs 3.19) at 8-mmol/L glucose concentration after 7 days in culture (P < .001). After placement of the immunoprotected encapsulated cells into mice, a sustained insulin release was achieved with human C-peptide levels of 19.1 pmol/L ± 0.9 (standard deviation) and 33.0 pmol/L ± 1.0 for PFPE and PFOB capsules, respectively. Fluorocapsules were readily visualized with (19)F MR imaging, US imaging, and CT with research- and clinical-grade imagers for all modalities. CONCLUSION Fluorocapsules enhance glucose responsiveness and insulin secretion in vitro, enable long-term insulin secretion by xenografted islet cells in vivo, and represent a novel contrast agent platform for multimodality imaging.
Collapse
Affiliation(s)
- Brad P Barnett
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, 720 Rutland Ave, 217 Traylor, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kizilel S, Scavone A, Liu X, Nothias JM, Ostrega D, Witkowski P, Millis M. Encapsulation of pancreatic islets within nano-thin functional polyethylene glycol coatings for enhanced insulin secretion. Tissue Eng Part A 2010; 16:2217-28. [PMID: 20163204 DOI: 10.1089/ten.tea.2009.0640] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Covalent attachment of polymers to cells and tissues could be used to solve a variety of problems associated with cellular therapies. Insulin-dependent diabetes mellitus is a disease resulting from the autoimmune destruction of the beta cells of the islets of Langerhans in the pancreas. Transplantation of islets into diabetic patients is an attractive form of treatment, provided that the islets could be protected from the host's immune system to prevent graft rejection, and smaller numbers of islets transplanted in smaller volumes could be sufficient to reverse diabetes. Therefore, a need exists to develop islet encapsulation strategies that minimize transplant volume. In this study, we demonstrate the formation of nano-thin, poly(ethylene glycol) (PEG)-rich functional conformal coatings on individual islets via layer-by-layer assembly technique. The surface of the islets is modified with biotin-PEG-N-hydroxysuccinimide (NHS), and the islets are further covered by streptavidin (SA) and biotin-PEG-peptide conjugates using the layer-by-layer method. An insulinotropic ligand, glucagon-like peptide-1 (GLP-1), is conjugated to biotin-PEG-NHS. The insulinotropic effect of GLP-1 is investigated through layer-by-layer encapsulation of islets using the biotin-PEG-GLP-1 conjugate. The effect of islet surface modification using the biotin-PEG-GLP-1 conjugate on insulin secretion in response to glucose challenge is compared via static incubation and dynamic perifusion assays. The results show that islets coated with the functional PEG conjugate are capable of secreting more insulin in response to high glucose levels compared to control islets. Finally, the presence of SA is confirmed by indirect fluorescent staining with SA-Cy3, and the presence of PEG-peptide on the surface of the islets after treatment with biotin-PEG-GLP-1 is confirmed by indirect fluorescent staining with biotin-PEG-fluorescein isothiocyanate (FITC) and separately with an anti-GLP-1 antibody. This work demonstrates the feasibility of treating pancreatic islets with reactive polymeric segments and provides the foundation for a novel means of potential immunoisolation. With this technique, it may be possible to encapsulate and/or modify islets before portal vein transplantation and reduce transplantation volume significantly, and promote islet viability and insulin secretion due to the presence of insulinotropic peptides on the islet surface. Layer-by-layer self-assembly of PEG-GLP-1 offers a unique approach to islet encapsulation to stimulate insulin secretion in response to high glucose levels.
Collapse
Affiliation(s)
- Seda Kizilel
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
14
|
Wandrey C, Espinosa D, Rehor A, Hunkeler D. Influence of alginate characteristics on the properties of multi-component microcapsules. J Microencapsul 2010. [DOI: 10.3109/02652040309178349] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- C. Wandrey
- Laboratory of Chemical Biotechnology, Institute of Chemical and Biological Process Science, Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland
| | - D. Espinosa
- Laboratory of Chemical Biotechnology, Institute of Chemical and Biological Process Science, Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland
| | - A. Rehor
- Institute of Biomedical Technology, Swiss Federal Institute of Technology and University of Zürich, Moussonstrasse 18, CH-8044, Zürich, Switzerland
| | - D. Hunkeler
- AQUA + TECH Specialities S.A., Chemin du Chalet-du-Bac 4, CP28, CH-1283 La Plain, Geneva, CP 117, Switzerland
| |
Collapse
|
15
|
Abstract
A nanoporous immunoisolative case/capsule that encases/encapsulates insulin-secreting cells vastly expands the source of therapeutic cells available for grafting in people with diabetes, including cells from animal sources, stem cells, and genetically engineered cells. These encapsulated cellular grafts potentially provide an endogenous, renewable, and long-term source of insulin without the need for pharmacological immunosuppression. Micro- and nanofabrication techniques used principally in the semiconductor industry can play a positive role in encapsulated cell therapy. Many of these techniques do not have direct applicability in cell encapsulation, but can be leveraged to develop processes suitable for this application. This commentary highlights the salient features of an effective cell encapsulation system, enumerates limitations of existing encapsulation schemes, and touches upon progress in key areas of encapsulation technology; one example of how micro- and nanofabrication technology may be used to develop a more effective platform for cell encapsulation is presented. This commentary urges further exploration and expansion of techniques used traditionally in electronics and optics for cell-based therapy in people with diabetes.
