1
|
Honda T, Kurita K, Arai Y, Pandey H, Sawa A, Furukubo-Tokunaga K. FMR1 genetically interacts with DISC1 to regulate glutamatergic synaptogenesis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:112. [PMID: 39604386 PMCID: PMC11603133 DOI: 10.1038/s41537-024-00532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Synaptic development and functions have been hypothesized as crucial mechanisms of diverse neuropsychiatric disorders. Studies in past years suggest that mutations in the fragile X mental retardation 1 (FMR1) are associated with diverse mental disorders including intellectual disability, autistic spectrum disorder, and schizophrenia. In this study, we have examined genetical interactions between a select set of risk factor genes using fruit flies to find that dfmr1, the Drosophila homolog of the human FMR1 gene, exhibits functional interactions with DISC1 in synaptic development. We show that DISC1 overexpression in the dfmr1null heterozygous background causes synaptic alterations at the larval neuromuscular junctions that are distinct from those in the wild-type background. Loss of dfmr1 modifies the DISC1 overexpression phenotype in synaptic formation, suppressing the formation of synapse boutons. Interaction between the two genes was further supported molecularly by the results that dfmr1 mutations suppress the DISC1-mediated upregulations of the postsynaptic expression of a glutamate receptor and the expression of ELKS/CAST protein, Bruchpilot, in presynaptic motoneurons. Moreover, DISC1 overexpression in the dfmr1null heterozygous background causes downregulation of a MAP1 family protein, Futsch. These results thus suggest an intriguing converging mechanism controlled by FMR1 and DISC1 in the developing glutamatergic synapses.
Collapse
Affiliation(s)
- Takato Honda
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusettes Institute of Technology (MIT), Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusettes General Hospital, Harvard Medical School, Boston, MA, USA.
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Kazuki Kurita
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuko Arai
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Himani Pandey
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Mental Health, Pharmacology, Biomedical Engineering and Genetic Medicine, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Johns Hopkins Medicine, Baltimore, MD, USA
| | | |
Collapse
|
2
|
Kumar U. Co-immunolocalization of Disc1 and Gas7 protein in adult mice brain. BRAIN SCIENCE ADVANCES 2022. [DOI: 10.26599/bsa.2022.9050010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective: The aim of the present study was to check the potential interaction of two neurodevelopmental proteins, Disc1 and Gas7, in the adult mice brain. Methods: Twenty-four male Swiss albino mice were used for the study. The mice were 12 weeks old in the beginning of the experiment. Immunohistochemistry and co-immunofluorescence were performed on the coronal sections of mice brain and immunoblotting and co-immunoprecipitation were done on the whole brain lysate. Results: Data from immunohistochemistry and co-immunofluorescence indicate the occurrence and co-localization of Disc1 and Gas7 proteins in soma and projections of the brain cells. Immunostaining was observed in cerebral cortex, hypothalamus, midbrain, pons, medulla oblongata and CA3 of hippocampus of the brain. The data from Immunoblotting and co-immunoprecipitation validates the presence and interaction of Disc1 and Gas7 protein in whole brain lysate. Conclusion: Data indicates the potential interaction of Disc1 and Gas7 protein in adult brain. The study highlights the need for further research on Disc1–Gas7 protein interaction in brain development and neuro-disorders.
Collapse
Affiliation(s)
- Udaya Kumar
- Unit of Biochemistry, Department of Zoology, University of Madras, Chennai, Tamil Nadu, India
- Department of Neurology, University of California Los Angeles, Los Angeles, California, U.S.A
| |
Collapse
|
3
|
Wang S, Wen Q, Xiong B, Zhang L, Yu X, Ouyang X. Long Noncoding RNA NEAT1 Knockdown Ameliorates 1-Methyl-4-Phenylpyridine-Induced Cell Injury Through MicroRNA-519a-3p/SP1 Axis in Parkinson Disease. World Neurosurg 2021; 156:e93-e103. [PMID: 34508910 DOI: 10.1016/j.wneu.2021.08.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Parkinson disease is a neurodegenerative disease and is characterized by resting tremor, dementia, and gait disorder. Previous studies have indicated that long noncoding RNA participates in the regulation of the pathogenesis of Parkinson disease. The study aimed to reveal the effects of long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) on 1-methyl-4-phenylpyridine (MPP+)-induced human neuroblastoma cell injury and the underlying mechanism. METHODS The expressions of NEAT1, microRNA (miR)-519a-3p, and transcription factor specific protein 1 (SP1) were detected by quantitative real-time polymerase chain reaction. The protein expressions of SP1 and inflammation-related factors were determined by Western blot. Cell viability was determined by 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis was investigated by flow cytometry analysis. The targeting relationship between miR-519a-3p and NEAT1 or SP1 was predicted by starBase online database and verified by a dual-luciferase reporter assay. RESULTS NEAT1 and SP1 expressions were significantly upregulated, whereas miR-519a-3p was downregulated in MPP+-treated neuroblastoma cells in a dose- and time-dependent manner when compared with control groups. NEAT1 knockdown restrained MPP+-induced repression of cell viability and promotion of cell apoptosis and inflammation. Additionally, NEAT1 served as a sponge of miR-519a-3p and regulated MPP+-caused cell injury by interacting with miR-519a-3p. Also, SP1, a target gene of miR-519a-3p, rescued miR-519a-3p-mediated actions under MPP+ treatment. Importantly, NEAT1 stimulated SP1 expression through interaction with miR-519a-3p. CONCLUSIONS NEAT1 silencing protected against MPP+-induced neuroblastoma cell injury by regulating the miR-519a-3p/SP1 pathway. This finding provides a novel direction for the development of therapeutic strategies for Parkinson disease.
Collapse
Affiliation(s)
- Shuihua Wang
- Department of Neurology, 908 Hospital of PLA Joint Logistics Support Force, Nanchang, China
| | - Qinli Wen
- Department of Pharmacy, Jiangxi Cancer Hospital, Nanchang, China
| | - Bohai Xiong
- Department of Neurology, 908 Hospital of PLA Joint Logistics Support Force, Nanchang, China
| | - Li Zhang
- Department of Neurology, 908 Hospital of PLA Joint Logistics Support Force, Nanchang, China
| | - Xiaoli Yu
- Department of Neurology, 908 Hospital of PLA Joint Logistics Support Force, Nanchang, China.
| | - Xiaochun Ouyang
- Department of Neurology, 908 Hospital of PLA Joint Logistics Support Force, Nanchang, China
| |
Collapse
|
4
|
Xu X, Song L, Hanganu-Opatz IL. Knock-Down of Hippocampal DISC1 in Immune-Challenged Mice Impairs the Prefrontal-Hippocampal Coupling and the Cognitive Performance Throughout Development. Cereb Cortex 2021; 31:1240-1258. [PMID: 33037815 PMCID: PMC7786359 DOI: 10.1093/cercor/bhaa291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) gene represents an intracellular hub of developmental processes. When combined with early environmental stressors, such as maternal immune activation, but not in the absence of thereof, whole-brain DISC1 knock-down leads to memory and executive deficits as result of impaired prefrontal–hippocampal communication throughout development. While synaptic dysfunction in neonatal prefrontal cortex (PFC) has been recently identified as one source of abnormal long-range coupling, the contribution of hippocampus (HP) is still unknown. Here, we aim to fill this knowledge gap by combining in vivo electrophysiology and optogenetics with morphological and behavioral assessment of immune-challenged mice with DISC1 knock-down either in the whole brain (GE) or restricted to pyramidal neurons in hippocampal CA1 area (GHPE). We found abnormal network activity, sharp-waves, and neuronal firing in CA1 that complement the deficits in upper layer of PFC. Moreover, optogenetic activating CA1 pyramidal neurons fails to activate the prefrontal local circuits. These deficits that persist till prejuvenile age relate to dendrite sparsification and loss of spines of CA1 pyramidal neurons. As a long-term consequence, DISC1 knock-down in HP leads to poorer recognition memory at prejuvenile age. Thus, DISC1-controlled developmental processes in HP in immune-challenged mice are critical for circuit function and cognitive behavior.
