1
|
Robertson A, Miller DJ, Hull A, Butler BE. Quantifying myelin density in the feline auditory cortex. Brain Struct Funct 2024; 229:1927-1941. [PMID: 38981886 DOI: 10.1007/s00429-024-02821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
The cerebral cortex comprises many distinct regions that differ in structure, function, and patterns of connectivity. Current approaches to parcellating these regions often take advantage of functional neuroimaging approaches that can identify regions involved in a particular process with reasonable spatial resolution. However, neuroanatomical biomarkers are also very useful in identifying distinct cortical regions either in addition to, or in place of functional measures. For example, differences in myelin density are thought to relate to functional differences between regions, are sensitive to individual patterns of experience, and have been shown to vary across functional hierarchies in a predictable manner. Accordingly, the current study provides quantitative stereological estimates of myelin density for each of the 13 regions that make up the feline auditory cortex. We demonstrate that significant differences can be observed between auditory cortical regions, with the highest myelin density observed in the regions that comprise the auditory core (i.e., the primary auditory cortex and anterior auditory field). Moreover, our myeloarchitectonic map suggests that myelin density varies in a hierarchical fashion that conforms to the traditional model of spatial organization in auditory cortex. Taken together, these results establish myelin as a useful biomarker for parcellating auditory cortical regions, and provide detailed estimates against which other, less invasive methods of quantifying cortical myelination may be compared.
Collapse
Affiliation(s)
- Austin Robertson
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Daniel J Miller
- Department of Psychology, University of Western Ontario, 1151 Richmond Street N, London, ON, N6A5C1, Canada
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champagne, Urbana, IL, USA
| | - Adam Hull
- Undergraduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Blake E Butler
- Department of Psychology, University of Western Ontario, 1151 Richmond Street N, London, ON, N6A5C1, Canada.
- Western Institute for Neuroscience, University of Western Ontario, London, ON, Canada.
- National Centre for Audiology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
2
|
Lee JY, Gala DS, Kiourlappou M, Olivares-Abril J, Joha J, Titlow JS, Teodoro RO, Davis I. Murine glial protrusion transcripts predict localized Drosophila glial mRNAs involved in plasticity. J Cell Biol 2024; 223:e202306152. [PMID: 39037431 PMCID: PMC11262410 DOI: 10.1083/jcb.202306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
The polarization of cells often involves the transport of specific mRNAs and their localized translation in distal projections. Neurons and glia are both known to contain long cytoplasmic processes, while localized transcripts have only been studied extensively in neurons, not glia, especially in intact nervous systems. Here, we predict 1,740 localized Drosophila glial transcripts by extrapolating from our meta-analysis of seven existing studies characterizing the localized transcriptomes and translatomes of synaptically associated mammalian glia. We demonstrate that the localization of mRNAs in mammalian glial projections strongly predicts the localization of their high-confidence Drosophila homologs in larval motor neuron-associated glial projections and are highly statistically enriched for genes associated with neurological diseases. We further show that some of these localized glial transcripts are specifically required in glia for structural plasticity at the nearby neuromuscular junction synapses. We conclude that peripheral glial mRNA localization is a common and conserved phenomenon and propose that it is likely to be functionally important in disease.
Collapse
Affiliation(s)
- Jeffrey Y. Lee
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Dalia S. Gala
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | - Jana Joha
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Rita O. Teodoro
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ilan Davis
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Takemura H, Kruper JA, Miyata T, Rokem A. Tractometry of Human Visual White Matter Pathways in Health and Disease. Magn Reson Med Sci 2024; 23:316-340. [PMID: 38866532 PMCID: PMC11234945 DOI: 10.2463/mrms.rev.2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Diffusion-weighted MRI (dMRI) provides a unique non-invasive view of human brain tissue properties. The present review article focuses on tractometry analysis methods that use dMRI to assess the properties of brain tissue within the long-range connections comprising brain networks. We focus specifically on the major white matter tracts that convey visual information. These connections are particularly important because vision provides rich information from the environment that supports a large range of daily life activities. Many of the diseases of the visual system are associated with advanced aging, and tractometry of the visual system is particularly important in the modern aging society. We provide an overview of the tractometry analysis pipeline, which includes a primer on dMRI data acquisition, voxelwise model fitting, tractography, recognition of white matter tracts, and calculation of tract tissue property profiles. We then review dMRI-based methods for analyzing visual white matter tracts: the optic nerve, optic tract, optic radiation, forceps major, and vertical occipital fasciculus. For each tract, we review background anatomical knowledge together with recent findings in tractometry studies on these tracts and their properties in relation to visual function and disease. Overall, we find that measurements of the brain's visual white matter are sensitive to a range of disorders and correlate with perceptual abilities. We highlight new and promising analysis methods, as well as some of the current barriers to progress toward integration of these methods into clinical practice. These barriers, such as variability in measurements between protocols and instruments, are targets for future development.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Osaka, Japan
| | - John A Kruper
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, USA
| | - Toshikazu Miyata
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Osaka, Japan
| | - Ariel Rokem
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Schneider N, Hartweg M, O’Regan J, Beauchemin J, Redman L, Hsia DS, Steiner P, Carmichael O, D’Sa V, Deoni S. Impact of a Nutrient Formulation on Longitudinal Myelination, Cognition, and Behavior from Birth to 2 Years: A Randomized Clinical Trial. Nutrients 2023; 15:4439. [PMID: 37892514 PMCID: PMC10610069 DOI: 10.3390/nu15204439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Observation studies suggest differences in myelination in relation to differences in early life nutrition. This two-center randomized controlled trial investigates the effect of a 12-month nutritional intervention on longitudinal changes in myelination, cognition, and behavior. Eighty-one full-term, neurotypical infants were randomized into an investigational (N = 42) or a control group (N = 39), receiving higher versus lower levels of a blend of nutrients. Non-randomized breastfed infants (N = 108) served as a reference group. Main outcomes were myelination (MRI), neurodevelopment (Bayley-III), social-emotional development (ASQ:SE-2), infant and toddler behavior (IBQ-R and TBAQ), and infant sleep (BISQ) during the first 2 years of life. The full analysis set comprised N = 67 infants from the randomized groups, with 81 myelin-sensitive MRI sequences. Significantly higher myelination was observed in the investigational compared to the control group at 6, 12, 18, and 24 months of life, as well as significantly higher gray matter volume at 24 months, a reduced number of night awakenings at 6 months, increased day sleep at 12 months, and reduced social fearfulness at 24 months. The results suggest that brain development may be modifiable with brain- and age-relevant nutritional approaches in healthy infants and young children, which may be foundational for later learning outcomes.
Collapse
Affiliation(s)
- Nora Schneider
- Brain Health, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1010 Lausanne, Switzerland
| | - Mickaël Hartweg
- Biostatistics and Data Management, Clinical Research Unit, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Jonathan O’Regan
- Nestlé Development Centre Nutrition, Askeaton, Co., RH6 0PA Limerick, Ireland
| | - Jennifer Beauchemin
- Advanced Baby Imaging Lab, Hasbro Children’s Hospital, Providence, RI 02903, USA
| | - Leanne Redman
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (O.C.)
| | - Daniel S. Hsia
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (O.C.)
| | - Pascal Steiner
- Brain Health, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1010 Lausanne, Switzerland
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (O.C.)
| | - Viren D’Sa
- Advanced Baby Imaging Lab, Hasbro Children’s Hospital, Providence, RI 02903, USA
- Department of Pediatrics, Brown University, Providence, RI 02903, USA
| | - Sean Deoni
- Department of Pediatrics, Brown University, Providence, RI 02903, USA
- Spinn Neuroscience, Mukilteo, WA 98275, USA
| |
Collapse
|
5
|
Eichler A, Kleidonas D, Turi Z, Fliegauf M, Kirsch M, Pfeifer D, Masuda T, Prinz M, Lenz M, Vlachos A. Microglial Cytokines Mediate Plasticity Induced by 10 Hz Repetitive Magnetic Stimulation. J Neurosci 2023; 43:3042-3060. [PMID: 36977586 PMCID: PMC10146500 DOI: 10.1523/jneurosci.2226-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia, the resident immune cells of the CNS, sense the activity of neurons and regulate physiological brain functions. They have been implicated in the pathology of brain diseases associated with alterations in neural excitability and plasticity. However, experimental and therapeutic approaches that modulate microglia function in a brain region-specific manner have not been established. In this study, we tested for the effects of repetitive transcranial magnetic stimulation (rTMS), a clinically used noninvasive brain stimulation technique, on microglia-mediated synaptic plasticity; 10 Hz electromagnetic stimulation triggered a release of plasticity-promoting cytokines from microglia in mouse organotypic brain tissue cultures of both sexes, while no significant changes in microglial morphology or microglia dynamics were observed. Indeed, substitution of tumor necrosis factor α (TNFα) and interleukin 6 (IL6) preserved synaptic plasticity induced by 10 Hz stimulation in the absence of microglia. Consistent with these findings, in vivo depletion of microglia abolished rTMS-induced changes in neurotransmission in the mPFC of anesthetized mice of both sexes. We conclude that rTMS affects neural excitability and plasticity by modulating the release of cytokines from microglia.SIGNIFICANCE STATEMENT Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that induces cortical plasticity. Despite its wide use in neuroscience and clinical practice (e.g., depression treatment), the cellular and molecular mechanisms of rTMS-mediated plasticity remain not well understood. Herein, we report an important role of microglia and plasticity-promoting cytokines in synaptic plasticity induced by 10 Hz rTMS in organotypic slice cultures and anesthetized mice, thereby identifying microglia-mediated synaptic adaptation as a target of rTMS-based interventions.
Collapse
Affiliation(s)
- Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Maximilian Fliegauf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Kirsch
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
6
|
Schneider N, Mainardi F, Budisavljevic S, Rolands M, Deoni S. Associations between Early Life Nutrient Intakes and Brain Maturation Show Developmental Dynamics from Infancy to Toddlerhood: A Neuroimaging Observation Study. J Nutr 2023; 153:897-908. [PMID: 36931756 PMCID: PMC10196598 DOI: 10.1016/j.tjnut.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Myelin imaging has increasingly been applied to study the impact of nutrition on brain development in recent years. Although individual dynamics for nutrient intakes and myelin trajectories previously have been investigated across childhood, the longitudinal interaction between both remains unclear in typically developed children. OBJECTIVES The objective of this work was to explore the developmental dynamics of nutrient-myelin interactions from infancy to early childhood using myelin imaging as a marker for brain maturation. METHODS Brain neuroimaging (1 scan per child) and dietary nutrient intake data were analyzed for 88 nutrients from 293 children (127 female, 62% White) from a longitudinal cohort study in the United States. A sliding window approach was used to investigate correlations between nutrient intakes and brain myelination over a continuous set of age windows. Image processing techniques (Sobel-filter vertical edge detection) were applied to determine age windows with unique association profiles, providing novel insight into how these relationships change with child age. RESULTS We identified 3 nutrient-myelin windows covering the age range of 1-5 y: window 1 from 6 to 20 mo with 60% positive nutrient correlations, window 2 from 20 to 30 mo with 20% positive correlations, and window 3 from 30 to 60 mo with 37% positive correlations. The windows are aligned with reported myelin and white matter dynamics that change in the first 5 y from fast and steep (window 1) to continued but slower growth (window 3), with window 2 possibly representing the inflection period. CONCLUSIONS To our knowledge, this is the first study in typically developing children demonstrating the developmental dynamics between early life nutrient intakes and brain maturation in toddlerhood. The knowledge can be applied for identifying targeted and brain-stage-appropriate nutritional interventions for this critical stage of brain development.