Collapse
Affiliation(s)
- Barjor Gimi
- Department of Radiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
16
|
Development of a novel enzyme reactor and application as a chemiluminescence flow-through biosensor. Anal Bioanal Chem 2010; 397:2997-3003. [DOI: 10.1007/s00216-010-3805-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
|
17
|
Tsai SW, Chen CC, Liou HM, Hsu FY. Preparation and characterization of microspheres comprised of collagen, chondroitin sulfate, and apatite as carriers for the osteoblast-like cell MG63. J Biomed Mater Res A 2010; 93:115-22. [PMID: 19536833 DOI: 10.1002/jbm.a.32502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Numerous studies about bone matrix fabrication focus on how the species and concentrations of components affect the cellular response. However, there are few studies that investigate how the related spatial arrangement of the components influences cellular activity. The aim of this work was to develop a novel method to biomimetically manufacture a three-dimensional mineral bone matrix and study the effect of apatite-collagen-chondroitin sulfate (CS) microspheres on the adhesion rate and activity of osteoblast-like cells. Although previous studies used a crosslinking agent or lyophilized methods to fabricated three-dimensional collagen microspheres, we produced beads composed of collagen and CS under mild reaction conditions. This process not only maintains collagen self-assembly into fibrils with a D-periodic pattern ability but also simultaneously introduces two major native bone matrix elements, collagen and CS, into the beads. Furthermore, we mimic the native in vivo bone matrix formation process by the direct nucleation and growth of apatite crystals on collagen fibrils. The apatite crystals are similar in composition to human bone mineral via X-ray diffraction and energy-dispersive X-ray spectrometric analysis. The cellular attachment rate of MG63 osteoblast-like cells is significantly higher for collagen-CS-apatite gel beads than for collagen-CS gel beads. In addition, with regard to the osteoblast bioactivity, we observed that alkaline phosphatase activity of MG63 cells on the collagen-CS-apatite gel beads higher than on the collagen-CS gel beads on day 14.
Collapse
Affiliation(s)
- Shiao-Wen Tsai
- Institute of Biochemical and Biomedical Engineering, Chang-Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | | | | | | |
Collapse
|
18
|
Chen X, Zhang L, Qi Z, Guo B, Zhong L, Shen B, Yan Z, Zhang J. Novel sulfated glucomannan-barium-alginate microcapsules in islet transplantation: significantly decreased the secretion of monocyte chemotactic protein 1 and improved the activity of islet in rats. Transplant Proc 2010; 41:4307-12. [PMID: 20005389 DOI: 10.1016/j.transproceed.2009.09.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 02/09/2009] [Accepted: 09/02/2009] [Indexed: 11/27/2022]
Abstract
The sulfated glucomannan can be used to filter the heparin-binding properties of cytokines. In this study, novel sulfated glucomannan-barium-alginate (SGA) microcapsules were prepared to encapsulate islets with barium-alginate (ABa) and calcium alginate-poly-l-lysine (APA) microcapsules as controls. SD rat islets were purified as donor cells to Lewis rats that had been treated with streptozotocin. Intraperitoneal transplantation was performed with about 3000 islet equivalent (IEQ) rat. At week three after transplantation, the concentrations of monocyte chemotactic protein-1 (MCP-1), interleukin (IL)-1 beta, interferon (IFN)-gamma, and tumor necrosis factor (TNF)-alpha in intraperitoneal fluid were determined using ELISA. At week 8, the islet cell mass in the abdominal microcapsules was excised to test insulin release. The EB-FDA fluorescence staining method was used to observe the functional activity of the islet cells. Compared with ABa and APA microcapsules, SGA microcapsules showed significantly decreased MCP-1 secretion by beta-cells. Also, the concentrations of cytokines IL-1beta, IFN-gamma, and TNF-alpha were decreased significantly. The activity of the transplanted islets was significantly improved in SGA microcapsules, which shielded against cytokines better than ABa or APA microcapsules and may serve as novel method.
Collapse
Affiliation(s)
- X Chen
- Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fabrication of oriented poly-l-lysine/bacteriorhodopsin-embedded purple membrane multilayer structure for enhanced photoelectric response. J Colloid Interface Sci 2010; 344:150-7. [DOI: 10.1016/j.jcis.2009.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 11/21/2022]
|
20
|
Chen X, Shao W, Chen JB, Zhang L, Matthias C, Shan SG, Qi ZQ. Allotransplantation of sulphate glucomannan-alginate barium (SGA)-microencapsulated rat islets for the treatment of diabetes mellitus. Immunol Invest 2010; 38:561-71. [PMID: 19811421 DOI: 10.1080/08820130902984828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To offer a more effective microencapsulation technique of islets for the treatment of diabetes, we have developed a new type of microcapsule comprising sulphate glucomannan-alginate barium (SGA). We compared it with traditional microencapsulated APA (alginate-poly-L-lysine-alginate) and ABa (Ba(2+)-alginate) microencapsulated islets. These three types of microencapsulated islets were prepared and cultured in vitro and we studied their morphology and activity. To determine their effects on insulin secretion and cytokine production (MCP-1, IL-1, IFN-gamma, TNF-alpha) the islets were transplanted into diabetic rats. There was no difference in the morphologies of the three types of microencapsulated islets or their insulin secretory capacity in vitro. However, the SGA microencapsulated islets had higher activity and produced more insulin than the APA and ABa microencapsulated islets after transplantation. Normoglycemia was maintained for longer in the SGA-transplanted group than in the other two groups. The concentrations of cytokines in the peritoneal fluid were significantly decreased in the SGA group, as was the infiltration of inflammatory cells around the microcapsules. In conclusion, the novel SGA microencapsulated islets can maintain normoglycemia in diabetic rats without immunosuppression for longer than APA and ABa microencapsulated islets.
