1
|
Bahriz HA, Abdelaziz RR, El-Kashef DH. Desloratadine mitigates hepatocellular carcinoma in rats: Possible contribution of TLR4/MYD88/NF-κB pathway. Toxicol Appl Pharmacol 2025; 495:117202. [PMID: 39672344 DOI: 10.1016/j.taap.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/03/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Chemotherapeutic medication-induced systemic toxicity makes cancer treatment less effective. Thus, the need for drug repurposing, which aids in the development of safe and efficient cancer therapies, is urgent. The primary goal of this research was to assess desloratadine hepatoprotective abilities and its capacity to attenuate TLR4/MyD88/NF-κB inflammatory pathway in hepatocellular carcinoma (HCC) induced by thioacetamide (TAA). Male Sprague Dawely rats received TAA injections (200 mg/kg, i.p., 2 times/week) for 16 weeks. To confirm the development of HCC, liver function biomarkers and histopathological analysis were evaluated. Desloratadine (5 mg/kg, p.o.) was administered to rats in 2 treatment groups; HCC + DES 1 group received desloratadine with TAA for 1 month from week 13-16, HCC + DES 2 group received desloratadine with TAA for 2 months from week 9-16. Chronic TAA administration resulted in considerable overexpression of the profibrogenic cytokine TGF-β and elevation in protein expression of NF-κB besides levels of TLR4, MyD88, TRAF6, TAK1 and IL-1β. Desloratadine administration showed a significant improvement in liver function tests, as well as an increase in tissue antioxidant enzymes and an improvement in the liver's histopathological features. Collectively, desloratadine through modulating TLR4/MyD88/TRAF6/TAK1/NF-κB and acting as an antioxidant, is a promising treatment for HCC induced by TAA.
Collapse
Affiliation(s)
- Heba A Bahriz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Hakami ZH, Abdo W, Nazeam JA, Osman SM, Goda W, Fadl SE, Alsulimani A, Al-Noshokaty TM, Haridy M, Alnasser SM, Abdeen A. Aloe arborescens Standardized Glycosidic Fraction Suppresses Hepatocarcinoma by Modulating TIMP1, MMP9 Genes Expression, and Inflammation/Ki67/TGFβ1 Pathway. Phytother Res 2025; 39:1090-1106. [PMID: 39731399 DOI: 10.1002/ptr.8412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
(1) Background and aim: Aloe arborescens Mill. ( A. arborescens ) is one of the most widely distributed species in the genus Aloe and has garnered widespread recognition for its anticancer properties. However, the molecular mechanisms underlying these activities have not yet been fully elucidated. This study aimed to explore the effects of the plant polar glycosidic fraction (AAG) on hepatocellular carcinoma (HCC) in an in vivo model induced by diethylnitrosamine (DEN). (2) Experimental procedure: The fraction was standardized using HPLC-PDA-MS/MS fingerprinting, and two distinct intragastric AAG dose regimens were examined (10 and 20 mg/kg) in combination with DEN 200 mg/kg. Serum alpha-fetoprotein (AFP), gamma-glutamyl transferase (γ-GGT), glutathione S-transferase placental (GST-P), mRNA expression of metabolic cytochrome enzymes (CYP1A3 and CYP2B2), inflammatory genes (nuclear factor kappa-B p65 subunit; NF-κB p65), metalloproteases 9 (MMP9), tissue inhibitors of metalloproteases (TIMP1), transforming growth factor beta 1 (TGFβ1), and histological features were assessed. (3) Key results and conclusions and implications: AAG was characterized by five major secondary metabolites: saponins, chromones, anthraquinone, and triterpenes. The fraction reduced hepatic malignancy characteristics by diminishing the size and number of altered foci and lowering hepatic cancer biomarkers, such as γ-GGT, AFP, and GST-positive foci. It also reduced the mRNA levels of CYP1A3 and CYP2B2, NF-κB p65, and MMP9, hepatic Ki-67, and TGFβ1 while upregulating TIMP1 levels. This study revealed that AAG exhibited a marked suppressive effect on HCC cell proliferation, displaying a range of mechanistic actions, including decreasing the metabolic activation of cytochrome enzymes, which consequently reduced the production of reactive oxygen species and other genes implicated in cancer development. AAG could be a significant therapeutic candidate for patients diagnosed with hepatocarcinoma.
Collapse
Affiliation(s)
- Zaki H Hakami
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Jilan A Nazeam
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Samir M Osman
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Wael Goda
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Sabreen E Fadl
- Department of Biochemistry, Faculty of Veterinary Medicine, Matruh University, Matruh, Egypt
| | - Ahmad Alsulimani
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohie Haridy
- Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| | | | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
3
|
Zhang K, Liu M, Cong L, He X, Xu Y, Wang Q, Li C. A Comparative Study of Antitumor Immunity Induced by Radiofrequency Microwave and Cryoablation in Hepatocellular Carcinoma. Appl Biochem Biotechnol 2024; 196:4088-4104. [PMID: 37889403 DOI: 10.1007/s12010-023-04760-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE This study aimed to compare the immune responses induced by microwave ablation (MWA), radiofrequency ablation (RFA), and cryoablation (CRYO) in hepatocellular carcinoma (HCC) and identify differences in immune responses and the timing of immune changes. MATERIALS AND METHODS A bilateral subcutaneous model was established in C57 mice, and the successfully modeled mice were divided into the microwave (n = 15), radiofrequency (n = 15), CRYO (n = 15), control (n = 9), and blank groups (n = 3). Mice in the control group were dissected before ablation, whereas mice in the three ablation groups underwent ultrasound-guided ablation of one axillary tumor. Three mice were sacrificed and dissected at 1-4 weeks after ablation. After tissue processing, flow cytometry was used to detect the levels of CD8 + T and regulatory T (Treg) cells in the tissue, and western blotting was used to assess the level of programmed cell death ligand 1 (PD-L1) protein in the tumor tissue. RESULTS The pattern of immune changes after the three types of ablation was consistent, with immune changes occurring at 3-4 weeks. CRYO induced the most significant increase in the percentage of CD8 + T cells. There were no significant differences in the levels of Treg cells and the level of PD-L1 protein among the three types of ablation (p > 0.05), but the decline in Treg cells and PD-L1 protein level caused by CRYO was the most pronounced. CONCLUSION In the HCC mouse model, the immune changes following the three types of ablation were consistent, with immune changes occurring at 3-4 weeks. Among them, CRYO elicited the strongest adaptive immune response, and RFA outperformed MWA.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ming Liu
- Department of Interventional MRI Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Lin Cong
- Department of Interventional Ultrasound Shandong Provincial Hospital Affiliated to Shandong, First Medical University, Jinan, Shandong, China
| | - Xiangmeng He
- Department of Interventional MRI Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Yujun Xu
- Department of Interventional MRI Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Qingwen Wang
- Department of Medical Image Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Chengli Li
- Department of Interventional MRI Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Ishteyaque S, Singh G, Yadav KS, Verma S, Sharma RK, Sen S, Srivastava AK, Mitra K, Lahiri A, Bawankule DU, Rath SK, Kumar D, Mugale MN. Cooperative STAT3-NFkB signaling modulates mitochondrial dysfunction and metabolic profiling in hepatocellular carcinoma. Metabolism 2024; 152:155771. [PMID: 38184165 DOI: 10.1016/j.metabol.2023.155771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to pose a significant health challenge and is often diagnosed at advanced stages. Metabolic reprogramming is a hallmark of many cancer types, including HCC and it involves alterations in various metabolic or nutrient-sensing pathways within liver cells to facilitate the rapid growth and progression of tumours. However, the role of STAT3-NFκB in metabolic reprogramming is still not clear. APPROACH AND RESULTS Diethylnitrosamine (DEN) administered animals showed decreased body weight and elevated level of serum enzymes. Also, Transmission electron microscopy (TEM) analysis revealed ultrastructural alterations. Increased phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated nuclear factor kappa B (p-NFκβ), dynamin related protein 1 (Drp-1) and alpha-fetoprotein (AFP) expression enhance the carcinogenicity as revealed in immunohistochemistry (IHC). The enzyme-linked immunosorbent assay (ELISA) concentration of IL-6 was found to be elevated in time dependent manner both in blood serum and liver tissue. Moreover, immunoblot analysis showed increased level of p-STAT3, p-NFκβ and IL-6 stimulated the upregulation of mitophagy proteins such as Drp-1, Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK-1). Meanwhile, downregulation of Poly [ADP-ribose] polymerase 1 (PARP-1) and cleaved caspase 3 suppresses apoptosis and enhanced expression of AFP supports tumorigenesis. The mRNA level of STAT3 and Drp-1 was also found to be significantly increased. Furthermore, we performed high-field 800 MHz Nuclear Magnetic Resonance (NMR) based tissue and serum metabolomics analysis to identify metabolic signatures associated with the progression of liver cancer. The metabolomics findings revealed aberrant metabolic alterations in liver tissue and serum of 75th and 105th days of intervention groups in comparison to control, 15th and 45th days of intervention groups. Tissue metabolomics analysis revealed the accumulation of succinate in the liver tissue samples, whereas, serum metabolomics analysis revealed significantly decreased circulatory levels of ketone bodies (such as 3-hydroxybutyrate, acetate, acetone, etc.) and membrane metabolites suggesting activated ketolysis in advanced stages of liver cancer. CONCLUSION STAT3-NFκβ signaling axis has a significant role in mitochondrial dysfunction and metabolic alterations in the development of HCC.
Collapse
Affiliation(s)
- Sharmeen Ishteyaque
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gurvinder Singh
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow-226014, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Karan Singh Yadav
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Verma
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Kumar Sharma
- Sophisticated Analytical Instrument Facility and Research Division CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumati Sen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anurag Kumar Srivastava
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Kalyan Mitra
- Sophisticated Analytical Instrument Facility and Research Division CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Lahiri
- Pharmacology Division, CSIR - Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dnyaneshwar U Bawankule
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow-226014, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Madhav Nilakanth Mugale
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Mao J, Tan L, Tian C, Wang W, Zhang H, Zhu Z, Li Y. Research progress on rodent models and its mechanisms of liver injury. Life Sci 2024; 337:122343. [PMID: 38104860 DOI: 10.1016/j.lfs.2023.122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The liver is the most important organ for biological transformation in the body and is crucial for maintaining the body's vital activities. Liver injury is a serious pathological condition that is commonly found in many liver diseases. It has a high incidence rate, is difficult to cure, and is prone to recurrence. Liver injury can cause serious harm to the body, ranging from mild to severe fatty liver disease. If the condition continues to worsen, it can lead to liver fibrosis and cirrhosis, ultimately resulting in liver failure or liver cancer, which can seriously endanger human life and health. Therefore, establishing an rodent model that mimics the pathogenesis and severity of clinical liver injury is of great significance for better understanding the pathogenesis of liver injury patients and developing more effective clinical treatment methods. The author of this article summarizes common chemical liver injury models, immune liver injury models, alcoholic liver injury models, drug-induced liver injury models, and systematically elaborates on the modeling methods, mechanisms of action, pathways of action, and advantages or disadvantages of each type of model. The aim of this study is to establish reliable rodent models for researchers to use in exploring anti-liver injury and hepatoprotective drugs. By creating more accurate theoretical frameworks, we hope to provide new insights into the treatment of clinical liver injury diseases.