Collapse
Affiliation(s)
- Xiaxia Xu
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lingzhen Song
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
5
|
Tsai SH, Tsao CY, Lee LJ. Altered White Matter and Layer VIb Neurons in Heterozygous Disc1 Mutant, a Mouse Model of Schizophrenia. Front Neuroanat 2020; 14:605029. [PMID: 33384588 PMCID: PMC7769951 DOI: 10.3389/fnana.2020.605029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Increased white matter neuron density has been associated with neuropsychiatric disorders including schizophrenia. However, the pathogenic features of these neurons are still largely unknown. Subplate neurons, the earliest generated neurons in the developing cortex have also been associated with schizophrenia and autism. The link between these neurons and mental disorders is also not well established. Since cortical layer VIb neurons are believed to be the remnant of subplate neurons in the adult rodent brain, in this study, we aimed to examine the cytoarchitecture of neurons in cortical layer VIb and the underlying white matter in heterozygous Disc1 mutant (Het) mice, a mouse model of schizophrenia. In the white matter, the number of NeuN-positive neurons was quite low in the external capsule; however, the density of these cells was found increased (54%) in Het mice compared with wildtype (WT) littermates. The density of PV-positive neurons was unchanged in the mutants. In the cortical layer VIb, the density of CTGF-positive neurons increased (21.5%) in Het mice, whereas the number of Cplx3-positive cells reduced (16.1%) in these mutants, compared with WT mice. Layer VIb neurons can be classified by their morphological characters. The morphology of Type I pyramidal neurons was comparable between genotypes while the dendritic length and complexity of Type II multipolar neurons were significantly reduced in Het mice. White matter neurons and layer VIb neurons receive synaptic inputs and modulate the process of sensory information and sleep/arousal pattern. Aberrances of these neurons in Disc1 mutants implies altered brain functions in these mice.
Collapse
Affiliation(s)
- Shin-Hwa Tsai
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yu Tsao
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Li-Jen Lee
- School of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
- Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Role of Long Noncoding RNAs in Parkinson's Disease: Putative Biomarkers and Therapeutic Targets. PARKINSONS DISEASE 2020; 2020:5374307. [PMID: 32617144 PMCID: PMC7306067 DOI: 10.1155/2020/5374307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 01/12/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by bradykinesia, rigidity, and tremor. Age is the main risk factor. Long noncoding RNAs (lncRNAs) are novel RNA molecules of more than 200 nucleotides in length. They may be involved in the regulation of many pathological processes of PD. PD has a variety of pathophysiological mechanisms, including alpha-synuclein aggregate, mitochondrial dysfunction, oxidative stress, calcium homeostasis, axonal transport, and neuroinflammation. Among these, the impacts of lncRNAs on the pathogenesis and progression of PD need to be highlighted. lncRNAs may serve as putative biomarkers and therapeutic targets for the early diagnosis of PD. This study aimed to investigate the role of lncRNAs in various pathological processes of PD and the specific lncRNAs that might be used as putative diagnostic biomarkers and therapeutic targets of PD.
Collapse
|
7
|
DISC1 4 bp deletion in association with schizophrenic patients. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Kroeze Y, Oti M, van Beusekom E, Cooijmans RHM, van Bokhoven H, Kolk SM, Homberg JR, Zhou H. Transcriptome Analysis Identifies Multifaceted Regulatory Mechanisms Dictating a Genetic Switch from Neuronal Network Establishment to Maintenance During Postnatal Prefrontal Cortex Development. Cereb Cortex 2019; 28:833-851. [PMID: 28108491 DOI: 10.1093/cercor/bhw407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
The prefrontal cortex (PFC) is one of the latest brain regions to mature, which allows the acquisition of complex cognitive abilities through experience. To unravel the underlying gene expression changes during postnatal development, we performed RNA-sequencing (RNA-seq) in the rat medial PFC (mPFC) at five developmental time points from infancy to adulthood, and analyzed the differential expression of protein-coding genes, long intergenic noncoding RNAs (lincRNAs), and alternative exons. We showed that most expression changes occur in infancy, and that the number of differentially expressed genes reduces toward adulthood. We observed 137 differentially expressed lincRNAs and 796 genes showing alternative exon usage during postnatal development. Importantly, we detected a genetic switch from neuronal network establishment in infancy to maintenance of neural networks in adulthood based on gene expression dynamics, involving changes in protein-coding and lincRNA gene expression as well as alternative exon usage. Our gene expression datasets provide insights into the multifaceted transcriptional regulation of the developing PFC. They can be used to study the basic developmental processes of the mPFC and to understand the mechanisms of neurodevelopmental and neuropsychiatric disorders. Our study provides an important contribution to the ongoing efforts to complete the "brain map", and to the understanding of PFC development.
