1
|
Kingwell BA, Nicholls SJ, Velkoska E, Didichenko SA, Duffy D, Korjian S, Gibson CM. Antiatherosclerotic Effects of CSL112 Mediated by Enhanced Cholesterol Efflux Capacity. J Am Heart Assoc 2022; 11:e024754. [PMID: 35411789 PMCID: PMC9238469 DOI: 10.1161/jaha.121.024754] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Approximately 12% of patients with acute myocardial infarction (AMI) experience a recurrent major adverse cardiovascular event within 1 year of their primary event, with most occurring within the first 90 days. Thus, there is a need for new therapeutic approaches that address this 90-day post-AMI high-risk period. The formation and eventual rupture of atherosclerotic plaque that leads to AMI is elicited by the accumulation of cholesterol within the arterial intima. Cholesterol efflux, a mechanism by which cholesterol is removed from plaque, is predominantly mediated by apolipoprotein A-I, which is rapidly lipidated to form high-density lipoprotein in the circulation and has atheroprotective properties. In this review, we outline how cholesterol efflux dysfunction leads to atherosclerosis and vulnerable plaque formation, including inflammatory cell recruitment, foam cell formation, the development of a lipid/necrotic core, and degradation of the fibrous cap. CSL112, a human plasma-derived apolipoprotein A-I, is in phase 3 of clinical development and aims to reduce the risk of recurrent cardiovascular events in patients with AMI in the first 90 days after the index event by increasing cholesterol efflux. We summarize evidence from preclinical and clinical studies suggesting that restoration of cholesterol efflux by CSL112 can stabilize plaque by several anti-inflammatory/immune-regulatory processes. These effects occur rapidly and could stabilize vulnerable plaques in patients who have recently experienced an AMI, thereby reducing the risk of recurrent major adverse cardiovascular events in the high-risk early post-AMI period.
Collapse
Affiliation(s)
| | | | | | | | | | - Serge Korjian
- PERFUSE Study Group, Cardiovascular Division Departments of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| | - C Michael Gibson
- PERFUSE Study Group, Cardiovascular Division Departments of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| |
Collapse
|
2
|
First Recombinant High-Density Lipoprotein Particles Administration in a Severe ICU COVID-19 Patient, a Multi-Omics Exploratory Investigation. Biomedicines 2022; 10:biomedicines10040754. [PMID: 35453504 PMCID: PMC9029957 DOI: 10.3390/biomedicines10040754] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 12/02/2022] Open
Abstract
High-density lipoproteins (HDLs) have multiple endothelioprotective properties. During SARS-CoV-2 infection, HDL-cholesterol (HDL-C) concentration is markedly reduced, and studies have described severe impairment of the functionality of HDL particles. Here, we report a multi-omic investigation of the first administration of recombinant HDL (rHDL) particles in a severe COVID-19 patient in an intensive care unit. Plasma ApoA1 increased and HDL-C decreased after each recombinant HDL injection, suggesting that these particles were functional in terms of reverse cholesterol transport. The proportion of large HDL particles also increased after injection of recombinant HDL. Shotgun proteomics performed on HDLs isolated by ultracentrifugation indicated that ApoA1 was more abundant after injections whereas most of the pro-inflammatory proteins identified were less abundant. Assessment of Serum amyloid A-1, inflammatory markers, and cytokines showed a significant decrease for most of them during recombinant HDL infusion. Our results suggest that recombinant HDL infusion is feasible and a potential therapeutic strategy to be explored in COVID-19 patients.