Collapse
Affiliation(s)
- Nora Schneider
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, Lausanne, Switzerland.
| | - Fabio Mainardi
- Applied Data Analytics Group, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, Lausanne, Switzerland
| | - Sanja Budisavljevic
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, Lausanne, Switzerland
| | - Maryann Rolands
- Nutrition Science Group, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, Lausanne, Switzerland
| | - Sean Deoni
- Advanced Baby Imaging Lab, Rhode Island Hospital, Providence, RI, USA; Department of Radiology, Warren Alpert Medical School at Brown University, Providence, RI, USA; Spinn Neuroscience, Seattle, WA, USA
| |
Collapse
|
7
|
Gala DS, Titlow JS, Teodoro RO, Davis I. Far from home: the role of glial mRNA localization in synaptic plasticity. RNA (NEW YORK, N.Y.) 2023; 29:153-169. [PMID: 36442969 PMCID: PMC9891262 DOI: 10.1261/rna.079422.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses whose plasticity is regulated efficiently by mRNA transport and localized translation. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, mRNA localization has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial subtypes containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing, for example, synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed, using cutting-edge tools already available for neurons.
Collapse
Affiliation(s)
- Dalia S Gala
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joshua S Titlow
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
8
|
Kolomeets NS, Uranova NA. [Reduced numerical density of oligodendrocytes and oligodendrocyte clusters in the head of the caudate nucleus in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:103-110. [PMID: 36719125 DOI: 10.17116/jnevro2023123011103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Morphometric estimation of the numerical density of oligodendrocytes (NcOl) and numerical density of oligodendrocyte clusters (NvOlC) in the rostral part of the caudate head nucleus associated with the cortical regions of the default network in the norm and in schizophrenia. MATERIAL AND METHODS NcOl and NvOlC were determined in the gray matter of the rostral part of the head of the caudate nucleus in Nissl-stained sections using optical dissector in postmortem brains in 18 schizophrenia and 18 healthy control cases. RESULTS The NvOl (-20%, p<0.001) and NvOlC (-28%, p<0.001) were decreased in the schizophrenia group as compared to the control groups. The NvOl correlated with the NvOlC (R≥0.88, p<0.001) in both groups while a lack of correlations was previously found in the central part of the caudate head. CONCLUSION The detected deficits of the NcOl and NvOlC is an agreement with prominent suppressing of cortico-striatal connections and reduced density of gray matter in this part of the caudate in schizophrenia. The differences in the pattern of correlations as compared to the central part of this structure might be associated with the specific features of functional activity of default-mode and fronto-parietal networks associated with these parts of caudate nucleus.
Collapse
Affiliation(s)
- N S Kolomeets
- Federal State Budgetary Scientific Institution Mental Health Research Center, Moscow, Russia
| | - N A Uranova
- Federal State Budgetary Scientific Institution Mental Health Research Center, Moscow, Russia
| |
Collapse
|
9
|
Stumme J, Krämer C, Miller T, Schreiber J, Caspers S, Jockwitz C. Interrelating differences in structural and functional connectivity in the older adult's brain. Hum Brain Mapp 2022; 43:5543-5561. [PMID: 35916531 PMCID: PMC9704795 DOI: 10.1002/hbm.26030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/15/2023] Open
Abstract
In the normal aging process, the functional connectome restructures and shows a shift from more segregated to more integrated brain networks, which manifests itself in highly different cognitive performances in older adults. Underpinnings of this reorganization are not fully understood, but may be related to age-related differences in structural connectivity, the underlying scaffold for information exchange between regions. The structure-function relationship might be a promising factor to understand the neurobiological sources of interindividual cognitive variability, but remain unclear in older adults. Here, we used diffusion weighted and resting-state functional magnetic resonance imaging as well as cognitive performance data of 573 older subjects from the 1000BRAINS cohort (55-85 years, 287 males) and performed a partial least square regression on 400 regional functional and structural connectivity (FC and SC, respectively) estimates comprising seven resting-state networks. Our aim was to identify FC and SC patterns that are, together with cognitive performance, characteristic of the older adults aging process. Results revealed three different aging profiles prevalent in older adults. FC was found to behave differently depending on the severity of age-related SC deteriorations. A functionally highly interconnected system is associated with a structural connectome that shows only minor age-related decreases. Because this connectivity profile was associated with the most severe age-related cognitive decline, a more interconnected FC system in older adults points to a process of dedifferentiation. Thus, functional network integration appears to increase primarily when SC begins to decline, but this does not appear to mitigate the decline in cognitive performance.
Collapse
Affiliation(s)
- Johanna Stumme
- Institute of Neuroscience and Medicine (INM‐1), Research Centre JülichJülichGermany
- Institute for Anatomy I, Medical Faculty & University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Camilla Krämer
- Institute of Neuroscience and Medicine (INM‐1), Research Centre JülichJülichGermany
- Institute for Anatomy I, Medical Faculty & University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tatiana Miller
- Institute of Neuroscience and Medicine (INM‐1), Research Centre JülichJülichGermany
- Institute for Anatomy I, Medical Faculty & University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Jan Schreiber
- Institute of Neuroscience and Medicine (INM‐1), Research Centre JülichJülichGermany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM‐1), Research Centre JülichJülichGermany
- Institute for Anatomy I, Medical Faculty & University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM‐1), Research Centre JülichJülichGermany
- Institute for Anatomy I, Medical Faculty & University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
10
|
Mackes NK, Mehta MA, Beyh A, Nkrumah RO, Golm D, Sarkar S, Fairchild G, Dell'Acqua F, Sonuga-Barke EJS. A Prospective Study of the Impact of Severe Childhood Deprivation on Brain White Matter in Adult Adoptees: Widespread Localized Reductions in Volume But Unaffected Microstructural Organization. eNeuro 2022; 9:ENEURO.0188-22.2022. [PMID: 36376082 PMCID: PMC9665880 DOI: 10.1523/eneuro.0188-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Early childhood neglect can impact brain development across the lifespan. Using voxel-based approaches we recently reported that severe and time-limited institutional deprivation in early childhood was linked to substantial reductions in total brain volume in adulthood, >20 years later. Here, we extend this analysis to explore deprivation-related regional white matter volume and microstructural organization using diffusion-based techniques. A combination of tensor-based morphometry (TBM) analysis and tractography was conducted on diffusion-weighted imaging (DWI) data from 59 young adults who spent between 3 and 41 months in the severely depriving Romanian institutions of the 1980s before being adopted into United Kingdom families, and 20 nondeprived age-matched United Kingdom controls. Independent of total volume, institutional deprivation was associated with smaller volumes in localized regions across a range of white matter tracts including (1) long-ranging association fibers such as bilateral inferior longitudinal fasciculus (ILF), bilateral inferior fronto-occipital fasciculus (IFOF), left superior longitudinal fasciculi (SLFs), and left arcuate fasciculus; (2) tracts of the limbic circuitry including fornix and cingulum; and (3) projection fibers with the corticospinal tract particularly affected. Tractographic analysis found no evidence of altered microstructural organization of any tract in terms of hindrance modulated orientational anisotropy (HMOA), fractional anisotropy (FA), or mean diffusivity (MD). We provide further evidence for the effects of early neglect on brain development and their persistence in adulthood despite many years of environmental enrichment associated with successful adoption. Localized white matter effects appear limited to volumetric changes with microstructural organization unaffected.
Collapse
Affiliation(s)
- Nuria K Mackes
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Ahmad Beyh
- Department of Forensic & Neurodevelopmental Sciences. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Richard O Nkrumah
- Department of Neuroimaging, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim J5 68159, Germany
| | - Dennis Golm
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton SO17 1PS, United Kingdom
| | - Sagari Sarkar
- Cognitive Neuroscience & Neuropsychiatry, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Graeme Fairchild
- Department of Psychology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Flavio Dell'Acqua
- Department of Forensic & Neurodevelopmental Sciences. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Edmund J S Sonuga-Barke
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
- Department of Child & Adolescent Psychiatry, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
11
|
Zhvania MG, Pochkhidze N, Dashniani M, Tizabi Y, Japaridze N, Burjanadze M, Chilachava L. Short- and long-term effects of chronic toluene exposure on recognition memory in adolescent and adult male Wistar rats. Brain Res Bull 2022; 190:116-121. [PMID: 36156293 DOI: 10.1016/j.brainresbull.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Abuse of toluene-containing volatile inhalants, particularly among youth, is of significant medical and social concern worldwide. Teenagers constitute the most abundant users of toluene and the majority of adult abusers of toluene started as teenagers. Although the euphoric and neurotoxic effects of acute toluene have been widely studied, lasting effects of chronic toluene exposure, especially in various age groups, have not been well investigated. In this study, we used adolescent and adult male Wistar rats to evaluate the short- and long-term effects of chronic toluene on various behaviors including cognitive function. Daily exposure to toluene (2000 ppm) for 40 days (5min/day) resulted in age-dependent behavioral impairments. Specifically, adolescent animals showed recognition memory impairment the day after the last exposure, which had normalized by day 90 post- exposure, whereas such impairment in adult animals was still evident at day 90 post-exposure. Our data suggest that age-dependent responses should be taken into consideration in interventional attempts to overcome specific detrimental consequences of chronic toluene exposure.
Collapse
Affiliation(s)
- Mzia G Zhvania
- School of Natural Sciences and Medicine, Ilia State University. 3/5 K. Cholokashvili Avenue,0162 Tbilisi, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia.
| | - Nino Pochkhidze
- School of Natural Sciences and Medicine, Ilia State University. 3/5 K. Cholokashvili Avenue,0162 Tbilisi, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia
| | - Manana Dashniani
- Department of Behavior and Cognitive Functions, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia; Medical School, New Vision University, 1A Evgeni Mikeladze Street, 0159 Tbilisi, Georgia
| | - Maia Burjanadze
- Department of Behavior and Cognitive Functions, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia
| | - Lela Chilachava
- School of Natural Sciences and Medicine, Ilia State University. 3/5 K. Cholokashvili Avenue,0162 Tbilisi, Georgia
| |
Collapse
|
12
|
Buccino AP, Yuan X, Emmenegger V, Xue X, Gänswein T, Hierlemann A. An automated method for precise axon reconstruction from recordings of high-density micro-electrode arrays. J Neural Eng 2022; 19:026026. [PMID: 35234667 PMCID: PMC7612575 DOI: 10.1088/1741-2552/ac59a2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022]
Abstract
Objective:Neurons communicate with each other by sending action potentials (APs) through their axons. The velocity of axonal signal propagation describes how fast electrical APs can travel. This velocity can be affected in a human brain by several pathologies, including multiple sclerosis, traumatic brain injury and channelopathies. High-density microelectrode arrays (HD-MEAs) provide unprecedented spatio-temporal resolution to extracellularly record neural electrical activity. The high density of the recording electrodes enables to image the activity of individual neurons down to subcellular resolution, which includes the propagation of axonal signals. However, axon reconstruction, to date, mainly relies on manual approaches to select the electrodes and channels that seemingly record the signals along a specific axon, while an automated approach to track multiple axonal branches in extracellular action-potential recordings is still missing.Approach:In this article, we propose a fully automated approach to reconstruct axons from extracellular electrical-potential landscapes, so-called 'electrical footprints' of neurons. After an initial electrode and channel selection, the proposed method first constructs a graph based on the voltage signal amplitudes and latencies. Then, the graph is interrogated to extract possible axonal branches. Finally, the axonal branches are pruned, and axonal action-potential propagation velocities are computed.Main results:We first validate our method using simulated data from detailed reconstructions of neurons, showing that our approach is capable of accurately reconstructing axonal branches. We then apply the reconstruction algorithm to experimental recordings of HD-MEAs and show that it can be used to determine axonal morphologies and signal-propagation velocities at high throughput.Significance:We introduce a fully automated method to reconstruct axonal branches and estimate axonal action-potential propagation velocities using HD-MEA recordings. Our method yields highly reliable and reproducible velocity estimations, which constitute an important electrophysiological feature of neuronal preparations.