Collapse
Affiliation(s)
- Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Cheng Tian
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Hao Zhang
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Zhaojing Zhu
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China.
| |
Collapse
|
6
|
Sotty J, Bablon P, Weiss PH, Soussan P. Diethylnitrosamine Induction of Hepatocarcinogenesis in Mice. Methods Mol Biol 2024; 2769:15-25. [PMID: 38315386 DOI: 10.1007/978-1-0716-3694-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Diethylnitrosamine (DEN) is a chemical hepatocarcinogenic agent that triggers a large array of oncogenic mutations after a single injection. Initiated hepatocytes subsequently undergo clonal expansion within a proliferative environment, rendering the DEN model a comprehensive carcinogen. In rodent studies, DEN finds extensive utility in experimental liver cancer research, mimicking several aspects of human hepatocellular carcinoma (HCC), including angiogenesis, metabolic reprogramming, immune exhaustion, and the ability to metastasize. Beyond the wealth of scientific insights gleaned from this model, the objective of this chapter is to review morphological, genomic, and immunological characteristics associated to DEN-induced HCC. Furthermore, this chapter provides a detailed procedural guide to effectively induce hepatocarcinogenesis in mice through a single intraperitoneal injection of DEN.
Collapse
Affiliation(s)
- Jules Sotty
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche de Saint Antoine (CRSA), Paris, France
| | - Pierre Bablon
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche de Saint Antoine (CRSA), Paris, France
| | - Paul-Henry Weiss
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche de Saint Antoine (CRSA), Paris, France
| | - Patrick Soussan
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche de Saint Antoine (CRSA), Paris, France.
- Département de Virologie, Assistance Publique - Hôpitaux de Paris (AP-HP), Sorbonne Université, GHU Paris-Est, Paris, France.
| |
Collapse
|
7
|
Babu S, Ranajit SK, Pattnaik G, Ghosh G, Rath G, Kar B. An Insight into Different Experimental Models used for Hepatoprotective Studies: A Review. Curr Drug Discov Technol 2024; 21:e191223224660. [PMID: 39206705 DOI: 10.2174/0115701638278844231214115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 09/04/2024]
Abstract
Numerous factors, including exposure to harmful substances, drinking too much alcohol, contracting certain hepatitis serotypes, and using specific medicines, contribute to the development of liver illnesses. Lipid peroxidation and other forms of oxidative stress are the main mechanisms by which hepatotoxic substances harm liver cells. Pathological changes in the liver include a rise in the levels of blood serum, a decrease in antioxidant enzymes, as well as the formation of free radical radicals. It is necessary to find pharmaceutical alternatives to treat liver diseases to increase their efficacy and decrease their toxicity. For the development of new therapeutic medications, a greater knowledge of primary mechanisms is required. In order to mimic human liver diseases, animal models are developed. Animal models have been used for several decades to study the pathogenesis of liver disorders and related toxicities. For many years, animal models have been utilized to investigate the pathophysiology of liver illness and associated toxicity. The animal models are created to imitate human hepatic disorders. This review enlisted numerous hepatic damage in vitro and in vivo models using various toxicants, their probable biochemical pathways and numerous metabolic pathways via oxidative stressors, different serum biomarkers enzymes are discussed, which will help to identify the most accurate and suitable model to test any plant preparations to check and evaluate their hepatoprotective properties.
Collapse
Affiliation(s)
- Sucharita Babu
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Santosh K Ranajit
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| |
Collapse
|
8
|
Smiriglia A, Lorito N, Serra M, Perra A, Morandi A, Kowalik MA. Sex difference in liver diseases: How preclinical models help to dissect the sex-related mechanisms sustaining NAFLD and hepatocellular carcinoma. iScience 2023; 26:108363. [PMID: 38034347 PMCID: PMC10682354 DOI: 10.1016/j.isci.2023.108363] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Only a few preclinical findings are confirmed in the clinic, posing a critical issue for clinical development. Therefore, identifying the best preclinical models can help to dissect molecular and mechanistic insights into liver disease pathogenesis while being clinically relevant. In this context, the sex relevance of most preclinical models has been only partially considered. This is particularly significant in NAFLD and HCC, which have a higher prevalence in men when compared to pre-menopause women but not to those in post-menopausal status, suggesting a role for sex hormones in the pathogenesis of the diseases. This review gathers the sex-relevant findings and the available preclinical models focusing on both in vitro and in vivo studies and discusses the potential implications and perspectives of introducing the sex effect in the selection of the best preclinical model. This is a critical aspect that would help to tailor personalized therapies based on sex.
Collapse
Affiliation(s)
- Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marina Serra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
9
|
Aldayel TS, Gad El Hak HN, Nafie MS, Saad R, Abdelrazek HMA, Kilany OE. Evaluation of antioxidant, anti-inflammatory, anticancer activities and molecular docking of Moringa oleifera seed oil extract against experimental model of Ehrlich ascites carcinoma in Swiss female albino mice. BMC Complement Med Ther 2023; 23:457. [PMID: 38098043 PMCID: PMC10720142 DOI: 10.1186/s12906-023-04279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
The current research intended to evaluate the antitumor properties of Moringa oleifera oil extract (MOE). Fifty-six female Swiss albino mice were employed in this study. Animals were assigned into four groups: control (C) group, moringa oil extract (MOE) group administered (500 mg/kg b. wt) MOE daily via gavage, Ehrlich ascites carcinoma (EAC) group and EAC group administered daily with (500 mg/kg b.wt) MOE for two weeks (EAC/MOE). The results showed that MOE significantly ameliorated the EAC increase in body weight and reduced the EAC cell viability. In addition, they upgraded the levels of hepatic and renal functions, inflammatory cytokines, oxidative stress markers and EAC-induced hepatic and renal histopathological changes. Treatment of EAC with MOE induced antitumor, anti-inflammatory and antioxidant effects and normalized most of the tested parameters besides the histopathological alterations in both renal and hepatic tissues. HPLC for the MOE identified Cinnamic acid, Ellagic acid, Quercetin, Gallic acid, Vanillin and Hesperidin as major compounds. The molecular docking study highlighted the virtual binding of the identified compounds inside the GSH and SOD proteins, especially for Quercetin which exhibited promising binding affinity with good interactive binding mode with the key amino acids. These results demonstrate that the antitumor constituents of MOE against EAC induced oxidative stress and inflammation by preventing oxidative damage and controlling EAC increase.
Collapse
Affiliation(s)
- Tahany Saleh Aldayel
- Department of Health Sciences, Clinical Nutrition, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Heba N Gad El Hak
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt.
| | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Raneem Saad
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Omnia E Kilany
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
10
|
Awad B, Hamza AA, Al-Maktoum A, Al-Salam S, Amin A. Combining Crocin and Sorafenib Improves Their Tumor-Inhibiting Effects in a Rat Model of Diethylnitrosamine-Induced Cirrhotic-Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4063. [PMID: 37627094 PMCID: PMC10452334 DOI: 10.3390/cancers15164063] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies, with continuously increasing cases and fatalities. Diagnosis often occurs in the advanced stages, confining patients to systemic therapies such as sorafenib. Sorafenib (SB), a multi-kinase inhibitor, has not yet demonstrated sufficient efficacy against advanced HCC. There is a strong argument in favor of studying its use in combination with other medications to optimize the therapeutic results. According to our earlier work, crocin (CR), a key bioactive component of saffron, hinders HCC development and liver cancer stemness. In this study, we investigated the therapeutic use of CR or its combination with SB in a cirrhotic rat model of HCC and evaluated how effectively SB and CR inhibited tumor growth in this model. Diethylnitrosamine (DEN) was administered intraperitoneally to rats once a week for 15 weeks, leading to cirrhosis, and then 19 weeks later, leading to multifocal HCC. After 16 weeks of cancer induction, CR (200 mg/kg daily) and SB (10 mg/kg daily) were given orally to rats for three weeks, either separately or in combination. Consistently, the combination treatment considerably decreased the incidence of dyschromatic nodules, nodule multiplicity, and dysplastic nodules when compared to the HCC group of single therapies. Combined therapy also caused the highest degree of apoptosis, along with decreased proliferating and β-catenin levels in the tumor tissues. Additionally, when rats received combined therapy with CR, it showed anti-inflammatory characteristics where nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (Cox-2) were considerably and additively lowered. As a result, CR potentiates the suppressive effects of SB on tumor growth and provides the opportunity to strengthen the therapeutic effects of SB in the treatment of HCC.
Collapse
Affiliation(s)
- Basma Awad
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (B.A.); (A.A.-M.)
| | - Alaaeldin Ahmed Hamza
- National Organization for Drug Control and Research, Giza 12611, Egypt;
- National Committee for Biochemistry and Molecular Biology and Medical Research Council, Academy of Scientific Research, Cairo 11334, Egypt
| | - Amna Al-Maktoum
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (B.A.); (A.A.-M.)
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Amr Amin
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (B.A.); (A.A.-M.)
| |
Collapse
|
11
|
Li J, Wang X, Ren M, He S, Zhao Y. Advances in experimental animal models of hepatocellular carcinoma. Cancer Med 2023; 12:15261-15276. [PMID: 37248746 PMCID: PMC10417182 DOI: 10.1002/cam4.6163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with insidious early symptoms, easy metastasis, postoperative recurrence, poor drug efficacy, and a high drug resistance rate when surgery is missed, leading to a low 5-year survival rate. Research on the pathogenesis and drugs is particularly important for clinical treatment. Animal models are crucial for basic research, which is conducive to studying pathogenesis and drug screening more conveniently and effectively. An appropriate animal model can better reflect disease occurrence and development, and the process of anti-tumor immune response in the human body. This review summarizes the classification, characteristics, and advances in experimental animal models of HCC to provide a reference for researchers on model selection.
Collapse
Affiliation(s)
- Jing Li
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xin Wang
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Mudan Ren
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Shuixiang He
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Yan Zhao
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
12
|
Metkar SP, Fernandes G, Navti PD, Nikam AN, Kudarha R, Dhas N, Seetharam RN, Santhosh KV, Rao BSS, Mutalik S. Nanoparticle drug delivery systems in hepatocellular carcinoma: A focus on targeting strategies and therapeutic applications. OPENNANO 2023; 12:100159. [DOI: 10.1016/j.onano.2023.100159] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Sánchez-Meza J, Campos-Valdez M, Domínguez-Rosales JA, Godínez-Rubí JM, Rodríguez-Reyes SC, Martínez-López E, Zúñiga-González GM, Sánchez-Orozco LV. Chronic Administration of Diethylnitrosamine and 2-Acetylaminofluorene Induces Hepatocellular Carcinoma in Wistar Rats. Int J Mol Sci 2023; 24:ijms24098387. [PMID: 37176094 PMCID: PMC10179122 DOI: 10.3390/ijms24098387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to analyze the biochemical, histological, and gene expression alterations produced in a hepatocarcinogenesis model induced by the chronic administration of diethylnitrosamine (DEN) and 2-acetylaminofluorene (2-AAF) in Wistar rats. Thirteen rats weighing 180 to 200 g were divided into two groups: control and treated. Rats in the treated group were administered an intraperitoneal (i.p.) injection of DEN (50 mg/kg/week) and an intragastric (i.g.) dose of 2-AAF (25 mg/kg/week) for 18 weeks. The treated group had significant increases in their total cholesterol, HDL-C, AST, ALT, ALKP, and GGT levels. Furthermore, a histological analysis showed the loss of normal liver architecture with nuclear pleomorphism in the hepatocytes, atypical mitosis, and fibrous septa that were distributed between the portal triads and collagen fibers through the hepatic sinusoids. The gene expressions of 24 genes related to fibrosis, inflammation, apoptosis, cell growth, angiogenesis, lipid metabolism, and alpha-fetoprotein (AFP) were analyzed; only TGFβ, COL1α1, CYP2E1, CAT, SOD, IL6, TNF-α, and ALB showed significant differences when both groups were compared. Additionally, lung histopathological alterations were found in the treated group, suggesting metastasis. In this model, the chronic administration of DEN+2-AAF induces characteristic alterations of hepatocellular carcinoma in Wistar rats without AFP gene expression changes, highlighting different signatures in hepatocellular carcinoma heterogeneity.