Collapse
|
3
|
Valanti EK, Dalakoura-Karagkouni K, Fotakis P, Vafiadaki E, Mantzoros CS, Chroni A, Zannis V, Kardassis D, Sanoudou D. Reconstituted HDL-apoE3 promotes endothelial cell migration through ID1 and its downstream kinases ERK1/2, AKT and p38 MAPK. Metabolism 2022; 127:154954. [PMID: 34875308 DOI: 10.1016/j.metabol.2021.154954] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Atherosclerotic Coronary Artery Disease (ASCAD) is the leading cause of mortality worldwide. Novel therapeutic approaches aiming to improve the atheroprotective functions of High Density Lipoprotein (HDL) include the use of reconstituted HDL forms containing human apolipoprotein A-I (rHDL-apoA-I). Given the strong atheroprotective properties of apolipoprotein E3 (apoE3), rHDL-apoE3 may represent an attractive yet largely unexplored therapeutic agent. OBJECTIVE To evaluate the atheroprotective potential of rHDL-apoE3 starting with the unbiased assessment of global transcriptome effects and focusing on endothelial cell (EC) migration as a critical process in re-endothelialization and atherosclerosis prevention. The cellular, molecular and functional effects of rHDL-apoE3 on EC migration-associated pathways were assessed, as well as the potential translatability of these findings in vivo. METHODS Human Aortic ECs (HAEC) were treated with rHDL-apoE3 and total RNA was analyzed by whole genome microarrays. Expression and phosphorylation changes of key EC migration-associated molecules were validated by qRT-PCR and Western blot analysis in primary HAEC, Human Coronary Artery ECs (HCAEC) and the human EA.hy926 EC line. The capacity of rHDL-apoE3 to stimulate EC migration was assessed by wound healing and transwell migration assays. The contribution of MEK1/2, PI3K and the transcription factor ID1 in rHDL-apoE3-induced EC migration and activation of EC migration-related effectors was assessed using specific inhibitors (PD98059: MEK1/2, LY294002: PI3K) and siRNA-mediated gene silencing, respectively. The capacity of rHDL-apoE3 to improve vascular permeability and hypercholesterolemia in vivo was tested in a mouse model of hypercholesterolemia (apoE KO mice) using Evans Blue assays and lipid/lipoprotein analysis in the serum, respectively. RESULTS rHDL-apoE3 induced significant expression changes in 198 genes of HAEC mainly involved in re-endothelialization and atherosclerosis-associated functions. The most pronounced effect was observed for EC migration, with 42/198 genes being involved in the following EC migration-related pathways: 1) MEK/ERK, 2) PI3K/AKT/eNOS-MMP2/9, 3) RHO-GTPases, 4) integrin. rHDL-apoE3 induced changes in 24 representative transcripts of these pathways in HAEC, increasing the expression of their key proteins PIK3CG, EFNB2, ID1 and FLT1 in HCAEC and EA.hy926 cells. In addition, rHDL-apoE3 stimulated migration of HCAEC and EA.hy926 cells, and the migration was markedly attenuated in the presence of PD98059 or LY294002. rHDL-apoE3 also increased the phosphorylation of ERK1/2, AKT, eNOS and p38 MAPK in these cells, while PD98059 and LY294002 inhibited rHDL-apoE3-induced phosphorylation of ERK1/2, AKT and p38 MAPK, respectively. LY had no effect on rHDL-apoE3-mediated eNOS phosphorylation. ID1 siRNA markedly decreased EA.hy926 cell migration by inhibiting rHDL-apoE3-triggered ERK1/2 and AKT phosphorylation. Finally, administration of a single dose of rHDL-apoE3 in apoE KO mice markedly improved vascular permeability as demonstrated by the reduced concentration of Evans Blue dye in tissues such as the stomach, the tongue and the urinary bladder and ameliorated hypercholesterolemia. CONCLUSIONS rHDL-apoE3 significantly enhanced EC migration in vitro, predominantly via overexpression of ID1 and subsequent activation of MEK1/2 and PI3K, and their downstream targets ERK1/2, AKT and p38 MAPK, respectively, and improved vascular permeability in vivo. These novel insights into the rHDL-apoE3 functions suggest a potential clinical use to promote re-endothelialization and retard development of atherosclerosis.