Collapse
Affiliation(s)
- Yvet Kroeze
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EZ Nijmegen, The Netherlands.,Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Martin Oti
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands.,Carlos Chagas Filho Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
| | - Ellen van Beusekom
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Roel H M Cooijmans
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Sharon M Kolk
- Department of Molecular Animal Physiology, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EZ Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.,Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
9
|
Transient Knock-Down of Prefrontal DISC1 in Immune-Challenged Mice Causes Abnormal Long-Range Coupling and Cognitive Dysfunction throughout Development. J Neurosci 2019; 39:1222-1235. [PMID: 30617212 PMCID: PMC6381232 DOI: 10.1523/jneurosci.2170-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
Compromised brain development has been hypothesized to account for mental illness. This concept was underpinned by the function of the molecule disrupted-in-schizophrenia 1 (DISC1), which represents an intracellular hub of developmental processes and has been related to cognitive dysfunction in psychiatric disorders. Mice with whole-brain DISC1 knock-down show impaired prefrontal–hippocampal function and cognitive abilities throughout development and at adulthood, especially when combined with early environmental stressors, such as maternal immune activation (MIA). However, the contribution of abnormal DISC1-driven maturation of either prefrontal cortex (PFC) or hippocampus (HP) to these deficits is still unknown. Here, we use in utero electroporation to restrict the DISC1 knock-down to prefrontal layer II/III pyramidal neurons during perinatal development and expose these mice to MIA as an environmental stressor (dual-hit GPFCE mice, both sexes). Combining in vivo electrophysiology and neuroanatomy with behavioral testing, we show that GPFCE mice at neonatal age have abnormal patterns of oscillatory activity and firing in PFC, but not HP. Abnormal firing rates in PFC of GPFCE mice relate to sparser dendritic arborization and lower spine density. Moreover, the long-range coupling within prefrontal–hippocampal networks is decreased at this age. The transient prefrontal DISC1 knock-down was sufficient to permanently perturb the prefrontal–hippocampal communication and caused poorer recognition memory performance at pre-juvenile age. Thus, developmental dysfunction of prefrontal circuitry causes long-lasting disturbances related to mental illness. SIGNIFICANCE STATEMENT Hypofrontality is considered a main cause of cognitive deficits in mental disorders, yet the underlying mechanisms are still largely unknown. During development, long before the emergence of disease symptoms, the functional coupling within the prefrontal–hippocampal network, which is the core brain circuit involved in cognitive processing, is reduced. To assess to which extent impaired prefrontal development contributes to the early dysfunction, immune-challenged mice with transient DISC1 knock-down confined to PFC were investigated in their prefrontal–hippocampal communication throughout development by in vivo electrophysiology and behavioral testing. We show that perturbing developmental processes of prefrontal layer II/III pyramidal neurons is sufficient to diminish prefrontal–hippocampal coupling and decrease the cognitive performance throughout development.
Collapse
|
10
|
Joensuu M, Lanoue V, Hotulainen P. Dendritic spine actin cytoskeleton in autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:362-381. [PMID: 28870634 DOI: 10.1016/j.pnpbp.2017.08.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses. Changes in the shape and size of dendritic spines correlate with the functional changes in excitatory synapses and are heavily dependent on the remodeling of the underlying actin cytoskeleton. Recent evidence implicates synapses at dendritic spines as important substrates of pathogenesis in neuropsychiatric disorders, including autism spectrum disorder (ASD). Although synaptic perturbations are not the only alterations relevant for these diseases, understanding the molecular underpinnings of the spine and synapse pathology may provide insight into their etiologies and could reveal new drug targets. In this review, we will discuss recent findings of defective actin regulation in dendritic spines associated with ASD.
Collapse
Affiliation(s)
- Merja Joensuu
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland.
| |
Collapse
|
11
|
Wang H. Modeling Neurological Diseases With Human Brain Organoids. Front Synaptic Neurosci 2018; 10:15. [PMID: 29937727 PMCID: PMC6002496 DOI: 10.3389/fnsyn.2018.00015] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
The complexity and delicacy of human brain make it challenging to recapitulate its development, function and disorders. Brain organoids derived from human pluripotent stem cells (PSCs) provide a new tool to model both normal and pathological human brain, and greatly enhance our ability to study brain biology and diseases. Currently, human brain organoids are increasingly used in modeling neurological disorders and relative therapeutic discovery. This review article focuses on recent advances in human brain organoid system and its application in disease modeling. It also discusses the limitations and future perspective of human brain organoids in modeling neurological diseases.
Collapse
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Avramopoulos D. Recent Advances in the Genetics of Schizophrenia. MOLECULAR NEUROPSYCHIATRY 2018; 4:35-51. [PMID: 29998117 PMCID: PMC6032037 DOI: 10.1159/000488679] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/21/2018] [Indexed: 12/27/2022]
Abstract
The last decade brought tremendous progress in the field of schizophrenia genetics. As a result of extensive collaborations and multiple technological advances, we now recognize many types of genetic variants that increase the risk. These include large copy number variants, rare coding inherited and de novο variants, and over 100 loci harboring common risk variants. While the type and contribution to the risk vary among genetic variants, there is concordance in the functions of genes they implicate, such as those whose RNA binds the fragile X-related protein FMRP and members of the activity-regulated cytoskeletal complex involved in learning and memory. Gene expression studies add important information on the biology of the disease and recapitulate the same functional gene groups. Studies of alternative phenotypes help us widen our understanding of the genetic architecture of mental function and dysfunction, how diseases overlap not only with each other but also with non-disease phenotypes. The challenge is to apply this new knowledge to prevention and treatment and help patients. The data generated so far and emerging technologies, including new methods in cell engineering, offer significant promise that in the next decade we will unlock the translational potential of these significant discoveries.
Collapse
Affiliation(s)
- Dimitrios Avramopoulos
- Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Bianchi FT, Gai M, Berto GE, Di Cunto F. Of rings and spines: The multiple facets of Citron proteins in neural development. Small GTPases 2017; 11:122-130. [PMID: 29185861 PMCID: PMC7053930 DOI: 10.1080/21541248.2017.1374325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The Citron protein was originally identified for its capability to specifically bind the active form of RhoA small GTPase, leading to the simplistic hypothesis that it may work as a RhoA downstream effector in actin remodeling. More than two decades later, a much more complex picture has emerged. In particular, it has become clear that in animals, and especially in mammals, the functions of the Citron gene (CIT) are intimately linked to many aspects of central nervous system (CNS) development and function, although the gene is broadly expressed. More specifically, CIT encodes two main isoforms, Citron-kinase (CIT-K) and Citron-N (CIT-N), characterized by complementary expression pattern and different functions. Moreover, in many of their activities, CIT proteins act more as upstream regulators than as downstream effectors of RhoA. Finally it has been found that, besides working through actin, CIT proteins have many crucial functional interactions with the microtubule cytoskeleton and may directly affect genome stability. In this review, we will summarize these advances and illustrate their actual or potential relevance for CNS diseases, including microcephaly and psychiatric disorders.