Collapse
Affiliation(s)
| | - Xinyue Yuan
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | | | - Xiaohan Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | - Tobias Gänswein
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| |
Collapse
|
13
|
Babik I, Cunha AB, Lobo MA. A model for using developmental science to create effective early intervention programs and technologies to improve children's developmental outcomes. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2022; 62:231-268. [PMID: 35249683 DOI: 10.1016/bs.acdb.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Children born with a variety of environmental or medical risk factors may exhibit delays in global development. Very often, such delays are identified at preschool or school age, when children are severely overdue for effective early interventions that can alleviate the delays. This chapter proposes a conceptual model of child development to inform the creation of interventions and rehabilitative technologies that can be provided very early in development, throughout the first year of life, to optimize children's future developmental outcomes. The model suggests that early sensorimotor skills are antecedent and foundational for future motor, cognitive, language, and social development. As an example, this chapter describes how children's early postural control and exploratory movements facilitate the development of future object exploration behaviors that provide enhanced opportunities for learning and advance children's motor, cognitive, language, and social development. An understanding of the developmental pathways in the model can enable the design of effective intervention programs and rehabilitative technologies that target sensorimotor skills in the first year of life with the goal of minimizing or ameliorating the delays that are typically identified at preschool or school age. Specific examples of early interventions and rehabilitative technologies that have effectively advanced children's motor and cognitive development by targeting early sensorimotor skills and behaviors are provided.
Collapse
Affiliation(s)
- Iryna Babik
- Department of Psychological Science, Boise State University, Boise, ID, United States
| | - Andrea B Cunha
- Department of Physical Therapy, Biomechanics & Movement Science Program, University of Delaware, Newark, DE, United States
| | - Michele A Lobo
- Department of Physical Therapy, Biomechanics & Movement Science Program, University of Delaware, Newark, DE, United States.
| |
Collapse
|
14
|
Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Solís-Chagoyán H, Argueta J, López-Riquelme GO. Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry 2022; 12:264-285. [PMID: 35317338 PMCID: PMC8900585 DOI: 10.5498/wjp.v12.i2.264] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia and bipolar disorder are disabling psychiatric disorders with a worldwide prevalence of approximately 1%. Both disorders present chronic and deteriorating prognoses that impose a large burden, not only on patients but also on society and health systems. These mental illnesses share several clinical and neurobiological traits; of these traits, oligodendroglial dysfunction and alterations to white matter (WM) tracts could underlie the disconnection between brain regions related to their symptomatic domains. WM is mainly composed of heavily myelinated axons and glial cells. Myelin internodes are discrete axon-wrapping membrane sheaths formed by oligodendrocyte processes. Myelin ensheathment allows fast and efficient conduction of nerve impulses through the nodes of Ranvier, improving the overall function of neuronal circuits. Rapid and precisely synchronized nerve impulse conduction through fibers that connect distant brain structures is crucial for higher-level functions, such as cognition, memory, mood, and language. Several cellular and subcellular anomalies related to myelin and oligodendrocytes have been found in postmortem samples from patients with schizophrenia or bipolar disorder, and neuroimaging techniques have revealed consistent alterations at the macroscale connectomic level in both disorders. In this work, evidence regarding these multilevel alterations in oligodendrocytes and myelinated tracts is discussed, and the involvement of proteins in key functions of the oligodendroglial lineage, such as oligodendrogenesis and myelination, is highlighted. The molecular components of the axo-myelin unit could be important targets for novel therapeutic approaches to schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Marcela Valdés-Tovar
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Leslye Rodríguez-Cárdenas
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Carlo E Sotelo-Ramírez
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Beatriz Camarena
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Jesús Argueta
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Germán Octavio López-Riquelme
- Laboratorio de Socioneurobiología, Centro de Investigación en Ciencias Cognitivas, Universidad del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
15
|
Achu GF, Kakmeni FMM. Neuromechanical modulation of transmembrane voltage in a model of a nerve. Phys Rev E 2022; 105:014407. [PMID: 35193213 DOI: 10.1103/physreve.105.014407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Despite substantial evidence that mechanical variables play a crucial role in transmembrane voltage regulation, most research efforts focus mostly on the nerve cell's biochemical or electrophysiological activities. We propose an electromechanical model of a nerve in order to advance our understanding of how mechanical forces and thermodynamics also regulate neural electrical activities. We explore the spatiotemporal dynamics of the transmembrane potential using the proposed nonlinear model with a sinusoid as the initial transmembrane potential and periodic boundary conditions. The localized wave from our numerical simulation and transmembrane potentials in nerves are solitary and show the three stages of action potential (depolarization, repolarization, and hyperpolarization), as well as threshold and saturation effects. We show that the mechanical properties of membranes affect the localization of the transmembrane potential. According to simulation data, mechanical pulses of sufficient magnitude can modulate a transmembrane voltage. The current model could be used to describe the dynamics of a transmembrane potential modulated by sound. Mechanical perturbations that modulate an electrical signal have a lot of clinical potential for treating pain and other neurological diseases.
Collapse
Affiliation(s)
- G Fongang Achu
- Complex Systems and Theoretical Biology Group (CoSTBiG), and Laboratory of Research on Advanced Materials and Nonlinear Science (LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - F M Moukam Kakmeni
- Complex Systems and Theoretical Biology Group (CoSTBiG), and Laboratory of Research on Advanced Materials and Nonlinear Science (LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| |
Collapse
|
16
|
Long KLP, Chao LL, Kazama Y, An A, Hu KY, Peretz L, Muller DCY, Roan VD, Misra R, Toth CE, Breton JM, Casazza W, Mostafavi S, Huber BR, Woodward SH, Neylan TC, Kaufer D. Regional gray matter oligodendrocyte- and myelin-related measures are associated with differential susceptibility to stress-induced behavior in rats and humans. Transl Psychiatry 2021; 11:631. [PMID: 34903726 PMCID: PMC8668977 DOI: 10.1038/s41398-021-01745-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Individual reactions to traumatic stress vary dramatically, yet the biological basis of this variation remains poorly understood. Recent studies demonstrate the surprising plasticity of oligodendrocytes and myelin with stress and experience, providing a potential mechanism by which trauma induces aberrant structural and functional changes in the adult brain. In this study, we utilized a translational approach to test the hypothesis that gray matter oligodendrocytes contribute to traumatic-stress-induced behavioral variation in both rats and humans. We exposed adult, male rats to a single, severe stressor and used a multimodal approach to characterize avoidance, startle, and fear-learning behavior, as well as oligodendrocyte and myelin basic protein (MBP) content in multiple brain areas. We found that oligodendrocyte cell density and MBP were correlated with behavioral outcomes in a region-specific manner. Specifically, stress-induced avoidance positively correlated with hippocampal dentate gyrus oligodendrocytes and MBP. Viral overexpression of the oligodendrogenic factor Olig1 in the dentate gyrus was sufficient to induce an anxiety-like behavioral phenotype. In contrast, contextual fear learning positively correlated with MBP in the amygdala and spatial-processing regions of the hippocampus. In a group of trauma-exposed US veterans, T1-/T2-weighted magnetic resonance imaging estimates of hippocampal and amygdala myelin associated with symptom profiles in a region-specific manner that mirrored the findings in rats. These results demonstrate a species-independent relationship between region-specific, gray matter oligodendrocytes and differential behavioral phenotypes following traumatic stress exposure. This study suggests a novel mechanism for brain plasticity that underlies individual variance in sensitivity to traumatic stress.
Collapse
Affiliation(s)
- Kimberly L P Long
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Psychiatry and Behavioral Sciences, University of California, SanFrancisco, San Francisco, CA, 94143, USA
| | - Linda L Chao
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yurika Kazama
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Anjile An
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kelsey Y Hu
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Lior Peretz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dyana C Y Muller
- Department of Computer Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Vivian D Roan
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rhea Misra
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Claire E Toth
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jocelyn M Breton
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Psychiatry, Columbia University, New York, NY, 10027, USA
| | - William Casazza
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Sara Mostafavi
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
| | - Bertrand R Huber
- Department of Neurology, Boston University, Boston, MA, 02215, USA
- National Center for PTSD, VA New England Health Care System, Boston, MA, 02130, USA
| | - Steven H Woodward
- National Center for PTSD, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Thomas C Neylan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- San Francisco VA Health Care System, San Francisco, CA, 94121, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada.
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
17
|
Rajagopalan V, Deoni S, Panigrahy A, Thomason ME. Is fetal MRI ready for neuroimaging prime time? An examination of progress and remaining areas for development. Dev Cogn Neurosci 2021; 51:100999. [PMID: 34391003 PMCID: PMC8365463 DOI: 10.1016/j.dcn.2021.100999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022] Open
Abstract
A major challenge in designing large-scale, multi-site studies is developing a core, scalable protocol that retains the innovation of scientific advances while also lending itself to the variability in experience and resources across sites. In the development of a common Healthy Brain and Child Development (HBCD) protocol, one of the chief questions is "is fetal MRI ready for prime-time?" While there is agreement about the value of prenatal data obtained non-invasively through MRI, questions about practicality abound. There has been rapid progress over the past years in fetal and placental MRI methodology but there is uncertainty about whether the gains afforded outweigh the challenges in supporting fetal MRI protocols at scale. Here, we will define challenges inherent in building a common protocol across sites with variable expertise and will propose a tentative framework for evaluation of design decisions. We will compare and contrast various design considerations for both normative and high-risk populations, in the setting of the post-COVID era. We will conclude with articulation of the benefits of overcoming these challenges and would lend to the primary questions articulated in the HBCD initiative.