Collapse
Affiliation(s)
- Eftaxia-Konstantina Valanti
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, 'Attikon' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Katerina Dalakoura-Karagkouni
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion, Greece; Division of Gene Regulation and Genomics, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | | | - Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Vassilis Zannis
- Molecular Genetics, Boston University Medical School, Boston, USA
| | - Dimitris Kardassis
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion, Greece; Division of Gene Regulation and Genomics, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, 'Attikon' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
4
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
5
|
van der Vorst EPC, Biessen EAL, Donners MMPC. Letter by van der Vorst et al Regarding Article, "Anti-Inflammatory Effects of HDL (High-Density Lipoprotein) in Macrophages Predominate Over Proinflammatory Effects in Atherosclerotic Plaques". Arterioscler Thromb Vasc Biol 2020; 40:e31-e32. [PMID: 31967904 DOI: 10.1161/atvbaha.119.313725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Emiel P C van der Vorst
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, the Netherlands (E.P.C.v.d.V., E.A.L.B., M.M.P.C.D.), RWTH Aachen University, Germany.,Institute for Molecular Cardiovascular Research (IMCAR) (E.P.C.v.d.V., E.A.L.B.), RWTH Aachen University, Germany.,Interdisciplinary Center for Clinical Research (IZKF) (E.P.C.v.d.V.), RWTH Aachen University, Germany.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Germany (E.P.C.v.d.V.).,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany (E.P.C.v.d.V)
| | - Erik A L Biessen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, the Netherlands (E.P.C.v.d.V., E.A.L.B., M.M.P.C.D.), RWTH Aachen University, Germany.,Institute for Molecular Cardiovascular Research (IMCAR) (E.P.C.v.d.V., E.A.L.B.), RWTH Aachen University, Germany
| | - Marjo M P C Donners
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, the Netherlands (E.P.C.v.d.V., E.A.L.B., M.M.P.C.D.), RWTH Aachen University, Germany
| |
Collapse
|
6
|
Neufeld EB, Sato M, Gordon SM, Durbhakula V, Francone N, Aponte A, Yilmaz G, Sviridov D, Sampson M, Tang J, Pryor M, Remaley AT. ApoA-I-Mediated Lipoprotein Remodeling Monitored with a Fluorescent Phospholipid. BIOLOGY 2019; 8:E53. [PMID: 31336888 PMCID: PMC6784057 DOI: 10.3390/biology8030053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023]
Abstract
We describe simple, sensitive and robust methods to monitor lipoprotein remodeling and cholesterol and apolipoprotein exchange, using fluorescent Lissamine Rhodamine B head-group tagged phosphatidylethanolamine (*PE) as a lipoprotein reference marker. Fluorescent Bodipy cholesterol (*Chol) and *PE directly incorporated into whole plasma lipoproteins in proportion to lipoprotein cholesterol and phospholipid mass, respectively. *Chol, but not *PE, passively exchanged between isolated plasma lipoproteins. Fluorescent apoA-I (*apoA-I) specifically bound to high-density lipoprotein (HDL) and remodeled *PE- and *Chol-labeled synthetic lipoprotein-X multilamellar vesicles (MLV) into a pre-β HDL-like particle containing *PE, *Chol, and *apoA-I. Fluorescent MLV-derived *PE specifically incorporated into plasma HDL, whereas MLV-derived *Chol incorporation into plasma lipoproteins was similar to direct *Chol incorporation, consistent with apoA-I-mediated remodeling of fluorescent MLV to HDL with concomitant exchange of *Chol between lipoproteins. Based on these findings, we developed a model system to study lipid transfer by depositing fluorescent *PE and *Chol-labeled on calcium silicate hydrate crystals, forming dense lipid-coated donor particles that are readily separated from acceptor lipoprotein particles by low-speed centrifugation. Transfer of *PE from donor particles to mouse plasma lipoproteins was shown to be HDL-specific and apoA-I-dependent. Transfer of donor particle *PE and *Chol to HDL in whole human plasma was highly correlated. Taken together, these studies suggest that cell-free *PE efflux monitors apoA-I functionality.