Collapse
Affiliation(s)
- Federico T Bianchi
- Neuroscience Institute Cavalieri Ottolenghi, Regione Golzole 10, Orbassano, TO, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Gaia E Berto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Golzole 10, Orbassano, TO, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Golzole 10, Orbassano, TO, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Pandey H, Bourahmoune K, Honda T, Honjo K, Kurita K, Sato T, Sawa A, Furukubo-Tokunaga K. Genetic interaction of DISC1 and Neurexin in the development of fruit fly glutamatergic synapses. NPJ SCHIZOPHRENIA 2017; 3:39. [PMID: 29079805 PMCID: PMC5660244 DOI: 10.1038/s41537-017-0040-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/19/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022]
Abstract
Originally identified at the breakpoint of a (1;11)(q42.1; q14.3) chromosomal translocation in a Scottish family with a wide range of mental disorders, the DISC1 gene has been a focus of intensive investigations as an entry point to study the molecular mechanisms of diverse mental dysfunctions. Perturbations of the DISC1 functions lead to behavioral changes in animal models, which are relevant to psychiatric conditions in patients. In this work, we have expressed the human DISC1 gene in the fruit fly (Drosophila melanogaster) and performed a genetic screening for the mutations of psychiatric risk genes that cause modifications of DISC1 synaptic phenotypes at the neuromuscular junction. We found that DISC1 interacts with dnrx1, the Drosophila homolog of the human Neurexin (NRXN1) gene, in the development of glutamatergic synapses. While overexpression of DISC1 suppressed the total bouton area on the target muscles and stimulated active zone density in wild-type background, a partial reduction of the dnrx1 activity negated the DISC1–mediated synaptic alterations. Likewise, overexpression of DISC1 stimulated the expression of a glutamate receptor component, DGLURIIA, in wild-type background but not in the dnrx1 heterozygous background. In addition, DISC1 caused mislocalization of Discs large, the Drosophila PSD-95 homolog, in the dnrx1 heterozygous background. Analyses with a series of domain deletions have revealed the importance of axonal localization of the DISC1 protein for efficient suppression of DNRX1 in synaptic boutons. These results thus suggest an intriguing converging mechanism controlled by the interaction of DISC1 and Neurexin in the developing glutamatergic synapses. Fruit fly models uncover a potential new mechanism by which two schizophrenia risk factor genes interact to alter synaptic junctions. DISC1 gene alterations have previously been linked to psychiatric anomalies, although the gene has not been formally recognized as a schizophrenia risk factor. A US-Japan research collaboration led by the University of Tsukuba’s Katsuo Furukubo-Tokunaga expressed human DISC1 in fruit fly synapses to better understand the changes that take place when gene disruption leads to overexpression. The team found that overexpression of DISC1 affected the expression of the fruit fly counterpart to human ‘neurexin,’ a known risk factor for conditions including schizophrenia and autism spectrum disorders. The interaction between neurexin and DISC1 also influenced other synapse-altering genes. Further research is warranted to explore the roles of DISC1 and neurexin in psychiatric disease.
Collapse
Affiliation(s)
- Himani Pandey
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Katia Bourahmoune
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Takato Honda
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Ken Honjo
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Kazuki Kurita
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Tomohito Sato
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
15
|
Norkett R, Modi S, Kittler JT. Mitochondrial roles of the psychiatric disease risk factor DISC1. Schizophr Res 2017; 187:47-54. [PMID: 28087269 DOI: 10.1016/j.schres.2016.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022]
Abstract
Ion transport during neuronal signalling utilizes the majority of the brain's energy supply. Mitochondria are key sites for energy provision through ATP synthesis and play other important roles including calcium buffering. Thus, tightly regulated distribution and function of these organelles throughout the intricate architecture of the neuron is essential for normal synaptic communication. Therefore, delineating mechanisms coordinating mitochondrial transport and function is essential for understanding nervous system physiology and pathology. While aberrant mitochondrial transport and dynamics have long been associated with neurodegenerative disease, they have also more recently been linked to major mental illness including schizophrenia, autism and depression. However, the underlying mechanisms have yet to be elucidated, due to an incomplete understanding of the combinations of genetic and environmental factors contributing to these conditions. Consequently, the DISC1 gene has undergone intense study since its discovery at the site of a balanced chromosomal translocation, segregating with mental illness in a Scottish pedigree. The precise molecular functions of DISC1 remain elusive. Reported functions of DISC1 include regulation of intracellular signalling pathways, neuronal migration and dendritic development. Intriguingly, a role for DISC1 in mitochondrial homeostasis and transport is fast emerging. Therefore, a major function of DISC1 in regulating mitochondrial distribution, ATP synthesis and calcium buffering may be disrupted in psychiatric disease. In this review, we discuss the links between DISC1 and mitochondria, considering both trafficking of these organelles and their function, and how, via these processes, DISC1 may contribute to the regulation of neuronal behavior in normal and psychiatric disease states.
Collapse
Affiliation(s)
- R Norkett
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - S Modi
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - J T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK.
| |
Collapse
|
16
|
Tomoda T, Hikida T, Sakurai T. Role of DISC1 in Neuronal Trafficking and its Implication in Neuropsychiatric Manifestation and Neurotherapeutics. Neurotherapeutics 2017; 14:623-629. [PMID: 28664299 PMCID: PMC5509643 DOI: 10.1007/s13311-017-0556-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) was initially identified as a gene disrupted by a translocation mutation co-segregating with a variety of psychotic and mood disorders in a Scottish pedigree. In agreement with this original finding, mouse models that perturb Disc1 display deficits of behaviors in specific dimensions, such as cognition and emotion, but not a motor dimension. Although DISC1 is not a risk gene for sporadic cases of specific psychiatric disorders defined by categorical diagnostic criteria (e.g., schizophrenia and major depressive disorder), DISC1 is now regarded as an important molecular lead to decipher molecular pathology for specific dimensions relevant to major mental illnesses. Emerging evidence points to the role of DISC1 in the regulation of intracellular trafficking of a wide range of neuronal cargoes. We will review recent progress in this aspect of DISC1 biology and discuss how we could utilize this body of knowledge to better understand the pathophysiology of mental illnesses.
Collapse
Affiliation(s)
- Toshifumi Tomoda
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
17
|
Jiao F, Wang Q, Zhang P, Bu L, Yan J, Tian B. Expression signatures of long non-coding RNA in the substantia nigra of pre-symptomatic mouse model of Parkinson's disease. Behav Brain Res 2017; 331:123-130. [PMID: 28476570 DOI: 10.1016/j.bbr.2017.04.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is an age-dependent neurodegenerative disease that can be caused by a variety of factors. Growing evidence shows that prior to the motor phase of PD can express molecular or imaging markers. Many long non-coding RNAs (lncRNAs) have been identified in neurodegenerative disease. However, the biogenesis and function of lncRNAs in the pre-symptomatic stage of PD is poorly understood. Here, we profiled the expression of lncRNAs and mRNAs in the substantia nigra pars compacta (SNpc) of pre-symptomatic mice over-expressing human A30P*A53T α-synuclein by microarray analysis. Based on the Pearson correlation analysis, lncRNA/mRNA co-expression network was constructed. GO enrichment and pathway analysis of lncRNAs-coexpressed mRNAs was conducted to identify the related biological function and pathologic pathways. Real-time PCR was used to detect the expression pattern of lncRNAs. Approximately 756 lncRNAs were aberrantly expressed in the SNpc of early over-expressing human A30P*A53T α-synuclein transgenic mice, including 477 downregulated lncRNAs and 279 upregulated lncRNAs. GO analysis indicated that these lncRNAs-coexpressed mRNAs were targeted to regulation of transcription (ontology: biological process), membrane (ontology: cellular component), and protein binding (ontology: molecular function). Pathway analysis indicated that lncRNAs-coexpressed mRNAs were mostly enriched in axon guidance signaling pathway. In conclusion, the present study firstly identified a series of novel early PD-associated lncRNAs caused by mutant α-synuclein. Further study the function of these aberrantly expressed lncRNAs may provide insight into treatment of early PD.