Collapse
Affiliation(s)
- Xi Chen
- Dept of Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, PR China
| | | | | | | | | | | | | |
Collapse
|
21
|
Sakai S, Kawakami K. Development of Subsieve-Size Capsules and Application to Cell Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 670:22-30. [DOI: 10.1007/978-1-4419-5786-3_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Hunkeler D, Rajotte R, Grey D, Morel P, Skjak-Break G, Korbutt G, Gill R, Oberholzer J. Bioartificial Organ Grafts: A View at the Beginning of the Third Millennium. ACTA ACUST UNITED AC 2009; 31:365-82. [PMID: 14672414 DOI: 10.1081/bio-120025408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An immunoisolated collection of cells, which communicate and exchange essential factors, co-stimulatory hormones, as well as providing immunoprotection and immunomodulation, can be prepared, given existing scientific and medical know-how, within two decades. These "Bioartificial Organ Grafts" have advantages relative to isolated cell therapies, including beta-cell encapsulation for diabetes treatment, and xenotransplantation, which has a de facto moratorium. This paper documents that the majority of the research for the bioartificial organ grafts has been concluded, with the remaining hurdles minimum in comparison. The use of co-encapsulation and the induction of local immune-privilege will provide a more sensitive humoral hormonal response and graft survival, without systemic immunosuppression. A call for the staged implementation of bioartificial organ grafts, based on the best available medical practice, materials, tissue and technology available, is advocated. The implementation of bioartificial organ grafts can begin within the next two years, based on allografts succeeded by genetically modified human tissue, without the need to pass through a xenograft stage.
Collapse
Affiliation(s)
- D Hunkeler
- AQUA + TECH Specialties SA, Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wilson JT, Chaikof EL. Thrombosis and inflammation in intraportal islet transplantation: a review of pathophysiology and emerging therapeutics. J Diabetes Sci Technol 2008; 2:746-59. [PMID: 19885257 PMCID: PMC2769789 DOI: 10.1177/193229680800200502] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the inception of the Edmonton Protocol, intraportal islet transplantation (IPIT) has re-emerged as a promising cell-based therapy for type 1 diabetes. However, current clinical islet transplantation remains limited, in part, by the need to transplant islets from 2-4 donor organs, often through several separate infusions, to reverse diabetes in a single patient. Results from clinical islet transplantation and experimental animal models now indicate that the majority of transplanted islets are destroyed in the immediate post-transplant period, a process largely facilitated by deleterious inflammatory responses triggered by islet-derived procoagulant and proinflammatory mediators. Herein, mechanisms that underlie the pathophysiology of thrombosis and inflammation in IPIT are reviewed, and emerging approaches to improve islet engraftment through attenuation of inflammatory responses are discussed.
Collapse
Affiliation(s)
- John T. Wilson
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Elliot L. Chaikof
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
24
|
Wilson JT, Cui W, Chaikof EL. Layer-by-layer assembly of a conformal nanothin PEG coating for intraportal islet transplantation. NANO LETTERS 2008; 8:1940-8. [PMID: 18547122 PMCID: PMC2715545 DOI: 10.1021/nl080694q] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Encapsulation of cells and tissue offers a rational approach for attenuating deleterious host responses toward transplanted cells, but a need exists to develop cell encapsulation strategies that minimize transplant volume. In this report, we describe the formation of nanothin, PEG-rich conformal coatings on individual pancreatic islets via layer-by-layer self-assembly of poly( l-lysine)- g-poly(ethylene glycol)(biotin) (PPB) and streptavidin (SA). Through control of grafting ratio, PPB could be rendered nontoxic and facilitated growth of PPB/SA multilayer thin films that conformed to the heterogeneous islet surface. (PPB/SA) 8 multilayer films could be assembled without loss of islet viability or function, and coated islets performed comparably to untreated controls in vivo in a murine model of allogenic intraportal islet transplantation.
