1
|
Konat GW. Neuroplasticity elicited by peripheral immune challenge with a viral mimetic. Brain Res 2025; 1846:149239. [PMID: 39284559 DOI: 10.1016/j.brainres.2024.149239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Peripheral viral infections are well known to profoundly alter brain function; however detailed mechanisms of this immune-to-brain communication have not been deciphered. This review focuses on studies of cerebral effects of peripheral viral challenge employing intraperitoneal injection of a viral mimetic, polyinosinic-polycytidylic acid (PIC). In this paradigm, PIC challenge induces the acute phase response (APR) characterized by a transient surge of circulating inflammatory factors, primarily IFNβ, IL-6 and CXCL10. The blood-borne factors, in turn, elicit the generation of CXCL10 by hippocampal neurons. Neurons also express the cognate receptor of CXCL10, i.e., CXCR3 implicating the existence of autocrine/paracrine signaling. The CXCL10/CXCR3 axis mediates the ensuing neuroplastic changes manifested as neuronal hyperexcitability, seizure hypersusceptibility, and sickness behavior. Electrophysiological studies revealed that the neuroplastic changes entail the potentiation of excitatory synapses likely at both pre- and postsynaptic loci. Excitatory synaptic transmission is further augmented by PIC challenge-induced elevation of extracellular glutamate that is mediated by astrocytes. In addition, the hyperexcitability of neuronal circuits might involve the repression of inhibitory signaling. Accordingly, CXCL10 released by neurons activates microglia whose processes invade perisomatic inhibitory synapses, resulting in a partial detachment of the presynaptic terminals, and thus, de-inhibition. This process might be facilitated by the cerebral complement system, which is also upregulated and activated by PIC challenge. Moreover, CXCL10 stimulates the expression of neuronal c-fos protein, another index of hyperexcitability. The reviewed studies form a foundation for full elucidation of the fascinating intersection between peripheral viral infections and neuroplasticity. Because the activation of such pathways may constitute a serious comorbidity factor for neuropathological conditions, this research would advance the development of preventive strategies.
Collapse
Affiliation(s)
- Gregory W Konat
- Department of Biochemistry and Molecular Medicine, Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| |
Collapse
|
2
|
Chang YC, Peng YJ, Lee JY, Chang KT. Peripheral glia and neurons jointly regulate activity-induced synaptic remodeling at the Drosophila neuromuscular junction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600908. [PMID: 39005352 PMCID: PMC11244886 DOI: 10.1101/2024.06.27.600908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In the nervous system, reliable communication depends on the ability of neurons to adaptively remodel their synaptic structure and function in response to changes in neuronal activity. While neurons are the main drivers of synaptic plasticity, glial cells are increasingly recognized for their roles as active modulators. However, the underlying molecular mechanisms remain unclear. Here, using Drosophila neuromuscular junction as a model system for a tripartite synapse, we show that peripheral glial cells collaborate with neurons at the NMJ to regulate activity-induced synaptic remodeling, in part through a protein called shriveled (Shv). Shv is an activator of integrin signaling previously shown to be released by neurons during intense stimulation at the fly NMJ to regulate activity-induced synaptic remodeling. We demonstrate that Shv is also present in peripheral glia, and glial Shv is both necessary and sufficient for synaptic remodeling. However, unlike neuronal Shv, glial Shv does not activate integrin signaling at the NMJ. Instead, it regulates synaptic plasticity in two ways: 1) maintaining the extracellular balance of neuronal Shv proteins to regulate integrin signaling, and 2) controlling ambient extracellular glutamate concentration to regulate postsynaptic glutamate receptor abundance. Loss of glial cells showed the same phenotype as loss of Shv in glia. Together, these results reveal that neurons and glial cells homeostatically regulate extracellular Shv protein levels to control activity-induced synaptic remodeling. Additionally, peripheral glia maintains postsynaptic glutamate receptor abundance and contribute to activity-induced synaptic remodeling by regulating ambient glutamate concentration at the fly NMJ.
Collapse
|
3
|
Boccuni I, Bas-Orth C, Bruehl C, Draguhn A, Fairless R. Glutamate transporter contribution to retinal ganglion cell vulnerability in a rat model of multiple sclerosis. Neurobiol Dis 2023; 187:106306. [PMID: 37734623 DOI: 10.1016/j.nbd.2023.106306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Glial glutamate transporters actively participate in neurotransmission and have a fundamental role in determining the ambient glutamate concentration in the extracellular space. Their expression is dynamically regulated in many diseases, including experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. In EAE, a downregulation has been reported which may render neurons more susceptible to glutamate excitotoxicity. In this study, we have investigated the expression of GLAST (EAAT1) and GLT-1 (EAAT2) in the retina of Brown Norway rats following induction of myelin oligodendrocyte glycoprotein (MOG)-EAE, which results in retinal ganglion cell (RGC) degeneration and dysfunction. In addition, we tested whether AAV-mediated overexpression of GLAST in the retina can protect RGCs from degeneration. To address the impact of glutamate transporter modulation on RGCs, we performed whole-cell recordings and measured tonic NMDA receptor-mediated currents in the absence and presence of a glutamate-uptake blocker. We report that αOFF-RGCs show larger tonic glutamate-induced currents than αON-RGCs, in line with their greater vulnerability under neuroinflammatory conditions. We further show that increased AAV-mediated expression of GLAST in the retina does indeed protect RGCs from degeneration during the inflammatory disease. Collectively, our study highlights the neuroprotective role of glutamate transporters in the EAE retina and provides a characterization of tonic glutamate-currents of αRGCs. The larger effects of increased extracellular glutamate concentration on the αOFF-subtype may underlie its enhanced vulnerability to degeneration.
Collapse
Affiliation(s)
- Isabella Boccuni
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg 69120, Germany
| | - Carlos Bas-Orth
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg 69120, Germany
| | - Claus Bruehl
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg 69120, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg 69120, Germany
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, Heidelberg 69120, Germany; Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), Heidelberg 69120, Germany.
| |
Collapse
|
4
|
Martinez-Lozada Z, Hewett SJ, Zafra F, Ortega A. Editorial: The known, the unknown, and the future of glutamate transporters. Front Cell Neurosci 2022; 16:1005834. [PMID: 36060278 PMCID: PMC9433117 DOI: 10.3389/fncel.2022.1005834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Zila Martinez-Lozada
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
- *Correspondence: Zila Martinez-Lozada
| | - Sandra J. Hewett
- Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY, United States
| | - Francisco Zafra
- Center of Molecular Biology Severo Ochoa, School of Science, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz — IdiPAZ, Madrid, Spain
| | - Arturo Ortega
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
5
|
VY S, KK E, KV B, DB T. Glutamate potentiates heterologously expressed homomeric acid‐sensing ion channel 1a. Synapse 2022; 76:e22227. [DOI: 10.1002/syn.22227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shteinikov VY
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS St. Petersburg 194223 Russia
| | - Evlanenkov KK
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS St. Petersburg 194223 Russia
| | - Bolshakov KV
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS St. Petersburg 194223 Russia
| | - Tikhonov DB
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS St. Petersburg 194223 Russia
| |
Collapse
|
6
|
García-Gaytán AC, Hernández-Abrego A, Díaz-Muñoz M, Méndez I. Glutamatergic system components as potential biomarkers and therapeutic targets in cancer in non-neural organs. Front Endocrinol (Lausanne) 2022; 13:1029210. [PMID: 36457557 PMCID: PMC9705578 DOI: 10.3389/fendo.2022.1029210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Glutamate is one of the most abundant amino acids in the blood. Besides its role as a neurotransmitter in the brain, it is a key substrate in several metabolic pathways and a primary messenger that acts through its receptors outside the central nervous system (CNS). The two main types of glutamate receptors, ionotropic and metabotropic, are well characterized in CNS and have been recently analyzed for their roles in non-neural organs. Glutamate receptor expression may be particularly important for tumor growth in organs with high concentrations of glutamate and might also influence the propensity of such tumors to set metastases in glutamate-rich organs, such as the liver. The study of glutamate transporters has also acquired relevance in the physiology and pathologies outside the CNS, especially in the field of cancer research. In this review, we address the recent findings about the expression of glutamatergic system components, such as receptors and transporters, their role in the physiology and pathology of cancer in non-neural organs, and their possible use as biomarkers and therapeutic targets.
Collapse
|
7
|
An Unrecognized Fundamental Relationship between Neurotransmitters: Glutamate Protects against Catecholamine Oxidation. Antioxidants (Basel) 2021; 10:antiox10101564. [PMID: 34679699 PMCID: PMC8533062 DOI: 10.3390/antiox10101564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/16/2023] Open
Abstract
Neurotransmitter catecholamines (dopamine, epinephrine, and norepinephrine) are liable to undergo oxidation, which copper is deeply involved in. Catecholamine oxidation-derived neurotoxicity is recognized as a pivotal pathological mechanism in neurodegenerative diseases. Glutamate, as an excitatory neurotransmitter, is enriched in the brain at extremely high concentrations. However, the chemical biology relationship of these two classes of neurotransmitters remains largely unknown. In the present study, we assessed the influences of glutamate on the autoxidation of catecholamines, the copper- and copper-containing ceruloplasmin-mediated oxidation of catecholamines, the catecholamine-induced formation of quinoprotein, catecholamine/copper-induced hydroxyl radicals, and DNA damage in vitro. The results demonstrate that glutamate, at a physiologically achievable molar ratio of glutamate/catecholamines, has a pronounced inhibitory effect on catecholamine oxidation, catecholamine oxidation-evoked hydroxyl radicals, quinoprotein, and DNA damage. The protective mechanism of glutamate against catecholamine oxidation could be attributed to its restriction of the redox activity of copper via chelation. This previously unrecognized link between glutamate, catecholamines, and copper suggests that neurodegenerative disorders may occur and develop once the built-in equilibrium is disrupted and brings new insight into developing more effective prevention and treatment strategies for neurodegenerative diseases.