Collapse
Affiliation(s)
- Vidya Rajagopalan
- Department of Radiology, Keck School of Medicine, University of Southern California and Childrens Hospital of Los Angeles, United States.
| | - Sean Deoni
- Department of Pediatrics, Memorial Hospital of Rhode Island, United States
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh Medical School and Children's Hospital of Pittsburgh, United States
| | - Moriah E Thomason
- Departments of Child and Adolescent Psychiatry and Population Health, Hassenfeld Children's Hospital at NYU Langone, United States
| |
Collapse
|
18
|
Bonfanti L, Charvet CJ. Brain Plasticity in Humans and Model Systems: Advances, Challenges, and Future Directions. Int J Mol Sci 2021; 22:9358. [PMID: 34502267 PMCID: PMC8431131 DOI: 10.3390/ijms22179358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Plasticity, and in particular, neurogenesis, is a promising target to treat and prevent a wide variety of diseases (e.g., epilepsy, stroke, dementia). There are different types of plasticity, which vary with age, brain region, and species. These observations stress the importance of defining plasticity along temporal and spatial dimensions. We review recent studies focused on brain plasticity across the lifespan and in different species. One main theme to emerge from this work is that plasticity declines with age but that we have yet to map these different forms of plasticity across species. As part of this effort, we discuss our recent progress aimed to identify corresponding ages across species, and how this information can be used to map temporal variation in plasticity from model systems to humans.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | | |
Collapse
|
19
|
Preference uncertainty accounts for developmental effects on susceptibility to peer influence in adolescence. Nat Commun 2021; 12:3823. [PMID: 34158482 PMCID: PMC8219700 DOI: 10.1038/s41467-021-23671-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/22/2021] [Indexed: 01/10/2023] Open
Abstract
Adolescents are prone to social influence from peers, with implications for development, both adaptive and maladaptive. Here, using a computer-based paradigm, we replicate a cross-sectional effect of more susceptibility to peer influence in a large dataset of adolescents 14 to 24 years old. Crucially, we extend this finding by adopting a longitudinal perspective, showing that a within-person susceptibility to social influence decreases over a 1.5 year follow-up time period. Exploiting this longitudinal design, we show that susceptibility to social influences at baseline predicts an improvement in peer relations over the follow-up period. Using a Bayesian computational model, we demonstrate that in younger adolescents a greater tendency to adopt others’ preferences arises out of a higher uncertainty about their own preferences in the paradigmatic case of delay discounting (a phenomenon called ‘preference uncertainty’). This preference uncertainty decreases over time and, in turn, leads to a reduced susceptibility of one’s own behaviour to an influence from others. Neuro-developmentally, we show that a measure of myelination within medial prefrontal cortex, estimated at baseline, predicts a developmental decrease in preference uncertainty at follow-up. Thus, using computational and neural evidence, we reveal adaptive mechanisms underpinning susceptibility to social influence during adolescence. People often change their preferences to conform with others. Using a longitudinal design, the authors show that such conformity decreases over the course of adolescence and that this reduction in conformity is accompanied by a decreasing degree of uncertainty about what to like.
Collapse
|
20
|
Oligodendrocyte progenitor cell fate and function in development and disease. Curr Opin Cell Biol 2021; 73:35-40. [PMID: 34153742 DOI: 10.1016/j.ceb.2021.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023]
Abstract
Differentiation of oligodendrocyte progenitor cells (OPCs) into myelination-capable mature oligodendrocytes is essential for proper function of the central nervous system. OPCs are tissue-resident stem cells that populate all regions of the central nervous system and exist beyond development into adulthood. Disorders that lead to disruption of this critical cell state change cause devastating myelin diseases that are often associated with shortened life span. Recent findings have also provided support for a newly appreciated contribution of perturbed OPC differentiation to neurodegenerative and psychiatric diseases. These findings emphasize the need for a more complete understanding of OPC differentiation in health and disease. Here, we review recent molecular and functional findings revealing new roles of OPCs. It is our hope that this review provides readers with an enticing snapshot of current OPC research and highlights the potential of controlling OPC fate and function to treat diseases of the brain.
Collapse
|
21
|
Kumar M, Rainville JR, Williams K, Lile JA, Hodes GE, Vassoler FM, Turner JR. Sexually dimorphic neuroimmune response to chronic opioid treatment and withdrawal. Neuropharmacology 2021; 186:108469. [PMID: 33485944 PMCID: PMC7988821 DOI: 10.1016/j.neuropharm.2021.108469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/30/2022]
Abstract
Opioid use disorder is a leading cause of morbidity and mortality in the United States. Increasing pre-clinical and clinical evidence demonstrates sex differences in opioid use and dependence. However, the underlying molecular mechanisms contributing to these effects, including neuroinflammation, are still obscure. Therefore, in this study, we investigated the effect of oxycodone exposure and withdrawal on sex- and region-specific neuroimmune response. Real-time PCR and multiplex cytokine array analysis demonstrated elevated neuroinflammation with increased pro-inflammatory cytokine levels, and aberrant oligodendroglial response in reward neurocircuitry, following withdrawal from chronic oxycodone treatment. Chronic oxycodone and withdrawal treated male mice had lower mRNA expression of TMEM119 along with elevated protein levels of pro-inflammatory cytokines/chemokines and growth factors (IL-1β, IL-2, IL-7, IL-9, IL-12, IL-15, IL17, M-CSF, VEGF) in the prefrontal cortex (PFC) as compared to their female counterparts. In contrast, reduced levels of pro-inflammatory cytokines/chemokines (IL-1β, IL-6, IL-9, IL-12, CCL11) was observed in the nucleus accumbens (NAc) of oxycodone and withdrawal-treated males as compared to female mice. No treatment specific effects were observed on the mRNA expression of putative microglial activation markers (Iba1, CD68), but an overall sex specific decrease in the mRNA expression of Iba1 and CD68 was found in the PFC and NAc of male mice as compared to females. Moreover, a sex and region-specific increase in the mRNA levels of oligodendrocyte lineage markers (NG2, Sox10) was also observed in oxycodone and withdrawal treated animals. These findings may open a new avenue for the development of sex-specific precision therapeutics for opioid dependence by targeting region-specific neuroimmune signaling.
Collapse
Affiliation(s)
- Mohit Kumar
- University of Kentucky, College of Pharmacy, KY, USA
| | - Jennifer R Rainville
- Virginia Polytechnic Institute and State University, School of Neuroscience, VA, USA
| | - Kori Williams
- University of Kentucky, College of Pharmacy, KY, USA
| | - Joshua A Lile
- University of Kentucky, College of Medicine, KY, USA
| | - Georgia E Hodes
- Virginia Polytechnic Institute and State University, School of Neuroscience, VA, USA
| | - Fair M Vassoler
- Tufts University, Cummings School of Veterinary Medicine, MA, USA
| | - Jill R Turner
- University of Kentucky, College of Pharmacy, KY, USA.
| |
Collapse
|
22
|
Long KLP, Breton JM, Barraza MK, Perloff OS, Kaufer D. Hormonal Regulation of Oligodendrogenesis I: Effects across the Lifespan. Biomolecules 2021; 11:biom11020283. [PMID: 33672939 PMCID: PMC7918364 DOI: 10.3390/biom11020283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
The brain’s capacity to respond to changing environments via hormonal signaling is critical to fine-tuned function. An emerging body of literature highlights a role for myelin plasticity as a prominent type of experience-dependent plasticity in the adult brain. Myelin plasticity is driven by oligodendrocytes (OLs) and their precursor cells (OPCs). OPC differentiation regulates the trajectory of myelin production throughout development, and importantly, OPCs maintain the ability to proliferate and generate new OLs throughout adulthood. The process of oligodendrogenesis, the creation of new OLs, can be dramatically influenced during early development and in adulthood by internal and environmental conditions such as hormones. Here, we review the current literature describing hormonal regulation of oligodendrogenesis within physiological conditions, focusing on several classes of hormones: steroid, peptide, and thyroid hormones. We discuss hormonal regulation at each stage of oligodendrogenesis and describe mechanisms of action, where known. Overall, the majority of hormones enhance oligodendrogenesis, increasing OPC differentiation and inducing maturation and myelin production in OLs. The mechanisms underlying these processes vary for each hormone but may ultimately converge upon common signaling pathways, mediated by specific receptors expressed across the OL lineage. However, not all of the mechanisms have been fully elucidated, and here, we note the remaining gaps in the literature, including the complex interactions between hormonal systems and with the immune system. In the companion manuscript in this issue, we discuss the implications of hormonal regulation of oligodendrogenesis for neurological and psychiatric disorders characterized by white matter loss. Ultimately, a better understanding of the fundamental mechanisms of hormonal regulation of oligodendrogenesis across the entire lifespan, especially in vivo, will progress both basic and translational research.
Collapse
Affiliation(s)
- Kimberly L. P. Long
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
- Correspondence:
| | - Jocelyn M. Breton
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
| | - Matthew K. Barraza
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA;
| | - Olga S. Perloff
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
23
|
Vaquero L, Ramos-Escobar N, Cucurell D, François C, Putkinen V, Segura E, Huotilainen M, Penhune V, Rodríguez-Fornells A. Arcuate fasciculus architecture is associated with individual differences in pre-attentive detection of unpredicted music changes. Neuroimage 2021; 229:117759. [PMID: 33454403 DOI: 10.1016/j.neuroimage.2021.117759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The mismatch negativity (MMN) is an event related brain potential (ERP) elicited by unpredicted sounds presented in a sequence of repeated auditory stimuli. The neural sources of the MMN have been previously attributed to a fronto-temporo-parietal network which crucially overlaps with the so-called auditory dorsal stream, involving inferior and middle frontal, inferior parietal, and superior and middle temporal regions. These cortical areas are structurally connected by the arcuate fasciculus (AF), a three-branch pathway supporting the feedback-feedforward loop involved in auditory-motor integration, auditory working memory, storage of acoustic templates, as well as comparison and update of those templates. Here, we characterized the individual differences in the white-matter macrostructural properties of the AF and explored their link to the electrophysiological marker of passive change detection gathered in a melodic multifeature MMN-EEG paradigm in 26 healthy young adults without musical training. Our results show that left fronto-temporal white-matter connectivity plays an important role in the pre-attentive detection of rhythm modulations within a melody. Previous studies have shown that this AF segment is also critical for language processing and learning. This strong coupling between structure and function in auditory change detection might be related to life-time linguistic (and possibly musical) exposure and experiences, as well as to timing processing specialization of the left auditory cortex. To the best of our knowledge, this is the first time in which the relationship between neurophysiological (EEG) and brain white-matter connectivity indexes using DTI-tractography are studied together. Thus, the present results, although still exploratory, add to the existing evidence on the importance of studying the constraints imposed on cognitive functions by the underlying structural connectivity.
Collapse
Affiliation(s)
- Lucía Vaquero
- Laboratory of Cognitive and Computational Neuroscience, Complutense University of Madrid and Polytechnic University of Madrid, Campus Científico y Tecnológico de la UPM, Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Neus Ramos-Escobar
- Department of Cognition, Development and Education Psychology, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
| | - David Cucurell
- Department of Cognition, Development and Education Psychology, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
| | - Clément François
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain; Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France
| | - Vesa Putkinen
- Turku PET Centre, University of Turku, Turku, Finland
| | - Emma Segura
- Department of Cognition, Development and Education Psychology, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
| | - Minna Huotilainen
- Cicero Learning and Cognitive Brain Research Unit, University of Helsinki, Helsinki, Finland
| | - Virginia Penhune
- Penhune Laboratory for Motor Learning and Neural Plasticity, Concordia University, Montreal, QC, Canada; International Laboratory for Brain, Music and Sound Research (BRAMS). Montreal, QC, Canada; Center for Research on Brain, Language and Music (CRBLM), McGill University. Montreal, QC, Canada
| | - Antoni Rodríguez-Fornells
- Department of Cognition, Development and Education Psychology, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain; Institució Catalana de recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
24
|
Panlilio JM, Aluru N, Hahn ME. Developmental Neurotoxicity of the Harmful Algal Bloom Toxin Domoic Acid: Cellular and Molecular Mechanisms Underlying Altered Behavior in the Zebrafish Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:117002. [PMID: 33147070 PMCID: PMC7641300 DOI: 10.1289/ehp6652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Harmful algal blooms (HABs) produce potent neurotoxins that threaten human health, but current regulations may not be protective of sensitive populations. Early life exposure to low levels of the HAB toxin domoic acid (DomA) produces long-lasting behavioral deficits in rodent and primate models; however, the mechanisms involved are unknown. The zebrafish is a powerful in vivo vertebrate model system for exploring cellular processes during development and thus may help to elucidate mechanisms of DomA developmental neurotoxicity. OBJECTIVES We used the zebrafish model to investigate how low doses of DomA affect the developing nervous system, including windows of susceptibility to DomA exposure, structural and molecular changes in the nervous system, and the link to behavioral alterations. METHODS To identify potential windows of susceptibility, DomA (0.09-0.18 ng) was delivered to zebrafish through caudal vein microinjection during distinct periods in early neurodevelopment. Following exposure, structural and molecular targets were identified using live imaging of transgenic fish and RNA sequencing. To assess the functional consequences of exposures, we quantified startle behavior in response to acoustic/vibrational stimuli. RESULTS Larvae exposed to DomA at 2 d postfertilization (dpf), but not at 1 or 4 dpf, showed consistent deficits in startle behavior at 7 dpf, including lower responsiveness and altered kinematics. Similarly, myelination in the spinal cord was disorganized after exposure at 2 dpf but not 1 or 4 dpf. Time-lapse imaging revealed disruption of the initial stages of myelination. DomA exposure at 2 dpf down-regulated genes required for maintaining myelin structure and the axonal cytoskeleton. DISCUSSION These results in zebrafish reveal a developmental window of susceptibility to DomA-induced behavioral deficits and identify altered gene expression and disrupted myelin structure as possible mechanisms. The results establish a zebrafish model for investigating the mechanisms of developmental DomA toxicity, including effects with potential relevance to exposed sensitive human populations. https://doi.org/10.1289/EHP6652.