Collapse
Affiliation(s)
- John T. Wilson
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Wanxing Cui
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30332
| | - Elliot L. Chaikof
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30332
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
- Elliot L. Chaikof, M.D., Ph.D., Emory University, 101 Woodruff Circle, Rm 5105, Atlanta, GA 30322. Tel: (404) 727-8413. Fax: (404)-727-3660. E-mail:
| |
Collapse
|
25
|
Randle WL, Cha JM, Hwang YS, Chan KLA, Kazarian SG, Polak JM, Mantalaris A. Integrated 3-dimensional expansion and osteogenic differentiation of murine embryonic stem cells. ACTA ACUST UNITED AC 2008; 13:2957-70. [PMID: 17988191 DOI: 10.1089/ten.2007.0072] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Embryonic stem cell (ESC) culture is fragmented and laborious and involves operator decisions. Most protocols consist of 3 individual steps: maintenance, embryoid body (EB) formation, and differentiation. Integration will assist automation, ultimately aiding scale-up to clinically relevant numbers. These problems were addressed by encapsulating undifferentiated murine ESCs (mESCs) in 1.1% (w/v) low-viscosity alginic acid, 0.1% (v/v) porcine gelatin hydrogel beads (d = 2.3 mm). Six hundred beads containing 10,000 mESCs per bead were cultured in a 50-mL high-aspect-ratio vessel bioreactor. Bioreactor cultures were rotated at 17.5 revolutions per min, cultured in maintenance medium containing leukemia inhibitory factor for 3 days, replaced with EB formation medium for 5 days followed by osteogenic medium containing L-ascorbate-2-phosphate (50 microg/mL), beta-glycerophosphate (10 mM), and dexamethasone (1 microM) for an additional 21 days. After 29 days, 84 times as many cells per bead were observed and mineralized matrix was formed within the alginate beads. Osteogenesis was confirmed using von Kossa, Alizarin Red S staining, alkaline phosphatase activity, immunocytochemistry for osteocalcin, OB-cadherin, collagen type I, reverse transcriptase polymerase chain reaction, microcomputed tomography (micro-computed tomography) and Fourier transform infrared spectroscopic imaging. This simplified, integrated, and potentially scaleable methodology could enable the production of 3-demensional mineralized tissue from ESCs for potential clinical applications.
Collapse
Affiliation(s)
- Wesley L Randle
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
26
|
Wilson JT, Chaikof EL. Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv Drug Deliv Rev 2008; 60:124-45. [PMID: 18022728 DOI: 10.1016/j.addr.2007.08.034] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 08/13/2007] [Indexed: 12/22/2022]
Abstract
Protection of transplanted cells from the host immune system using immunoisolation technology will be important in realizing the full potential of cell-based therapeutics. Microencapsulation of cells and cell aggregates has been the most widely explored immunoisolation strategy, but widespread clinical application of this technology has been limited, in part, by inadequate transport of nutrients, deleterious innate inflammatory responses, and immune recognition of encapsulated cells via indirect antigen presentation pathways. To reduce mass transport limitations and decrease void volume, recent efforts have focused on developing conformal coatings of micron and submicron scale on individual cells or cell aggregates. Additionally, anti-inflammatory and immunomodulatory capabilities are being integrated into immunoisolation devices to generate bioactive barriers that locally modulate host responses to encapsulated cells. Continued exploration of emerging paradigms governed by the inherent challenges associated with immunoisolation will be critical to actualizing the clinical potential of cell-based therapeutics.
Collapse
|
27
|
Wyman JL, Kizilel S, Skarbek R, Zhao X, Connors M, Dillmore WS, Murphy WL, Mrksich M, Nagel SR, Garfinkel MR. Immunoisolating pancreatic islets by encapsulation with selective withdrawal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2007; 3:683-90. [PMID: 17340661 DOI: 10.1002/smll.200600231] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This manuscript reports the application of the selective-withdrawal coating technique to the microencapsulation of insulin-producing pancreatic islets within thin poly(ethylene glycol) coatings. These polymer coatings permit the islets to respond to changes in glucose concentration by producing insulin with a dose-response profile that is substantially similar to that of unencapsulated islets. Furthermore, the hydrogel capsules exclude the large molecules of the immune system. These results suggest that the microencapsulation technique-which combines droplet formation from a flow of two immiscible fluids with polymerization chemistries-has the characteristics required for the transplantation of islets for the treatment of Type I diabetes.
Collapse
Affiliation(s)
- Jason L Wyman
- The James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Thanos CG, Bintz BE, Emerich DF. Stability of alginate-polyornithine microcapsules is profoundly dependent on the site of transplantation. J Biomed Mater Res A 2007; 81:1-11. [PMID: 17089418 DOI: 10.1002/jbm.a.31033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alginate encapsulation is a form of cell-based therapy with numerous preclinical successes but recalcitrant complications related to stability and reproducibility. Understanding how alginate stability varies across different transplant sites will help identify indications that might benefit most from this approach. Alginate stability has been quantified in the peritoneum, but there are no systematic studies comparing its relative stability across transplant sites. This study compares the stability of alginate-polycation microcapsules implanted in the peritoneum to those implanted in the brain and subcutaneous space at 14, 28, 60, 90, 120, and 180 days in-life. Using Fourier-Transform Infrared Spectroscopy (FTIR), the surface of explanted capsules was analyzed for the relative proportion of alginate (outer coat) and the polycationic polyornithine (middle coat). Using a mathematic relationship between FTIR peaks related to these two material components, an index was generated to compare the stability of four different alginates. A notable difference was observed with rapid breakdown in the peritoneum. Conversely, identical alginate capsules transplanted into the brain or subcutaneous space were stable for the 6 month study. These data suggest that (1) successful intraperitoneal transplantation requires modifications of the capsule configuration, the host environment, or both and (2) that sites such as the brain and subcutaneous space are inherently less hostile to conventional alginate capsule configurations.