Collapse
|
8
|
Moe-Lange J, Gappel NM, Machado M, Wudick MM, Sies CSA, Schott-Verdugo SN, Bonus M, Mishra S, Hartwig T, Bezrutczyk M, Basu D, Farmer EE, Gohlke H, Malkovskiy A, Haswell ES, Lercher MJ, Ehrhardt DW, Frommer WB, Kleist TJ. Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling. SCIENCE ADVANCES 2021; 7:eabg4298. [PMID: 34516872 PMCID: PMC8442888 DOI: 10.1126/sciadv.abg4298] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Glutamate has dual roles in metabolism and signaling; thus, signaling functions must be isolatable and distinct from metabolic fluctuations, as seen in low-glutamate domains at synapses. In plants, wounding triggers electrical and calcium (Ca2+) signaling, which involve homologs of mammalian glutamate receptors. The hydraulic dispersal and squeeze-cell hypotheses implicate pressure as a key component of systemic signaling. Here, we identify the stretch-activated anion channel MSL10 as necessary for proper wound-induced electrical and Ca2+ signaling. Wound gene induction, genetics, and Ca2+ imaging indicate that MSL10 acts in the same pathway as the glutamate receptor–like proteins (GLRs). Analogous to mammalian NMDA glutamate receptors, GLRs may serve as coincidence detectors gated by the combined requirement for ligand binding and membrane depolarization, here mediated by stretch activation of MSL10. This study provides a molecular genetic basis for a role of mechanical signal perception and the transmission of long-distance electrical and Ca2+ signals in plants.
Collapse
Affiliation(s)
- Jacob Moe-Lange
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Department of Plant Biology, Carnegie Science, Stanford, CA 94305, USA
| | - Nicoline M. Gappel
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Mackenzie Machado
- Department of Plant Biology, Carnegie Science, Stanford, CA 94305, USA
| | - Michael M. Wudick
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Cosima S. A. Sies
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Stephan N. Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, CL-3460000 Talca, Chile
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Michele Bonus
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Swastik Mishra
- Computational Cell Biology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Hartwig
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Margaret Bezrutczyk
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Debarati Basu
- NSF Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | - Edward E. Farmer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Andrey Malkovskiy
- Department of Plant Biology, Carnegie Science, Stanford, CA 94305, USA
| | - Elizabeth S. Haswell
- NSF Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | - Martin J. Lercher
- Computational Cell Biology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - David W. Ehrhardt
- Department of Plant Biology, Carnegie Science, Stanford, CA 94305, USA
| | - Wolf B. Frommer
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Corresponding author.
| | - Thomas J. Kleist
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Bao Y, Yang X, Fu Y, Li Z, Gong R, Lu W. NMDAR-dependent somatic potentiation of synaptic inputs is correlated with β amyloid-mediated neuronal hyperactivity. Transl Neurodegener 2021; 10:34. [PMID: 34496956 PMCID: PMC8424869 DOI: 10.1186/s40035-021-00260-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND β Amyloid (Aβ)-mediated neuronal hyperactivity, a key feature of the early stage of Alzheimer's disease (AD), is recently proposed to be initiated by the suppression of glutamate reuptake. Nevertheless, the underlying mechanism by which the impaired glutamate reuptake causes neuronal hyperactivity remains unclear. Chronic suppression of the glutamate reuptake causes accumulation of ambient glutamate that could diffuse from synaptic sites at the dendrites to the soma to elevate the tonic activation of somatic N-methyl-D-aspartate receptors (NMDARs). However, less attention has been paid to the potential role of tonic activity change in extrasynaptic glutamate receptors (GluRs) located at the neuronal soma on generation of neuronal hyperactivity. METHODS Whole-cell patch-clamp recordings were performed on CA1 pyramidal neurons in acute hippocampal slices exposed to TFB-threo-β-benzyloxyaspartic acid (TBOA) or human Aβ1-42 peptide oligomer. A series of dendritic patch-clamp recordings were made at different distances from the soma to identify the location of the changes in synaptic inputs. Moreover, single-channel recording in the cell-attached mode was performed to investigate the activity changes of single NMDARs at the soma. RESULTS Blocking glutamate uptake with either TBOA or the human Aβ1-42 peptide oligomer elicited potentiation of synaptic inputs in CA1 hippocampal neurons. Strikingly, this potentiation specifically occurred at the soma, depending on the activation of somatic GluN2B-containing NMDARs (GluN2B-NMDARs) and accompanied by a substantial and persistent increment in the open probability of somatic NMDARs. Blocking the activity of GluN2B-NMDARs at the soma completely reversed both the TBOA-induced or the Aβ1-42-induced somatic potentiation and neuronal hyperactivity. CONCLUSIONS The somatic potentiation of synaptic inputs may represent a novel amplification mechanism that elevates cell excitability and thus contributes to neuronal hyperactivity initiated by impaired glutamate reuptake in AD.
Collapse
Affiliation(s)
- Yifei Bao
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Xin Yang
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Yi Fu
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Zhengyan Li
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Ru Gong
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Wei Lu
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China. .,Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Fudan University, Shanghai, 200032, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
10
|
Selivanov VA, Zagubnaya OA, Nartsissov YR, Cascante M. Unveiling a key role of oxaloacetate-glutamate interaction in regulation of respiration and ROS generation in nonsynaptic brain mitochondria using a kinetic model. PLoS One 2021; 16:e0255164. [PMID: 34343196 PMCID: PMC8330910 DOI: 10.1371/journal.pone.0255164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022] Open
Abstract
Glutamate plays diverse roles in neuronal cells, affecting cell energetics and reactive oxygen species (ROS) generation. These roles are especially vital for neuronal cells, which deal with high amounts of glutamate as a neurotransmitter. Our analysis explored neuronal glutamate implication in cellular energy metabolism and ROS generation, using a kinetic model that simulates electron transport details in respiratory complexes, linked ROS generation and metabolic reactions. The analysis focused on the fact that glutamate attenuates complex II inhibition by oxaloacetate, stimulating the latter's transformation into aspartate. Such a mechanism of complex II activation by glutamate could cause almost complete reduction of ubiquinone and deficiency of oxidized form (Q), which closes the main stream of electron transport and opens a way to massive ROS generating transfer in complex III from semiquinone radicals to molecular oxygen. In this way, under low workload, glutamate triggers the respiratory chain (RC) into a different steady state characterized by high ROS generation rate. The observed stepwise dependence of ROS generation on glutamate concentration experimentally validated this prediction. However, glutamate's attenuation of oxaloacetate's inhibition accelerates electron transport under high workload. Glutamate-oxaloacetate interaction in complex II regulation underlies the observed effects of uncouplers and inhibitors and acceleration of Ca2+ uptake. Thus, this theoretical analysis uncovered the previously unknown roles of oxaloacetate as a regulator of ROS generation and glutamate as a modifier of this regulation. The model predicted that this mechanism of complex II activation by glutamate might be operative in situ and responsible for excitotoxicity. Spatial-time gradients of synthesized hydrogen peroxide concentration, calculated in the reaction-diffusion model with convection under a non-uniform local approximation of nervous tissue, have shown that overproduction of H2O2 in a cell causes excess of its level in neighbor cells.
Collapse
Affiliation(s)
- Vitaly A. Selivanov
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD) and Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES- ELIXIR), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Olga A. Zagubnaya
- Department of Mathematical Modeling and Statistical Analysis, Institute of Cytochemistry and Molecular Pharmacology, Moscow, Russia
| | - Yaroslav R. Nartsissov
- Department of Mathematical Modeling and Statistical Analysis, Institute of Cytochemistry and Molecular Pharmacology, Moscow, Russia
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD) and Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES- ELIXIR), Institute of Health Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
11
|
Lu Y, Hao W, Zhang X, Zhao Y, Xu Y, Luo J, Liu Q, Liu Q, Wang L, Zhang C. Comparative Study of Physicochemical Properties and Starch Granule Structure in Seven Ginkgo Kernel Flours. Foods 2021; 10:1721. [PMID: 34441499 PMCID: PMC8392216 DOI: 10.3390/foods10081721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/30/2022] Open
Abstract
Ginkgo biloba L. is an important economic tree species in China, and its kernels have been used as a popular food in Asian countries. Herein, the morphology, basic chemical components, starch granule structures, and physicochemical properties of kernel flours from seven ginkgo cultivars were investigated, and their relationships were analyzed. The kernels were oval or spherical in shape, with variable sizes. The starch granules exhibited both regular and irregular Maltese cross patterns. Amylose was mainly distributed in amorphous growth rings. A spatial variation in the 865/942 cm-1 ratio was observed within individual starch granules. Variations in total starch content, apparent amylose content (AAC), crude protein content (CPC), total amino acid content (TAAC), starch fine structure, and thermal and pasting properties were observed among the seven kernel flours. Pearson correlation coefficients and principle component analyses showed that the thermal properties were affected by kernel CPC, TAAC, AAC, and starch fine structure, while the pasting properties were affected by AAC and starch fine structure. Furthermore, experiments showed that the seed protein structure and α-amylase activity affected the pasting properties of ginkgo kernel flours.
Collapse
Affiliation(s)
- Yan Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.H.); (Y.Z.); (Y.X.); (Q.L.)
| | - Weizhuo Hao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.H.); (Y.Z.); (Y.X.); (Q.L.)
| | - Xiaomin Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (X.Z.); (L.W.)
| | - Yue Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.H.); (Y.Z.); (Y.X.); (Q.L.)
| | - Yang Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.H.); (Y.Z.); (Y.X.); (Q.L.)
| | - Jixun Luo
- CSIRO Agriculture and Food, GPO Box 1600, Canberra, ACT 2601, Australia; (J.L.); (Q.L.)
| | - Qing Liu
- CSIRO Agriculture and Food, GPO Box 1600, Canberra, ACT 2601, Australia; (J.L.); (Q.L.)
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.H.); (Y.Z.); (Y.X.); (Q.L.)
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (X.Z.); (L.W.)
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.H.); (Y.Z.); (Y.X.); (Q.L.)
| |
Collapse
|
12
|
Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, Morgan MJ, Tsaousis AD, Velle K, Vargová R, Záhonová K, Najle SR, MacIntyre G, Muller N, Wittwer M, Zysset-Burri DC, Eliáš M, Slamovits CH, Weirauch MT, Fritz-Laylin L, Marciano-Cabral F, Puzon GJ, Walsh T, Chiu C, Dacks JB. Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri. BMC Biol 2021; 19:142. [PMID: 34294116 PMCID: PMC8296547 DOI: 10.1186/s12915-021-01078-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely. RESULTS Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system. CONCLUSIONS In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.