Collapse
Affiliation(s)
- Edward B Neufeld
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Masaki Sato
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott M Gordon
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinay Durbhakula
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Francone
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angel Aponte
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gizem Yilmaz
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Denis Sviridov
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maureen Sampson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jingrong Tang
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Milton Pryor
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
8
|
Kaul S, Xu H, Zabalawi M, Maruko E, Fulp BE, Bluemn T, Brzoza-Lewis KL, Gerelus M, Weerasekera R, Kallinger R, James R, Zhang YS, Thomas MJ, Sorci-Thomas MG. Lipid-Free Apolipoprotein A-I Reduces Progression of Atherosclerosis by Mobilizing Microdomain Cholesterol and Attenuating the Number of CD131 Expressing Cells: Monitoring Cholesterol Homeostasis Using the Cellular Ester to Total Cholesterol Ratio. J Am Heart Assoc 2016; 5:JAHA.116.004401. [PMID: 27821400 PMCID: PMC5210328 DOI: 10.1161/jaha.116.004401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disorder whose development is inversely correlated with high-density lipoprotein concentration. Current therapies involve pharmaceuticals that significantly elevate plasma high-density lipoprotein cholesterol concentrations. Our studies were conducted to investigate the effects of low-dose lipid-free apolipoprotein A-I (apoA-I) on chronic inflammation. The aims of these studies were to determine how subcutaneously injected lipid-free apoA-I reduces accumulation of lipid and immune cells within the aortic root of hypercholesterolemic mice without sustained elevations in plasma high-density lipoprotein cholesterol concentrations. METHODS AND RESULTS Ldlr-/- and Ldlr-/- apoA-I-/- mice were fed a Western diet for a total of 12 weeks. After 6 weeks, a subset of mice from each group received subcutaneous injections of 200 μg of lipid-free human apoA-I 3 times a week, while the other subset received 200 μg of albumin, as a control. Mice treated with lipid-free apoA-I showed a decrease in cholesterol deposition and immune cell retention in the aortic root compared with albumin-treated mice, regardless of genotype. This reduction in atherosclerosis appeared to be directly related to a decrease in the number of CD131 expressing cells and the esterified cholesterol to total cholesterol content in several immune cell compartments. In addition, apoA-I treatment altered microdomain cholesterol composition that shifted CD131, the common β subunit of the interleukin 3 receptor, from lipid raft to nonraft fractions of the plasma membrane. CONCLUSIONS ApoA-I treatment reduced lipid and immune cell accumulation within the aortic root by systemically reducing microdomain cholesterol content in immune cells. These data suggest that lipid-free apoA-I mediates beneficial effects through attenuation of immune cell lipid raft cholesterol content, which affects numerous types of signal transduction pathways that rely on microdomain integrity for assembly and activation.