Collapse
Affiliation(s)
- C G Thanos
- LCT BioPharma, Incorporated, Providence, RI 02906, USA.
| | | | | |
Collapse
|
29
|
Sugiura S, Oda T, Aoyagi Y, Matsuo R, Enomoto T, Matsumoto K, Nakamura T, Satake M, Ochiai A, Ohkohchi N, Nakajima M. Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometer microcapsules. Biomed Microdevices 2006; 9:91-9. [PMID: 17106639 DOI: 10.1007/s10544-006-9011-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Microencapsulation of genetically engineered cells has attracted much attention as an alternative nonviral strategy to gene therapy. Though smaller microcapsules (i.e. less than 300 microm) theoretically have various advantages, technical limitations made it difficult to prove this notion. We have developed a novel microfabricated device, namely a micro-airflow-nozzle (MAN), to produce 100 to 300 microm alginate microcapsules with a narrow size distribution. The MAN is composed of a nozzle with a 60 microm internal diameter for an alginate solution channel and airflow channels next to the nozzle. An alginate solution extruded through the nozzle was sheared by the airflow. The resulting alginate droplets fell directly into a CaCl2 solution, and calcium alginate beads were formed. The device enabled us to successfully encapsulate living cells into 150 microm microcapsules, as well as control microcapsule size by simply changing the airflow rate. The encapsulated cells had a higher growth rate and greater secretion activity of marker protein in 150 microm microcapsules compared to larger microcapsules prepared by conventional methods because of their high diffusion efficiency and effective scaffold surface area. The advantages of smaller microcapsules offer new prospects for the advancement of microencapsulation technology.
Collapse
Affiliation(s)
- Shinji Sugiura
- Food Engineering Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bohman S, Andersson A, King A. No differences in efficacy between noncultured and cultured islets in reducing hyperglycemia in a nonvascularized islet graft model. Diabetes Technol Ther 2006; 8:536-45. [PMID: 17037968 DOI: 10.1089/dia.2006.8.536] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Although islet transplantation is a promising method to restore normoglycemia in recipients with diabetes, large numbers of pancreatic islets are still needed. It has been suggested that the use of freshly isolated islets could improve transplantation outcome through better vascular engraftment. Using a technique of microencapsulation, a model where revascularization is not possible, we investigated the importance of revascularization for transplantation outcome. METHODS Either 700 or 350 3-day-cultured or noncultured encapsulated islets were transplanted intraperitoneally into syngeneic mice with alloxan-induced diabetes. In addition, 700 nonencapsulated islets were transplanted to mice with diabetes. Blood glucose concentrations were monitored, and glucose tolerance tests were carried out. After 42 days, the encapsulated islets were retrieved and assayed for glucose oxidation and insulin release rates. RESULTS There were no differences between capsules containing fresh or cultured islets in their capacity to lower the blood glucose concentration of the recipients or in the in vitro function after capsule retrieval. Interestingly, mice that were intraperitoneally transplanted with 700 encapsulated islets had average blood glucose levels well below 11 mM for most of the study, whereas the same number of nonencapsulated islets had no beneficial effects on the blood glucose homeostasis. CONCLUSIONS Encapsulated islets can reverse hyperglycemia after transplantation to the intraperitoneal site. This effect was not seen when nonencapsulated islets were grafted. Since a 3- day culture period did not influence the outcome of transplantation of encapsulated islets there is evidence to suggest that a more appropriate revascularization may explain why freshly isolated islets are more efficient than cultured islets.
Collapse
Affiliation(s)
- Sara Bohman
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
31
|
Lacík I. Polymer Chemistry in Diabetes Treatment by Encapsulated Islets of Langerhans: Review to 2006. Aust J Chem 2006. [DOI: 10.1071/ch06197] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polymeric materials have been successfully used in numerous medical applications because of their diverse properties. For example, development of a bioartificial pancreas remains a challenge for polymer chemistry. Polymers, as a form of various encapsulation device, have been proposed for designing the semipermeable membrane capable of long-term immunoprotection of transplanted islets of Langerhans, which regulate the blood glucose level in a diabetic patient. This review describes the current situation in the field, discussing aspects of material selection, encapsulation devices, and encapsulation protocols. Problems and unanswered questions are emphasized to illustrate why clinical therapies with encapsulated islets have not been realized, despite intense activity over the past 15 years. The review was prepared with the goal to address professionals in the field as well as the broad polymer community to help in overcoming final barriers to the clinical phase for transplantation of islets of Langerhans encapsulated in a polymeric membrane.
Collapse
|
32
|
|
33
|
Tam SK, Dusseault J, Polizu S, Ménard M, Hallé JP, Yahia L. Physicochemical model of alginate–poly-l-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS. Biomaterials 2005; 26:6950-61. [PMID: 15975648 DOI: 10.1016/j.biomaterials.2005.05.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 05/06/2005] [Indexed: 01/04/2023]
Abstract
Alginate-poly-L-lysine-alginate (APA) microcapsules are currently being investigated as a means to immuno-isolate transplanted cells, but their biocompatibility is limited. In this study, we verified the hypothesis that poly-L-lysine (PLL), which is immunogenic when unbound, is exposed at the APA microcapsule surface. To do so, we analysed the microcapsule membrane at the micrometric/nanometric scale using attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. The results indicate that PLL and alginate molecules interact within the membrane. PLL exists in considerable amounts near the surface, contributing to the majority of the carbon within the outermost 100 Angstroms of the membrane. PLL was also detected at the true surface (the outermost monolayer) of the microcapsules. The exposure of PLL does not appear to result from defects in the outer alginate coating. This physicochemical model of APA microcapsules could explain their immunogenicity and will play an important role in the optimization of the microcapsule design.