Collapse
Affiliation(s)
- Emily K Herman
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Alex Greninger
- Laboratory Medicine and Medicine / Infectious Diseases, UCSF-Abbott Viral Diagnostics and Discovery Center, UCSF Clinical Microbiology Laboratory UCSF School of Medicine, San Francisco, USA
- Department of Laboratory Medicine, University of Washington Medical Center, Montlake, USA
| | - Mark van der Giezen
- Centre for Organelle Research, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Michael L Ginger
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| | - Inmaculada Ramirez-Macias
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Cardiology, Hospital Clinico Universitario Virgen de la Arrixaca. Instituto Murciano de Investigación Biosanitaria. Centro de Investigación Biomedica en Red-Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Haylea C Miller
- CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag No.5, Wembley, Western Australia 6913, Australia
- CSIRO, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, WA, Australia
| | - Matthew J Morgan
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | | | - Katrina Velle
- Department of Biology, University of Massachusetts, Amherst, UK
| | - Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Kristína Záhonová
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Sebastian Rodrigo Najle
- Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Catalonia, Spain
| | - Georgina MacIntyre
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Norbert Muller
- Institute of Parasitology, Vetsuisse Faculty Bern, University of Bern, Bern, Switzerland
| | - Mattias Wittwer
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland
| | - Denise C Zysset-Burri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Canada
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | | | - Francine Marciano-Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Geoffrey J Puzon
- CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag No.5, Wembley, Western Australia 6913, Australia
| | - Tom Walsh
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | - Charles Chiu
- Laboratory Medicine and Medicine / Infectious Diseases, UCSF-Abbott Viral Diagnostics and Discovery Center, UCSF Clinical Microbiology Laboratory UCSF School of Medicine, San Francisco, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Department of Life Sciences, The Natural History Museum, London, UK.
| |
Collapse
|
13
|
Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 2021; 196:108719. [PMID: 34273389 DOI: 10.1016/j.neuropharm.2021.108719] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
Glutamate is the primary excitatory neurotransmitter of the brain. Cellular homeostasis of glutamate is of paramount importance for normal brain function and relies on an intricate metabolic collaboration between neurons and astrocytes. Glutamate is extensively recycled between neurons and astrocytes in a process known as the glutamate-glutamine cycle. The recycling of glutamate is closely linked to brain energy metabolism and is essential to sustain glutamatergic neurotransmission. However, a considerable amount of glutamate is also metabolized and serves as a metabolic hub connecting glucose and amino acid metabolism in both neurons and astrocytes. Disruptions in glutamate clearance, leading to neuronal overstimulation and excitotoxicity, have been implicated in several neurodegenerative diseases. Furthermore, the link between brain energy homeostasis and glutamate metabolism is gaining attention in several neurological conditions. In this review, we provide an overview of the dynamics of synaptic glutamate homeostasis and the underlying metabolic processes with a cellular focus on neurons and astrocytes. In particular, we review the recently discovered role of neuronal glutamate uptake in synaptic glutamate homeostasis and discuss current advances in cellular glutamate metabolism in the context of Alzheimer's disease and Huntington's disease. Understanding the intricate regulation of glutamate-dependent metabolic processes at the synapse will not only increase our insight into the metabolic mechanisms of glutamate homeostasis, but may reveal new metabolic targets to ameliorate neurodegeneration.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Kia H Markussen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Paul A Rosenberg
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
14
|
Hart CG, Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 2021; 99:2427-2462. [PMID: 34259342 DOI: 10.1002/jnr.24922] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Astrocytes play essential roles in development, homeostasis, injury, and repair of the central nervous system (CNS). Their development is tightly regulated by distinct spatial and temporal cues during embryogenesis and into adulthood throughout the CNS. Astrocytes have several important responsibilities such as regulating blood flow and permeability of the blood-CNS barrier, glucose metabolism and storage, synapse formation and function, and axon myelination. In CNS pathologies, astrocytes also play critical parts in both injury and repair mechanisms. Upon injury, they undergo a robust phenotypic shift known as "reactive astrogliosis," which results in both constructive and deleterious outcomes. Astrocyte activation and migration at the site of injury provides an early defense mechanism to minimize the extent of injury by enveloping the lesion area. However, astrogliosis also contributes to the inhibitory microenvironment of CNS injury and potentiate secondary injury mechanisms, such as inflammation, oxidative stress, and glutamate excitotoxicity, which facilitate neurodegeneration in CNS pathologies. Intriguingly, reactive astrocytes are increasingly a focus in current therapeutic strategies as their activation can be modulated toward a neuroprotective and reparative phenotype. This review will discuss recent advancements in knowledge regarding the development and role of astrocytes in the healthy and pathological CNS. We will also review how astrocytes have been genetically modified to optimize their reparative potential after injury, and how they may be transdifferentiated into neurons and oligodendrocytes to promote repair after CNS injury and neurodegeneration.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Alcoreza OB, Patel DC, Tewari BP, Sontheimer H. Dysregulation of Ambient Glutamate and Glutamate Receptors in Epilepsy: An Astrocytic Perspective. Front Neurol 2021; 12:652159. [PMID: 33828523 PMCID: PMC8019783 DOI: 10.3389/fneur.2021.652159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Given the important functions that glutamate serves in excitatory neurotransmission, understanding the regulation of glutamate in physiological and pathological states is critical to devising novel therapies to treat epilepsy. Exclusive expression of pyruvate carboxylase and glutamine synthetase in astrocytes positions astrocytes as essential regulators of glutamate in the central nervous system (CNS). Additionally, astrocytes can significantly alter the volume of the extracellular space (ECS) in the CNS due to their expression of the bi-directional water channel, aquaporin-4, which are enriched at perivascular endfeet. Rapid ECS shrinkage has been observed following epileptiform activity and can inherently concentrate ions and neurotransmitters including glutamate. This review highlights our emerging knowledge on the various potential contributions of astrocytes to epilepsy, particularly supporting the notion that astrocytes may be involved in seizure initiation via failure of homeostatic responses that lead to increased ambient glutamate. We also review the mechanisms whereby ambient glutamate can influence neuronal excitability, including via generation of the glutamate receptor subunit GluN2B-mediated slow inward currents, as well as indirectly affect neuronal excitability via actions on metabotropic glutamate receptors that can potentiate GluN2B currents and influence neuronal glutamate release probabilities. Additionally, we discuss evidence for upregulation of System x c - , a cystine/glutamate antiporter expressed on astrocytes, in epileptic tissue and changes in expression patterns of glutamate receptors.
Collapse
Affiliation(s)
- Oscar B Alcoreza
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States.,School of Medicine, Virginia Tech Carilion, Roanoke, VA, United States.,Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, United States
| | - Dipan C Patel
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States
| | - Bhanu P Tewari
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States
| | - Harald Sontheimer
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States
| |
Collapse
|
16
|
Sears SM, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med (Maywood) 2021; 246:1069-1083. [PMID: 33554649 DOI: 10.1177/1535370221989263] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An optimally functional brain requires both excitatory and inhibitory inputs that are regulated and balanced. A perturbation in the excitatory/inhibitory balance-as is the case in some neurological disorders/diseases (e.g. traumatic brain injury Alzheimer's disease, stroke, epilepsy and substance abuse) and disorders of development (e.g. schizophrenia, Rhett syndrome and autism spectrum disorder)-leads to dysfunctional signaling, which can result in impaired cognitive and motor function, if not frank neuronal injury. At the cellular level, transmission of glutamate and GABA, the principle excitatory and inhibitory neurotransmitters in the central nervous system control excitatory/inhibitory balance. Herein, we review the synthesis, release, and signaling of GABA and glutamate followed by a focused discussion on the importance of their transport systems to the maintenance of excitatory/inhibitory balance.
Collapse
Affiliation(s)
- Sheila Ms Sears
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
17
|
Evaluation of Altered Glutamatergic Activity in a Piglet Model of Hypoxic-Ischemic Brain Damage Using 1H-MRS. DISEASE MARKERS 2020; 2020:8850816. [PMID: 33029259 PMCID: PMC7532412 DOI: 10.1155/2020/8850816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
Methods Twenty-five newborn piglets were selected and then randomly assigned to the control group (n = 5) and the model group (n = 20) subjected to HI. HI was induced by blocking bilateral carotid blood flow under simultaneous inhalation of a 6% oxygen mixture. 1H-MRS data were acquired from the basal ganglia at the following time points after HI: 6, 12, 24, and 72 h. Changes in protein levels of EAAT2 and GluR2 were determined by immunohistochemical analysis. Correlations among metabolite concentrations, metabolite ratios, and the protein levels of EAAT2 and GluR2 were investigated. Results The Glu level sharply increased after HI, reached a transient low level of depletion that approached the normal level in the control group, and subsequently increased again. Negative correlations were found between concentrations of Glu and EAAT2 protein levels (R s = -0.662, P < 0.001) and between the Glu/creatine (Cr) ratio and EAAT2 protein level (R s = -0.664, P < 0.001). Moreover, changes in GluR2 protein level were significantly and negatively correlated with those in Glu level (the absolute Glu concentration, R s = -0.797, P < 0.001; Glu/Cr, R s = -0.567, P = 0.003). Conclusions Changes in Glu level measured by 1H-MRS were inversely correlated with those in EAAT2 and GluR2 protein levels following HI, and the results demonstrated that 1H-MRS can reflect the early changes of glutamatergic activity in vivo.
Collapse
|
18
|
Conway ME. Alzheimer's disease: targeting the glutamatergic system. Biogerontology 2020; 21:257-274. [PMID: 32048098 PMCID: PMC7196085 DOI: 10.1007/s10522-020-09860-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease that causes a progressive decline in memory, language and problem solving. For decades mechanism-based therapies have primarily focused on amyloid β (Aβ) processing and pathways that govern neurofibrillary tangle generation. With the potential exception to Aducanumab, a monotherapy to target Aβ, clinical trials in these areas have been challenging and have failed to demonstrate efficacy. Currently, the prescribed therapies for AD are those that target the cholinesterase and glutamatergic systems that can moderately reduce cognitive decline, dependent on the individual. In the brain, over 40% of neuronal synapses are glutamatergic, where the glutamate level is tightly regulated through metabolite exchange in neuronal, astrocytic and endothelial cells. In AD brain, Aβ can interrupt effective glutamate uptake by astrocytes, which evokes a cascade of events that leads to neuronal swelling, destruction of membrane integrity and ultimately cell death. Much work has focussed on the post-synaptic response with little insight into how glutamate is regulated more broadly in the brain and the influence of anaplerotic pathways that finely tune these mechanisms. The role of blood branched chain amino acids (BCAA) in regulating neurotransmitter profiles under disease conditions also warrant discussion. Here, we review the importance of the branched chain aminotransferase proteins in regulating brain glutamate and the potential consequence of dysregulated metabolism in the context of BCAA or glutamate accumulation. We explore how the reported benefits of BCAA supplementation or restriction in improving cognitive function in other neurological diseases may have potential application in AD. Given that memantine, the glutamate receptor agonist, shows clinical relevance it is now timely to research related pathways, an understanding of which could identify novel approaches to treatment of AD.