Collapse
Affiliation(s)
- Sushma Kaul
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Hao Xu
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Manal Zabalawi
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Elisa Maruko
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Brian E Fulp
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Theresa Bluemn
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Kristina L Brzoza-Lewis
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Mark Gerelus
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Rachel Kallinger
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Roland James
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI.,TOPS Obesity and Metabolic Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - Yi Sherry Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI.,TOPS Obesity and Metabolic Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Mary G Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI .,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
9
|
Kempen HJ, Gomaraschi M, Simonelli S, Calabresi L, Moerland M, Otvos J, Jeyarajah E, Kallend D, Wijngaard PLJ. Persistent changes in lipoprotein lipids after a single infusion of ascending doses of MDCO-216 (apoA-IMilano/POPC) in healthy volunteers and stable coronary artery disease patients. Atherosclerosis 2016; 255:17-24. [PMID: 27816804 DOI: 10.1016/j.atherosclerosis.2016.10.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Effects of single ascending doses of MDCO-216 on plasma lipid and lipoprotein levels were assessed in human healthy volunteers and in patients with stable coronary artery disease (CAD). METHODS MDCO-216 was infused at a single dose of 5, 10, 20, 30 or 40 mg/kg over 2 h and blood was collected at 2, 4, 8, 24, 48, 168 and 720 h after start of infusion (ASOI). Lipoprotein lipids were assessed by FLPC and by 1H NMR. RESULTS Plasma concentrations of free cholesterol (FC) displayed a rapid and dose-dependent rise, peaking at 8 h, but remaining above baseline until 48 h ASOI, whereas levels of esterified cholesterol (CE) increased at lower doses but not at higher doses, and even decreased below baseline at the highest dose. Plasma cholesterol esterification rate (CER) decreased with a first nadir between 4 and 8 h and a second nadir at 48 h ASOI. Taken over all subjects receiving MDCO-216, the increase in FC at 8 h correlated inversely with the drop in CER at 4 h but positively with the increase in basal and scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux capacities at 2 h ASOI. Upon FPLC analysis, FC was found to increase first in high density lipoproteins (HDL) and very low density lipoproteins (VLDL) and later (at 48 or 168 h ASOI) in low density lipoproteins (LDL). CE initially decreased in LDL and HDL but after 24 h started to increase in VLDL and LDL whereas HDL-CE was still below baseline at 48 h. Phospholipids (PL) showed the same pattern as FC. Triglycerides (TG) also rose rapidly, most prominently in VLDL, but also in LDL and HDL. Apolipoprotein E (Apo-E) in VLDL increased at 4-8 h but returned to baseline at 24 h ASOI. 1H NMR analysis showed a rapid and dose-dependent increase in HDL particle size, peaking at 2 h and returning to baseline at 24 h, and a small increase in HDL particle concentration. After infusion of the 40 mg/kg dose, LDL and VLDL-particles also increased in number and size. CONCLUSIONS A single administration of MDCO-216 caused rapid changes in lipid levels and lipoprotein composition, some of which persisted for at least 7 days.
Collapse
Affiliation(s)
| | - Monica Gomaraschi
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy.
| | - Sara Simonelli
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Laura Calabresi
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | | | - James Otvos
- LipoScience, Laboratory Corporation of America(®) Holdings, Raleigh, NC, USA
| | - Elias Jeyarajah
- LipoScience, Laboratory Corporation of America(®) Holdings, Raleigh, NC, USA
| | - David Kallend
- The Medicines Company (Schweiz) GmbH, Zürich, Switzerland
| | | |
Collapse
|
10
|
Yang Y, Rosales C, Gillard BK, Gotto AM, Pownall HJ. Acylation of lysine residues in human plasma high density lipoprotein increases stability and plasma clearance in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1787-1795. [PMID: 27594697 DOI: 10.1016/j.bbalip.2016.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Although human plasma high density lipoproteins (HDL) concentrations negatively correlate with atherosclerotic cardiovascular disease, underlying mechanisms are unknown. Thus, there is continued interest in HDL structure and functionality. Numerous plasma factors disrupt HDL structure while inducing the release of lipid free apolipoprotein (apo) AI. Given that HDL is an unstable particle residing in a kinetic trap, we tested whether HDL could be stabilized by acylation with acetyl and hexanoyl anhydrides, giving AcHDL and HexHDL respectively. Lysine analysis with fluorescamine showed that AcHDL and HexHDL respectively contained 11 acetyl and 19 hexanoyl groups. Tests with biological and physicochemical perturbants showed that HexHDL was more stable than HDL to perturbant-induced lipid free apo AI formation. Like the reaction of streptococcal serum opacity factor against HDL, the interaction of HDL with its receptor, scavenger receptor class B member 1 (SR-B1), removes CE from HDL. Thus, we tested and validated the hypothesis that selective uptake of HexHDL-[3H]CE by Chinese Hamster Ovary cells expressing SR-B1 is less than that of HDL-[3H]CE; thus, selective SR-B1 uptake of HDL-CE depends on HDL instability. However, in mice, plasma clearance, hepatic uptake and sterol secretion into bile were faster from HexHDL-[3H]CE than from HDL-[3H]CE. Collectively, our data show that acylation increases HDL stability and that the reaction of plasma factors with HDL and SR-B1-mediated uptake are reduced by increased HDL stability. In vivo data suggest that HexHDL promotes charge-dependent reverse cholesterol transport, by a mechanism that increases hepatic sterol uptake via non SR-B1 receptors, thereby increasing bile acid output.