Collapse
Affiliation(s)
- Fengjuan Jiao
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, 13th Hangkong Road, Wuhan, Hubei Province, 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province, 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, 13th Hangkong Road, Wuhan, Hubei Province, 430030, PR China
| | - Qingzhi Wang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, 13th Hangkong Road, Wuhan, Hubei Province, 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province, 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, 13th Hangkong Road, Wuhan, Hubei Province, 430030, PR China
| | - Pei Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, 13th Hangkong Road, Wuhan, Hubei Province, 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province, 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, 13th Hangkong Road, Wuhan, Hubei Province, 430030, PR China
| | - Lulu Bu
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, 13th Hangkong Road, Wuhan, Hubei Province, 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province, 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, 13th Hangkong Road, Wuhan, Hubei Province, 430030, PR China
| | - Jianguo Yan
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, 13th Hangkong Road, Wuhan, Hubei Province, 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province, 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, 13th Hangkong Road, Wuhan, Hubei Province, 430030, PR China
| | - Bo Tian
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, 13th Hangkong Road, Wuhan, Hubei Province, 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province, 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, 13th Hangkong Road, Wuhan, Hubei Province, 430030, PR China.
| |
Collapse
|
18
|
Tanaka M, Ishizuka K, Nekooki-Machida Y, Endo R, Takashima N, Sasaki H, Komi Y, Gathercole A, Huston E, Ishii K, Hui KKW, Kurosawa M, Kim SH, Nukina N, Takimoto E, Houslay MD, Sawa A. Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington's disease. J Clin Invest 2017; 127:1438-1450. [PMID: 28263187 DOI: 10.1172/jci85594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/11/2017] [Indexed: 01/19/2023] Open
Abstract
Huntington's disease (HD) is a polyglutamine (polyQ) disease caused by aberrant expansion of the polyQ tract in Huntingtin (HTT). While motor impairment mediated by polyQ-expanded HTT has been intensively studied, molecular mechanisms for nonmotor symptoms in HD, such as psychiatric manifestations, remain elusive. Here we have demonstrated that HTT forms a ternary protein complex with the scaffolding protein DISC1 and cAMP-degrading phosphodiesterase 4 (PDE4) to regulate PDE4 activity. We observed pathological cross-seeding between DISC1 and mutant HTT aggregates in the brains of HD patients as well as in a murine model that recapitulates the polyQ pathology of HD (R6/2 mice). In R6/2 mice, consequent reductions in soluble DISC1 led to dysregulation of DISC1-PDE4 complexes, aberrantly increasing the activity of PDE4. Importantly, exogenous expression of a modified DISC1, which binds to PDE4 but not mutant HTT, normalized PDE4 activity and ameliorated anhedonia in the R6/2 mice. We propose that cross-seeding of mutant HTT and DISC1 and the resultant changes in PDE4 activity may underlie the pathology of a specific subset of mental manifestations of HD, which may provide an insight into molecular signaling in mental illness in general.
Collapse
|
19
|
Ham S, Kim TK, Chung S, Im HI. Drug Abuse and Psychosis: New Insights into Drug-induced Psychosis. Exp Neurobiol 2017; 26:11-24. [PMID: 28243163 PMCID: PMC5326711 DOI: 10.5607/en.2017.26.1.11] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 01/20/2023] Open
Abstract
Addictive drug use or prescribed medicine abuse can cause psychosis. Some representative symptoms frequently elicited by patients with psychosis are hallucination, anhedonia, and disrupted executive functions. These psychoses are categorized into three classifications of symptoms: positive, negative, and cognitive. The symptoms of DIP are not different from the symptoms of schizophrenia, and it is difficult to distinguish between them. Due to this ambiguity of distinction between the DIP and schizophrenia, the DIP animal model has been frequently used as the schizophrenia animal model. However, although the symptoms may be the same, its causes are clearly different in that DIP is acquired and schizophrenia is heritable. Therefore, in this review, we cover several DIP models such as of amphetamine, PCP/ketamine, scopolamine, and LSD, and then we also address three schizophrenia models through a genetic approach with a new perspective that distinguishes DIP from schizophrenia.
Collapse
Affiliation(s)
- Suji Ham
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Department of Neuroscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Tae Kyoo Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Department of Biology, Boston University, Boston 02215, USA
| | - Sooyoung Chung
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Heh-In Im
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Department of Neuroscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea.; Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| |
Collapse
|
20
|
Kassan A, Egawa J, Zhang Z, Almenar-Queralt A, Nguyen QM, Lajevardi Y, Kim K, Posadas E, Jeste DV, Roth DM, Patel PM, Patel HH, Head BP. Caveolin-1 regulation of disrupted-in-schizophrenia-1 as a potential therapeutic target for schizophrenia. J Neurophysiol 2017; 117:436-444. [PMID: 27832597 PMCID: PMC5253400 DOI: 10.1152/jn.00481.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia is a debilitating psychiatric disorder manifested in early adulthood. Disrupted-in-schizophrenia-1 (DISC1) is a susceptible gene for schizophrenia (Hodgkinson et al. 2004; Millar et al. 2000; St Clair et al. 1990) implicated in neuronal development, brain maturation, and neuroplasticity (Brandon and Sawa 2011; Chubb et al. 2008). Therefore, DISC1 is a promising candidate gene for schizophrenia, but the molecular mechanisms underlying its role in the pathogenesis of the disease are still poorly understood. Interestingly, caveolin-1 (Cav-1), a cholesterol binding and scaffolding protein, regulates neuronal signal transduction and promotes neuroplasticity. In this study we examined the role of Cav-1 in mediating DISC1 expression in neurons in vitro and the hippocampus in vivo. Overexpressing Cav-1 specifically in neurons using a neuron-specific synapsin promoter (SynCav1) increased expression of DISC1 and proteins involved in synaptic plasticity (PSD95, synaptobrevin, synaptophysin, neurexin, and syntaxin 1). Similarly, SynCav1-transfected differentiated human neurons derived from induced pluripotent stem cells (hiPSCs) exhibited increased expression of DISC1 and markers of synaptic plasticity. Conversely, hippocampi from Cav-1 knockout (KO) exhibited decreased expression of DISC1 and proteins involved in synaptic plasticity. Finally, SynCav1 delivery to the hippocampus of Cav-1 KO mice and Cav-1 KO neurons in culture restored expression of DISC1 and markers of synaptic plasticity. Furthermore, we found that Cav-1 coimmunoprecipitated with DISC1 in brain tissue. These findings suggest an important role by which neuron-targeted Cav-1 regulates DISC1 neurobiology with implications for synaptic plasticity. Therefore, SynCav1 might be a potential therapeutic target for restoring neuronal function in schizophrenia. NEW & NOTEWORTHY The present study is the first to demonstrate that caveolin-1 can regulate DISC1 expression in neuronal models. Furthermore, the findings are consistent across three separate neuronal models that include rodent neurons (in vitro and in vivo) and human differentiated neurons derived from induced pluripotent stem cells. These findings justify further investigation regarding the modulatory role by caveolin on synaptic function and as a potential therapeutic target for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Adam Kassan
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry and the Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, California
| | - Junji Egawa
- VA San Diego Healthcare System, San Diego, California
| | - Zheng Zhang
- VA San Diego Healthcare System, San Diego, California
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California; and
| | | | | | - Kaitlyn Kim
- VA San Diego Healthcare System, San Diego, California
| | | | - Dilip V Jeste
- Department of Psychiatry and the Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, California
| | - David M Roth
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Piyush M Patel
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Hemal H Patel
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Brian P Head
- Department of Anesthesiology, University of California San Diego, La Jolla, California;
- VA San Diego Healthcare System, San Diego, California
- Sanford Consortium for Regenerative Medicine, La Jolla, California
| |
Collapse
|
21
|