Collapse
Affiliation(s)
- Susan K Tam
- Groupe de Recherche en Biomatériaux/Biomécanique, Ecole Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Qué., Canada
| | | | | | | | | | | |
Collapse
|
34
|
Sugiura S, Oda T, Izumida Y, Aoyagi Y, Satake M, Ochiai A, Ohkohchi N, Nakajima M. Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials 2005; 26:3327-31. [PMID: 15603828 DOI: 10.1016/j.biomaterials.2004.08.029] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 08/26/2004] [Indexed: 11/19/2022]
Abstract
Size-controlled small (i.e. less than 300 microm) polyelectrolyte complex gel beads are urgently desired for wide-spread application, including use in medical, pharmaceutical, and bioengineering fields. However, it was impossible to obtain smaller beads less than 300 microm with conventional apparatuses. We developed a novel microfluidics device that utilizes silicon micro-nozzle (MN) array, enabling to produce 50-200 microm calcium alginate beads with a narrow size distribution. Alginate aqueous solution was extruded through a precisely fabricated thin (30 microm x 30 microm) and short (500 microm) MN and was sheared by the viscous drag force of oil flow to form alginate droplets. Alginate droplets were immediately reacted with CaCl2 droplets at the downstream of oil flow to form calcium alginate gel beads. This device enabled us to successfully encapsulate living cells into 162 microm calcium alginate beads with maintaining viability, which was confirmed by the expression of marker protein.
Collapse
Affiliation(s)
- Shinji Sugiura
- Food Engineering Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
de Groot M, Schuurs TA, van Schilfgaarde R. Causes of limited survival of microencapsulated pancreatic islet grafts. J Surg Res 2004; 121:141-50. [PMID: 15313388 DOI: 10.1016/j.jss.2004.02.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Indexed: 01/02/2023]
Abstract
Successful transplantation of pancreatic tissue has been demonstrated to be an efficacious method of restoring glycemic control in type 1 diabetic patients. To establish graft acceptance patients require lifelong immunosuppression, which in turn is associated with severe deleterious side effects. Microencapsulation is a technique that enables the transplantation of pancreatic islets in the absence of immunosuppression by protecting the islet tissue through a mechanical barrier. This protection may even allow for the transplantation of animal tissue, which opens the perspective of using animal donors as a means to solve the problem of organ shortage. Microencapsulation is not yet applied in clinical practice, mainly because encapsulated islet graft survival is limited. In the present review we discuss the principal causes of microencapsulated islet graft failure, which are related to a lack of biocompatibility, limited immunoprotective properties, and hypoxia. Next to the causes of encapsulated islet graft failure we discuss possible improvements in the encapsulation technique and additional methods that could prolong encapsulated islet graft survival. Strategies that may well support encapsulated islet grafts include co-encapsulation of islets with Sertoli cells, the genetic modification of islet cells, the creation of an artificial implantation site, and the use of alternative donor sources. We conclude that encapsulation in combination with one or more of these additional strategies may well lead to a simple and safe transplantation therapy as a cure for diabetes.
Collapse
Affiliation(s)
- Martijn de Groot
- Surgical Research Laboratory, Department of Surgery, University Hospital Groningen, Hanzeplein 1 (CMC V, Y2144), 9713 GZ Groningen, Netherlands.
| | | | | |
Collapse
|
36
|
|
37
|
|
38
|
Schneider S, von Mach MA, Kraus O, Kann P, Feilen PJ. Intraportal Transplantation of Allogenic Pancreatic Islets Encapsulated in Barium Alginate Beads in Diabetic Rats. Artif Organs 2003; 27:1053-6. [PMID: 14616525 DOI: 10.1046/j.1525-1594.2003.07159.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The survival of microencapsulated islets transplanted into the unmodified peritoneal cavity is limited, even if capsular overgrowth is restricted to a minimum, due to an insufficient oxygen supply to the islets. Therefore, research efforts should focus on finding or creating a transplantation site, which permits a closer contact between the encapsulated islets and the blood. For this reason, the liver could be an interesting candidate. The aim of the present study was to test the hypothesis that the intraportal transplantation of allogenic islets encapsulated in small-sized barium alginate beads is safe and succeeds to induce normoglycemia in diabetic rats. The intraportal transplantation of 1,500 islets encapsulated in barium alginate beads leads within 10 h and up to 24 h to blood sugar concentrations below 40 mg/dL, most likely due to an acute cell lysis of the graft. Afterwards, the reappearance of the diabetic state could be detected in these animals. Most likely these findings are induced by a sudden hypoxia to the islets. We believe that the occlusion of small- and medium-sized portal venules by the alginate beads is responsible for this effect. Therefore, in forthcoming studies, barium alginate beads, with a diameter below 350 micro m, stabilized with medical approved additives should be used.