Collapse
Affiliation(s)
- Yaliu Yang
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| | - Corina Rosales
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Baiba K Gillard
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Antonio M Gotto
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Henry J Pownall
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
11
|
Takata K, Imaizumi S, Zhang B, Miura SI, Saku K. Stabilization of high-risk plaques. Cardiovasc Diagn Ther 2016; 6:304-21. [PMID: 27500090 DOI: 10.21037/cdt.2015.10.03] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of atherosclerotic cardiovascular diseases (ASCVDs) is increasing globally and they have become the leading cause of death in most countries. Numerous experimental and clinical studies have been conducted to identify major risk factors and effective control strategies for ASCVDs. The development of imaging modalities with the ability to determine the plaque composition enables us to further identify high-risk plaque and evaluate the effectiveness of different treatment strategies. While intensive lipid-lowering by statins can stabilize or even regress plaque by various mechanisms, such as the reduction of lipid accumulation in a necrotic lipid core, the reduction of inflammation, and improvement of endothelial function, there are still considerable residual risks that need to be understood. We reviewed important findings regarding plaque vulnerability and some encouraging emerging approaches for plaque stabilization.
Collapse
Affiliation(s)
- Kohei Takata
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Satoshi Imaizumi
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Bo Zhang
- Department of Biochemistry, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Keijiro Saku
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| |
Collapse
|
12
|
Pownall HJ, Gotto AM. New Insights into the High-Density Lipoprotein Dilemma. Trends Endocrinol Metab 2016; 27:44-53. [PMID: 26673122 PMCID: PMC4707953 DOI: 10.1016/j.tem.2015.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Although high-density lipoprotein-cholesterol (HDL-C) concentration is a negative risk factor for atherosclerotic cardiovascular disease (CVD), efforts to reduce CVD risk by raising HDL-C have not been uniformly successful. Many studies have shown that alcohol consumption, that increases plasma HDL-C concentration, reduces CVD incidence. However, recent genetic studies in large populations have not only removed HDL-C from the causal link between plasma HDL-C concentration and reduced CVD risk, but also suggest that the association is weak. We propose here that the cardioprotective effects of alcohol are mediated by the interaction of its terminal metabolite, acetate, with the adipocyte free fatty acid receptor 2 (FFAR2), which elicits a profound antilipolytic effect that may increase insulin sensitivity without necessarily raising plasma HDL-C concentration.