Collapse
Affiliation(s)
- Jaime Sánchez-Meza
- Instituto de Enfermedades Crónico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Marina Campos-Valdez
- Instituto de Enfermedades Crónico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - José Alfredo Domínguez-Rosales
- Instituto de Enfermedades Crónico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Juliana Marisol Godínez-Rubí
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Sarai Citlalic Rodríguez-Reyes
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Mexico
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Mexico
| | - Guillermo M Zúñiga-González
- Laboratorio de Mutagénesis, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Laura Verónica Sánchez-Orozco
- Instituto de Enfermedades Crónico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
14
|
Wang YK, Ma N, Xu S, Huang JY, Ni QZ, Cao HJ, Zheng QW, Zhu B, Xia J, Zhang FK, Ding XF, Qiu XS, Chen TW, Wang K, Chen W, Li ZG, Cheng SQ, Xie D, Li JJ. PPDPF suppresses the development of hepatocellular carcinoma through TRIM21-mediated ubiquitination of RIPK1. Cell Rep 2023; 42:112340. [PMID: 37027301 DOI: 10.1016/j.celrep.2023.112340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/13/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Pancreatic progenitor cell differentiation and proliferation factor (PPDPF) has been reported to play a role in tumorigenesis. However, its function in hepatocellular carcinoma (HCC) remains poorly understood. In this study, we report that PPDPF is significantly downregulated in HCC and the decreased PPDPF expression indicates poor prognosis. In the dimethylnitrosamine (DEN)-induced HCC mouse model, hepatocyte-specific depletion of Ppdpf promotes hepatocarcinogenesis, and reintroduction of PPDPF into liver-specific Ppdpf knockout (LKO) mice inhibits the accelerated HCC development. Mechanistic study shows that PPDPF regulates nuclear factor κB (NF-κB) signaling through modulation of RIPK1 ubiquitination. PPDPF interacts with RIPK1 and facilitates K63-linked ubiquitination of RIPK1 via recruiting the E3 ligase TRIM21, which catalyzes K63-linked ubiquitination of RIPK1 at K140. In addition, liver-specific overexpression of PPDPF activates NF-κB signaling and attenuates apoptosis and compensatory proliferation in mice, which significantly suppresses HCC development. This work identifies PPDPF as a regulator of NF-κB signaling and provides a potential therapeutic candidate for HCC.
Collapse
Affiliation(s)
- Yi-Kang Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ning Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Sheng Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing-Yi Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian-Zhi Ni
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200433, China
| | - Hui-Jun Cao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian-Wen Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bing Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ji Xia
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Feng-Kun Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xu-Fen Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Song Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tian-Wei Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Kang Wang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200433, China
| | - Wei Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Zhi-Gang Li
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200433, China
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| | - Jing-Jing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| |
Collapse
|
15
|
Elzallat M, Hassan M, Elkramani N, Aboushousha T, AbdelLatif A, Helal N, Abu-Taleb H, El-Ahwany E. Nanoconjugated long non-coding RNA MEG3 as a new therapeutic approach for Hepatocellular carcinoma. Heliyon 2023; 9:e15288. [PMID: 37101621 PMCID: PMC10123146 DOI: 10.1016/j.heliyon.2023.e15288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive human cancer with a poor prognosis. Long non-coding RNAs (lncRNA) have multiple functions: epigenomic regulation, gene transcription, protein-coding gene translation, and genome defense. The involvement of lncRNAs in therapy offers a vast step in cancer treatment. Objective In the current study, a novel therapeutic regimen using polymer nanoparticle-mediated delivery of lncRNA was designed to control the progression of hepatocarcinogenesis. Methods One hundred mice were divided into 5 groups. The first group served as a normal-control group and was injected with saline, whereas the pathological-control group (the second group) was injected with N-Nitrosodiethylamine (DEN) weekly for 16 weeks. Group 3, Group 4, and Group 5 were injected intrahepatically with polymer nanoparticles (NPs) alone, lncRNA MEG3 alone, and conjugated NPs, respectively, once/week for four weeks starting on the 12th week after DEN injection. After 16 weeks, animals were euthanized, and liver specimens and blood samples were collected for pathological, molecular, and biochemical assessment. Results Compared to the pathological-control group, nanoconjugates lncRNA MEG3 demonstrated a significant improvement in histopathology and tumour-associated biomarkers. Furthermore, the expression of the SENP1 and PCNA was downregulated. Conclusion MEG3 conjugated nanoparticles can be considered a novel therapeutic regimen for HCC.
Collapse
|
16
|
Baokbah TAS. Attenuation of diethylnitrosamine-induced hepatocellular carcinoma in a rat model by combination therapy of diacerein and gold nanoparticles: a histopathological and immunohistochemical study. J Histotechnol 2023; 46:5-16. [PMID: 36214360 DOI: 10.1080/01478885.2022.2129935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The purpose of this study was to investigate the effect of combined therapy of diacerein and gold nanoparticles (AuNP) on diethylnitrosamine (DEN) induced hepatocellular carcinoma (HCC) in a rat model. Normal healthy and DEN-induced (HCC) rats were divided into five groups. Group I healthy rats served as normal control, Group II untreated HCC rats, Group III HCC rats administered diacerein, Group IV HCC rats administered AuNP, and Group V HCC rats administered diacerein and AuNP. All treatments were given once daily for 4 weeks. Liver morphology and necroinflammation in all groups were evaluated using hematoxylin and eosin (H&E), Masson's trichrome for fibrosis, and immunohistochemistry assays for expression of TNF-α, IL-6, β-catenin, and caspase-3. Liver sections from Group II HCC rats showed loss of lobular architecture, thick fibrous tissue deposition, leukocyte infiltration, degenerated hepatocytes and HCC neoplastic nodules surrounded by extensive fibrosis. Group II had high expression of TNF-α, IL-6, and β-catenin, and low caspase-3 expression as compared to Group I. HCC rats treated with the combined therapy of diacerein and AuNP (Group V) showed markedly decreased HCC lesions, significant necroinflammation reduction (p ˂ 0.05) and 90% reduction in fibrosis as compared to Group II HCC + diacerein. This combined therapy also reduced (p ˂ 0.05) TNF-α, IL-6, β-catenin expression and increased caspase-3 expression. In conclusion, diacerein combined with AuNP synergistically attenuated the severity of HCC lesions by reducing necroinflammation and fibrosis, decreased TNF-α, IL-6, β-catenin expression, and increased caspase-3 expression for apoptosis.
Collapse
Affiliation(s)
- Tourki A S Baokbah
- Department of Medical Emergency Services, Al-Qunfudah Health Sciences College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
17
|
Song Y, Lu Q, Jiang D, Lan X. Validation and utility of HepG2 xenograft model for hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2023; 50:639-641. [PMID: 36416907 DOI: 10.1007/s00259-022-06043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Yangmeihui Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Qiaomiao Lu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, Hubei, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China. .,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China. .,Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, Hubei, China.
| |
Collapse
|
18
|
Ramírez Guerson GA, Linares Márquez P, Pascual Mathey LI. Perspectiva bioética para México, España y Estados Unidos en los modelos in vivo de inducción de daño al ADN. REVISTA LATINOAMERICANA DE BIOÉTICA 2022. [DOI: 10.18359/rlbi.5592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
En la actualidad, la investigación biomédica se ha centrado en el estudio de enfermedades como el cáncer, que causan un elevado índice de mortalidad. Existen diferentes modelos animales, empleados para generar diversos tipos de carcinogénesis; el daño directo al ADN es uno de los mecanismos más utilizados. Sin embargo, en la normatividad nacional e internacional vigente, no se señalan los aspectos bioéticos que se deben seguir para desarrollar un modelo experimental de daño al ADN. Además, no se realiza una correcta semejanza de la enfermedad. Debido a lo anterior, esta revisión analiza los avances en cuanto a normatividad que se han generado en diferentes países, comparando los estudios encontrados en Estados Unidos, México y España. La perspectiva a futuro es poder contar con guías de experimentación actualizadas, que permitan pautar las normas necesarias para el adecuado desarrollo de los modelos de investigación animal de daño al ADN y que cumplan con la regla de las 3R en la experimentación animal. Esta iniciativa se debe de realizar en conjunto entre la Organización Mundial de la Salud y los organismos especializados en manejo y cuidado de animales de laboratorio en los ámbitos nacional e internacional.
Collapse
|
19
|
Abdu S, Juaid N, Amin A, Moulay M, Miled N. Therapeutic Effects of Crocin Alone or in Combination with Sorafenib against Hepatocellular Carcinoma: In Vivo & In Vitro Insights. Antioxidants (Basel) 2022; 11:antiox11091645. [PMID: 36139719 PMCID: PMC9495549 DOI: 10.3390/antiox11091645] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
This study investigated the therapeutic effects of the phytochemical crocin alone or in combination with sorafenib both in rats chemically induced with hepatocellular carcinoma (HCC) and in human liver cancer cell line (HepG2). Male rats were randomly divided into five groups, namely, control group, HCC induced group, and groups treated with sorafenib, crocin or both crocin and sorafenib. HCC was induced in rats with a single intraperitoneal injection of diethylnitrosamine (DEN), then 2-acetylaminofluorene (2-AAF). The HCC-induced rats showed a significant decrease in body weight compared to animals treated with either or both examined drugs. Serum inflammatory markers (C-reactive protein (CRP); interleukin-6 (IL-6); lactate dehydrogenase (LDH), and oxidative stress markers were significantly increased in the HCC group and were restored upon treatment with either or both of therapeutic molecules. Morphologically, the HCC-induced rats manifested most histopathological features of liver cancer. Treatment with either or both of crocin and sorafenib successfully restored normal liver architecture. The expression of key genes involved in carcinogenesis (TNFα, p53, VEGF and NF-κB) was highly augmented upon HCC induction and was attenuated post-treatment with either or both examined drugs. Treatment with both crocin and sorafenib improved the histopathological and inflammation parameters as compared to single treatments. The in vivo anti-cancer effects of crocin and/or sorafenib were supported by their respective cytotoxicity on HepG2 cells. Crocin and sorafenib displayed an anti-tumor synergetic effect on HepG2 cells. The present findings demonstrated that a treatment regimen with crocin and sorafenib reduced liver toxicity, impeded HCC development, and improved the liver functions.