Collapse
Affiliation(s)
- Jennifer M. Panlilio
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, Massachusetts, USA
- Massachusetts Institute of Technology (MIT)–WHOI Joint Graduate Program in Oceanography and Oceanographic Engineering, Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
- Woods Hole Center for Oceans and Human Health, WHOI, Woods Hole, Massachusetts, USA
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, Massachusetts, USA
- Woods Hole Center for Oceans and Human Health, WHOI, Woods Hole, Massachusetts, USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, Massachusetts, USA
- Woods Hole Center for Oceans and Human Health, WHOI, Woods Hole, Massachusetts, USA
| |
Collapse
|
25
|
Hentrich T, Wassouf Z, Ehrhardt C, Haas E, Mills JD, Aronica E, Outeiro TF, Hübener-Schmid J, Riess O, Casadei N, Schulze-Hentrich JM. Increased expression of myelin-associated genes in frontal cortex of SNCA overexpressing rats and Parkinson's disease patients. Aging (Albany NY) 2020; 12:18889-18906. [PMID: 33017301 PMCID: PMC7732335 DOI: 10.18632/aging.103935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/01/2020] [Indexed: 01/24/2023]
Abstract
Parkinson's disease (PD) is an age-dependent neurodegenerative disorder. Besides characteristic motor symptoms, patients suffer from cognitive impairments linked to pathology in cortical areas. Due to obvious challenges in tracing the underlying molecular perturbations in human brain over time, we took advantage of a well-characterized PD rat model. Using RNA sequencing, we profiled the frontocortical transcriptome of post-mortem patient samples and aligned expression changes with perturbation patterns obtained in the model at 5 and 12 months of age reflecting a presymptomatic and symptomatic time point. Integrating cell type-specific reference data, we identified a shared expression signature between both species that pointed to oligodendrocyte-specific, myelin-associated genes. Drawing on longitudinal information from the model, their nearly identical upregulation in both species could be traced to two distinctive perturbance modes. While one mode exhibited age-independent alterations that affected genes including proteolipid protein 1 (PLP1), the other mode, impacting on genes like myelin-associated glycoprotein (MAG), was characterized by interferences of disease gene and adequate expression adaptations along aging. Our results highlight that even for a group of functionally linked genes distinct interference mechanisms may underlie disease progression that cannot be distinguished by examining the terminal point alone but instead require longitudinal interrogation of the system.
Collapse
Affiliation(s)
- Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Zinah Wassouf
- German Center for Neurodegenerative Diseases, Göttingen 37073, Germany,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Christine Ehrhardt
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Eva Haas
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - James D. Mills
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam 1105 AZ, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam 1105 AZ, The Netherlands
| | - Tiago Fleming Outeiro
- German Center for Neurodegenerative Diseases, Göttingen 37073, Germany,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany,Max Planck Institute for Experimental Medicine, Göttingen 37073, Germany,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Jeannette Hübener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany,DFG NGS Competence Center Tübingen, Tübingen 72076, Germany
| | | |
Collapse
|
26
|
Numerical density of oligodendrocytes and oligodendrocyte clusters in the anterior putamen in major psychiatric disorders. Eur Arch Psychiatry Clin Neurosci 2020; 270:841-850. [PMID: 32060609 DOI: 10.1007/s00406-020-01108-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
There is increasing evidence to support the notion that oligodendrocyte and myelin abnormalities may contribute to the functional dysconnectivity found in the major psychiatric disorders. The putamen, which is an important hub in the cortico-striato-thalamo-cortical loop, has been implicated in a broad spectrum of psychiatric illnesses and is a central target of their treatments. Previously we reported a reduction in the numerical density of oligodendrocytes and oligodendrocyte clusters in the prefrontal and parietal cortex in schizophrenia. Oligodendrocyte clusters contain oligodendrocyte progenitors and are involved in functionally dependent myelination. We measured the numerical density (Nv) of oligodendrocytes and oligodendrocyte clusters in the putamen in schizophrenia, bipolar disorder (BPD) and major depressive disorder (MDD) as compared to healthy controls (15 cases per group). Optical disector was used to estimate the Nv of oligodendrocytes and oligodendrocyte clusters. A significant reduction in both the Nv of oligodendrocytes (- 34%; p < 0.01) and the Nv of oligodendrocyte clusters (- 41%; p < 0.05) was found in the schizophrenia group as compared to the control group. Sexual dimorphism for both measurements was found only within the control group. The Nv of oligodendrocytes was significantly lower in male schizophrenia cases as compared to the male control cases. However, the Nv of oligodendrocyte clusters was significantly lower in all male clinical cases as compared to the male control group. The data suggest that lowered density of oligodendrocytes and oligodendrocyte clusters may contribute to the altered functional connectivity in the putamen in subjects with schizophrenia.
Collapse
|
27
|
Camacho-Arroyo I, Piña-Medina AG, Bello-Alvarez C, Zamora-Sánchez CJ. Sex hormones and proteins involved in brain plasticity. VITAMINS AND HORMONES 2020; 114:145-165. [PMID: 32723542 DOI: 10.1016/bs.vh.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
It is well known that peripheral sex steroid hormones cross the blood-brain barrier and control a broad spectrum of reproductive behaviors. However, their role in other essential brain functions was investigated since the 1980s, when the accumulation of pregnenolone and dehydroepiandrosterone in the brain of mammalian species was determined. Since then, numerous studies have demonstrated the participation of sex hormones in brain plasticity processes. Sex hormones through both genomic and non-genomic mechanisms of action are capable of inducing gene transcription or activating signaling cascades that result in the promotion of different physiological and pathological events of brain plasticity, such as remodeling or formation of dendritic spines, neurogenesis, synaptogenesis or myelination. In this chapter, we will present the effects of sex hormones and proteins involved in brain plasticity.
Collapse
Affiliation(s)
- Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| | - Ana Gabriela Piña-Medina
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Carmen J Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
28
|
Zhang Z, Ishrat S, O'Bryan M, Klein B, Saraswati M, Robertson C, Kannan S. Pediatric Traumatic Brain Injury Causes Long-Term Deficits in Adult Hippocampal Neurogenesis and Cognition. J Neurotrauma 2020; 37:1656-1667. [DOI: 10.1089/neu.2019.6894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Zhi Zhang
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Samiha Ishrat
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Megan O'Bryan
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Brandon Klein
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Manda Saraswati
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Courtney Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Aging Induced p53/p21 in Genioglossus Muscle Stem Cells and Enhanced Upper Airway Injury. Stem Cells Int 2020; 2020:8412598. [PMID: 32190060 PMCID: PMC7073476 DOI: 10.1155/2020/8412598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/18/2020] [Accepted: 02/08/2020] [Indexed: 12/28/2022] Open
Abstract
Aging of population brings related social problems, such as muscle attenuation and regeneration barriers with increased aging. Muscle repair and regeneration depend on muscle stem cells (MuSCs). Obstructive sleep apnea (OSA) rises in the aging population. OSA leads to hypoxia and upper airway muscle injury. However, little is known about the effect of increasing age and hypoxia to the upper airway muscle. The genioglossus (GG) is the major dilator muscle to keep the upper airway open. Here, we reported that muscle fiber and MuSC function declined with aging in GG. Increasing age also decreased the migration and proliferation of GG MuSCs. p53 and p21 were high expressions both in muscle tissue and in GG MuSCs. We further found that hypoxia inhibited GG MuSC proliferation and decreased myogenic differentiation. Then, hypoxia enhanced the inhibition effect of aging to proliferation and differentiation. Finally, we investigated that hypoxia and aging interact to form a vicious circle with upregulation of p53 and p21. This vicious hypoxia plus aging damage accelerated upper airway muscle injury. Aging and hypoxia are the major damage elements in OSA patients, and we propose that the damage mechanism of hypoxia and aging in GG MuSCs will help to improve upper airway muscle regeneration.
Collapse
|
30
|
Zheng J, Sun X, Ma C, Li BM, Luo F. Voluntary wheel running promotes myelination in the motor cortex through Wnt signaling in mice. Mol Brain 2019; 12:85. [PMID: 31651333 PMCID: PMC6814131 DOI: 10.1186/s13041-019-0506-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
Myelin of the central nervous system exhibits strong plasticity, and skill learning exercise promotes oligodendrogenesis and adaptive myelination. Increasing evidence shows that brain structures and functions are affected by physical activity. However, the impact of voluntary physical activity on central myelination and its underlying mechanism remains unclear. The present study aimed to investigate the effect of voluntary wheel running (VWR) on central oligodendrogenesis and adaptive myelination in mice. Adult C57BL/6 J mice were placed in running wheels and allowed for voluntary running 2 weeks. Myelin levels in the central nervous system were detected using western blotting, qRT-PCR, immunohistochemical staining, and electron microscopy. Oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs) were detected using immunohistochemical staining and 5-bromo-2-deoxyuridine (BrdU) assays. Motor abilities of the animals were examined using open-field, rotarod running, and beam-walking behavioral paradigms. Vital molecules of Wnt signaling were detected, and the involvement of such molecules was verified using in vitro culture of OPCs. Our results showed that VWR significantly enhanced the myelination in the motor cortex. VWR promoted the proliferation and differentiation of OPCs, and the maturation of OLs. The VWR-regulated myelination was associated with the improved motor skill and decreased mRNA level of Wnt3a/9a, whereas stimulation of Wnt signaling pathway with Wnt3a or Wnt9a suppressed OPCs proliferation and differentiation in vitro. The present study demonstrated that physical activity is highly efficient at promoting myelination in the motor cortex, by enhancing the proliferation of OPCs and accelerating the generation of myelin, providing a step forward in understanding the beneficial effects of physical activity on central myelination and its underlying mechanism.