Collapse
Affiliation(s)
- Myra E Conway
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK. .,Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
19
|
Analysis of a Mathematical Model for the Glutamate/Glutamine Cycle in the Brain. Bull Math Biol 2019; 81:4251-4270. [PMID: 31325013 DOI: 10.1007/s11538-019-00647-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
Abstract
Our aim in this article is to study the well-posedness and properties of a system with delay which is related with brain glutamate and glutamine kinetics. In particular, we prove the existence and uniqueness of nonnegative solutions. We also give numerical simulations and compare their order of magnitude with experimental data.
Collapse
|
20
|
Nedelcovych MT, Kim BH, Zhu X, Lovell LE, Manning AA, Kelschenbach J, Hadas E, Chao W, Prchalová E, Dash RP, Wu Y, Alt J, Thomas AG, Rais R, Kamiya A, Volsky DJ, Slusher BS. Glutamine Antagonist JHU083 Normalizes Aberrant Glutamate Production and Cognitive Deficits in the EcoHIV Murine Model of HIV-Associated Neurocognitive Disorders. J Neuroimmune Pharmacol 2019; 14:391-400. [PMID: 31209775 DOI: 10.1007/s11481-019-09859-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) have been linked to dysregulation of glutamate metabolism in the central nervous system (CNS) culminating in elevated extracellular glutamate and disrupted glutamatergic neurotransmission. Increased glutamate synthesis via upregulation of glutaminase (GLS) activity in brain immune cells has been identified as one potential source of excess glutamate in HAND. However, direct evidence for this hypothesis in an animal model is lacking, and the viability of GLS as a drug target has not been explored. In this brief report, we demonstrate that GLS inhibition with the glutamine analogue 6-diazo-5-oxo-L-norleucine (DON) can reverse cognitive impairment in the EcoHIV-infected mouse model of HAND. However, due to peripheral toxicity DON is not amenable to clinical use in a chronic disease such as HAND. We thus tested JHU083, a novel, brain penetrant DON prodrug predicted to exhibit improved tolerability. Systemic administration of JHU083 reversed cognitive impairment in EcoHIV-infected mice similarly to DON, and simultaneously normalized EcoHIV-induced increases in cerebrospinal fluid (CSF) glutamate and GLS activity in microglia-enriched brain CD11b + cells without observed toxicity. These studies support the mechanistic involvement of elevated microglial GLS activity in HAND pathogenesis, and identify JHU083 as a potential treatment option. Graphical Abstract Please provide Graphical Abstract caption.Glutamine Antagonist JHU083 Normalizes Aberrant Glutamate Production and Cognitive Deficits in the EcoHIV Murine Model of HIV-Associated Neurocognitive Disorders .
Collapse
Affiliation(s)
- Michael T Nedelcovych
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Boe-Hyun Kim
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building Floor 21, Room 42, 1468 Madison Ave, New York, NY, 10029, USA
| | - Xiaolei Zhu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lyndah E Lovell
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arena A Manning
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Jennifer Kelschenbach
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building Floor 21, Room 42, 1468 Madison Ave, New York, NY, 10029, USA
| | - Eran Hadas
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building Floor 21, Room 42, 1468 Madison Ave, New York, NY, 10029, USA
| | - Wei Chao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building Floor 21, Room 42, 1468 Madison Ave, New York, NY, 10029, USA
| | - Eva Prchalová
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ranjeet P Dash
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ying Wu
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Kamiya
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Volsky
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building Floor 21, Room 42, 1468 Madison Ave, New York, NY, 10029, USA.
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Amakhin DV, Soboleva EB, Ergina JL, Malkin SL, Chizhov AV, Zaitsev AV. Seizure-Induced Potentiation of AMPA Receptor-Mediated Synaptic Transmission in the Entorhinal Cortex. Front Cell Neurosci 2018; 12:486. [PMID: 30618633 PMCID: PMC6297849 DOI: 10.3389/fncel.2018.00486] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/29/2018] [Indexed: 11/22/2022] Open
Abstract
Excessive excitation is considered one of the key mechanisms underlying epileptic seizures. We investigated changes in the evoked postsynaptic responses of medial entorhinal cortex (ERC) pyramidal neurons by seizure-like events (SLEs), using the modified 4-aminopyridine (4-AP) model of epileptiform activity. Rat brain slices were perfused with pro-epileptic solution contained 4-AP and elevated potassium and reduced magnesium concentration. We demonstrated that 15-min robust epileptiform activity in slices leads to an increase in the amplitude of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated component of the evoked response, as well as an increase in the polysynaptic γ-aminobutyric acid (GABA) and N-methyl-D-aspartate (NMDA) receptor-mediated components. The increase in AMPA-mediated postsynaptic conductance depends on NMDA receptor activation. It persists for at least 15 min after the cessation of SLEs and is partly attributed to the inclusion of calcium-permeable AMPA receptors in the postsynaptic membrane. The mathematical modeling of the evoked responses using the conductance-based refractory density (CBRD) approach indicated that such augmentation of the AMPA receptor function and depolarization by GABA receptors results in prolonged firing that explains the increase in polysynaptic components, which contribute to overall network excitability. Taken together, our data suggest that AMPA receptor enhancement could be a critical determinant of sustained status epilepticus (SE).
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Elena B Soboleva
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Julia L Ergina
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Sergey L Malkin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Anton V Chizhov
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia.,Ioffe Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia.,Institute of Experimental Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
22
|
Alizadeh Asfestani M, Braganza E, Schwidetzky J, Santiago J, Soekadar S, Born J, Feld GB. Overnight memory consolidation facilitates rather than interferes with new learning of similar materials-a study probing NMDA receptors. Neuropsychopharmacology 2018; 43:2292-2298. [PMID: 30046156 PMCID: PMC6135744 DOI: 10.1038/s41386-018-0139-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022]
Abstract
Although sleep-dependent consolidation and its neurochemical underpinnings have been strongly researched, less is known about how consolidation during sleep affects subsequent learning. Since sleep enhances memory, it can be expected to pro-actively interfere with learning after sleep, in particular of similar materials. This pro-active interference should be enhanced by substances that benefit consolidation during sleep, such as D-cycloserine. We tested this hypothesis in two groups (Sleep, Wake) of young healthy participants receiving on one occasion D-cycloserine (175 mg) and on another occasion placebo, according to a double-blind balanced crossover design. Treatment was administered after participants had learned a set of word pairs (A-B list) and before nocturnal retention periods of sleep vs. wakefulness. After D-cycloserine blood plasma levels had dropped to negligible amounts, i.e., the next day in the evening, participants learned, in three sequential runs, new sets of word pairs. One list-to enhance interference-consisted of the same cue words as the original set paired with a new target word (A-C list) and the other of completely new cue words (D-E set). Unexpectedly, during post-retention learning the A-C interference list was generally better learned than the completely new D-E list, which suggests that consolidation of previously encoded similar material enhances memory integration rather than pro-active interference. Consistent with this view, new learning of word pairs was better after sleep than wakefulness. Similarly, D-cycloserine generally enhanced learning of new word pairs, compared to placebo. This effect being independent of sleep or wakefulness, leads us to speculate that D-cycloserine, in addition to enhancing sleep-dependent consolidation, might mediate a time-dependent process of active forgetting.
Collapse
Affiliation(s)
- M. Alizadeh Asfestani
- 0000 0001 2190 1447grid.10392.39Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - E. Braganza
- 0000 0001 2190 1447grid.10392.39Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - J. Schwidetzky
- 0000 0001 2190 1447grid.10392.39Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - J. Santiago
- 0000 0001 2190 1447grid.10392.39Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany ,grid.452622.5German Center for Diabetes Research (DZD), Tübingen, Germany ,0000 0001 2190 1447grid.10392.39Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany
| | - S. Soekadar
- 0000 0001 2190 1447grid.10392.39Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - J. Born
- 0000 0001 2190 1447grid.10392.39Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany ,0000 0001 2190 1447grid.10392.39Present Address: Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - G. B. Feld
- 0000 0001 2190 1447grid.10392.39Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany ,0000000121901201grid.83440.3bDivision of Psychology and Language Sciences, University College London, London, UK ,0000000121901201grid.83440.3bDepartment of Experimental Psychology, Division of Psychology and Language Science, Institute of Behavioural Neuroscience, University College London, 26 Bedford Way, London, WC1H 0AP UK
| |
Collapse
|
23
|
Ovsepian SV, O'Leary VB, Zaborszky L, Ntziachristos V, Dolly JO. Amyloid Plaques of Alzheimer's Disease as Hotspots of Glutamatergic Activity. Neuroscientist 2018; 25:288-297. [PMID: 30051750 DOI: 10.1177/1073858418791128] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deposition of amyloid plaques in limbic and associative cortices is amongst the most recognized histopathologic hallmarks of Alzheimer's disease. Despite decades of research, there is a lack of consensus over the impact of plaques on neuronal function, with their role in cognitive decline and memory loss undecided. Evidence has emerged suggesting complex and localized axonal pathology around amyloid plaques, with a significant fraction of swellings and dystrophies becoming enriched with putative synaptic vesicles and presynaptic proteins normally colocalized at hotspots of transmitter release. In the absence of hallmark active zone proteins and postsynaptic receptive elements, the axonal swellings surrounding amyloid plaques have been suggested as sites for ectopic release of glutamate, which under reduced clearance can lead to elevated local excitatory drive. Throughout this review, we consider the emerging data suggestive of amyloid plaques as hotspots of compulsive glutamatergic activity. Evidence for local and long-range effects of nonsynaptic glutamate is discussed in the context of circuit dysfunctions and neurodegenerative changes of Alzheimer's disease.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Munich School of Bioengineering, Technical University Munich, Munich, Germany.,International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Valerie B O'Leary
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, Newark, NJ, USA
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Munich School of Bioengineering, Technical University Munich, Munich, Germany
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| |
Collapse
|
24
|
Kim AY, Baik EJ. Glutamate Dehydrogenase as a Neuroprotective Target Against Neurodegeneration. Neurochem Res 2018; 44:147-153. [PMID: 29357018 DOI: 10.1007/s11064-018-2467-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
Regulation of glutamate metabolism via glutamate dehydrogenase (GDH) might be the promising therapeutic approach for treating neurodegenerative disorders. In the central nervous system, glutamate functions both as a major excitatory neurotransmitter and as a key intermediate metabolite for neurons. GDH converts glutamate to α-ketoglutarate, which serves as a TCA cycle intermediate. Dysregulated GDH activity in the central nervous system is highly correlated with neurological disorders. Indeed, studies conducted with mutant mice and allosteric drugs have shown that deficient or overexpressed GDH activity in the brain can regulate whole body energy metabolism and affect early onset of Parkinson's disease, Alzheimer's disease, temporal lobe epilepsy, and spinocerebellar atrophy. Moreover, in strokes with excitotoxicity as the main pathophysiology, mice that overexpressed GDH exhibited smaller ischemic lesion than mice with normal GDH expression. In additions, GDH activators improve lesions in vivo by increasing α-ketoglutarate levels. In neurons exposed to an insult in vitro, enhanced GDH activity increases ATP levels. Thus, in an energy crisis, neuronal mitochondrial activity is improved and excitotoxic risk is reduced. Consequently, modulating GDH activity in energy-depleted conditions could be a sound strategy for maintaining the mitochondrial factory in neurons, and thus, protect against metabolic failure.