Furukubo-Tokunaga K, Kurita K, Honjo K, Pandey H, Ando T, Takayama K, Arai Y, Mochizuki H, Ando M, Kamiya A, Sawa A. DISC1 causes associative memory and neurodevelopmental defects in fruit flies. Mol Psychiatry 2016; 21:1232-43. [PMID: 26976042 PMCID: PMC4993648 DOI: 10.1038/mp.2016.15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 01/18/2023]
Abstract
Originally found in a Scottish family with diverse mental disorders, the DISC1 protein has been characterized as an intracellular scaffold protein that associates with diverse binding partners in neural development. To explore its functions in a genetically tractable system, we expressed the human DISC1 in fruit flies (Drosophila melanogaster). As in mammalian neurons, DISC1 is localized to diverse subcellular domains of developing fly neurons including the nuclei, axons and dendrites. Overexpression of DISC1 impairs associative memory. Experiments with deletion/mutation constructs have revealed the importance of amino-terminal domain (46-290) for memory suppression whereas carboxyl domain (598-854) and the amino-terminal residues (1-45) including the nuclear localization signal (NLS1) are dispensable. DISC1 overexpression also causes suppression of axonal and dendritic branching of mushroom body neurons, which mediate a variety of cognitive functions in the fly brain. Analyses with deletion/mutation constructs reveal that protein domains 598-854 and 349-402 are both required for the suppression of axonal branching, while amino-terminal domains including NLS1 are dispensable. In contrast, NLS1 was required for the suppression of dendritic branching, suggesting a mechanism involving gene expression. Moreover, domain 403-596 is also required for the suppression of dendritic branching. We also show that overexpression of DISC1 suppresses glutamatergic synaptogenesis in developing neuromuscular junctions. Deletion/mutation experiments have revealed the importance of protein domains 403-596 and 349-402 for synaptic suppression, while amino-terminal domains including NLS1 are dispensable. Finally, we show that DISC1 functionally interacts with the fly homolog of Dysbindin (DTNBP1) via direct protein-protein interaction in developing synapses.
Collapse
Affiliation(s)
| | - Kazuki Kurita
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Ken Honjo
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Himani Pandey
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Tetsuya Ando
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kojiro Takayama
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yuko Arai
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroaki Mochizuki
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mai Ando
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Atsushi Kamiya
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD, USA
| |
Collapse
|
22
|
Murphy E, Benítez-Burraco A. Language deficits in schizophrenia and autism as related oscillatory connectomopathies: An evolutionary account. Neurosci Biobehav Rev 2016; 83:742-764. [PMID: 27475632 DOI: 10.1016/j.neubiorev.2016.07.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 01/28/2023]
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASD) are characterised by marked language deficits, but it is not clear how these arise from gene mutations associated with the disorders. Our goal is to narrow the gap between SZ and ASD and, ultimately, give support to the view that they represent abnormal (but related) ontogenetic itineraries for the human faculty of language. We will focus on the distinctive oscillatory profiles of the SZ and ASD brains, in turn using these insights to refine our understanding of how the brain implements linguistic computations by exploring a novel model of linguistic feature-set composition. We will argue that brain rhythms constitute the best route to interpreting language deficits in both conditions and mapping them to neural dysfunction and risk alleles of the genes. Importantly, candidate genes for SZ and ASD are overrepresented among the gene sets believed to be important for language evolution. This translational effort may help develop an understanding of the aetiology of SZ and ASD and their high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.
| | | |
Collapse
|
23
|
Tomoda T, Sumitomo A, Jaaro-Peled H, Sawa A. Utility and validity of DISC1 mouse models in biological psychiatry. Neuroscience 2016; 321:99-107. [PMID: 26768401 PMCID: PMC4803604 DOI: 10.1016/j.neuroscience.2015.12.061] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 11/26/2022]
Abstract
We have seen an era of explosive progress in translating neurobiology into etiological understanding of mental disorders for the past 10-15 years. The discovery of Disrupted-in-schizophrenia 1 (DISC1) gene was one of the major driving forces that have contributed to the progress. The finding that DISC1 plays crucial roles in neurodevelopment and synapse regulation clearly underscored the utility and validity of DISC1-related biology in advancing our understanding of pathophysiological processes underlying psychiatric conditions. Despite recent genetic studies that failed to identify DISC1 as a risk gene for sporadic cases of schizophrenia, DISC1 mutant mice, coupled with various environmental stressors, have proven successful in satisfying face validity as models of a wide range of human psychiatric conditions. Investigating mental disorders using these models is expected to further contribute to the circuit-level understanding of the pathological mechanisms, as well as to the development of novel therapeutic strategies in the future.
Collapse
Affiliation(s)
- T Tomoda
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - A Sumitomo
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - H Jaaro-Peled
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - A Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
24
|
Anazi S, Shamseldin HE, AlNaqeb D, Abouelhoda M, Monies D, Salih MA, Al-Rubeaan K, Alkuraya FS. A null mutation in TNIK defines a novel locus for intellectual disability. Hum Genet 2016; 135:773-8. [PMID: 27106596 DOI: 10.1007/s00439-016-1671-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
Abstract
Intellectual disability (ID) is one of the most common disabilities and, although many genes have been implicated in its etiology, the genetic heterogeneity of ID continues to expand. The purpose of the study was to describe a novel autosomal recessive non-syndromic ID locus. Autozygome and linkage analysis, and exome sequencing followed by RNA and protein analysis of the candidate disease gene were performed. We describe two multiplex consanguineous families with non-syndromic ID phenotype, which maps to a critical linkage locus on 3q26. Exome sequencing of the index in each family revealed the same homozygous truncating mutation in TNIK that results in complete loss of the protein. TNIK is a kinase with a well-established role in dendrite development and synaptic transmission. The phenotype we observe in human patients who lack TNIK is consistent with the previously published Tnik (-/-) phenotype in the murine model. Our data strongly implicate TNIK deficiency in the causation of ID in humans.
Collapse
Affiliation(s)
- Shams Anazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dhekra AlNaqeb
- University Diabetes Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Al-Rubeaan
- University Diabetes Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia. .,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
| |
Collapse
|
25
|
Interneuronal DISC1 regulates NRG1-ErbB4 signalling and excitatory-inhibitory synapse formation in the mature cortex. Nat Commun 2015; 6:10118. [PMID: 26656849 PMCID: PMC4682104 DOI: 10.1038/ncomms10118] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022] Open
Abstract
Neuregulin-1 (NRG1) and its receptor ErbB4 influence several processes of neurodevelopment, but the mechanisms regulating this signalling in the mature brain are not well known. DISC1 is a multifunctional scaffold protein that mediates many cellular processes. Here we present a functional relationship between DISC1 and NRG1-ErbB4 signalling in mature cortical interneurons. By cell type-specific gene modulation in vitro and in vivo including in a mutant DISC1 mouse model, we demonstrate that DISC1 inhibits NRG1-induced ErbB4 activation and signalling. This effect is likely mediated by competitive inhibition of binding of ErbB4 to PSD95. Finally, we show that interneuronal DISC1 affects NRG1-ErbB4-mediated phenotypes in the fast spiking interneuron-pyramidal neuron circuit. Post-mortem brain analyses and some genetic studies have reported interneuronal deficits and involvement of the DISC1, NRG1 and ErbB4 genes in schizophrenia, respectively. Our results suggest a mechanism by which cross-talk between DISC1 and NRG1-ErbB4 signalling may contribute to these deficits. Neuregulin-1 and DISC1 signalling pathways have both been linked to neurodevelopment and schizophrenia. Here, Seshadri et al. demonstrate that DISC1 negatively regulates NRG1-induced ErbB4 signalling in adult cortical interneurons both in vitro and in vivo, possibly via competitive binding to PSD95.