Collapse
Affiliation(s)
- Suzan Abdu
- Department of Biological Sciences, University of Jeddah, Jeddah 23445, Saudi Arabia
| | - Nouf Juaid
- Department of Biological Sciences, University of Jeddah, Jeddah 23445, Saudi Arabia
- Correspondence: (N.J.); (N.M.)
| | - Amr Amin
- Biology Department, UAE University, Al Ain 15551, United Arab Emirates
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Mohamed Moulay
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdul Aziz University, Jeddah 22252, Saudi Arabia
| | - Nabil Miled
- Department of Biological Sciences, University of Jeddah, Jeddah 23445, Saudi Arabia
- Functional Genomics and Plant Physiology Research Unit, Higher Institute of Biotechnology Sfax, University of Sfax, BP261 Road Soukra Km4, Sfax 3038, Tunisia
- Correspondence: (N.J.); (N.M.)
| |
Collapse
|
20
|
Tatipamula VB, Thonangi CV, Dakal TC, Vedula GS, Dhabhai B, Polimati H, Akula A, Nguyen HT. Potential anti-hepatocellular carcinoma properties and mechanisms of action of clerodane diterpenes isolated from Polyalthia longifolia seeds. Sci Rep 2022; 12:9267. [PMID: 35661799 PMCID: PMC9166726 DOI: 10.1038/s41598-022-13383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Diterpenes are secondary metabolites that have attracted much attention due to their potential biological activities including anti-cancer potential. The aim of the current study is to assess the anticancer potential of the six known clerodane diterpenes (1–6) isolated from Polyalthia longifolia seeds and their underlying molecular mechanisms. These compounds were evaluated for their cytotoxicity in vitro by using MTT assays. The “two-phase model” with NDEA and PB ad libitum was used for induction of HCC and sorafenib was used as the standard drug. Prophylactic studies were carried out for compounds 4/6 at both low (5 mg/kg b.w) and high (10 mg/kg b.w) doses. Based on the MTT assay results, the two best compounds, 4 and 6, were selected for in vivo studies. The results showed that treatment with compound 4/6 significantly restored the changes in biochemical parameters and liver morphology observed in (NDEA + PB)-induced HCC rats. Additionally, the docking studies showed that compound 4/6 interacted with several key proteins such as MDM2, TNF-α, FAK, thereby inhibiting these proteins and reversing the negative impacts of NDEA. In conclusion, our results suggested that compounds 4 and 6 are potential therapeutic agents for HCC, mostly due to their ability to control typical cancer pathways.
Collapse
Affiliation(s)
- Vinay Bharadwaj Tatipamula
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Danang, 550000, Vietnam
| | - Chandi Vishala Thonangi
- Pharmacology Department, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, 530003, India.
| | - Tikam Chand Dakal
- Genome & Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Girija Sastry Vedula
- Pharmacology Department, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, 530003, India
| | - Bhanupriya Dhabhai
- Genome & Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Haritha Polimati
- Pharmacology Department, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, 530003, India
| | - Annapurna Akula
- Pharmacology Department, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, 530003, India
| | - Ha Thi Nguyen
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Danang, 550000, Vietnam.
| |
Collapse
|
21
|
Multi-channel CNN based anticancer peptides identification. Anal Biochem 2022; 650:114707. [PMID: 35568159 DOI: 10.1016/j.ab.2022.114707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022]
Abstract
Cancer is one of the most dangerous diseases in the world that often leads to misery and death. Current treatments include different kinds of anticancer therapy which exhibit different types of side effects. Because of certain physicochemical properties, anticancer peptides (ACPs) have opened a new path of treatments for this deadly disease. That is why a well-performed methodology for identifying novel anticancer peptides has great importance in the fight against cancer. In addition to the laboratory techniques, various machine learning and deep learning methodologies have developed in recent years for this task. Although these models have shown reasonable predictive ability, there's still room for improvement in terms of performance and exploring new types of algorithms. In this work, we have proposed a novel multi-channel convolutional neural network (CNN) for identifying anticancer peptides from protein sequences. We have collected data from the existing state-of-the-art methodologies and applied binary encoding for data preprocessing. We have also employed k-fold cross-validation to train our models on benchmark datasets and compared our models' performance on the independent datasets. The comparison has indicated our models' superiority on various evaluation metrics. We think our work can be a valuable asset in finding novel anticancer peptides. We have provided a user-friendly web server for academic purposes and it is publicly available at: \texttt{http://103.99.176.239/iacp-cnn/}.
Collapse
|
22
|
Polysaccharide-Rich Fractions from Ganoderma resinaceum (Ganodermataceae) as Chemopreventive Agents in N-Diethylnitrosamine-Induced Hepatocellular Carcinoma in Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8198859. [PMID: 35463072 PMCID: PMC9019406 DOI: 10.1155/2022/8198859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal diseases worldwide. Its treatment remains ineffective and the prognosis remains severe, thus favoring the emergence of a preventive approach. Mushroom-derived polysaccharides offer great opportunities because of their less toxicity and bioactivities. The present study aimed to investigate the chemopreventive effects of water-soluble polysaccharides from Ganoderma resinaceum on HCC. Two G. resinaceum polysaccharide-rich fractions (GRP I and GRP II) were obtained following hot water and alcohol precipitation. Their proteins, phenol compounds, and total neutral sugar content were assayed. The in vitro antiproliferative effect was assessed in MDA-MB 231, Hela, and HepG2 using the MTT assay. Further, for the in vivo study, seven groups of nine rats each received N-diethylnitrosamine (100 mg/kg BW), vehicle (NaCl 0.9%), doxorubicin (10 mg/kg BW), or G. resinaceum polysaccharides (125 and 250 mg/kg BW). Liver cancer initiation and progression was assessed by evaluating histomorphology of liver section, hepatic injury markers, hematology, cytokines/chemokines levels, and stress oxidative markers. GRP II presented higher protein and sugar and lower phenol compound content than GRP I. GRP exhibited CC50 of 340 and 261.7 in HepG2 cells after 48 h. Moreover, GRP I and GRP II (125 and 250 mg/kg) prevented the alteration of the histoarchitecture of the liver induced by the DEN. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alpha-fetoprotein (AFP), proinflammatory cytokines (G-CSF, IFNγ, and TNFα), and chemokines (eotaxin and fractalkine) levels were significantly decreased in the GRP I- and GRP II-treated groups, while anti-inflammatory cytokines (IL-10 and IL-12p70) levels were increased. The antioxidant defense was also stimulated by reducing malondialdehyde (MDA) and nitric oxide (NO2) levels, increasing catalase (CAT) and superoxide dismutase (SOD) activities, and reducing glutathione (GSH) levels. Our results indicate that GRP I exhibits chemopreventive effects by inhibiting cell proliferation and restoring liver architecture, antioxidant enzymes, and cytokines/chemokines balance.
Collapse
|
23
|
Chai ZT, Chen ZH, Zhang XP, Feng JK, Liu ZH, Cheng SQ. A stable and reliable animal model for hepatocellular carcinoma with portal vein tumor thrombus. Hepatobiliary Pancreat Dis Int 2022; 21:90-93. [PMID: 33810986 DOI: 10.1016/j.hbpd.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/04/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Zong-Tao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200433, China
| | - Zhen-Hua Chen
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200433, China
| | - Xiu-Ping Zhang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200433, China; Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing 100039, China
| | - Jin-Kai Feng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200433, China
| | - Zong-Han Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200433, China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
24
|
Abdalla Y, Abdalla A, Hamza AA, Amin A. Safranal Prevents Liver Cancer Through Inhibiting Oxidative Stress and Alleviating Inflammation. Front Pharmacol 2022; 12:777500. [PMID: 35177980 PMCID: PMC8845597 DOI: 10.3389/fphar.2021.777500] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Despite all efforts, an effective and safe treatment for liver cancer remains elusive. Natural products and their derived biomolecules are potential resources to mine for novel anti-cancer drugs. Chemopreventive effects of safranal, a major bioactive ingredient of the golden spice "saffron", were evaluated in this study against diethylnitrosamine (DEN)-induced liver cancer in rats. Safranal's mechanisms of action were also investigated in the human liver cancer line "HepG2". When administered to DEN-treated rats, safranal significantly inhibited proliferation (Ki-67) and also induced apoptosis (TUNEL and M30 CytoDeath). It also exhibited anti-inflammatory properties where inflammatory markers such as NF-kB, COX2, iNOS, TNF-alpha, and its receptor were significantly inhibited. Safranal's in vivo effects were further supported in HepG2 cells where apoptosis was induced and inflammation was downregulated. In summary, safranal is reported here as a potent chemopreventive agent against hepatocellular carcinoma that may soon be an important ingredient of a broad-spectrum cancer therapy.
Collapse
Affiliation(s)
- Youssef Abdalla
- Department of Kinesiology, Michigan State University, East Lansing, MI, United States
| | - Ali Abdalla
- Weinberg Institute for Cognitive Science, University of Michigan, Ann Arbor, MI, United States
| | - Alaaeldin Ahmed Hamza
- Hormone Evaluation Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Amr Amin
- The College, The University of Chicago, Chicago, IL, United States
- Biology Department, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
25
|
1,8 Cineole and Ellagic acid inhibit hepatocarcinogenesis via upregulation of MiR-122 and suppression of TGF-β1, FSCN1, Vimentin, VEGF, and MMP-9. PLoS One 2022; 17:e0258998. [PMID: 35081125 PMCID: PMC8791452 DOI: 10.1371/journal.pone.0258998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most burdened tumors worldwide, with a complex and multifactorial pathogenesis. Current treatment approaches involve different molecular targets. Phytochemicals have shown considerable promise in the prevention and treatment of HCC. We investigated the efficacy of two natural components, 1,8 cineole (Cin) and ellagic acid (EA), against diethylnitrosamine/2-acetylaminofluorene (DEN/2-AAF) induced HCC in rats. DEN/2-AAF showed deterioration of hepatic cells with an impaired functional capacity of the liver. In addition, the levels of tumor markers including alpha-fetoprotein, arginase-1, alpha-L-fucosidase, and ferritin were significantly increased, whereas the hepatic miR-122 level was significantly decreased in induced-HCC rats. Interestingly, treatment with Cin (100mg/kg) and EA (60mg/kg) powerfully restored these biochemical alterations. Moreover, Cin and EA treatment exhibited significant downregulation in transforming growth factor beta-1 (TGF-β1), Fascin-1 (FSCN1), vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and epithelial-mesenchymal transition (EMT) key marker, vimentin, along with a restoration of histopathological findings compared to HCC group. Such effects were comparable to Doxorubicin (DOX) (2mg/kg); however, a little additive effect was evident through combining these phytochemicals with DOX. Altogether, this study highlighted 1,8 cineole and ellagic acid for the first time as promising phytochemicals for the treatment of hepatocarcinogenesis via regulating multiple targets.