Collapse
|
39
|
King A, Andersson A, Strand BL, Lau J, Skjåk-Braek G, Sandler S. The role of capsule composition and biologic responses in the function of transplanted microencapsulated islets of Langerhans. Transplantation 2003; 76:275-9. [PMID: 12883179 DOI: 10.1097/01.tp.0000078625.29988.0a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Aileen King
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
40
|
Ross CJD, Chang PL. Development of small alginate microcapsules for recombinant gene product delivery to the rodent brain. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2003; 13:953-62. [PMID: 12463513 DOI: 10.1163/156856202320401988] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel form of gene therapy using encapsulated recombinant cells in alginate microcapsules has proven effective in treating several animal models of human diseases. For treating neurological deficits in rodents with this technology, the size of the microcapsules has to be reduced for implantation in the central nervous system (CNS) to bypass the blood-brain barrier. This article reports the development of small alginate microcapsules suitable for implantation into the mouse CNS. By varying the encapsulation protocol, recombinant cells could be encapsulated in microcapsules ranging in diameter from 5 to 2000 microm. The optimal size for implantation was determined to be 100-200 microm, based on the smallest, homogeneously sized, cell-filled microcapsules that could pass the 500 microm inner diameter of a CNS-implantation needle. Compared with medium-sized (500-700 microm) microcapsules, these small microcapsules packed more tightly together with less inter-capsule space, resulting in an increased number of cells and a higher rate of recombinant gene product secretion per volume of microcapsules. The small microcapsules also displayed increased mechanical strength, compared with large microcapsules. These excellent in vitro properties of small 100-200 microm microcapsules warrant further in vivo investigation into the feasibility of using immuno-isolation gene therapy to deliver recombinant gene products to the rodent CNS.
Collapse
Affiliation(s)
- C J D Ross
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
41
|
Toso C, Oberholzer J, Ceausoglu I, Ris F, Rochat B, Rehor A, Bucher P, Wandrey C, Schuldt U, Belenger J, Bosco D, Morel P, Hunkeler D. Intra-portal injection of 400-mum microcapsules in a large-animal model. Transpl Int 2003. [DOI: 10.1111/j.1432-2277.2003.tb00321.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Strand BL, Mørch YA, Syvertsen KR, Espevik T, Skjåk-Braek G. Microcapsules made by enzymatically tailored alginate. J Biomed Mater Res A 2003; 64:540-50. [PMID: 12579569 DOI: 10.1002/jbm.a.10337] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alginate is widely used for encapsulation of cells. Alginate is a linear block copolymer consisting of mannuronic acid (M) and guluronic acid (G). It has been shown that enzymes known as C-5 epimerases convert M to G in the polymer chain, giving rise to novel alginates with tailored properties. One of these enzymes, AlgE4, converts M blocks into blocks of strictly alternating M and G. In this study we investigated how alginate epimerized by AlgE4 affected capsule properties such as stability and permeability. Inhomogeneous calcium-alginate gel beads were made with original and AlgE4-epimerized alginates of different origin. The epimerized alginates formed initially smaller alginate gels that showed increased resistance to osmotic swelling compared with the original nonmodified alginate samples. The permeability, measured as diffusion of immunoglobulin (Ig) G into Ca/Ba-alginate gel beads, was reduced by epimerization and further reduced by addition of poly-L-lysine (PLL). The osmotic stability of alginate-poly-D-lysine(PDL)-alginate capsules was enhanced by the use of epimerized alginate; indeed, stable capsules with low permeability to tumor necrosis factor (TNF) could be made with low PDL exposures. Finally, alginate with an alternating structure interacted more strongly with the alginate-PLL capsule than did alginate with a high content of M blocks or G blocks or than an alginate consisting mainly of M.
Collapse
Affiliation(s)
- Berit L Strand
- Department of Biotechnology, Sem Saelandsvei 6/8, 7491 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
43
|
González Ferreiro M, Tillman L, Hardee G, Bodmeier R. Characterization of alginate/poly-L-lysine particles as antisense oligonucleotide carriers. Int J Pharm 2002; 239:47-59. [PMID: 12052690 DOI: 10.1016/s0378-5173(02)00030-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The gel forming characteristics of alginate in the presence of calcium ions and further crosslinking with poly-L-lysine led to the formation of sponge-like nano- and microparticles. The particle size was varied by adjusting the final concentrations of and proportions between the components. The region for particle formation was from 0.04 to 0.08% (w/v) of alginate in the final formulation, the change from the nm to microm size range occurred at a concentration of approx. 0.055% (w/v). Oligonucleotide-loaded microparticles were prepared by two different methods, either by absorption of the drug into the crosslinked polymeric matrix or by incorporation of an oligonucleotide/poly-L-lysine complex into a calcium alginate pre-gel. The release of oligonucleotide from microparticles prepared by the first method was higher. The addition of increasing amounts of poly-L-lysine resulted in larger particles, higher oligonucleotide loading and slower drug release. An increase in the final solid content of the formulation led to larger particles, especially with high concentrated calcium alginate pre-gels. Microparticles based on alginate and poly-L-lysine are potential carriers for antisense oligonucleotides.
Collapse
Affiliation(s)
- M González Ferreiro
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | | | | | | |
Collapse
|
44
|
Hunkeler D, Rehor A, Ceausoglu I, Schuldt U, Canaple L, Bernard P, Renken A, Rindisbacher L, Angelova N. Objectively assessing bioartificial organs. Ann N Y Acad Sci 2001; 944:456-71. [PMID: 11797693 DOI: 10.1111/j.1749-6632.2001.tb03855.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metrics used, thus far, to assess bioartificial organ function are shown to be subjective and requiring validation. Therefore, four categories of correlations are proposed based on, respectively, device, in vitro and in vivo evaluations, and clinical function. Examples are presented whereby the correlations among individual indicators are used as a means to expedite the development of immunoisolated cells. Specifically, a case study illustrating the validation of in vitro indicators of in vivo graft function for the bioartificial pancreas (microencapsulated islets) is summarized. This has revealed thresholds with respect to given metrics relating to in vivo device function, the necessity to couple bioartificial organ design with transplant site selection, as well as the lack of objectivity involved in the evaluation and establishment of hypotheses. Specific quantitative indicators illustrate the need for quality-controlled measures, for example, relating to the tolerance of microcapsule diameter and membrane thickness distributions. Qualitative indices representing fibrosis and device properties (e.g., sphericity) are also used to describe the need for in vitro experiments in the development of bioartificial organs.