Collapse
Affiliation(s)
- Jian Zheng
- Institute of Life Science, Nanchang University, Nanchang, 330031, China.,School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Xuan Sun
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chaolin Ma
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Bao-Ming Li
- Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Fei Luo
- Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
31
|
Dai X, Hadjipantelis P, Wang J, Deoni SCL, Müller H. Longitudinal associations between white matter maturation and cognitive development across early childhood. Hum Brain Mapp 2019; 40:4130-4145. [PMID: 31187920 PMCID: PMC6771612 DOI: 10.1002/hbm.24690] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 05/02/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
From birth to 5 years of age, brain structure matures and evolves alongside emerging cognitive and behavioral abilities. In relating concurrent cognitive functioning and measures of brain structure, a major challenge that has impeded prior investigation of their time-dynamic relationships is the sparse and irregular nature of most longitudinal neuroimaging data. We demonstrate how this problem can be addressed by applying functional concurrent regression models (FCRMs) to longitudinal cognitive and neuroimaging data. The application of FCRM in neuroimaging is illustrated with longitudinal neuroimaging and cognitive data acquired from a large cohort (n = 210) of healthy children, 2-48 months of age. Quantifying white matter myelination by using myelin water fraction (MWF) as imaging metric derived from MRI scans, application of this methodology reveals an early period (200-500 days) during which whole brain and regional white matter structure, as quantified by MWF, is positively associated with cognitive ability, while we found no such association for whole brain white matter volume. Adjusting for baseline covariates including socioeconomic status as measured by maternal education (SES-ME), infant feeding practice, gender, and birth weight further reveals an increasing association between SES-ME and cognitive development with child age. These results shed new light on the emerging patterns of brain and cognitive development, indicating that FCRM provides a useful tool for investigating these evolving relationships.
Collapse
Affiliation(s)
- Xiongtao Dai
- Department of StatisticsIowa State UniversityAmesIowa
| | | | - Jane‐Ling Wang
- Department of StatisticsUniversity of California DavisDavisCalifornia
| | - Sean C. L. Deoni
- Advanced Baby Imaging LabBrown University School of EngineeringProvidenceRhode Island
- Children's Hospital Imaging of Learning & Development Lab, Department of RadiologyUniversity of Colorado School of Medicine, Anschutz Medical CampusAuroraColorado
| | - Hans‐Georg Müller
- Department of StatisticsUniversity of California DavisDavisCalifornia
| |
Collapse
|
32
|
Swiatczak B, Feldkaemper M, Schraermeyer U, Schaeffel F. Demyelination and shrinkage of axons in the retinal nerve fiber layer in chickens developing deprivation myopia. Exp Eye Res 2019; 188:107783. [PMID: 31473258 DOI: 10.1016/j.exer.2019.107783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/29/2019] [Indexed: 12/30/2022]
Abstract
Placing diffusers in front of the eyes induces deprivation myopia in a variety of animal models. As a result of the low pass filtering of the retinal images, less spatial information is available to the retina which should reduce neural activity. Since it has been found that myelination of axons in the central nervous system is modulated by neuronal activity, we have studied whether ganglion cell axons may shrink in response to the restricted visual input. Young chickens were treated for 5 h or 7 days with frosted diffusers to induce deprivation myopia. Nerve fiber layer thickness was measured in vivo, using B-scan OCT. Refractive states were tracked by IR photoretinoscopy, and UV fundus reflectivity by a custom-built device which flashed an LED centered in the camera aperture and recorded pupil brightness after refractive errors were corrected by trial lenses. Moreover, structure and histology of the retinal nerve fibers layer (RNFL) were analyzed ex vivo using transmission electron microscopy and immunohistochemistry. Since chicks have both non-myelinated and myelinated fibers in their RNFL, the thickness of myelin sheaths (G ratio) was measured, as well as the percentage of myelinated axons and the diameters of unmyelinated axons. Short-term deprivation caused an increase in UV fundus reflectivity already after 5 h (measured as pixel grey levels in the pupil: 28 ± 5 vs. 36 ± 10, p < 0.05) and thinning of the myelin sheaths (higher G ratio), compared to untreated control eyes (0.74 ± 0.01 vs. 0.79 ± 0.03, p < 0.05). Neither axon diameters (0.81 ± 0.05 μm vs. 0.82 ± 0.15 μm) nor thickness of the RNFL had changed after only 5 h (42.9 ± 1.3 μm vs. 42.3 ± 2.5 μm). However, after 7 days of diffuser wear, axons had become thinner (0.56 ± 0.14 μm vs. 0.78 ± 0.09 μm vs, p < 0.05), which could explain the thinning of the RNFL (36.3 ± 2.7 μm vs. 42.1 ± 2.4 μm, p < 0.01). Furthermore, myopic eyes had 38% less myelinated axons than untreated eyes as determined by immunohistochemical labelling against myelin basic protein (immunopositive areas in the central retina 1406 ± 341 μm2 vs. 2185 ± 290 μm2 in controls, p < 0.001). Myelin sheaths in the remaining axons remained unchanged (G ratio 0.76 ± 0.02 vs. 0.76 ± 0.03). Our study shows that deprivation myopia is associated with a significant loss of myelinated axons and shrinkage of the axon diameters of certain fibers in the RNFL. Early changes were already detected after 5 h and were accompanied by an increased fundus reflectivity in UV light. These parameters could therefore serve as the biomarkers for myopia development, at least in the chicken.
Collapse
Affiliation(s)
- Barbara Swiatczak
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Elfriede Aulhorn Str. 7, 72076, Tuebingen, Germany
| | - Marita Feldkaemper
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Elfriede Aulhorn Str. 7, 72076, Tuebingen, Germany
| | - Ulrich Schraermeyer
- Experimental Vitreoretinal Surgery, Ophthalmic Research Institute, University of Tuebingen, Schleichstr. 12/1, 72076, Tuebingen, Germany
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Elfriede Aulhorn Str. 7, 72076, Tuebingen, Germany.
| |
Collapse
|
33
|
Okada N, Ando S, Sanada M, Hirata-Mogi S, Iijima Y, Sugiyama H, Shirakawa T, Yamagishi M, Kanehara A, Morita M, Yagi T, Hayashi N, Koshiyama D, Morita K, Sawada K, Ikegame T, Sugimoto N, Toriyama R, Masaoka M, Fujikawa S, Kanata S, Tada M, Kirihara K, Yahata N, Araki T, Jinde S, Kano Y, Koike S, Endo K, Yamasaki S, Nishida A, Hiraiwa-Hasegawa M, Bundo M, Iwamoto K, Tanaka SC, Kasai K. Population-neuroscience study of the Tokyo TEEN Cohort (pn-TTC): Cohort longitudinal study to explore the neurobiological substrates of adolescent psychological and behavioral development. Psychiatry Clin Neurosci 2019; 73:231-242. [PMID: 30588712 DOI: 10.1111/pcn.12814] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/06/2018] [Accepted: 12/25/2018] [Indexed: 12/14/2022]
Abstract
AIM Adolescence is a crucial stage of psychological development and is critically vulnerable to the onset of psychopathology. Our understanding of how the maturation of endocrine, epigenetics, and brain circuit may underlie psychological development in adolescence, however, has not been integrated. Here, we introduce our research project, the population-neuroscience study of the Tokyo TEEN Cohort (pn-TTC), a longitudinal study to explore the neurobiological substrates of development during adolescence. METHODS Participants in the first wave of the pn-TTC (pn-TTC-1) study were recruited from those of the TTC study, a large-scale epidemiological survey in which 3171 parent-adolescent pairs were recruited from the general population. Participants underwent psychological, cognitive, sociological, and physical assessment. Moreover, adolescents and their parents underwent magnetic resonance imaging (MRI; structural MRI, resting-state functional MRI, and magnetic resonance spectroscopy), and adolescents provided saliva samples for hormone analysis and for DNA analysis including epigenetics. Furthermore, the second wave (pn-TTC-2) followed similar methods as in the first wave. RESULTS A total of 301 parent-adolescent pairs participated in the pn-TTC-1 study. Moreover, 281 adolescents participated in the pn-TTC-2 study, 238 of whom were recruited from the pn-TTC-1 sample. The instruction for data request is available at: http://value.umin.jp/data-resource.html. CONCLUSION The pn-TTC project is a large-scale and population-neuroscience-based survey with a plan of longitudinal biennial follow up. Through this approach we seek to elucidate adolescent developmental mechanisms according to biopsychosocial models. This current biomarker research project, using minimally biased samples recruited from the general population, has the potential to expand the new research field of population neuroscience.
Collapse
Affiliation(s)
- Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Shuntaro Ando
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Motoyuki Sanada
- Center for Applied Psychological Science, Kwansei Gakuin University, Nishinomiya, Japan
| | - Sachiko Hirata-Mogi
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yudai Iijima
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Sugiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Integrated Educational Sciences, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Toru Shirakawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mika Yamagishi
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiko Kanehara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaya Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoko Yagi
- Department of Child Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriyuki Hayashi
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kingo Sawada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tempei Ikegame
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriko Sugimoto
- Department of Child Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rie Toriyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mio Masaoka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinya Fujikawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sho Kanata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Mariko Tada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kenji Kirihara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriaki Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiko Kano
- Department of Child Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan.,UTokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan
| | - Kaori Endo
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Syudo Yamasaki
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsushi Nishida
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mariko Hiraiwa-Hasegawa
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Miki Bundo
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuya Iwamoto
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Saori C Tanaka
- Department of Computational Neurobiology, ATR Computational Neuroscience Laboratories, Kyoto, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Foster AY, Bujalka H, Emery B. Axoglial interactions in myelin plasticity: Evaluating the relationship between neuronal activity and oligodendrocyte dynamics. Glia 2019; 67:2038-2049. [PMID: 31038804 DOI: 10.1002/glia.23629] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/10/2022]
Abstract
Myelin is a critical component of the vertebrate nervous system, both increasing the conduction velocity of myelinated axons and allowing for metabolic coupling between the myelinating cells and axons. An increasing number of studies demonstrate that myelination is not simply a developmentally hardwired program, but rather that new myelinating oligodendrocytes can be generated throughout life. The generation of these oligodendrocytes and the formation of myelin are influenced both during development and adulthood by experience and levels of neuronal activity. This led to the concept of adaptive myelination, where ongoing activity-dependent changes to myelin represent a form of neural plasticity, refining neuronal functioning, and circuitry. Although human neuroimaging experiments support the concept of dynamic changes within specific white matter tracts relevant to individual tasks, animal studies have only just begun to probe the extent to which neuronal activity may alter myelination at the level of individual circuits and axons. Uncovering the role of adaptive myelination requires a detailed understanding of the localized interactions that occur between active axons and myelinating cells. In this review, we focus on recent animal studies that have begun to investigate the interactions between active axons and myelinating cells and review the evidence for-and against-the ability of neuronal activity to alter myelination at an axon-specific level.
Collapse
Affiliation(s)
- Antoinette Y Foster
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - Helena Bujalka
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, Portland, Oregon.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
35
|
Emmenegger V, Obien MEJ, Franke F, Hierlemann A. Technologies to Study Action Potential Propagation With a Focus on HD-MEAs. Front Cell Neurosci 2019; 13:159. [PMID: 31118887 PMCID: PMC6504789 DOI: 10.3389/fncel.2019.00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/08/2019] [Indexed: 12/26/2022] Open
Abstract
Axons convey information in neuronal circuits via reliable conduction of action potentials (APs) from the axon initial segment (AIS) to the presynaptic terminals. Recent experimental findings increasingly evidence that the axonal function is not limited to the simple transmission of APs. Advances in subcellular-resolution recording techniques have shown that axons display activity-dependent modulation in spike shape and conduction velocity, which influence synaptic strength and latency. We briefly review here, how recent methodological developments facilitate the understanding of the axon physiology. We included the three most common methods, i.e., genetically encoded voltage imaging (GEVI), subcellular patch-clamp and high-density microelectrode arrays (HD-MEAs). We then describe the potential of using HD-MEAs in studying axonal physiology in more detail. Due to their robustness, amenability to high-throughput and high spatiotemporal resolution, HD-MEAs can provide a direct functional electrical readout of single cells and cellular ensembles at subcellular resolution. HD-MEAs can, therefore, be employed in investigating axonal pathologies, the effects of large-scale genomic interventions (e.g., with RNAi or CRISPR) or in compound screenings. A combination of extracellular microelectrode arrays (MEAs), intracellular microelectrodes and optical imaging may potentially reveal yet unexplored repertoires of axonal functions.