Collapse
Affiliation(s)
- A Young Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, South Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Eun Joo Baik
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, South Korea. .,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, 16499, South Korea.
| |
Collapse
|
25
|
Blunted mGluR Activation Disinhibits Striatopallidal Transmission in Parkinsonian Mice. Cell Rep 2017; 17:2431-2444. [PMID: 27880915 PMCID: PMC5489133 DOI: 10.1016/j.celrep.2016.10.087] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/07/2016] [Accepted: 10/27/2016] [Indexed: 01/10/2023] Open
Abstract
The prevailing circuit model predicts that hyperactivity of the striatopallidal pathway and subsequently increased inhibition of external globus pallidus (GPe) neurons lead to the hypokinetic symptoms of Parkinson's disease (PD). It is believed that hyperactivity of the striatopallidal pathway is due to inactivity of dopamine receptors on the somatodendritic membrane of striatopallidal neurons, but the exact cellular underpinnings remain unclear. In this study, we show that mouse GPe astrocytes critically control ambient glutamate level, which in turn gates striatopallidal transmission via the activation of presynaptic metabotropic glutamate receptors. This presynaptic inhibition of striatopallidal transmission is diminished after the chronic loss of dopamine. Elevation of intracellular glutamate content in astrocytes restores the proper regulation of the striatopallidal input in PD models. These findings argue that astrocytes are key regulators of the striatopallidal synapse. Targeting this cell class may serve as an alternative therapeutic strategy for PD.
Collapse
|
26
|
Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res 2016; 176:52-71. [PMID: 26589391 DOI: 10.1016/j.schres.2015.06.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
Oxidative stress is a well-recognized participant in the pathophysiology of multiple brain disorders, particularly neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. While not a dementia, a wide body of evidence has also been accumulating for aberrant reactive oxygen species and inflammation in schizophrenia. Here we highlight roles for oxidative stress as a common mechanism by which varied genetic and epidemiologic risk factors impact upon neurodevelopmental processes that underlie the schizophrenia syndrome. While there is longstanding evidence that schizophrenia may not have a single causative lesion, a common pathway involving oxidative stress opens the possibility for intervention at susceptible phases.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Anthony V Serritella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA.
| |
Collapse
|
27
|
Negis Y, Karabay A. Expression of cell cycle proteins in cortical neurons-Correlation with glutamate-induced neurotoxicity. Biofactors 2016; 42:358-67. [PMID: 27040651 DOI: 10.1002/biof.1282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/09/2016] [Indexed: 12/31/2022]
Abstract
Under physiological conditions, upon differentiation neurons become irreversibly post-mitotic by down-regulating cell cycle progression. However, recent studies have provided evidence that aberrant expression of cell cycle related proteins; especially cyclins, cyclin-dependent kinases, and their inhibitors are accompanied by programmed cell death in neurons. This abnormal phenotype has been postulated to contribute to the pathophysiology of different neurodegenerative diseases. Glutamate is the most abundant and major excitatory neurotransmitter in the central nervous system but high concentrations are reported to be involved in the pathology of many neurodegenerative diseases. The mechanisms of glutamate neurotoxicity have been intensively investigated over the past decades but still remain not fully understood. In this study, we hypothesized that aberrant regulation of cell cycle proteins may be involved in glutamate-induced neurotoxicity in primary cultures of rat cortical neurons. The results have shown that, glutamate treatment caused apoptosis by inducing active caspase-3 and p53 expression. Together with this, an increase in cyclin D1 and Cdk4 protein levels, localization of cyclin D1 to nucleus, and a decrease in the cell cycle inhibitor p27 were observed. After glutamate treatment we also detected up-regulation of protein kinase C-α (PKC-α) protein expression. Altogether, the data reported in this study show for the first time that glutamate in cortical neurons changes simultaneously the expression levels of a number of key cell cycle proteins and cell homeostasis regulators. © 2016 BioFactors, 42(4):358-367, 2016.
Collapse
Affiliation(s)
- Yesim Negis
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
- School of Medicine, Department of Medical Biochemistry, Bahcesehir University, Istanbul, Turkey
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
28
|
Hunsberger HC, Wang D, Petrisko TJ, Alhowail A, Setti SE, Suppiramaniam V, Konat GW, Reed MN. Peripherally restricted viral challenge elevates extracellular glutamate and enhances synaptic transmission in the hippocampus. J Neurochem 2016; 138:307-16. [PMID: 27168075 PMCID: PMC4936939 DOI: 10.1111/jnc.13665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 01/23/2023]
Abstract
Peripheral infections increase the propensity and severity of seizures in susceptible populations. We have previously shown that intraperitoneal injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), elicits hypersusceptibility of mice to kainic acid (KA)-induced seizures. This study was undertaken to determine whether this seizure hypersusceptibility entails alterations in glutamate signaling. Female C57BL/6 mice were intraperitoneally injected with PIC, and after 24 h, glutamate homeostasis in the hippocampus was monitored using the enzyme-based microelectrode arrays. PIC challenge robustly increased the level of resting extracellular glutamate. While pre-synaptic potassium-evoked glutamate release was not affected, glutamate uptake was profoundly impaired and non-vesicular glutamate release was augmented, indicating functional alterations of astrocytes. Electrophysiological examination of hippocampal slices from PIC-challenged mice revealed a several fold increase in the basal synaptic transmission as compared to control slices. PIC challenge also increased the probability of pre-synaptic glutamate release as seen from a reduction of paired-pulse facilitation and synaptic plasticity as seen from an enhancement of long-term potentiation. Altogether, our results implicate a dysregulation of astrocytic glutamate metabolism and an alteration of excitatory synaptic transmission as the underlying mechanism for the development of hippocampal hyperexcitability, and consequently seizure hypersusceptibility following peripheral PIC challenge. Peripheral infections/inflammations enhance seizure susceptibility. Here, we explored the effect of peritoneal inflammation induced by a viral mimic on glutamate homeostasis and glutamatergic neurotransmission in the mouse hippocampus. We found that peritoneal inflammation elevated extracellular glutamate concentration and enhanced the probability of pre-synaptic glutamate release resulting in hyperexcitability of neuronal networks. These mechanisms are likely to underlie the enhanced seizure propensity.
Collapse
Affiliation(s)
- Holly C. Hunsberger
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, 26506 WV, USA
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Desheng Wang
- Blanchette Rockefeller Neurosciences Institute, Morgantown, 26506 WV, USA
| | - Tiffany J. Petrisko
- Department of Neurobiology and Anatomy, School of Medicine, West Virginia University, Morgantown, 26506 WV, USA
| | - Ahmad Alhowail
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Sharay E. Setti
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Gregory W. Konat
- Department of Neurobiology and Anatomy, School of Medicine, West Virginia University, Morgantown, 26506 WV, USA
| | - Miranda N. Reed
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| |
Collapse
|
29
|
Borisova T, Borysov A. Putative duality of presynaptic events. Rev Neurosci 2016; 27:377-83. [DOI: 10.1515/revneuro-2015-0044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
AbstractThe main structure in the brain responsible not only for nerve signal transmission but also for its simultaneous regulation is chemical synapse, where presynaptic nerve terminals are of considerable importance providing release of neurotransmitters. Analyzing transport of glutamate, the major excitatory neurotransmitter in the mammalian CNS, the authors suggest that there are two main relatively independent mechanisms at the presynaptic level that can influence the extracellular glutamate concentration, and so signaling, and its regulation. The first one is well-known precisely regulated compound exocytosis of synaptic vesicles containing neurotransmitters stimulated by membrane depolarization, which increases significantly glutamate concentration in the synaptic cleft and initiates glutamate signaling through postsynaptic glutamate receptors. The second one is permanent glutamate turnover across the plasma membrane that occurs without stimulation and is determined by simultaneous non-pathological transporter-mediated release of glutamate thermodynamically synchronized with uptake. Permanent glutamate turnover is responsible for maintenance of dynamic glutamatein/glutamateoutgradient resulting in the establishment of a flexible extracellular level of glutamate, which can be unique for each synapse because of dependence on individual presynaptic parameters. These two mechanisms, i.e. exocytosis and transporter-mediated glutamate turnover, are both precisely regulated but do not directly interfere with each other, because they have different intracellular sources of glutamate in nerve terminals for release purposes, i.e. glutamate pool of synaptic vesicles and the cytoplasm, respectively. This duality can set up a presynaptic base for memory consolidation and storage, maintenance of neural circuits, long-term potentiation, and plasticity. Arguments against this suggestion are also considered.