Collapse
Affiliation(s)
- D Hunkeler
- Laboratory of Polyelectrolytes and BioMacromolecules, Swiss Federal Institute of Technology, Lausanne.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hobbs HA, Kendall WF, Darrabie M, Opara EC. Prevention of morphological changes in alginate microcapsules for islet xenotransplantation. J Investig Med 2001; 49:572-5. [PMID: 11730094 DOI: 10.2310/6650.2001.33722] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Alginate microcapsule swelling, which occurs as a result of increased hydrophilicity owing to the Ca++ that remains after rapid chelation of the inner alginate core, is a problem in encapsulation. We have previously shown that exchange of the residual divalent Ca++ with the monovalent Na+ through the use of 6 mmol/L Na2SO4 decreases swelling in chelated alginate-polylysine-alginate microcapsules, and this process enhances their durability. The purpose of the present study was to examine the morphology of Na2SO4-treated microcapsules in long-term incubation with the use of serum-supplemented culture medium. METHODS Spherical beads of purified alginate (3%) that were gelled with 1.1% CaCl2 were first coated with polylysine, and then with 0.24% alginate. After rapid chelation of the inner alginate core with 55 mmol/L sodium citrate, the capsules were either incubated for 30 minutes in 6 mmol/L Na2SO4 or left untreated (control). Each group of capsules was then placed in a flask containing Ham's culture medium supplemented with 20% porcine serum and incubated at 37 degrees C. RESULTS The diameters of Na2SO4-treated capsules only increased modestly from a mean +/- SD of 635 +/- 22.08 to 684.53 +/- 17.86 microm (P<0.0001) by day 7, with no further increases thereafter. In contrast, control capsules showed a steady increase in their mean diameters, which changed from 639.55 +/- 21.44 to 735.48 +/- 108.85 microm (P < 0.0001) by day 66. In addition, whereas treated capsules remained spherical, control capsules showed progressive polymorphism. CONCLUSION We have developed a new method of making more durable and stable microcapsules that can be used for islet cell xenotransplantation.
Collapse
Affiliation(s)
- H A Hobbs
- Department of Surgery, Duke University Medical Center and the Veterans Administration Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
46
|
Paradossi G, Chiessi E, Malovìkovà A. Conformational Study of the Diastereomeric Pairs in Poly(lysine)−Pectate Complexes. Macromolecules 2001. [DOI: 10.1021/ma010418x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; and Institute of Chemistry, Slovak Academy of Sciences, 842 38 Bratislava, Slovakia
| | - Ester Chiessi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; and Institute of Chemistry, Slovak Academy of Sciences, 842 38 Bratislava, Slovakia
| | - Anna Malovìkovà
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; and Institute of Chemistry, Slovak Academy of Sciences, 842 38 Bratislava, Slovakia
| |
Collapse
|
47
|
Robitaille R, Leblond FA, Bourgeois Y, Henley N, Loignon M, Hallé JP. Studies on small (<350 microm) alginate-poly-L-lysine microcapsules. V. Determination of carbohydrate and protein permeation through microcapsules by reverse-size exclusion chromatography. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2000; 50:420-7. [PMID: 10737885 DOI: 10.1002/(sici)1097-4636(20000605)50:3<420::aid-jbm17>3.0.co;2-s] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Membrane molecular weight (MW) cut-off is a critical factor for immunoprotection of transplanted microencapsulated cells as well as for graft survival. Our goal was to study dextran and protein permeation through small (<350 microm in diameter) alginate-poly-L-lysine microcapsules made with an electrostatic system. Microcapsules were packed into a column, and gel-sieving chromatography was performed with proteins and dextrans of known MW. The objectives of this study were (1) to validate this approach for the assessment of the MW cut-off of <350 microm-in-diameter microcapsules and (2) to evaluate the effect on MW cut-off of changes in experimental conditions. Elution profiles of proteins suggest that the MW cut-off of our small microcapsules lies between 14,500 and 44,000 Da whereas dextrans > or =19,000 Da were excluded. The increase in poly-L-lysine (PLL) concentration from 0.02 to 0.08% reduced the MW cut-off. Increasing the PLL MW from 11.6 to 69.6 kDa induced no change in the MW cut-off. The results also show that the method can be used to discriminate between adsorption and absorption and that insulin diffuses freely across the microcapsule membrane. This method will be useful in establishing the ideal MW cut-off, in optimizing microcapsule characteristics, and in performing routine quality controls.
Collapse
Affiliation(s)
- R Robitaille
- Centre de Recherche Guy-Bernier, Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, H1T 2M4, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Literature alerts. J Microencapsul 2000; 17:253-62. [PMID: 10738700 DOI: 10.1080/026520400288481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|