Collapse
|
26
|
Cokan KB, Hancock JM, Spindelböck W, Režen T, Juvan P, Rozman D. Matching mouse models to specific human liver disease states by comparative functional genomics of mouse and human datasets. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194785. [PMID: 34971790 DOI: 10.1016/j.bbagrm.2021.194785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Omics has broadened our view of transcriptional and gene regulatory networks of multifactorial diseases, such as metabolism associated liver disease and its advanced stages including hepatocellular carcinoma. Identifying liver disease biomarkers and potential treatment targets makes use of experimental models, e.g. genetically engineered mice, which show molecular features of human pathologies but are experimentally tractable. We compared gene expression profiling data from human to our studies on transgenic mice with hepatocyte deletion of Cyp51 from cholesterol synthesis with the aim of identifying the human liver disease state best matched by the Cyp51 knockout model. Gene Expression Omnibus was used to identify relevant human datasets. We identified enriched and deregulated genes, pathways and transcription factors of mouse and human disease samples. Analysis showed a closer match of the Cyp51 knockout to the female patient samples. Importantly, CYP51 was depleted in both mouse and female human data. Among the enriched genes were the oxysterol-binding protein-related protein 3 (OSBPL3), which was enriched in all datasets, and the collagen gene COL1A2, which was enriched in both the mouse and one human dataset. KEGG and Reactome analyses revealed the most enriched pathway to be ECM-receptor interaction. Numerous transcription factors were differentially expressed in mice of both sexes and in the human female dataset, while depleted HNF4α and RXRα:PPARα-isoform1 were a hallmark in all cases. Our analysis exposed novel potential biomarkers, which may provide new avenues towards more personalized approaches and different targets in females and males. The analysis was only possible because of availability of open data resources and tools and broadly consistent annotation.
Collapse
Affiliation(s)
- Kaja Blagotinšek Cokan
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - John M Hancock
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Walter Spindelböck
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Juvan
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
27
|
Gu CY, Lee TKW. Preclinical mouse models of hepatocellular carcinoma: An overview and update. Exp Cell Res 2022; 412:113042. [PMID: 35101391 DOI: 10.1016/j.yexcr.2022.113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
|
28
|
Zhao D, Xia L, Geng W, Xu D, Zhong C, Zhang J, Xia Q. Metformin suppresses interleukin-22 induced hepatocellular carcinoma by upregulating Hippo signaling pathway. J Gastroenterol Hepatol 2021; 36:3469-3476. [PMID: 34432321 DOI: 10.1111/jgh.15674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Epidemiological studies have shown direct associations between type 2 diabetes and the risk of cancers. Accumulating evidence indicates that metformin is profoundly implicated in preventing tumor development. However, the exact mechanism underlying the antitumor effects of metformin in hepatocellular carcinoma (HCC) is still not clear. METHODS In this study, we investigated the effects of metformin on a mouse HCC model and interleukin-22 (IL-22)-associated carcinogenesis in vitro. RESULTS We found that metformin significantly suppressed the incidence and tumor burden of HCC in the diethyl-nitrosamine-induced HCC mouse model. As expected, the expression of IL-22, an important factor involved in HCC progression, was markedly reduced by metformin. Treatment of HCC cells with metformin inhibited IL-22 induced cell proliferation, migration, and invasion, and promoted cell apoptosis. Furthermore, ectopic expression of IL-22 makes HCC more aggressive, whereas metformin largely compromised it in vitro and in vivo. Mechanistically, the whole transcriptome analysis and functional analysis revealed that Hippo signaling pathway was involved in the antitumor ability of metformin. Consistent with this, metformin directly inhibited LATS1/2 and activated Mst1/2, phosphorylated YAP1 in vitro. After blocking the Hippo pathway by XMU-MP-1, the inhibitor of MST1/2, the inhibitory effects by metformin were dramatically attenuated as shown by in vitro study. CONCLUSIONS Collectively, our findings illuminate a new regulatory mechanism, metformin activates Hippo signaling pathway to regulate IL-22 mediated HCC progression and provide new insights into its tumor-suppressive roles.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Geng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongwei Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengpeng Zhong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Ghufran H, Azam M, Mehmood A, Butt H, Riazuddin S. Standardization of diethylnitrosamine-induced hepatocellular carcinoma rat model with time based molecular assessment. Exp Mol Pathol 2021; 123:104715. [PMID: 34699901 DOI: 10.1016/j.yexmp.2021.104715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
This study was intended (1) to develop a robust animal model for hepatocellular carcinoma (HCC) research, in which HCC tumors develop in a background of fibrosis or cirrhosis; and (2) to explore time-dependent regulatory changes in key molecular markers during disease advancement and HCC development. With the aim of establishing such HCC model, male Sprague-Dawley rats were injected with diethylnitrosamine (DEN) at a dose of 30 mg/kg twice a week for 10 weeks then once a week from 12th to 16th weeks. The rats were kept under observation until 18th week. At defined time intervals (2nd, 4th, 12th, and 18th week), serum biomarkers and microscopic components of tissue samples were used to investigate the chronic progression of liver disease, while gene and protein analysis was used to monitor expression patterns during HCC development. DEN-intoxicated rats manifested inflammation at week 4, fibrosis at week 12 and cirrhosis with early HCC tumors at week 18. Molecular analysis revealed that key markers of inflammation (Il-1β, Il-6, and Tnf-α), fibrosis (Tgf-β1, Col1α1, Col3α1, and Timp-1), and angiogenesis (Hif1-α and Vegf) were promptly (P ≤ 0.001) up-regulated at week 4, week 12 and week 18, respectively. Oxidative stress (iNos, Cyp2e1, and Sod1) and pro-apoptotic (Bax) markers showed significant upregulation from week 4 to week 12. However, Sod1 and Bax expressions dropped after week 12 and reached a minimum at 18th week. Strikingly, expressions of anti-apoptotic (Bcl-2) and cell proliferation (Pcna, Hgf, and Afp) markers were abruptly increased at week 18. Collectively, we describe an 18-week HCC model in DEN-intoxicated rats that exhibit chronic inflammation, oxidative imbalance, advance fibrosis/cirrhosis, halted apoptosis, and angiogenic sprouting, progressively.
Collapse
Affiliation(s)
- Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Maryam Azam
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Hira Butt
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan; Allama Iqbal Medical Research Centre, Jinnah Burn and Reconstructive Surgery Centre, Lahore, Pakistan.
| |
Collapse
|
30
|
In vivo Study of a Newly Synthesized Chromen-4-one Derivative as an Antitumor Agent against HCC. J Gastrointest Cancer 2021; 53:980-989. [PMID: 34698995 DOI: 10.1007/s12029-021-00724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Chromenes are a wide group of natural compounds that can be synthesized chemically. The chromen-4-one nucleus acts as a skeleton for varieties of additional active groups that makes the chromene activity vary between antioxidant and anti-inflammatory agents. In the present study, a newly synthesized chromene compound exhibits different behaviors other than anti-inflammatory and antioxidant activities that it is the first time that a member of chromen-4-one compound can control the cancer progress. Inflammation is the first step in tumor development where the severity grade can potentiate tumor growth and progression. In many tumors, pro-inflammatory genes record high expression level such as tumor necrosis factor (TNF-α) and vascular endothelial growth factors (VEGF). These pro-inflammatory factors act as rate limiting steps in tumor initiation, and controlling its expression acts as an early therapeutic way to control the tumor proliferation. The chromone derivatives have biological activities such as anti-inflammatory and anti-tumor activity. METHODS In the present study, hepatocellular cancer (HCC) induced by diethylnitrosamine (DEN) in rats and then treated with the new chromene derivative and the parameters TNF-α, VEGF, p53, Cyt C, MMP-9, Bcl2, and Bax were measured. RESULTS The treatment strategy Ch compound is to downregulate pro-inflammatory gene expression of early genes as TNF-α as well as VEGF and subsequently control other factors such as p53, Cyt C, and MMP-9. Also, retrieve the balance between Bcl2 and Bax proteins in DEN-induced HCC in rats. CONCLUSION The ability of the new Ch derivative to control the primary initiators of HCC such as TNF-α offers this derivative an anti-tumor activity and encourages further researches to follow and monitor its effect on the molecular level.
Collapse
|
31
|
Saha J, Bae J, Wang SY, Lu H, Chappell LJ, Gopal P, Davis AJ. Ablating putative Ku70 phosphorylation sites results in defective DNA damage repair and spontaneous induction of hepatocellular carcinoma. Nucleic Acids Res 2021; 49:9836-9850. [PMID: 34428289 PMCID: PMC8464062 DOI: 10.1093/nar/gkab743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
Multiple pathways mediate the repair of DNA double-strand breaks (DSBs), with numerous mechanisms responsible for driving choice between the pathways. Previously, we reported that mutating five putative phosphorylation sites on the non-homologous end joining (NHEJ) factor, Ku70, results in sustained retention of human Ku70/80 at DSB ends and attenuation of DSB repair via homologous recombination (HR). In this study, we generated a knock-in mouse, in which the three conserved putative phosphorylation sites of Ku70 were mutated to alanine to ablate potential phosphorylation (Ku703A/3A), in order to examine if disrupting DSB repair pathway choice by modulating Ku70/80 dynamics at DSB ends results in enhanced genomic instability and tumorigenesis. The Ku703A/3A mice developed spontaneous and have accelerated chemical-induced hepatocellular carcinoma (HCC) compared to wild-type (Ku70+/+) littermates. The HCC tumors from the Ku703A/3A mice have increased γH2AX and 8-oxo-G staining, suggesting decreased DNA repair. Spontaneous transformed cell lines from Ku703A/3A mice are more radiosensitive, have a significant decrease in DNA end resection, and are more sensitive to the DNA cross-linking agent mitomycin C compared to cells from Ku70+/+ littermates. Collectively, these findings demonstrate that mutating the putative Ku70 phosphorylation sites results in defective DNA damage repair and disruption of this process drives genomic instability and accelerated development of HCC.
Collapse
Affiliation(s)
- Janapriya Saha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jinsung Bae
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shih-Ya Wang
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Huiming Lu
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Purva Gopal
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anthony J Davis
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
32
|
Priester MI, Curto S, van Rhoon GC, ten Hagen TLM. External Basic Hyperthermia Devices for Preclinical Studies in Small Animals. Cancers (Basel) 2021; 13:cancers13184628. [PMID: 34572855 PMCID: PMC8470307 DOI: 10.3390/cancers13184628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The application of mild hyperthermia can be beneficial for solid tumor treatment by induction of sublethal effects on a tissue- and cellular level. When designing a hyperthermia experiment, several factors should be taken into consideration. In this review, multiple elementary hyperthermia devices are described in detail to aid standardization of treatment design. Abstract Preclinical studies have shown that application of mild hyperthermia (40–43 °C) is a promising adjuvant to solid tumor treatment. To improve preclinical testing, enhance reproducibility, and allow comparison of the obtained results, it is crucial to have standardization of the available methods. Reproducibility of methods in and between research groups on the same techniques is crucial to have a better prediction of the clinical outcome and to improve new treatment strategies (for instance with heat-sensitive nanoparticles). Here we provide a preclinically oriented review on the use and applicability of basic hyperthermia systems available for solid tumor thermal treatment in small animals. The complexity of these techniques ranges from a simple, low-cost water bath approach, irradiation with light or lasers, to advanced ultrasound and capacitive heating devices.