Collapse
Affiliation(s)
- Tatiana Borisova
- 1Palladin Institute of Biochemistry, Department of Neurochemistry, NAS of Ukraine, 9 Leontovicha Str, Kiev 01601, Ukraine
| | - Arsenii Borysov
- 1Palladin Institute of Biochemistry, Department of Neurochemistry, NAS of Ukraine, 9 Leontovicha Str, Kiev 01601, Ukraine
| |
Collapse
|
30
|
Atorvastatin Prevents Glutamate Uptake Reduction Induced by Quinolinic Acid Via MAPKs Signaling. Neurochem Res 2016; 41:2017-28. [DOI: 10.1007/s11064-016-1913-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
|
31
|
Central Role of Glutamate Metabolism in the Maintenance of Nitrogen Homeostasis in Normal and Hyperammonemic Brain. Biomolecules 2016; 6:biom6020016. [PMID: 27023624 PMCID: PMC4919911 DOI: 10.3390/biom6020016] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022] Open
Abstract
Glutamate is present in the brain at an average concentration—typically 10–12 mM—far in excess of those of other amino acids. In glutamate-containing vesicles in the brain, the concentration of glutamate may even exceed 100 mM. Yet because glutamate is a major excitatory neurotransmitter, the concentration of this amino acid in the cerebral extracellular fluid must be kept low—typically µM. The remarkable gradient of glutamate in the different cerebral compartments: vesicles > cytosol/mitochondria > extracellular fluid attests to the extraordinary effectiveness of glutamate transporters and the strict control of enzymes of glutamate catabolism and synthesis in well-defined cellular and subcellular compartments in the brain. A major route for glutamate and ammonia removal is via the glutamine synthetase (glutamate ammonia ligase) reaction. Glutamate is also removed by conversion to the inhibitory neurotransmitter γ-aminobutyrate (GABA) via the action of glutamate decarboxylase. On the other hand, cerebral glutamate levels are maintained by the action of glutaminase and by various α-ketoglutarate-linked aminotransferases (especially aspartate aminotransferase and the mitochondrial and cytosolic forms of the branched-chain aminotransferases). Although the glutamate dehydrogenase reaction is freely reversible, owing to rapid removal of ammonia as glutamine amide, the direction of the glutamate dehydrogenase reaction in the brain in vivo is mainly toward glutamate catabolism rather than toward the net synthesis of glutamate, even under hyperammonemia conditions. During hyperammonemia, there is a large increase in cerebral glutamine content, but only small changes in the levels of glutamate and α-ketoglutarate. Thus, the channeling of glutamate toward glutamine during hyperammonemia results in the net synthesis of 5-carbon units. This increase in 5-carbon units is accomplished in part by the ammonia-induced stimulation of the anaplerotic enzyme pyruvate carboxylase. Here, we suggest that glutamate may constitute a buffer or bulwark against changes in cerebral amine and ammonia nitrogen. Although the glutamate transporters are briefly discussed, the major emphasis of the present review is on the enzymology contributing to the maintenance of glutamate levels under normal and hyperammonemic conditions. Emphasis will also be placed on the central role of glutamate in the glutamine-glutamate and glutamine-GABA neurotransmitter cycles between neurons and astrocytes. Finally, we provide a brief and selective discussion of neuropathology associated with altered cerebral glutamate levels.
Collapse
|
32
|
Otter S, Lammert E. Exciting Times for Pancreatic Islets: Glutamate Signaling in Endocrine Cells. Trends Endocrinol Metab 2016; 27:177-188. [PMID: 26740469 DOI: 10.1016/j.tem.2015.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 01/14/2023]
Abstract
Glutamate represents a key excitatory neurotransmitter in the central nervous system, and also modulates the function and viability of endocrine cells in pancreatic islets. In insulin-secreting beta cells, glutamate acts as an intracellular messenger, and its transport into secretory granules promotes glucose- and incretin-stimulated insulin secretion. Mitochondrial degradation of glutamate also contributes to insulin release when glutamate dehydrogenase is allosterically activated. It also signals extracellularly via glutamate receptors (AMPA and NMDA receptors) to modulate glucagon, insulin and somatostatin secretion, and islet cell survival. Its degradation products, GABA and γ-hydroxybutyrate, are released and also influence islet cell behavior. Thus, islet glutamate receptors, such as the NMDA receptors, might serve as possible drug targets to develop new medications for adjunct treatment of diabetes.
Collapse
Affiliation(s)
- Silke Otter
- Institute of Metabolic Physiology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; Institute for Beta Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, and German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; Institute for Beta Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, and German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany.
| |
Collapse
|
33
|
Borisova T. Permanent dynamic transporter-mediated turnover of glutamate across the plasma membrane of presynaptic nerve terminals: arguments in favor and against. Rev Neurosci 2016; 27:71-81. [DOI: 10.1515/revneuro-2015-0023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
AbstractMechanisms for maintenance of the extracellular level of glutamate in brain tissue and its regulation still remain almost unclear, and criticism of the current paradigm of glutamate transport and homeostasis has recently appeared. The main premise for this study is the existence of a definite and non-negligible concentration of ambient glutamate between the episodes of exocytotic release in our experiments with rat brain nerve terminals (synaptosomes), despite the existence of a very potent Na+-dependent glutamate uptake. Glutamate transporter reversal is considered as the main mechanisms of glutamate release under special conditions of energy deprivation, hypoxia, hypoglycemia, brain trauma, and stroke, underlying an increase in the ambient glutamate concentration and development of excitotoxicity. In the present study, a new vision on transporter-mediated release of glutamate as one of the main mechanisms involved in the maintenance of definite concentration of ambient glutamate under normal energetical status of nerve terminals is forwarded. It has been suggested that glutamate transporters act effectively in outward direction in a non-pathological manner, and this process is thermodynamically synchronized with uptake and provides effective outward glutamate current, thereby establishing and maintaining permanent and dynamic glutamatein/glutamateout gradient and turnover across the plasma membrane. In this context, non-transporter tonic glutamate release by diffusion, spontaneous exocytosis, cystine-glutamate exchanger, and leakage through anion channels can be considered as a permanently added ‘new’ exogenous substrate using two-substrate kinetic model calculations. Permanent glutamate turnover is of value for tonic activation of post/presynaptic glutamate receptors, long-term potentiation, memory formation, etc. Counterarguments against this mechanism are also considered.
Collapse
Affiliation(s)
- Tatiana Borisova
- 1Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev 01601, Ukraine
| |
Collapse
|
34
|
Banerjee A, Larsen RS, Philpot BD, Paulsen O. Roles of Presynaptic NMDA Receptors in Neurotransmission and Plasticity. Trends Neurosci 2015; 39:26-39. [PMID: 26726120 DOI: 10.1016/j.tins.2015.11.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/30/2015] [Accepted: 11/10/2015] [Indexed: 01/01/2023]
Abstract
Presynaptic NMDA receptors (preNMDARs) play pivotal roles in excitatory neurotransmission and synaptic plasticity. They facilitate presynaptic neurotransmitter release and modulate mechanisms controlling synaptic maturation and plasticity during formative periods of brain development. There is an increasing understanding of the roles of preNMDARs in experience-dependent synaptic and circuit-specific computation. In this review we summarize the latest understanding of compartment-specific expression and function of preNMDARs, and how they contribute to synapse-specific and circuit-level information processing.
Collapse
Affiliation(s)
- Abhishek Banerjee
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Benjamin D Philpot
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
35
|
Shi J, He Y, Hewett SJ, Hewett JA. Interleukin 1β Regulation of the System xc- Substrate-specific Subunit, xCT, in Primary Mouse Astrocytes Involves the RNA-binding Protein HuR. J Biol Chem 2015; 291:1643-1651. [PMID: 26601945 DOI: 10.1074/jbc.m115.697821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Indexed: 01/05/2023] Open
Abstract
System xc(-) is a heteromeric amino acid cystine/glutamate antiporter that is constitutively expressed by cells of the CNS, where it functions in the maintenance of intracellular glutathione and extracellular glutamate levels. We recently determined that the cytokine, IL-1β, increases the activity of system xc(-) in CNS astrocytes secondary to an up-regulation of its substrate-specific light chain, xCT, and that this occurs, in part, at the level of transcription. However, an in silico analysis of the murine xCT 3'-UTR identified numerous copies of adenine- and uridine-rich elements, raising the possibility that undefined trans-acting factors governing mRNA stability and translation may also contribute to xCT expression. Here we show that IL-1β increases the level of mRNA encoding xCT in primary cultures of astrocytes isolated from mouse cortex in association with an increase in xCT mRNA half-life. Additionally, IL-1β induces HuR translocation from the nucleus to the cytoplasm. RNA immunoprecipitation analysis reveals that HuR binds directly to the 3'-UTR of xCT in an IL-1β-dependent manner. Knockdown of endogenous HuR protein abrogates the IL-1β-mediated increase in xCT mRNA half-life, whereas overexpression of HuR in unstimulated primary mouse astrocytes doubles the half-life of constitutive xCT mRNA. This latter effect is accompanied by an increase in xCT protein levels, as well as a functional increase in system xc(-) activity. Altogether, these data support a critical role for HuR in mediating the IL-1β-induced stabilization of astrocyte xCT mRNA.
Collapse
Affiliation(s)
- Jingxue Shi
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244
| | - Yan He
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244
| | - Sandra J Hewett
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244
| | - James A Hewett
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244.
| |
Collapse
|
36
|
Thorn TL, He Y, Jackman NA, Lobner D, Hewett JA, Hewett SJ. A Cytotoxic, Co-operative Interaction Between Energy Deprivation and Glutamate Release From System xc- Mediates Aglycemic Neuronal Cell Death. ASN Neuro 2015; 7:1759091415614301. [PMID: 26553727 PMCID: PMC4641554 DOI: 10.1177/1759091415614301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The astrocyte cystine/glutamate antiporter (system xc(-)) contributes substantially to the excitotoxic neuronal cell death facilitated by glucose deprivation. The purpose of this study was to determine the mechanism by which this occurred. Using pure astrocyte cultures, as well as, mixed cortical cell cultures containing both neurons and astrocytes, we found that neither an enhancement in system xc(-) expression nor activity underlies the excitotoxic effects of aglycemia. In addition, using three separate bioassays, we demonstrate no change in the ability of glucose-deprived astrocytes--either cultured alone or with neurons--to remove glutamate from the extracellular space. Instead, we demonstrate that glucose-deprived cultures are 2 to 3 times more sensitive to the killing effects of glutamate or N-methyl-D-aspartate when compared with their glucose-containing controls. Hence, our results are consistent with the weak excitotoxic hypothesis such that a bioenergetic deficiency, which is measureable in our mixed but not astrocyte cultures, allows normally innocuous concentrations of glutamate to become excitotoxic. Adding to the burgeoning literature detailing the contribution of astrocytes to neuronal injury, we conclude that under our experimental paradigm, a cytotoxic, co-operative interaction between energy deprivation and glutamate release from astrocyte system xc(-) mediates aglycemic neuronal cell death.