Collapse
|
26
|
Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol Psychiatry 2015; 20:795-809. [PMID: 25450230 PMCID: PMC4486649 DOI: 10.1038/mp.2014.147] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.
Collapse
|
27
|
Altimus C, Harrold J, Jaaro-Peled H, Sawa A, Foster DJ. Disordered ripples are a common feature of genetically distinct mouse models relevant to schizophrenia. MOLECULAR NEUROPSYCHIATRY 2015; 1:52-59. [PMID: 26417572 DOI: 10.1159/000380765] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We present results from a novel comparative approach to the study of mechanisms of psychiatric disease. Previous work examined neural activity patterns in the hippocampus of a freely behaving mouse model associated with schizophrenia, the calcineurin knockout mouse. Here we examined a genetically distinct mouse that exhibits a similar set of behavioral phenotypes associated with schizophrenia, a transgenic model expressing a putative dominant-negative DISC1 (DN-DISC1). Strikingly, the principal finding of the earlier work is replicated in the DN-DISC1 mice, that is, a selective increase in the numbers of sharp-wave ripple events in the local hippocampal LFP, while at the same time other LFP patterns such as theta and gamma are unaffected. Sharp-wave ripples are thought to arise from hippocampal circuits, and reflect the coordinated activity of the principal excitatory cells of the hippocampus, in specific patterns that represent reactivated memories of previous experiences and imagined future experiences that predict behavior. These findings suggest that multiple genetic alterations could converge on distinct patterns of aberrant neurophysiological function to give rise to common behavioral phenotypes in psychiatric disease.
Collapse
Affiliation(s)
- Cara Altimus
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jon Harrold
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hanna Jaaro-Peled
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins Hospital, Baltimore MD
| | - Akira Sawa
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD ; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins Hospital, Baltimore MD
| | - David J Foster
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
28
|
Barodia SK, Park SK, Ishizuka K, Sawa A, Kamiya A. Half-life of DISC1 protein and its pathological significance under hypoxia stress. Neurosci Res 2015; 97:1-6. [PMID: 25738396 DOI: 10.1016/j.neures.2015.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/21/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
DISC1 (disrupted in schizophrenia 1) is an intracellular scaffolding molecule which regulates multiple signaling pathways for neural cell differentiation and function. Many biological studies utilizing animal models of DISC1 have indicated that loss of DISC1 functions are associated with pathological psychiatric conditions. Thus, DISC1 protein stability is a prerequisite to its goal in governing neural function, and modulating the protein stability of DISC1 may be a key target for understanding underlying pathology, as well promising drug discovery strategies. Nonetheless, a half-life of DISC1 protein has remained unexplored. Here, we determine for the first time the half-life of DISC1, which are regulated by ubiquitin-proteasome cascade. Overexpression of PDE4B2, a binding partner of DISC1, prolonged the half-life of DISC1, whereas NDEL1 does not alter DISC1 protein stability. Notably, the half-life of DISC1 is diminished under hypoxia stress by increasing protein degradation of DISC1, suggesting that alteration of DISC1 stability may be involved in hypoxia stress-mediated pathological conditions, such as ischemic stroke.
Collapse
Affiliation(s)
- Sandeep Kumar Barodia
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Sang Ki Park
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Koko Ishizuka
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Akira Sawa
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Atsushi Kamiya
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
29
|
Neuroanatomical and behavioral deficits in mice haploinsufficient for Pericentriolar material 1 (Pcm1). Neurosci Res 2015; 98:45-9. [PMID: 25697395 DOI: 10.1016/j.neures.2015.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 01/26/2015] [Accepted: 02/06/2015] [Indexed: 11/21/2022]
Abstract
The pericentriolar material (PCM) is composed of proteins responsible for microtubule nucleation/anchoring at the centrosome, some of which have been associated with genetic susceptibility to schizophrenia. Here, we show that mice haploinsufficient for Pericentriolar material 1 (Pcm1(+/-)), which encodes a component of the PCM found to bear rare loss of function mutations in patients with psychiatric illness, manifest neuroanatomical phenotypes and behavioral abnormalities. Using ex vivo magnetic resonance imaging of the Pcm1(+/-) brain, we detect reduced whole brain volume. Pcm1 mutant mice show impairment in social interaction, specifically in the social novelty phase, but not in the sociability phase of the three-chamber social interaction test. In contrast, Pcm1(+/-) mice show normal preference for a novel object, suggesting specific impairment in response to novel social stimulus. In addition, Pcm1(+/-) mice display significantly reduced rearing activity in the open field. Pcm1(+/-) mice behave normally in the elevated plus maze, rotarod, prepulse inhibition, and progressive ratio tests. Together, our results suggest that haploinsufficiency at the Pcm1 locus can induce a range of neuroanatomical and behavioral phenotypes that support the candidacy of this locus in neuropsychiatric disorders.
Collapse
|
30
|
Steinecke A, Gampe C, Nitzsche F, Bolz J. DISC1 knockdown impairs the tangential migration of cortical interneurons by affecting the actin cytoskeleton. Front Cell Neurosci 2014; 8:190. [PMID: 25071449 PMCID: PMC4086047 DOI: 10.3389/fncel.2014.00190] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/20/2014] [Indexed: 12/29/2022] Open
Abstract
Disrupted-in-Schizophrenia 1 (DISC1) is a risk gene for a spectrum of major mental disorders. It has been shown to regulate radial migration as well as dendritic arborization during neurodevelopment and corticogenesis. In a previous study we demonstrated through in vitro experiments that DISC1 also controls the tangential migration of cortical interneurons originating from the medial ganglionic eminence (MGE). Here we first show that DISC1 is necessary for the proper tangential migration of cortical interneurons in the intact brain. Expression of EGFP under the Lhx6 promotor allowed us to analyze exclusively interneurons transfected in the MGE after in utero electroporation. After 3 days in utero, DISC1 deficient interneurons displayed prolonged leading processes and, compared to control, fewer neurons reached the cortex. Time-lapse video microscopy of cortical feeder-layers revealed a decreased migration velocity due to a reduction of soma translocations. Immunostainings indicated that DISC1 is co-localized with F-actin in the growth cone-like structure of the leading process. DISC1 knockdown reduced F-actin levels whereas the overall actin level was not altered. Moreover, DISC1 knockdown also decreased levels of phosphorylated Girdin, which cross-links F-actin, as well as the Girdin-activator pAkt. In contrast, using time-lapse video microscopy of fluorescence-tagged tubulin and EB3 in fibroblasts, we found no effects on microtubule polymerization when DISC1 was reduced. However, DISC1 affected the acetylation of microtubules in the leading processes of MGE-derived cortical interneurons. Together, our results provide a mechanism how DISC1 might contribute to interneuron migration thereby explaining the reduced number of specific classes of cortical interneurons in some DISC1 mouse models.