Collapse
Affiliation(s)
- Marjolein I. Priester
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.)
| | - Sergio Curto
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.)
| | - Gerard C. van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.)
| | - Timo L. M. ten Hagen
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
33
|
Lu Y, Pan J, Zhu X, Zhang S, Liu C, Sun J, Li Y, Chen S, Huang J, Cao C, Wang Y, Li Y, Liu T. Pharmacokinetic herb-drug interactions between Aidi injection and doxorubicin in rats with diethylnitrosamine-induced hepatocellular carcinoma. BMC Pharmacol Toxicol 2021; 22:48. [PMID: 34488896 PMCID: PMC8419969 DOI: 10.1186/s40360-021-00515-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Aidi Injection (ADI), a Chinese herbal preparation with anti-cancer activity, is used for the treatment of hepatocellular carcinoma (HCC). Several clinical studies have shown that co-administration of ADI with doxorubicin (DOX) is associated with reduced toxicity of chemotherapy, enhanced clinical efficacy and improved quality of life for patients. However, limited information is available about the herb-drug interactions between ADI and DOX. The study aimed to investigate the pharmacokinetic mechanism of herb-drug interactions between ADI and DOX in a rat model of HCC. METHODS Experimental HCC was induced in rats by oral administration of diethylnitrosamine. The HCC rats were pretreated with ADI (10 mL/kg, intraperitoneal injection) for 14 consecutive days prior to administration of DOX (7 mg/kg, intravenous injection) to investigate pharmacokinetic interactions. Plasma concentrations of DOX and its major metabolite, doxorubicinol (DOXol), were determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS Preadministration of ADI significantly altered the pharmacokinetics of DOX in HCC rats, leading to increased plasma concentrations of both DOX and DOXol. The area under the plasma drug concentration-time curve (AUCs) of DOX and DOXol in rats pretreated with ADI were 3.79-fold and 2.92-fold higher, respectively, than those in control rats that did not receive ADI. CONCLUSIONS Increased levels of DOX and DOXol were found in the plasma of HCC rats pretreated with ADI.
Collapse
Affiliation(s)
- Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Jie Pan
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Xiaoqing Zhu
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Shuai Zhang
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550000, China
| | - Chunhua Liu
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Yueting Li
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Siying Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Jing Huang
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Chuang Cao
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Yongjun Li
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China.
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China.
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China.
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China.
| |
Collapse
|
34
|
Li YT, Wu HL, Liu CJ. Molecular Mechanisms and Animal Models of HBV-Related Hepatocellular Carcinoma: With Emphasis on Metastatic Tumor Antigen 1. Int J Mol Sci 2021; 22:9380. [PMID: 34502289 PMCID: PMC8431721 DOI: 10.3390/ijms22179380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an important cause of cancer death worldwide, and hepatitis B virus (HBV) infection is a major etiology, particularly in the Asia-Pacific region. Lack of sensitive biomarkers for early diagnosis of HCC and lack of effective therapeutics for patients with advanced HCC are the main reasons for high HCC mortality; these clinical needs are linked to the molecular heterogeneity of hepatocarcinogenesis. Animal models are the basis of preclinical and translational research in HBV-related HCC (HBV-HCC). Recent advances in methodology have allowed the development of several animal models to address various aspects of chronic liver disease, including HCC, which HBV causes in humans. Currently, multiple HBV-HCC animal models, including conventional, hydrodynamics-transfection-based, viral vector-mediated transgenic, and xenograft mice models, as well as the hepadnavirus-infected tree shrew and woodchuck models, are available. This review provides an overview of molecular mechanisms and animal models of HBV-HCC. Additionally, the metastatic tumor antigen 1 (MTA1), a cancer-promoting molecule, was introduced as an example to address the importance of a suitable animal model for studying HBV-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yung-Tsung Li
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hui-Lin Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chun-Jen Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
35
|
Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel) 2021; 13:3651. [PMID: 34359553 PMCID: PMC8344976 DOI: 10.3390/cancers13153651] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.
Collapse
Affiliation(s)
- Alexandru Blidisel
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Florin Hut
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Octavian Marius Cretu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| |
Collapse
|
36
|
Cahyani DM, Miatmoko A, Hariawan BS, Purwantari KE, Sari R. N-nitrosodiethylamine induces inflammation of liver in mice. J Basic Clin Physiol Pharmacol 2021; 32:505-510. [PMID: 34214328 DOI: 10.1515/jbcpp-2020-0475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/08/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVES For designing early treatment for liver cancer, it is important to prepare an animal model to evaluate cancer prevention treatment by using inflammation disease. The hepatocarcinogenic N-Nitrosodiethylamine (NDEA) has been reportedly able to produce free radicals that cause liver inflammation leading to liver carcinoma. This study aimed to evaluate the inflammation disease model of mice induced with hepatocarcinogenic NDEA for five weeks induction. METHODS The BALB-c mice were induced with NDEA 25 mg/kg of body weight once a week for five weeks intraperitonially and it was then evaluated for the body weight during study periods. The mice were then sacrificed and excised for evaluating their organs including physical and morphological appearances and histopathology evaluations. RESULTS The results showed a significant decrease of body weight of mice after five times induction of 25 mg NDEA/kgBW per week intraperitonially. Different morphological appearances and weight of mice organs specifically for liver and spleen had also been observed. The histopathology examination showed that there were hepatic lipidosis and steatohepatitis observed in liver and spleen, respectively that might indicate the hepatocellular injury. CONCLUSIONS It can be concluded that inducing mice with NDEA intraperitonially resulted in fatty liver disease leading to progress of cancer disease.
Collapse
Affiliation(s)
- Devy Maulidya Cahyani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | | | - Kusuma Eko Purwantari
- Department of Anatomy and Histology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Retno Sari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
37
|
Nishino H, Hollandsworth HM, Sugisawa N, Yamamoto J, Tashiro Y, Inubushi S, Hamada K, Sun YU, Lim H, Amirfakhri S, Filemoni F, Hoffman RM, Bouvet M. Sutureless Surgical Orthotopic Implantation Technique of Primary and Metastatic Cancer in the Liver of Mouse Models. In Vivo 2021; 34:3153-3157. [PMID: 33144418 DOI: 10.21873/invivo.12149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIM Surgical orthotopic implantation (SOI) is used to establish patient-derived orthotopic xenograft (PDOX) and other orthotopic mouse models. Orthotopic liver models can be challenging, as the liver parenchyma is prone to bleeding. The present report describes a sutureless method to implant tumors in the liver that reduces bleeding and procedural time. MATERIALS AND METHODS Human HCC cell-line (Huh-7-GFP) and CM2, a patient-derived colon-cancer liver metastasis, were used for sutureless SOI of tumor fragments in the liver of nude mice. A small cavity was formed on the liver surface. A solitary tumor fragment was implanted in the cavity without suturing to create hemostasis. RESULTS Six weeks after sutureless SOI, the tumor volume of Huh-7-GFP (n=5) was 584.41±147.64 mm3 and the tumor volume of CM2 (n=5) was 1336.54±1038.20 mm3 The engraftment rate was 100%. CONCLUSION This novel method for establishing orthotopic liver-implantation mouse models is suitable for studies of liver cancer and liver metastases due to its simple procedure and potential high engraftment rate.
Collapse
Affiliation(s)
- Hiroto Nishino
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A.,AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hannah M Hollandsworth
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A.,Department of Surgery, VA San Diego Healthcare System, San Diego, CA, U.S.A
| | - Norihiko Sugisawa
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A.,AntiCancer, Inc., San Diego, CA, U.S.A
| | - Jun Yamamoto
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A.,AntiCancer, Inc., San Diego, CA, U.S.A
| | - Yoshihiko Tashiro
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A.,AntiCancer, Inc., San Diego, CA, U.S.A
| | - Sachiko Inubushi
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A.,AntiCancer, Inc., San Diego, CA, U.S.A
| | - Kazuyuki Hamada
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A.,AntiCancer, Inc., San Diego, CA, U.S.A
| | - Y U Sun
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A.,AntiCancer, Inc., San Diego, CA, U.S.A
| | - Hyein Lim
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A.,AntiCancer, Inc., San Diego, CA, U.S.A
| | - Siamak Amirfakhri
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A.,Department of Surgery, VA San Diego Healthcare System, San Diego, CA, U.S.A
| | - Filemoni Filemoni
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A.,Department of Surgery, VA San Diego Healthcare System, San Diego, CA, U.S.A
| | - Robert M Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A.,AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, VA San Diego Healthcare System, San Diego, CA, U.S.A
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A. .,Department of Surgery, VA San Diego Healthcare System, San Diego, CA, U.S.A
| |
Collapse
|
38
|
Effects of C60 Fullerene on Thioacetamide-Induced Rat Liver Toxicity and Gut Microbiome Changes. Antioxidants (Basel) 2021; 10:antiox10060911. [PMID: 34199786 PMCID: PMC8226855 DOI: 10.3390/antiox10060911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Thioacetamide (TAA) is widely used to study liver toxicity accompanied by oxidative stress, inflammation, cell necrosis, fibrosis, cholestasis, and hepatocellular carcinoma. As an efficient free radical's scavenger, C60 fullerene is considered a potential liver-protective agent in chemically-induced liver injury. In the present work, we examined the hepatoprotective effects of two C60 doses dissolved in virgin olive oil against TAA-induced hepatotoxicity in rats. We showed that TAA-induced increase in liver oxidative stress, judged by the changes in the activities of SOD, CAT, GPx, GR, GST, the content of GSH and 4-HNE, and expression of HO-1, MnSOD, and CuZnSOD, was more effectively ameliorated with a lower C60 dose. Improvement in liver antioxidative status caused by C60 was accompanied by a decrease in liver HMGB1 expression and an increase in nuclear Nrf2/NF-κB p65 ratio, suggesting a reduction in inflammation, necrosis and fibrosis. These results were in accordance with liver histology analysis, liver comet assay, and changes in serum levels of ALT, AST, and AP. The changes observed in gut microbiome support detrimental effects of TAA and hepatoprotective effects of low C60 dose. Less protective effects of a higher C60 dose could be a consequence of its enhanced aggregation and related pro-oxidant role.
Collapse
|
39
|
Jota Baptista CV, Faustino-Rocha AI, Oliveira PA. Animal Models in Pharmacology: A Brief History Awarding the Nobel Prizes for Physiology or Medicine. Pharmacology 2021; 106:356-368. [PMID: 34023819 DOI: 10.1159/000516240] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The Nobel Prize of Physiology or Medicine (NPPM) has recognized the work of 222 scientists from different nationalities, from 1901 until 2020. From the total, 186 award researchers used animal models in their projects, and 21 were attributed to scientists and projects directly related to Pharmacology. In the most recent years, genetics is a dominant scientific area, while at the beginning of the 20th century, most of the studies were more related to anatomy, cytology, and physiology. SUMMARY Mammalian models were used in 144 NPPM projects, being rodents the most used group of species. Moreover, 92 researchers included domestic species in their work. The criteria used to choose the species, the number of animals used and the experimental protocol is always debatable and dependent on the scientific area of the study; however, the 3R's principle can be applied to most scientific fields. Independently of the species, the animal model can be classified in different types and criteria, depending on their ecology, genetics, and mode of action. Key-Messages: The use of animal models in NPPM awarded projects, namely in Pharmacology, illustrates their importance, need and benefit to improve scientific knowledge and create solutions. In the future, with the contribute of technology, it might be possible to refine the use of animal models in pharmacology studies.