Collapse
Affiliation(s)
- Trista L Thorn
- Department of Biology, Program in Neuroscience, Syracuse University, NY, USA Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yan He
- Department of Biology, Program in Neuroscience, Syracuse University, NY, USA
| | - Nicole A Jackman
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Doug Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - James A Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, NY, USA Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, NY, USA Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
37
|
Fujisawa H, Sugimura Y, Takagi H, Mizoguchi H, Takeuchi H, Izumida H, Nakashima K, Ochiai H, Takeuchi S, Kiyota A, Fukumoto K, Iwama S, Takagishi Y, Hayashi Y, Arima H, Komatsu Y, Murata Y, Oiso Y. Chronic Hyponatremia Causes Neurologic and Psychologic Impairments. J Am Soc Nephrol 2015; 27:766-80. [PMID: 26376860 DOI: 10.1681/asn.2014121196] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/12/2015] [Indexed: 12/31/2022] Open
Abstract
Hyponatremia is the most common clinical electrolyte disorder. Once thought to be asymptomatic in response to adaptation by the brain, recent evidence suggests that chronic hyponatremia may be linked to attention deficits, gait disturbances, risk of falls, and cognitive impairments. Such neurologic defects are associated with a reduction in quality of life and may be a significant cause of mortality. However, because underlying diseases such as adrenal insufficiency, heart failure, liver cirrhosis, and cancer may also affect brain function, the contribution of hyponatremia alone to neurologic manifestations and the underlying mechanisms remain unclear. Using a syndrome of inappropriate secretion of antidiuretic hormone rat model, we show here that sustained reduction of serum sodium ion concentration induced gait disturbances; facilitated the extinction of a contextual fear memory; caused cognitive impairment in a novel object recognition test; and impaired long-term potentiation at hippocampal CA3-CA1 synapses. In vivo microdialysis revealed an elevated extracellular glutamate concentration in the hippocampus of chronically hyponatremic rats. A sustained low extracellular sodium ion concentration also decreased glutamate uptake by primary astrocyte cultures, suggesting an underlying mechanism of impaired long-term potentiation. Furthermore, gait and memory performances of corrected hyponatremic rats were equivalent to those of control rats. Thus, these results suggest chronic hyponatremia in humans may cause gait disturbance and cognitive impairment, but these abnormalities are reversible and careful correction of this condition may improve quality of life and reduce mortality.
Collapse
Affiliation(s)
- Haruki Fujisawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan;
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Mizoguchi
- Futuristic Environmental Simulation Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hisakazu Izumida
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohtaro Nakashima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Ochiai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiji Takeuchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Kiyota
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Fukumoto
- Futuristic Environmental Simulation Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Yoshiko Takagishi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; and
| | - Yoshitaka Hayashi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; and
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukio Komatsu
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshiharu Murata
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; and
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
38
|
Ojeda-Torres G, Williams L, Featherstone DE, Shippy SA. Sample collection and amino acids analysis of extracellular fluid of mouse brain slices with low flow push-pull perfusion. Analyst 2015; 140:6563-70. [PMID: 26299259 DOI: 10.1039/c5an00805k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Brain tissue slices are a common neuroscience model that allows relatively sophisticated analysis of neuronal networks in a simplified preparation. Most experimental methodology utilizes electrophysiological tools to probe these model systems. The work here demonstrates the adaptation of low-flow push-pull perfusion sampling (LFPS) to a brain slice system. LFPS is used to sample from the hippocampus of mouse brain slices. Perfusate amino acid levels are quantified following sampling with capillary electrophoresis. Glutamate was measured from the CA1 region of the hippocampus in slices taken from a cystine-glutamate transporter deletion mutant, xCT(-/-), and the background strain C57BL/6J. Sampling is performed over up to 6.5 h with standard tissue slice preparation and experimentation methods. Four amino acids were quantified to demonstrate the ability to perform LFPS and show good agreement with published literature. Perfusate glutamate levels are found to be significantly lower with xCT(-/-) slices (1.9(±0.5) μM) relative to controls (4.90(±1.1) μM). But, experiments with control slices show a significant decrease in glutamate over the 6 h sampling period that are not seen with xCT(-/-) slices. Increasing the LFPS sample collection rate during the first 90 min of sampling did not show a sampling artifact in perfusate glutamate content. Sampling immediately following slicing did not show an early increasing glutamate level that would be indicative of a significant contribution from blood or tissue damage. The data presented here show a complementarity to electrophysiological studies of tissue slices. The ability to characterize extracellular fluid chemical content with LFPS in these slices provides an alternative data stream for probing neurochemical signaling networks in brain tissue slices.
Collapse
Affiliation(s)
- G Ojeda-Torres
- Department of Chemistry University of Illinois at Chicago, M/C 111 845 W. Taylor St. Room 4500, Chicago, IL 60607, USA.
| | | | | | | |
Collapse
|
39
|
Yang Y, Xu-Friedman MA. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus. J Neurophysiol 2015; 113:3634-45. [PMID: 25855696 DOI: 10.1152/jn.00693.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/08/2015] [Indexed: 01/14/2023] Open
Abstract
Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied "endbulb of Held" synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg(2+)) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
40
|
Constals A, Penn A, Compans B, Toulmé E, Phillipat A, Marais S, Retailleau N, Hafner AS, Coussen F, Hosy E, Choquet D. Glutamate-Induced AMPA Receptor Desensitization Increases Their Mobility and Modulates Short-Term Plasticity through Unbinding from Stargazin. Neuron 2015; 85:787-803. [DOI: 10.1016/j.neuron.2015.01.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 11/30/2014] [Accepted: 01/07/2015] [Indexed: 11/24/2022]
|
41
|
Abstract
Most extracellular glutamate in the brain is released by xCT, a glial antiporter that exports glutamate and imports cystine. The function of xCT, and extracellular glutamate in general, remains unclear. Several lines of evidence suggest that glutamate from xCT could act in a paracrine fashion to suppress glutamatergic synapse strength by triggering removal of postsynaptic glutamate receptors. To test this idea, we used whole-cell patch-clamp electrophysiology and immunohistochemistry to quantify receptor number and synapse function in xCT knock-out mouse hippocampal CA3-CA1 synapses. Consistent with the hypothesis that xCT suppresses glutamate receptor number and synapse strength, xCT knock-out synapses showed increased AMPA receptor abundance with concomitant large enhancements of spontaneous and evoked synaptic transmission. We saw no evidence for changes in GABA receptor abundance or the overall number of glutamatergic synapses. The xCT knock-out phenotype was replicated by incubating slices in the xCT inhibitor (S)-4-carboxyphenylglycine, and consistent with the idea that xCT works by regulating extracellular glutamate, the xCT knock-out phenotype could be reproduced in controls by incubating the slices in glutamate-free aCSF. We conclude that glutamate secreted via xCT suppresses glutamatergic synapse strength by triggering removal of postsynaptic AMPA receptors.
Collapse
|
42
|
Featherstone DE, Yanoga F, Grosjean Y. Accelerated bang recovery in Drosophila genderblind mutants. Commun Integr Biol 2014; 1:14-17. [PMID: 19430543 DOI: 10.4161/cib.1.1.6437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cystine-glutamate transporters import cystine into cells for glutathione synthesis and protection from oxidative stress, but also export significant amounts of glutamate. Increasing evidence suggests that 'ambient extracellular glutamate' secreted by cystine-glutamate transporters in the nervous system modulates glutamatergic synapse strength and behavior. To date, the only cystine-glutamate transporter mutants examined behaviorally are Drosophila genderblind mutants. These animals contain loss-of-function mutations in the 'genderblind' gene, which encodes an xCT subunit essential for cystine-glutamate transporter function. Genderblind was named based on a mutant courtship phenotype: male genderblind mutants are attracted to normally aversive male pheromones and thus court and attempt to copulate with both male and female partners equally. However, genderblind protein is expressed in many parts of the fly brain and thus might be expected to also regulate other behaviors, including behaviors not related to male courtship or chemosensation. Here, we show that genderblind mutants display faster recovery and increased negative geotaxis after strong mechanical stimuli (e.g., they climb faster and farther after vial banging). This phenotype is displayed by both males and females, consistent with strong genderblind expression in both sexes.
Collapse
Affiliation(s)
- David E Featherstone
- Department of Biological Sciences; University of Illinois at Chicago; Chicago, Illinois, USA
| | | | | |
Collapse
|
43
|
Total cysteine and glutathione determination in hemolymph of individual adult D. melanogaster. Anal Chim Acta 2014; 853:660-667. [PMID: 25467515 DOI: 10.1016/j.aca.2014.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/28/2014] [Accepted: 10/02/2014] [Indexed: 11/22/2022]
Abstract
Determination of thiols, glutathione (GSH) and cysteine (Cys) are important due to their roles in oxidative stress and aging. Oxidants such as soluble O2 and H2O2 promote oxidation of thiols to disulfide (SS) bonded dimers affecting quantitation accuracy. The method presented here reduces disulfide-bonded species followed by fluorescence labelling of the 29.5 (±18.2) nL hemolymph volumes of individual adult Drosophila Melanogaster. The availability of only tens of nanoliter (nL) samples that are also highly volume variant requires efficient sample handling to improve thiol measurements while minimizing sample dilution. The optimized method presented here utilizes defined lengths of capillaries to meter tris(2-carboxyethyl)phosphine reducing reagent and monobromobimane derivatizing reagent volumes enabling Cys and GSH quantitation with only 20-fold dilution. The nL assay developed here was optimized with respect to reagent concentrations, sample dilution, reaction times and temperatures. Separation and identification of the nL thiol mixtures were obtained with capillary electrophoresis-laser induced fluorescence. To demonstrate the capability of this method total Cys and total GSH were measured in the hemolymph collected from individual adult D. Melanogaster. The thiol measurements were used to compare a mutant fly strain with a non-functional cystine-glutamate transporter (xCT) to its background control. The mutant fly, genderblind (gb), carries a non-functional gene for a protein similar to mammalian xCT whose function is not fully understood. Average concentrations obtained for mutant and control flies are 2.19 (±0.22) and 1.94 (±0.34) mM Cys and 2.14 (±0.60) and 2.08 (±0.71) mM GSH, respectively, and are not significantly different (p>0.05). Statistical analysis showed significant differences in total GSH of males and females independent of the xCT mutation. Overall, the method demonstrates an approach for effective chemical characterization of thiols in nL sample volumes.
Collapse
|
44
|
Zhou X, Chen Z, Yun W, Ren J, Li C, Wang H. Extrasynaptic NMDA Receptor in Excitotoxicity: Function Revisited. Neuroscientist 2014; 21:337-44. [PMID: 25168337 DOI: 10.1177/1073858414548724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is generally accepted that proper activation of N-methyl-d-aspartate receptors (NMDARs) promotes neuronal survival and supports neuroplasticity, and excessive NMDAR activation leads to pathological outcomes and neurodegeneration. As NMDARs are found at both synaptic and extrasynaptic sites, there is significant interest in determining how NMDARs at different subcellular locations differentially regulate physiological as well as pathological functions. Better understanding of this issue may support the development of therapeutic strategies to attenuate neuronal death or promote normal brain function. Although the current prevailing theory emphasizes the major role of extrasynaptic NMDARs in neurodegeneration, there is growing evidence indicating the involvement of synaptic receptors. It is also evident that physiological functions of the brain also involve extrasynaptic NMDARs. Our recent studies demonstrate that the degree of cell death following neuronal insults depends on the magnitude and duration of synaptic and extrasynaptic receptor co-activation. These new results underscore the importance of revisiting the function of extrasynaptic NMDARs in cell fate. Furthermore, the development of antagonists that preferentially inhibit synaptic or extrasynaptic receptors may better clarify the role of NMDARs in neurodegeneration.