Collapse
Affiliation(s)
- André Steinecke
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| | - Christin Gampe
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| | - Falk Nitzsche
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| | - Jürgen Bolz
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| |
Collapse
|
31
|
Li WY, Chang YC, Lee LJH, Lee LJ. Prenatal infection affects the neuronal architecture and cognitive function in adult mice. Dev Neurosci 2014; 36:359-70. [PMID: 24942872 DOI: 10.1159/000362383] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/21/2014] [Indexed: 11/19/2022] Open
Abstract
Environmental factors such as prenatal infection are involved in the pathogenic processes of neurodevelopmental psychiatric disorders. In the present study, we administered a viral mimic, polyriboinosinic-polyribocytidylic acid (poly I:C, 20 mg/kg, i.p.), to pregnant B6 mice at gestational day 9.5. Neonates born to these poly I:C-treated dams showed an increase of microglia in the hippocampus, indicating an activation of the immune system in the brains. Moreover, a significant increase in the number of dopamine-producing neurons in the ventral tegmental area was observed in adult male poly I:C offspring compared with age-matched saline offspring. Poly I:C offspring also exhibited hypolocomotor activity in a novel open-field arena but did not display signs of anxiety or depression in the elevated plus maze or the forced swim test, respectively. However, the short-term memory of the poly I:C offspring was impaired in a novel object recognition task. Therefore, the dendritic architecture of granule cells in the dentate gyrus (DG) and pyramidal neurons in the medial prefrontal cortex (mPFC) were examined. The dendritic complexity was reduced in the DG granule cells of the poly I:C offspring and exhibited shorter dendritic length compared with the saline offspring. The density of dendritic spines in the DG granule cells was also decreased in the poly I:C offspring. Furthermore, the dendritic complexity and spine density were reduced in layer II/III mPFC pyramidal neurons of the poly I:C offspring. Together, these data demonstrate impaired short-term memory and altered dendritic architecture in adult poly I:C offspring, which validates the prenatal infection paradigm as a model for neurodevelopmental psychiatric disorders.
Collapse
Affiliation(s)
- Wai-Yu Li
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
32
|
Ramos A, Rodríguez-Seoane C, Rosa I, Trossbach SV, Ortega-Alonso A, Tomppo L, Ekelund J, Veijola J, Järvelin MR, Alonso J, Veiga S, Sawa A, Hennah W, García A, Korth C, Requena JR. Neuropeptide precursor VGF is genetically associated with social anhedonia and underrepresented in the brain of major mental illness: its downregulation by DISC1. Hum Mol Genet 2014; 23:5859-65. [PMID: 24934694 DOI: 10.1093/hmg/ddu303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In a large Scottish pedigree, disruption of the gene coding for DISC1 clearly segregates with major depression, schizophrenia and related mental conditions. Thus, study of DISC1 may provide a clue to understand the biology of major mental illness. A neuropeptide precursor VGF has potent antidepressant effects and has been reportedly associated with bipolar disorder. Here we show that DISC1 knockdown leads to a reduction of VGF, in neurons. VGF is also downregulated in the cortices from sporadic cases with major mental disease. A positive correlation of VGF single-nucleotide polymorphisms (SNPs) with social anhedonia was also observed. We now propose that VGF participates in a common pathophysiology of major mental disease.
Collapse
Affiliation(s)
- Adriana Ramos
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, 15782 Santiago de Compostela, Spain,
| | - Carmen Rodríguez-Seoane
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, 15782 Santiago de Compostela, Spain
| | - Isaac Rosa
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, 15782 Santiago de Compostela, Spain, Department of Pharmacology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Svenja V Trossbach
- Department of Neuropathology, Medical School Düsseldorf, 40225 Düsseldorf, Germany
| | - Alfredo Ortega-Alonso
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland, National Institute for Health and Welfare, 00280 Helsinki, Finland
| | - Liisa Tomppo
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland, National Institute for Health and Welfare, 00280 Helsinki, Finland
| | - Jesper Ekelund
- National Institute for Health and Welfare, 00280 Helsinki, Finland, Department of Psychiatry, University of Helsinki, 00100 Helsinki, Finland, Vaasa Hospital District, 65130 Vaasa, Finland
| | - Juha Veijola
- Department of Psychiatry, University of Oulu Central Hospital, 90014 Oulu, Finland
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, SW7 2AZ London, UK, Institute of Health Sciences and, Biocenter Oulu, University of Oulu, PO Box 5000, Aapistie 5A, FI-90014 Oulu, Finland, Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, PO Box 20, FI-90220 Oulu 90029 OYS, Finland, Department of Children and Young People and Families, National Institute for Health and Welfare, Aapistie 1, Box 310, FI-90101 Oulu, Finland
| | - Jana Alonso
- Proteomics Unit, IDIS, Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain
| | - Sonia Veiga
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, 15782 Santiago de Compostela, Spain
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA and
| | - William Hennah
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland, National Institute for Health and Welfare, 00280 Helsinki, Finland
| | - Angel García
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, 15782 Santiago de Compostela, Spain, Department of Pharmacology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carsten Korth
- Department of Neuropathology, Medical School Düsseldorf, 40225 Düsseldorf, Germany
| | - Jesús R Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, 15782 Santiago de Compostela, Spain, Department of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
33
|
Bitanihirwe BKY, Woo TUW. Perineuronal nets and schizophrenia: the importance of neuronal coatings. Neurosci Biobehav Rev 2014; 45:85-99. [PMID: 24709070 DOI: 10.1016/j.neubiorev.2014.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/19/2014] [Accepted: 03/25/2014] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a complex brain disorder associated with deficits in synaptic connectivity. The insidious onset of this illness during late adolescence and early adulthood has been reported to be dependent on several key processes of brain development including synaptic refinement, myelination and the physiological maturation of inhibitory neural networks. Interestingly, these events coincide with the appearance of perineuronal nets (PNNs), reticular structures composed of components of the extracellular matrix that coat a variety of cells in the mammalian brain. Until recently, the functions of the PNN had remained enigmatic, but are now considered to be important in development of the central nervous system, neuronal protection and synaptic plasticity, all elements which have been associated with schizophrenia. Here, we review the emerging evidence linking PNNs to schizophrenia. Future studies aimed at further elucidating the functions of PNNs will provide new insights into the pathophysiology of schizophrenia leading to the identification of novel therapeutic targets with the potential to restore normal synaptic integrity in the brain of patients afflicted by this illness.
Collapse
Affiliation(s)
| | - Tsung-Ung W Woo
- Program in Cellular Neuropathology, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|