Collapse
Affiliation(s)
- Vishalini Emmenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Marie Engelene J. Obien
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- MaxWell Biosystems AG, Basel, Switzerland
| | - Felix Franke
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
36
|
Blood AJ, Kuster JK, Waugh JL, Levenstein JM, Multhaupt-Buell TJ, Sudarsky LR, Breiter HC, Sharma N. White Matter Changes in Cervical Dystonia Relate to Clinical Effectiveness of Botulinum Toxin Treatment. Front Neurol 2019; 10:265. [PMID: 31019484 PMCID: PMC6459077 DOI: 10.3389/fneur.2019.00265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/27/2019] [Indexed: 12/27/2022] Open
Abstract
In a previous report showing white matter microstructural hemispheric asymmetries medial to the pallidum in focal dystonias, we showed preliminary evidence that this abnormality was reduced 4 weeks after botulinum toxin (BTX) injections. In the current study we report the completed treatment study in a full-size cohort of CD patients (n = 14). In addition to showing a shift toward normalization of the hemispheric asymmetry, we evaluated clinical relevance of these findings by relating white matter changes to degree of symptom improvement. We also evaluated whether the magnitude of the white matter asymmetry before treatment was related to severity, laterality, duration of dystonia, and/or number of previous BTX injections. Our results confirm the findings of our preliminary report: we observed significant fractional anisotropy (FA) changes medial to the pallidum 4 weeks after BTX in CD participants that were not observed in controls scanned at the same interval. There was a significant relationship between magnitude of hemispheric asymmetry and dystonia symptom improvement, as measured by percent reduction in dystonia scale scores. There was also a trend toward a relationship between magnitude of pre-injection white matter asymmetry and symptom severity, but not symptom laterality, disorder duration, or number of previous BTX injections. Post-hoc analyses suggested the FA changes at least partially reflected changes in pathophysiology, but a dissociation between patient perception of benefit from injections and FA changes suggested the changes did not reflect changes to the primary "driver" of the dystonia. In contrast, there were no changes or group differences in DTI diffusivity measures, suggesting the hemispheric asymmetry in CD does not reflect irreversible white matter tissue loss. These findings support the hypothesis that central nervous system white matter changes are involved in the mechanism by which BTX exerts clinical benefit.
Collapse
Affiliation(s)
- Anne J Blood
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, United States.,Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - John K Kuster
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, United States.,Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Jeff L Waugh
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, United States.,Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Division of Child Neurology, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Jacob M Levenstein
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | | | - Lewis R Sudarsky
- Department of Neurology, Harvard Medical School, Boston, MA, United States.,Department Neurology, Brigham and Women's Hospital, Boston, MA, United States
| | - Hans C Breiter
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, United States.,Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.,Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States.,Department Neurology, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
37
|
Petersen A, Deoni S, Müller HG. Fréchet estimation of time-varying covariance matrices from sparse data, with application to the regional co-evolution of myelination in the developing brain. Ann Appl Stat 2019. [DOI: 10.1214/18-aoas1195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Zwilling CE, Talukdar T, Zamroziewicz MK, Barbey AK. Nutrient biomarker patterns, cognitive function, and fMRI measures of network efficiency in the aging brain. Neuroimage 2019; 188:239-251. [DOI: 10.1016/j.neuroimage.2018.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 11/26/2022] Open
|
39
|
Developmental trajectory of the prefrontal cortex: a systematic review of diffusion tensor imaging studies. Brain Imaging Behav 2019; 12:1197-1210. [PMID: 28913594 DOI: 10.1007/s11682-017-9761-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fluctuations in gray and white matter volumes in addition to the fibers' reorganization and refinement of synaptic connectivity apparently happen in a particular temporo-spatial sequence during the dynamic and prolonged process of cerebral maturation. These developmental events are associated with regional modifications of brain tissues and neural circuits, contributing to networks' specialization and enhanced cognitive processing. According to several studies, improvements in cognitive processes are possibly myelin-dependent and associated to white matter maturation. Of particular interest is the developmental pattern of the prefrontal cortex (PFC), more specifically the PFC white matter, due to its role in high-level executive processes such as attention, working memory and inhibitory control. A systematic review of the literature was conducted using the Web of Science, PubMed and Embase databases to analyze the development of PFC white matter using Diffusion Tensor Imaging (DTI), a widely used non-invasive technique to assess white matter maturation. Both the research and reporting of results were based on Cochrane's recommendations and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. Information extracted from 27 published studies revealed an increased myelination, organization and integrity of frontal white matter with age, as revealed by DTI indexes (fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD] and axial diffusivity [AD]). These patterns highlight the extended developmental course of the frontal structural connectivity, which parallels the improvements in higher-level cognitive functions observed between adolescence and early adulthood.
Collapse
|
40
|
Tsai SY, Bendriem RM, Lee CTD. The cellular basis of fetal endoplasmic reticulum stress and oxidative stress in drug-induced neurodevelopmental deficits. Neurobiol Stress 2019; 10:100145. [PMID: 30937351 PMCID: PMC6430408 DOI: 10.1016/j.ynstr.2018.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/02/2018] [Accepted: 12/26/2018] [Indexed: 11/30/2022] Open
Abstract
Prenatal substance exposure is a growing public health concern worldwide. Although the opioid crisis remains one of the most prevalent addiction problems in our society, abuse of cocaine, methamphetamines, and other illicit drugs, particularly amongst pregnant women, are nonetheless significant and widespread. Evidence demonstrates prenatal drug exposure can affect fetal brain development and thus can have long-lasting impact on neurobehavioral and cognitive performance later in life. In this review, we highlight research examining the most prevalent drugs of abuse and their effects on brain development with a focus on endoplasmic reticulum stress and oxidative stress signaling pathways. A thorough exploration of drug-induced cellular stress mechanisms during prenatal brain development may provide insight into therapeutic interventions to combat effects of prenatal drug exposure.
Collapse
Affiliation(s)
- S-Y.A. Tsai
- Integrative Neuroscience Branch, Division of Neuroscience and Behavior, National Institute on Drug Abuse, The National Institute of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Raphael M. Bendriem
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Chun-Ting D. Lee
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, USA
| |
Collapse
|
41
|
Doabler CT, Gearin B, Baker SK, Stoolmiller M, Kennedy PC, Clarke B, Nelson NJ, Fien H, Smolkowski K. Student Practice Opportunities in Core Mathematics Instruction: Exploring for a Goldilocks Effect for Kindergartners With Mathematics Difficulties. JOURNAL OF LEARNING DISABILITIES 2019; 52:271-283. [PMID: 30636501 DOI: 10.1177/0022219418823708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Opportunities for practice play a critical role in learning complex behaviors. In the context of explicit mathematics instruction, practice facilitates systematic opportunities for students with mathematics difficulties (MD) to learn new mathematics content and apply such knowledge and skills to novel mathematics problems. This study explored whether there is an optimal amount of student practice that teachers should provide in core mathematics instruction to maximize the mathematics achievement of kindergarten students with MD, a so called "Goldilocks effect," as opposed to simply "more is better." Results from observation data collected in a large-scale efficacy trial supported the latter rather than the former. Specifically, we found that three individual practice opportunities for every explicit teacher demonstration of mathematical content was associated with increased mathematics achievement for students with MD relative to fewer practice opportunities. Implications for facilitating frequent student practice opportunities during core mathematics instruction and designing professional development for teachers who work with students with MD are discussed.
Collapse
Affiliation(s)
| | - Brian Gearin
- 2 Center on Teaching and Learning, University of Oregon, Eugene, OR, USA
| | | | | | - Patrick C Kennedy
- 2 Center on Teaching and Learning, University of Oregon, Eugene, OR, USA
| | - Ben Clarke
- 2 Center on Teaching and Learning, University of Oregon, Eugene, OR, USA
| | - Nancy J Nelson
- 2 Center on Teaching and Learning, University of Oregon, Eugene, OR, USA
| | - Hank Fien
- 2 Center on Teaching and Learning, University of Oregon, Eugene, OR, USA
| | | |
Collapse
|
42
|
Cui J, Mistur EJ, Wei C, Lansford JE, Putnick DL, Bornstein MH. Multilevel factors affecting early socioemotional development in humans. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2580-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Doabler CT, Clarke B, Kosty D, Kurtz-Nelson E, Fien H, Smolkowski K, Baker SK. Examining the Impact of Group Size on the Treatment Intensity of a Tier 2 Mathematics Intervention Within a Systematic Framework of Replication. JOURNAL OF LEARNING DISABILITIES 2018; 52:168-180. [PMID: 30027807 DOI: 10.1177/0022219418789376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Group size and treatment intensity are understudied topics in mathematics intervention research. This study examined whether the treatment intensity and overall intervention effects of an empirically validated Tier 2 mathematics intervention varied between intervention groups with 2:1 and 5:1 student-teacher ratios. Student practice opportunities and the quality of explicit instruction served as treatment intensity metrics. A total of 465 kindergarten students with mathematics difficulties from 136 intervention groups participated. Results suggested comparable performances between the 2:1 and 5:1 intervention groups on six outcome measures. Observation data indicated that student practice differed by group size. Students in the 5:1 groups received more opportunities to practice with their peers, while students in the 2:1 groups participated in more frequent and higher quality individualized practice opportunities. Implications in terms of delivering Tier 2 interventions in small-group formats and engaging at-risk learners in meaningful practice opportunities are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Hank Fien
- University of Oregon, Eugene, OR, USA
| | | | - Scott K Baker
- University of Oregon, Eugene, OR, USA
- Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
44
|
A Novel Role for Oligodendrocyte Precursor Cells (OPCs) and Sox10 in Mediating Cellular and Behavioral Responses to Heroin. Neuropsychopharmacology 2018; 43:1385-1394. [PMID: 29260792 PMCID: PMC5916371 DOI: 10.1038/npp.2017.303] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022]
Abstract
Opiate abuse and addiction have become a worldwide epidemic with great societal and financial burdens, highlighting a critical need to understand the neurobiology of opiate addiction. Although several studies have focused on drug-dependent changes in neurons, the role of glia in opiate addiction remains largely unstudied. RNA sequencing pathway analysis from the prefrontal cortex (PFC) of male rats revealed changes in several genes associated with oligodendrocyte differentiation and maturation following heroin self-administration. Among these genes changed was Sox10, which is regulated, in part, by the chromatin remodeler BRG1/SMARCA4. To directly test the functional role of Sox10 in mediating heroin-induced behavioral plasticity, we selectively overexpressed Sox10 and BRG1 in the PFC. Overexpression of either Sox10 or BRG1 decreased the motivation to obtain heroin infusions in a progressive ratio test without altering the acquisition or maintenance of heroin self-administration. These data demonstrate a critical, and perhaps compensatory, role of Sox10 and BRG1 in oligodendrocytes in regulating the motivation for heroin.