Collapse
Affiliation(s)
- Catarina V Jota Baptista
- Departament de Medicina i Cirurgia Animals, Edifici V. Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana I Faustino-Rocha
- Department of Zootechnics, School of Sciences and Technology, Évora, Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Department of Veterinary Sciences, UTAD, Vila Real, Portugal
| |
Collapse
|
40
|
Hall Z, Chiarugi D, Charidemou E, Leslie J, Scott E, Pellegrinet L, Allison M, Mocciaro G, Anstee QM, Evan GI, Hoare M, Vidal-Puig A, Oakley F, Vacca M, Griffin JL. Lipid Remodeling in Hepatocyte Proliferation and Hepatocellular Carcinoma. Hepatology 2021; 73:1028-1044. [PMID: 32460431 DOI: 10.1002/hep.31391] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Hepatocytes undergo profound metabolic rewiring when primed to proliferate during compensatory regeneration and in hepatocellular carcinoma (HCC). However, the metabolic control of these processes is not fully understood. In order to capture the metabolic signature of proliferating hepatocytes, we applied state-of-the-art systems biology approaches to models of liver regeneration, pharmacologically and genetically activated cell proliferation, and HCC. APPROACH AND RESULTS Integrating metabolomics, lipidomics, and transcriptomics, we link changes in the lipidome of proliferating hepatocytes to altered metabolic pathways including lipogenesis, fatty acid desaturation, and generation of phosphatidylcholine (PC). We confirm this altered lipid signature in human HCC and show a positive correlation of monounsaturated PC with hallmarks of cell proliferation and hepatic carcinogenesis. CONCLUSIONS Overall, we demonstrate that specific lipid metabolic pathways are coherently altered when hepatocytes switch to proliferation. These represent a source of targets for the development of therapeutic strategies and prognostic biomarkers of HCC.
Collapse
Affiliation(s)
- Zoe Hall
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
- Biomolecular MedicineDivision of Systems MedicineDepartment of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| | - Davide Chiarugi
- Metabolic Research LaboratoriesWellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
| | - Evelina Charidemou
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Jack Leslie
- Institute of Cellular MedicineFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Emma Scott
- Institute of Cellular MedicineFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Luca Pellegrinet
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Michael Allison
- Department of MedicineAddenbrooke's HospitalCambridge Biomedical Research CentreCambridgeUnited Kingdom
| | - Gabriele Mocciaro
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Quentin M Anstee
- Institute of Cellular MedicineFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Newcastle NIHR Biomedical Research CentreNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Gerard I Evan
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Matthew Hoare
- Department of MedicineAddenbrooke's HospitalCambridge Biomedical Research CentreCambridgeUnited Kingdom
- CRUK Cambridge InstituteRobinson WayCambridgeUnited Kingdom
| | - Antonio Vidal-Puig
- Metabolic Research LaboratoriesWellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
| | - Fiona Oakley
- Institute of Cellular MedicineFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Michele Vacca
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
- Metabolic Research LaboratoriesWellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
- Biomolecular MedicineDivision of Systems MedicineDepartment of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| |
Collapse
|
41
|
Liver Cancer: Therapeutic Challenges and the Importance of Experimental Models. Can J Gastroenterol Hepatol 2021; 2021:8837811. [PMID: 33728291 PMCID: PMC7937489 DOI: 10.1155/2021/8837811] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/16/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the main causes of death related to cancer worldwide; its etiology is related with infections by C or B hepatitis virus, alcohol consumption, smoking, obesity, nonalcoholic fatty liver disease, diabetes, and iron overload, among other causes. Several kinds of primary liver cancer occur, but we will focus on hepatocellular carcinoma (HCC). Numerous cellular signaling pathways are implicated in hepatocarcinogenesis, including YAP-HIPPO, Wnt-β-catenin, and nuclear factor-κB (NF-κB); these in turn are considered novel therapeutic targets. In this review, the role of lipid metabolism regulated by peroxisome proliferator-activated receptor gamma (PPARγ) in the development of HCC will also be discussed. Moreover, recent evidence has been obtained regarding the participation of epigenetic changes such as acetylation and methylation of histones and DNA methylation in the development of HCC. In this review, we provide detailed and current information about these topics. Experimental models represent useful tools for studying the different stages of liver cancer and help to develop new pharmacologic treatments. Each model in vivo and in vitro has several characteristics and advantages to offer for the study of this disease. Finally, the main therapies approved for the treatment of HCC patients, first- and second-line therapies, are described in this review. We also describe a novel option, pirfenidone, which due to its pharmacological properties could be considered in the future as a therapeutic option for HCC treatment.
Collapse
|
42
|
Abdel-Hamid NM, Abd Allah SG, Hassan MK, Ahmed AAM, Anber NH, Adel Faried I. Possible Protective Potency of Argun Nut ( Medemia argun - An Ancient Egyptian Palm) against Hepatocellular Carcinoma in Rats. Nutr Cancer 2021; 74:527-538. [PMID: 33570439 DOI: 10.1080/01635581.2021.1883683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Medemia argun (MA) fruits have been found to possess proanthocyanidins (PACs), having antioxidant activity. Methods: Intraperitoneal (IP) diethyl nitrosamine (DENA; 200 mg/kg, once) and carbon tetra chloride (CCl4, 3 ml/kg/week, subcutaneously, for 6 weeks) induced HCC in rats. Animals groups: Group I; received vehicle (control). Group II; received MA seed extract, 100 mg/kg (twice/week) for 12 weeks, IP. Group III; received carcinogenic agents only. Group IV; received MA for two weeks before administration of DENA/CCl4 till the end of the experiment. The total period of the experiment was three months. Results: DENA and CCl4 induced HCC, elevated serum alpha-fetoprotein (AFP), liver size, weight, tissue lymphocytic infiltration, nuclear/cytoplasmic ratio, collagen fiber and polysaccharide deposition, cellular proliferation, excessive pro-apoptotic caspase-3 accumulation, disrupted apoptosis. MA prior to DENA/CCl4, significantly protected liver against cancer progression, indicated by serum enzymes, antioxidant markers(glutathione, nitric oxide, and depressed malondialdehyde contents) in the MA-pretreated group, compared to the HCC one, without apparent useful action on superoxide dismutase activity, enhanced apoptosis in liver, through increased casapase-3 expression. The HCC group showed decreased antioxidant defense and BAX/Bcl-2 ratio. Conclusions: This study assumes that MA has a chemo-preventive effect against hepatocarcinogenesis.
Collapse
Affiliation(s)
- Nabil Mohie Abdel-Hamid
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Sara Gamal Abd Allah
- Department of Biotechnology, Faculty of Science, Port Said University, Port Fuad, Egypt
| | - Mohamed K Hassan
- Department of Biotechnology, Faculty of Science, Port Said University, Port Fuad, Egypt
| | - Amal A M Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Nahla H Anber
- Fellow of Biochemistry in the Emergency Hospital, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
43
|
Hamza AA, Heeba GH, Hamza S, Abdalla A, Amin A. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/ inflammation pathway. Biomed Pharmacother 2021; 134:111102. [PMID: 33338743 DOI: 10.1016/j.biopha.2020.111102] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Ginger has been proposed as quite a promising candidate for cancer prevention. The purpose of this study was to assess the chemo-preventive effects of ginger. Furthermore, this study investigated the possible mechanisms of a standardized extract drawn from the rhizomes of ginger against diethylnitrosamine (DEN)-induced liver cancer in Wistar rats. The chemo-preventive effects of ginger at doses of 75 mg/kg, 150 mg/kg and 300 mg/kg per day were determined using a liver cancer model which was induced by DEN (Ali et al., 2008) and 2-acetylaminofluorene (2-AAF) in rats. Ginger attenuated carcinogenic changes after 22 weeks of cancer induction by decreasing the quantity and occurrences of hepatic dyschromatic nodules and positive focal areas as well as decreasing the amount of placental glutathione S-transferase (GST) in the livers of DEN/2-AAF-treated rats. Moreover, in rats, ginger counteracts DEN-influenced oxidative stress and decreases myeloperoxidase, malondialdehyde and protein carbonyl concentrations in the liver. This was determined by observing the restoration of superoxide dismutase, catalase, GST and glutathione. Immunohistochemical bleaching in rat livers showed that ginger prevented the increase in cell-positive numbers for Ki-67, cyclooxygenase-2 and nuclear factor kappa B p65. Ginger also inhibited the number of positive cells in DEN/2-AAF-treated rats for TUNEL, M30 and caspase-3 liver tissues. This research shows that ginger has an important chemo-preventative impact on liver cancer by inhibiting the growth of cells and inducing apoptosis. By reducing oxidative and inflammatory damage, ginger protects rat liver against cancer.
Collapse
Affiliation(s)
- Alaaeldin Ahmed Hamza
- Hormone Evaluation Department, National Organization for Drug Control and Research, Giza 12611, Egypt.
| | - Gehan Hussein Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Salsabil Hamza
- Department of Biotechnology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Ali Abdalla
- Department of Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amr Amin
- The College, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
44
|
Kumar SU, Telichko AV, Wang H, Hyun D, Johnson EG, Kent MS, Rebhun RB, Dahl JJ, Culp WTN, Paulmurugan R. Acoustically Driven Microbubbles Enable Targeted Delivery of microRNA-Loaded Nanoparticles to Spontaneous Hepatocellular Neoplasia in Canines. ADVANCED THERAPEUTICS 2020; 3:2000120. [PMID: 33415184 PMCID: PMC7784952 DOI: 10.1002/adtp.202000120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 01/16/2023]
Abstract
Spatially localized microbubble cavitation by ultrasound offers an effective means of altering permeability of natural barriers (i.e. blood vessel and cell membrane) in favor of nanomaterials accumulation in the target site. In this study, a clinically relevant, minimally invasive ultrasound guided therapeutic approach is investigated for targeted delivery of anticancer microRNA loaded PLGA-b-PEG nanoparticles to spontaneous hepatocellular neoplasia in a canine model. Quantitative assessment of the delivered microRNAs revealed prominent and consistent increase in miRNAs levels (1.5-to 2.3-fold increase (p<0.001)) in ultrasound treated tumor regions compared to untreated control regions. Immunohistology of ultrasound treated tumor tissue presented a clear evidence for higher amount of nanoparticles extravasation from the blood vessels. A distinct pattern of cytokine expression supporting CD8+ T cells mediated "cold-to-hot" tumor transition was evident in all patients. On the outset, proposed platform can enhance delivery of miRNA-loaded nanoparticles to deep seated tumors in large animals to enhance chemotherapy.
Collapse
Affiliation(s)
- Sukumar Uday Kumar
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Arsenii V Telichko
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Huaijun Wang
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Dongwoon Hyun
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Eric G Johnson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Jeremy J Dahl
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - William T N Culp
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
45
|
Animal Models: A Useful Tool to Unveil Metabolic Changes in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12113318. [PMID: 33182674 PMCID: PMC7696782 DOI: 10.3390/cancers12113318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) represents an important health problem. At the moment, systemic therapies offered only modest clinical benefits. Thus, HCC represents a cancer extremely difficult to treat, and therapeutic breakthroughs are urgently needed. Metabolic reprogramming of neoplastic cells has been recognized as one of the core hallmarks of cancer. Experimental animal models represent an important tool that allows to investigate metabolic changes underlying HCC development and progression. In the present review, we characterize available rodent models of hepatocarcinogenesis. Moreover, we discuss the possibility that pharmacological targeting of Warburg metabolism may represent an additional tool to improve already available therapeutic approaches for HCC. Abstract Hepatocellular carcinoma (HCC) is one the most frequent and lethal human cancers. At present, no effective treatment for advanced HCC exist; therefore, the overall prognosis for HCC patients remains dismal. In recent years, a better knowledge of the signaling pathways involved in the regulation of HCC development and progression, has led to the identification of novel potential targets for therapeutic strategies. However, the obtained benefits from current therapeutic options are disappointing. Altered cancer metabolism has become a topic of renewed interest in the last decades, and it has been included among the core hallmarks of cancer. In the light of growing evidence for metabolic reprogramming in cancer, a wide number of experimental animal models have been exploited to study metabolic changes characterizing HCC development and progression and to further expand our knowledge of this tumor. In the present review, we discuss several rodent models of hepatocarcinogenesis, that contributed to elucidate the metabolic profile of HCC and the implications of these changes in modulating the aggressiveness of neoplastic cells. We also highlight the apparently contrasting results stemming from different animal models. Finally, we analyze whether these observations could be exploited to improve current therapeutic strategies for HCC.