Collapse
Affiliation(s)
- Xianju Zhou
- Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Zhuoyou Chen
- Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Wenwei Yun
- Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Jianhua Ren
- Key Laboratory of Translational Neuroscience, Zhoukou Normal University, Zhoukou China
| | - Chengwei Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou China
| | - Hongbing Wang
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
45
|
Sun W, Shchepakin D, Kalachev LV, Kavanaugh MP. Glutamate transporter control of ambient glutamate levels. Neurochem Int 2014; 73:146-51. [PMID: 24768447 DOI: 10.1016/j.neuint.2014.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 11/26/2022]
Abstract
Accurate knowledge of the ambient extracellular glutamate concentration in brain is required for understanding its potential impacts on tonic and phasic receptor signaling. Estimates of ambient glutamate based on microdialysis measurements are generally in the range of ∼2-10μM, approximately 100-fold higher than estimates based on electrophysiological measurements of tonic NMDA receptor activity (∼25-90nM). The latter estimates are closer to the low nanomolar estimated thermodynamic limit of glutamate transporters. The reasons for this discrepancy are not known, but it has been suggested that microdialysis measurements could overestimate ambient extracellular glutamate because of reduced glutamate transporter activity in a region of metabolically impaired neuropil adjacent to the dialysis probe. We explored this issue by measuring diffusion gradients created by varying membrane densities of glutamate transporters expressed in Xenopus oocytes. With free diffusion from a pseudo-infinite 10μM glutamate source, the surface concentration of glutamate depended on transporter density and was reduced over 2 orders of magnitude by transporters expressed at membrane densities similar to those previously reported in hippocampus. We created a diffusion model to simulate the effect of transport impairment on microdialysis measurements with boundary conditions corresponding to a 100μm radius probe. A gradient of metabolic disruption in a thin (∼100μm) region of neuropil adjacent to the probe increased predicted [Glu] in the dialysate over 100-fold. The results provide support for electrophysiological estimates of submicromolar ambient extracellular [Glu] in brain and provide a possible explanation for the higher values reported using microdialysis approaches.
Collapse
Affiliation(s)
- Weinan Sun
- Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, United States
| | - Denis Shchepakin
- Department of Mathematics, The University of Montana, Missoula, MT 59812, United States
| | - Leonid V Kalachev
- Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, United States; Department of Mathematics, The University of Montana, Missoula, MT 59812, United States
| | - Michael P Kavanaugh
- Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
46
|
Mishra A, Mishra R, Gottschalk S, Pal R, Sim N, Engelmann J, Goldberg M, Parker D. Microscopic visualization of metabotropic glutamate receptors on the surface of living cells using bifunctional magnetic resonance imaging probes. ACS Chem Neurosci 2014; 5:128-37. [PMID: 24251400 DOI: 10.1021/cn400175m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A series of bimodal metabotropic glutamate-receptor targeted MRI contrast agents has been developed and evaluated, based on established competitive metabotropic Glu receptor subtype 5 (mGluR5) antagonists. In order to directly visualize mGluR5 binding of these agents on the surface of live astrocytes, variations in the core structure were made. A set of gadolinium conjugates containing either a cyanine dye or a fluorescein moiety was accordingly prepared, to allow visualization by optical microscopy in cellulo. In each case, surface receptor binding was compromised and cell internalization observed. Another approach, examining the location of a terbium analogue via sensitized emission, also exhibited nonspecific cell uptake in neuronal cell line models. Finally, biotin derivatives of two lead compounds were prepared, and the specificity of binding to the mGluR5 cell surface receptors was demonstrated with the aid of their fluorescently labeled avidin conjugates, using both total internal reflection fluorescence (TIRF) and confocal microscopy.
Collapse
Affiliation(s)
| | | | - Sven Gottschalk
- High Field MR Centre, Max Planck Institute for Biological Cybernetics, Spemannstrasse 41, Tuebingen 72076, Germany
| | | | | | - Joern Engelmann
- High Field MR Centre, Max Planck Institute for Biological Cybernetics, Spemannstrasse 41, Tuebingen 72076, Germany
| | | | | |
Collapse
|
47
|
Behavioral characterization of system xc- mutant mice. Behav Brain Res 2014; 265:1-11. [PMID: 24548853 DOI: 10.1016/j.bbr.2014.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/04/2014] [Accepted: 02/08/2014] [Indexed: 01/18/2023]
Abstract
The slc7a11 gene encodes xCT, an essential component of 'system xc-', a plasma membrane exchanger that imports cystine and exports glutamate. Slc7a11 is expressed primarily in the brain, but its role there is not clear. We performed behavioral tests on two different strains of homozygous slc7a11 mutant mice ('sut' and 'xCT'), as well as heteroallelic offspring of these two strains ('xCT/sut') and their associated genetic backgrounds. Homozygous sut mutant males showed reduced spontaneous alternation in spontaneous alternation tasks as well as reduced movement in an open field maze, but xCT and xCT/sut strains did not show significant changes in these tasks compared to appropriate controls. Neither xCT nor sut mutants showed differences from controls in rotarod tests. Female behavioral phenotypes were independent of estrus cycle stage. To ensure that homozygous xCT, sut, and xCT/sut strains all represent protein null alleles, we measured whole brain xCT protein levels using immunoblots. xCT, sut and xCT/sut strains showed no detectable xCT protein expression, confirming them as null alleles. Previously published microdialysis experiments showed reduced striatal glutamate in xCT mutants. Using the same methods, we measured reduced interstitial glutamate levels in the striatum but not cerebellum of sut mutants. However, we detected no glutamate change in the striatum or cerebellum of sut/xCT mice. We detected no changes in whole brain EAAT-1, -2, or -3 expression. We conclude that the behavioral and chemical differences exist between slc7a11 mutant strains, but we were unable to definitively attribute any of these differences to loss of system xc-.
Collapse
|
48
|
Crabtree JW, Lodge D, Bashir ZI, Isaac JTR. GABAA , NMDA and mGlu2 receptors tonically regulate inhibition and excitation in the thalamic reticular nucleus. Eur J Neurosci 2013; 37:850-9. [PMID: 23294136 DOI: 10.1111/ejn.12098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/13/2012] [Accepted: 11/20/2012] [Indexed: 01/30/2023]
Abstract
Traditionally, neurotransmitters are associated with a fast, or phasic, type of action on neurons in the central nervous system (CNS). However, accumulating evidence indicates that γ-aminobutyric acid (GABA) and glutamate can also have a continual, or tonic, influence on these cells. Here, in voltage- and current-clamp recordings in rat brain slices, we identify three types of tonically active receptors in a single CNS structure, the thalamic reticular nucleus (TRN). Thus, TRN contains constitutively active GABAA receptors (GABAA Rs), which are located on TRN neurons and generate a persistent outward Cl(-) current. When TRN neurons are depolarized, blockade of this current increases their action potential output in response to current injection. Furthermore, TRN contains tonically active GluN2B-containing N-methyl-D-aspartate receptors (NMDARs). These are located on reticuloreticular GABAergic terminals in TRN and generate a persistent facilitation of vesicular GABA release from these terminals. In addition, TRN contains tonically active metabotropic glutamate type 2 receptors (mGlu2Rs). These are located on glutamatergic cortical terminals in TRN and generate a persistent reduction of vesicular glutamate release from these terminals. Although tonically active GABAA Rs, NMDARs and mGlu2Rs operate through different mechanisms, we propose that the continual and combined activity of these three receptor types ultimately serves to hyperpolarize TRN neurons, which will differentially affect the output of these cells depending upon the current state of their membrane potential. Thus, when TRN cells are relatively depolarized, their firing in single-spike tonic mode will be reduced, whereas when these cells are relatively hyperpolarized, their ability to fire in multispike burst mode will be facilitated.
Collapse
Affiliation(s)
- John W Crabtree
- Medical Research Council Centre for Synaptic Plasticity, School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| | | | | | | |
Collapse
|
49
|
Khandare AL, Ankulu M, Aparna N. Role of glutamate and nitric oxide in onset of motor neuron degeneration in neurolathyrism. Neurotoxicology 2012. [PMID: 23178458 DOI: 10.1016/j.neuro.2012.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neurolathyrism is associated with a complex pattern of alterations in the glutamatergic system of the cortical motor region of brain. It is a neurological disorder consorted with excessive consumption of Lathyrus sativus (Grass pea), comprising large amounts of the neurotoxin, β-N-oxalyl-L-α,β-diaminopropionic acid (ODAP). ODAP being a potent agonist of ionotropic glutamate receptors enhances their activity and also blocks the astrocytic glutamate/cystine transporters, abutting the neurons. This leads to the sustained increase in the concentration of Glutamate in the synapse which triggers excitotoxicity. L. sativus also contains high levels of arginine and homoarginine which are natural substrates of nitric oxide production, when NO levels increases, it forms peroxynitrite radicals which cause irreparable damage to mitochondria and cellular macromolecules leading to motor neuron degeneration. This review brings together all the molecular events reported so far, emphasizing on the possible role of glutamate and nitric oxide mediated cell death.
Collapse
Affiliation(s)
- Arjun L Khandare
- Food and Drug Toxicology Research Center, National Institute of Nutrition, Hyderabad 500007, India.
| | | | | |
Collapse
|
50
|
Abstract
xCT is the functional subunit of the cystine/glutamate antiporter system xc−, which exchanges intracellular glutamate with extracellular cystine. xCT has been reported to play roles in the maintenance of intracellular redox and ambient extracellular glutamate, which may affect neuronal function. To assess a potential role of xCT in the mouse hippocampus, we performed fear conditioning and passive avoidance for long-term memories and examined hippocampal synaptic plasticity in wild-type mice and xCT-null mutants, sut mice. Long-term memory was impaired in sut mice. Normal basal synaptic transmission and short-term presynaptic plasticity at hippocampal Schaffer collateral–CA1 synapses were observed in sut mice. However, LTP (long-term potentiation) was significantly reduced in sut mice compared with their wild-type counterparts. Supplementation of extracellular glutamate did not reverse the reduction in LTP. Taken together, our results suggest that xCT plays a role in the modulation of hippocampal long-term plasticity.
Collapse
|