Collapse
|
45
|
Dean DC, Planalp EM, Wooten W, Schmidt CK, Kecskemeti SR, Frye C, Schmidt NL, Goldsmith HH, Alexander AL, Davidson RJ. Investigation of brain structure in the 1-month infant. Brain Struct Funct 2018; 223:1953-1970. [PMID: 29305647 PMCID: PMC5886836 DOI: 10.1007/s00429-017-1600-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/23/2017] [Indexed: 01/02/2023]
Abstract
The developing brain undergoes systematic changes that occur at successive stages of maturation. Deviations from the typical neurodevelopmental trajectory are hypothesized to underlie many early childhood disorders; thus, characterizing the earliest patterns of normative brain development is essential. Recent neuroimaging research provides insight into brain structure during late childhood and adolescence; however, few studies have examined the infant brain, particularly in infants under 3 months of age. Using high-resolution structural MRI, we measured subcortical gray and white matter brain volumes in a cohort (N = 143) of 1-month infants and examined characteristics of these volumetric measures throughout this early period of neurodevelopment. We show that brain volumes undergo age-related changes during the first month of life, with the corresponding patterns of regional asymmetry and sexual dimorphism. Specifically, males have larger total brain volume and volumes differ by sex in regionally specific brain regions, after correcting for total brain volume. Consistent with findings from studies of later childhood and adolescence, subcortical regions appear more rightward asymmetric. Neither sex differences nor regional asymmetries changed with gestation-corrected age. Our results complement a growing body of work investigating the earliest neurobiological changes associated with development and suggest that asymmetry and sexual dimorphism are present at birth.
Collapse
Affiliation(s)
- Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA.
| | - E M Planalp
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - W Wooten
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - C K Schmidt
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - S R Kecskemeti
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - C Frye
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - N L Schmidt
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - H H Goldsmith
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - A L Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - R J Davidson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
46
|
Yang J, Ye J, Wang R, Zhou K, Wu YJ. Bilingual Contexts Modulate the Inhibitory Control Network. Front Psychol 2018; 9:395. [PMID: 29636713 PMCID: PMC5881103 DOI: 10.3389/fpsyg.2018.00395] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/09/2018] [Indexed: 02/05/2023] Open
Abstract
The present functional magnetic resonance imaging (fMRI) study investigated influences of language contexts on inhibitory control and the underlying neural processes. Thirty Cantonese–Mandarin–English trilingual speakers, who were highly proficient in Cantonese (L1) and Mandarin (L2), and moderately proficient in English (L3), performed a picture-naming task in three dual-language contexts (L1-L2, L2-L3, and L1-L3). After each of the three naming tasks, participants performed a flanker task, measuring contextual effects on the inhibitory control system. Behavioral results showed a typical flanker effect in the L2-L3 and L1-L3 condition, but not in the L1-L2 condition, which indicates contextual facilitation on inhibitory control performance by the L1-L2 context. Whole brain analysis of the fMRI data acquired during the flanker tasks showed more neural activations in the right prefrontal cortex and subcortical areas in the L2-L3 and L1-L3 condition on one hand as compared to the L1-L2 condition on the other hand, suggesting greater involvement of the cognitive control areas when participants were performing the flanker task in L2-L3 and L1-L3 contexts. Effective connectivity analyses displayed a cortical-subcortical-cerebellar circuitry for inhibitory control in the trilinguals. However, contrary to the right-lateralized network in the L1-L2 condition, functional networks for inhibitory control in the L2-L3 and L1-L3 condition are less integrated and more left-lateralized. These findings provide a novel perspective for investigating the interaction between bilingualism (multilingualism) and inhibitory control by demonstrating instant behavioral effects and neural plasticity as a function of changes in global language contexts.
Collapse
Affiliation(s)
- Jing Yang
- Bilingual Cognition and Development Lab, Center for Linguistics and Applied Linguistics, Guangdong University of Foreign Studies, Guangzhou, China
| | - Jianqiao Ye
- Bilingual Cognition and Development Lab, Center for Linguistics and Applied Linguistics, Guangdong University of Foreign Studies, Guangzhou, China
| | - Ruiming Wang
- Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Ke Zhou
- College of Psychology and Sociology, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China
| | - Yan Jing Wu
- Faculty of Foreign Languages, Ningbo University, Ningbo, China
| |
Collapse
|
47
|
Yang Y, Cheng Z, Tang H, Jiao H, Sun X, Cui Q, Luo F, Pan H, Ma C, Li B. Neonatal Maternal Separation Impairs Prefrontal Cortical Myelination and Cognitive Functions in Rats Through Activation of Wnt Signaling. Cereb Cortex 2018; 27:2871-2884. [PMID: 27178192 DOI: 10.1093/cercor/bhw121] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adverse early-life experience such as depriving the relationship between parents and children induces permanent phenotypic changes, and impairs the cognitive functions associated with the prefrontal cortex (PFC). However, the underlying mechanism remains unclear. In this work, we used rat neonatal maternal separation (NMS) model to illuminate whether and how NMS in early life affects cognitive functions, and what the underlying cellular and molecular mechanism is. We showed that rat pups separated from their dam 3 h daily during the first 3 postnatal weeks alters medial prefrontal cortex (mPFC) myelination and impairs mPFC-dependent behaviors. Myelination appears necessary for mPFC-dependent behaviors, as blockade of oligodendrocytes (OLs) differentiation or lysolecithin-induced demyelination, impairs mPFC functions. We further demonstrate that histone deacetylases 1/2 (HDAC1/2) are drastically reduced in NMS rats. Inhibition of HDAC1/2 promotes Wnt activation, which negatively regulates OLs development. Conversely, selective inhibition of Wnt signaling by XAV939 partly rescue myelination arrestment and behavior deficiency caused by NMS. These findings indicate that NMS impairs mPFC cognitive functions, at least in part, through modulation of oligodendrogenesis and myelination. Understanding the mechanism of NMS on mPFC-dependent behaviors is critical for developing pharmacological and psychological interventions for child neglect and abuse.
Collapse
Affiliation(s)
- Youjun Yang
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Zongyue Cheng
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Hua Tang
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Huifeng Jiao
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Xuan Sun
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Qiuzhu Cui
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Fei Luo
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Haili Pan
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Chaolin Ma
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Baoming Li
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| |
Collapse
|
48
|
Kolomeets NS. [Disturbance of oligodendrocyte differentiation in schizophrenia in relation to main hypothesis of the disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:108-117. [PMID: 28884727 DOI: 10.17116/jnevro201711781108-117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing evidence coming from neuroimaging, molecular genetic and post-mortem studies have implicated oligodendrocyte abnormalities and compromised myelin integrity in schizophrenia. Activity-dependent myelination in adult brain is considered to be an important mechanism of neural circuit's plasticity due to the presence of a large population of oligodendrocyte progenitor cells (OPC) in the adult CNS. Growing evidence for impairment of oligodendrocyte differentiation has been reported in the brain of schizophrenia subjects. OPC are very vulnerable inflammation, oxidative stress, and elevated glutamate levels leading to excitotoxicity. The mechanisms of prolonged suppression of oligodendrocyte differentiation caused by prenatal maternal infection or preterm birth are discussed in view of increased risk of schizophrenia, neurodevelopmental and inflammation hypotheses of the disease. The data that some neuroleptics stimulate OPC differentiation and ameliorate myelin alterations support the notion that impairment in the differentiation of OPCs contributes to oligodendrocyte abnormalities and to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- N S Kolomeets
- National Mental Health Research Center, Moscow, Russia
| |
Collapse
|
49
|
Melie-Garcia L, Slater D, Ruef A, Sanabria-Diaz G, Preisig M, Kherif F, Draganski B, Lutti A. Networks of myelin covariance. Hum Brain Mapp 2017; 39:1532-1554. [PMID: 29271053 PMCID: PMC5873432 DOI: 10.1002/hbm.23929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/02/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023] Open
Abstract
Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, ). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these "networks of myelin covariance" (Myelin-Nets). The Myelin-Nets were built from quantitative Magnetization Transfer data-an in-vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin-Nets. We therefore selected two age groups: Young-Age (20-31 years old) and Old-Age (60-71 years old) and a pool of participants from 48 to 87 years old for a Myelin-Nets aging trajectory study. We found that the topological organization of the Myelin-Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin-Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging.
Collapse
Affiliation(s)
- Lester Melie-Garcia
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Switzerland
| | - David Slater
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Switzerland
| | - Anne Ruef
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Switzerland
| | - Gretel Sanabria-Diaz
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Switzerland
| | - Martin Preisig
- Department of Psychiatry, Lausanne University Hospital (CHUV), Switzerland
| | - Ferath Kherif
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Switzerland
| | - Bogdan Draganski
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Switzerland.,Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Antoine Lutti
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Switzerland
| |
Collapse
|
50
|
Moore ME, Koenig AE, Hillgartner MA, Otap CC, Barnby E, MacGregor GG. Abnormal social behavior in mice with tyrosinemia type I is associated with an increase of myelin in the cerebral cortex. Metab Brain Dis 2017; 32:1829-1841. [PMID: 28712060 DOI: 10.1007/s11011-017-0071-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022]
Abstract
Hereditary tyrosinemia type I (HT1) is caused by mutations in the fumarylacetoacetate hydrolase (FAH) gene, the template for the final enzyme in the tyrosine catabolism pathway. If left untreated this deficiency of functional FAH leads to a buildup of toxic metabolites that can cause liver disease, kidney dysfunction and high mortality. The current treatment with the drug NTBC prevents the production of these metabolites and has consequently increased the survival rate in HT1 children. As a result of this increased survival, long term complications of HT1 are now being observed, including slower learning, impaired cognition and altered social behavior. We studied a mouse model of HT1 to gain insight into the effects of HT1 and treatment with NTBC on social behavior in mice. We showed that mice with HT1 display abnormal social behavior in that they spend more time in the absence of another mouse and do not discriminate between a novel mouse and an already familiar mouse. This altered behavior was due to HT1 and not treatment with NTBC. Quantification of cerebral cortex myelin in mice with HT1 showed a two to threefold increase in myelin expression. Our findings suggest that absence of FAH expression in the brain produces an altered brain biochemistry resulting in increased expression of myelin. This increase in myelination could lead to abnormal action potential velocity and altered neuronal connections that provide a mechanism for the altered learning, social behavior and cognitive issues recently seen in HT1.
Collapse
Affiliation(s)
- Marissa E Moore
- Department of Biological Sciences, University of Alabama in Huntsville, SST 361, 301 Sparkman Dr, Huntsville, AL, 35899, USA
| | - Ashton E Koenig
- Department of Biological Sciences, University of Alabama in Huntsville, SST 361, 301 Sparkman Dr, Huntsville, AL, 35899, USA
| | - Megan A Hillgartner
- Department of Biological Sciences, University of Alabama in Huntsville, SST 361, 301 Sparkman Dr, Huntsville, AL, 35899, USA
| | - Christopher C Otap
- Department of Biological Sciences, University of Alabama in Huntsville, SST 361, 301 Sparkman Dr, Huntsville, AL, 35899, USA
| | - Elizabeth Barnby
- College of Nursing, University of Alabama in Huntsville, 1610 Ben Graves Drive, Huntsville, AL, 35899, USA
| | - Gordon G MacGregor
- Department of Biological Sciences, University of Alabama in Huntsville, SST 361, 301 Sparkman Dr, Huntsville, AL, 35899, USA.
| |
Collapse
|