Collapse
|
46
|
Yu L, Jing R, Liu F, Luo J, Li Y. DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:862-870. [PMID: 33230481 PMCID: PMC7658571 DOI: 10.1016/j.omtn.2020.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most dangerous diseases to human health. The accurate prediction of anticancer peptides (ACPs) would be valuable for the development and design of novel anticancer agents. Current deep neural network models have obtained state-of-the-art prediction accuracy for the ACP classification task. However, based on existing studies, it remains unclear which deep learning architecture achieves the best performance. Thus, in this study, we first present a systematic exploration of three important deep learning architectures: convolutional, recurrent, and convolutional-recurrent networks for distinguishing ACPs from non-ACPs. We find that the recurrent neural network with bidirectional long short-term memory cells is superior to other architectures. By utilizing the proposed model, we implement a sequence-based deep learning tool (DeepACP) to accurately predict the likelihood of a peptide exhibiting anticancer activity. The results indicate that DeepACP outperforms several existing methods and can be used as an effective tool for the prediction of anticancer peptides. Furthermore, we visualize and understand the deep learning model. We hope that our strategy can be extended to identify other types of peptides and may provide more assistance to the development of proteomics and new drugs.
Collapse
Affiliation(s)
- Lezheng Yu
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
- Corresponding author: Lezheng Yu, School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China.
| | - Runyu Jing
- College of Cybersecurity, Sichuan University, Chengdu 610065, China
| | - Fengjuan Liu
- School of Geography and Resources, Guizhou Education University, Guiyang 550018, China
| | - Jiesi Luo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
- Corresponding author: Jiesi Luo, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yizhou Li
- College of Cybersecurity, Sichuan University, Chengdu 610065, China
| |
Collapse
|
47
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third leading cause of cancer related mortality with a 10 year survival rate of merely 22-35%. Tumorigenesis frequently occurs in patients with chronic liver disease where continued liver cell damage, compensatory proliferation and inflammation provide the basis for tumor initiation, promotion and progression. Animal models of HCC are particularly useful to better understand molecular events underlying liver tumorigenesis. To this end, chemical carcinogenesis protocols based on the injection of genotoxic compounds such as diethylnitrosamine (DEN) are widely used to model liver tumorigenesis in rodents. DEN injection into 2 week old mice is sufficient to cause liver tumorigenesis after 8-10 months. When injected into older mice, DEN has to be combined with administration of tumor promoting agents such as phenobarbital or feeding high fat diet. Such protocols allow to dissect the different steps of tumor formation (i.e., tumor initiation and promotion) experimentally and to model liver pathologies in mice which frequently lead to HCC in human patients such as non-alcoholic fatty liver disease. Here, we review several established chemical carcinogenesis protocols based on DEN injection into mice and discuss their advantages as well as potential limitations.
Collapse
Affiliation(s)
- Isabel Schulien
- Department of Medicine II, Medical Center-University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Peter Hasselblatt
- Department of Medicine II, Medical Center-University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
48
|
Dey P. The role of gut microbiome in chemical-induced metabolic and toxicological murine disease models. Life Sci 2020; 258:118172. [PMID: 32738359 DOI: 10.1016/j.lfs.2020.118172] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
The role of gut microbiome in human health and disease is well established. While evidence-based pharmacological studies utilize a variety of chemical-induced metabolic and toxicological disease models that in part recapitulate the natural mode of disease pathogenesis, the mode of actions of these disease models are likely underexplored. Conventionally, the mechanistic principles of these disease models are established as direct tissue toxicity through redox imbalance and pro-inflammatory injury. However, emerging evidences suggest that the mode of action of these chemicals could be largely associated with changes in gut microbial populations, diversity and metabolic functions, affecting pathological changes along the gut-liver and gut-pancreas axis. Especially in these disease models, reversal of disease severity or less sensitivity to induced disease pathogenesis has been observed when germ-free or antibiotic-supplemented microbiota-depleted rodents were treated with disease causing chemicals. Thus, by summarizing evidences from in vivo pharmacological interventions, this review revisits the mode of action of carbon tetrachloride-induced cirrhosis, diethylnitrosamine-induced hepatocellular carcinoma, acetaminophen-induced hepatotoxicity and alloxan- and streptozotocin-induced diabetes through the light of gut microbiota. How changes in gut microbiome affects tissue-level toxicity likely through intestinal-level mechanisms like gastrointestinal inflammation and gut barrier dysfunction has also been discussed. Additionally, this review discusses potential pitfalls of inconsistent experimental models that precludes defining the gut microbial effects in evidence-based pharmacology. Collectively, this review emphasizes the underexplored role of microbial intervention in experimental pharmacology and aims to provide direction towards redefining and establishing microbiome-centric alternative mode of action of chemical-induced metabolic and toxicological disease models in pharmacological research.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
49
|
Dabiré H, Dramé F, Cita N, Ghaleh B. The hypertensive effect of sorafenib is abolished by sildenafil. CARDIO-ONCOLOGY 2020; 6:7. [PMID: 32685197 PMCID: PMC7358208 DOI: 10.1186/s40959-020-00064-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/03/2020] [Indexed: 12/30/2022]
Abstract
Background Contrasting to the well documented tyrosine kinase inhibitor (TKI)-induced hypertension, little is known on their intrinsic vasomotor effects. We investigated the vasomotor effects of sorafenib, a widely used multikinase inhibitor in the treatment of hepatocellular and renal cell carcinoma and tested the hypothesis that sildenafil, a phosphodiesterase-5 (PDE-5) inhibitor, could represent a pharmacological strategy for the treatment of TKI-induced hypertension. Methods Concentration-response curves of sorafenib were constructed in endothelium-intact or denuded precontracted rat aorta, in the presence or absence of several inhibitors. Acute intravenous effects of sorafenib on arterial blood pressure were also investigated in anaesthetized rats. Finally, rats were chronically treated with sorafenib during 4 weeks in the presence and absence of sildenafil. Results In endothelium intact aortic ring, sorafenib induced a potent concentration-dependent relaxation of precontracted rat aorta. Removal of the endothelium shifted the concentration-response curve of sorafenib to the right and significantly reduced its maximal effects, demonstrating that sorafenib-induced vasorelaxation is endothelium-dependent and endothelium-independent. Inhibition of the different pathways implicated in the endothelium-dependent and independent vasorelaxation revealed that the endothelium-dependent effects of sorafenib result mainly from the activation of prostaglandin and the nitric oxide (NO) pathways. The endothelium-independent vasodilatory effects of sorafenib may result mainly from the activation of Na/K-ATPase and soluble guanylate cyclase. These vasodilatory effects observed in vitro were confirmed by the decrease in arterial blood pressure observed during acute administrations of sorafenib in anesthetized rats. Finally, and most importantly, we report here for the first time that chronic administration of sorafenib in rats induced an increase in SBP that was abolished by sildenafil. Conclusion The multikinase inhibitor sorafenib induced in vitro vasorelaxation of large conductance artery, primary by activating soluble guanylate cyclase. Its chronic administration led to arterial blood hypertension that was counteracted by a PDE-5 inhibitor, sildenafil. Our results suggest that targeting the cGMP pathway including NO signalling might be an interesting pharmacological strategy for the treatment of TKI-induced hypertension.
Collapse
Affiliation(s)
- Hubert Dabiré
- U955 - IMRB, Inserm, UPEC, École Nationale Vétérinaire d'Alfort, Créteil, France
| | - Fatou Dramé
- U955 - IMRB, Inserm, UPEC, École Nationale Vétérinaire d'Alfort, Créteil, France
| | - Nelly Cita
- U955 - IMRB, Inserm, UPEC, École Nationale Vétérinaire d'Alfort, Créteil, France
| | - Bijan Ghaleh
- U955 - IMRB, Inserm, UPEC, École Nationale Vétérinaire d'Alfort, Créteil, France.,INSERM U955 Équipe 03, Faculté de Médecine, 8 rue du Général Sarrail, 94000 Créteil, France
| |
Collapse
|
50
|
Gaba RC, Elkhadragy L, Boas FE, Chaki S, Chen HH, El-Kebir M, Garcia KD, Giurini EF, Guzman G, LoBianco FV, Neto MF, Newson JL, Qazi A, Regan M, Rund LA, Schwind RM, Stewart MC, Thomas FM, Whiteley HE, Wu J, Schook LB, Schachtschneider KM. Development and comprehensive characterization of porcine hepatocellular carcinoma for translational liver cancer investigation. Oncotarget 2020; 11:2686-2701. [PMID: 32733642 PMCID: PMC7367657 DOI: 10.18632/oncotarget.27647] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. New animal models that faithfully recapitulate human HCC phenotypes are required to address unmet clinical needs and advance standard-of-care therapeutics. This study utilized the Oncopig Cancer Model to develop a translational porcine HCC model which can serve as a bridge between murine studies and human clinical practice. Reliable development of Oncopig HCC cell lines was demonstrated through hepatocyte isolation and Cre recombinase exposure across 15 Oncopigs. Oncopig and human HCC cell lines displayed similar cell cycle lengths, alpha-fetoprotein production, arginase-1 staining, chemosusceptibility, and drug metabolizing enzyme expression. The ability of Oncopig HCC cells to consistently produce tumors in vivo was confirmed via subcutaneous (SQ) injection into immunodeficient mice and Oncopigs. Reproducible development of intrahepatic tumors in an alcohol-induced fibrotic microenvironment was achieved via engraftment of SQ tumors into fibrotic Oncopig livers. Whole-genome sequencing demontrated intrahepatic tumor tissue resembled human HCC at the genomic level. Finally, Oncopig HCC cells are amenable to gene editing for development of personalized HCC tumors. This study provides a novel, clinically-relevant porcine HCC model which holds great promise for improving HCC outcomes through testing of novel therapeutic approaches to accelerate and enhance clinical trials.
Collapse
Affiliation(s)
- Ron C Gaba
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - F Edward Boas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Sulalita Chaki
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hanna H Chen
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammed El-Kebir
- Department of Computer Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kelly D Garcia
- Biological Resources Laboratory, University of Illinois at Chicago, Chicago, IL, USA
| | - Eileena F Giurini
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Francesca V LoBianco
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mario F Neto
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jordan L Newson
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Aisha Qazi
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Maureen Regan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lauretta A Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Regina M Schwind
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew C Stewart
- College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Faith M Thomas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Herbert E Whiteley
- College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jiaqi Wu
- Department of Computer Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lawrence B Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|