Collapse
Affiliation(s)
- Henry J. Pownall
- Houston Methodist Research Institute and Weill Cornell Medical College, 6670 Bertner Avenue, Houston TX 77030
| | - Antonio M. Gotto
- Houston Methodist Research Institute and Weill Cornell Medical College, 1305 York Avenue, New York, NY, USA
| |
Collapse
|
13
|
Robert J, Stukas S, Button E, Cheng WH, Lee M, Fan J, Wilkinson A, Kulic I, Wright SD, Wellington CL. Reconstituted high-density lipoproteins acutely reduce soluble brain Aβ levels in symptomatic APP/PS1 mice. Biochim Biophys Acta Mol Basis Dis 2015; 1862:1027-36. [PMID: 26454209 DOI: 10.1016/j.bbadis.2015.10.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/21/2015] [Accepted: 10/03/2015] [Indexed: 01/13/2023]
Abstract
Many lines of evidence suggest a protective role for high-density lipoprotein (HDL) and its major apolipoprotein (apo)A-I in Alzheimer's Disease (AD). HDL/apoA-I particles are produced by the liver and intestine and, in addition to removing excess cholesterol from the body, are increasingly recognized to have vasoprotective functions. Here we tested the ability of reconstituted HDL (rHDL) consisting of human apoA-I reconstituted with soy phosphatidylcholine for its ability to lower amyloid beta (Aβ) levels in symptomatic APP/PS1 mice, a well-characterized preclinical model of amyloidosis. Animals were treated intravenously either with four weekly doses (chronic study) or a single dose of 60mg/kg of rHDL (acute study). The major finding of our acute study is that soluble brain Aβ40 and Aβ42 levels were significantly reduced within 24h of a single dose of rHDL. By contrast, no changes were observed in our chronic study with respect to soluble or deposited Aβ levels in animals assessed 7days after the final weekly dose of rHDL, suggesting that beneficial effects diminish as rHDL is cleared from the body. Further, rHDL-treated animals showed no change in amyloid burden, cerebrospinal fluid (CSF) Aβ levels, neuroinflammation, or endothelial activation in the chronic study, suggesting that the pathology-modifying effects of rHDL may indeed be acute and may be specific to the soluble Aβ pool. That systemic administration of rHDL can acutely modify brain Aβ levels provides support for further investigation of the therapeutic potential of apoA-I-based agents for AD. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Jérôme Robert
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emily Button
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wai Hang Cheng
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Lee
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Wilkinson
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Iva Kulic
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel D Wright
- Cardiovascular Therapeutics, CSL Limited, Parkville, Australia
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
14
|
Du Y, Wang L, Hong B. High-density lipoprotein-based drug discovery for treatment of atherosclerosis. Expert Opin Drug Discov 2015; 10:841-55. [PMID: 26022101 DOI: 10.1517/17460441.2015.1051963] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Although there has been great progress achieved by the use of intensive statin therapy, the burden of atherosclerotic cardiovascular disease (CVD) remains high. This has initiated the search for novel high-density lipoprotein (HDL)-based therapeutics. Recent years have witnessed a shift from traditional raising HDL-C levels to enhancing HDL functionality, in which the process of reverse cholesterol transport (RCT) has acquired much attention. AREAS COVERED In this review, the authors describe the key factors involved in RCT process for potential drug targets to reduce the CVD risk. Furthermore, the review provides a summary of the effective screening methods that have been developed to target RCT and their applications. This review also introduces some new strategies currently being clinically developed, which have the potential to improve HDL function in the RCT process. EXPERT OPINION It is rational that the functionality of HDL is more important than the plasma HDL-C level in the evaluation of pharmacological treatment in atherosclerosis. HDL-based strategies designed to promote macrophage RCT are a major area of current drug discovery and development for atherosclerotic diseases. A better understanding of the functionality of HDL and its relationship with atherosclerosis will expand our knowledge of the role of HDL in lipid metabolism, holding promise for a future successful HDL-based therapy.
Collapse
Affiliation(s)
- Yu Du
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Tiantan Xili, Beijing 100050 , China
| | | | | |
Collapse
|
15
|
White CR, Garber DW, Anantharamaiah GM. Anti-inflammatory and cholesterol-reducing properties of apolipoprotein mimetics: a review. J Lipid Res 2014; 55:2007-21. [PMID: 25157031 DOI: 10.1194/jlr.r051367] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Reduced levels of HDL cholesterol (HDL-C) are a strong independent predictor of coronary artery disease (CAD) risk. The major anti-atherogenic function of HDL is to mediate reverse cholesterol transport. This response is highly dependent on apoA-I and apoE, protein components of HDL. Randomized clinical trials have assessed effects of several classes of drugs on plasma cholesterol levels in CAD patients. Agents including cholestyramine, fibrates, niacin, and statins significantly lower LDL cholesterol (LDL-C) and induce modest increases in HDL-C, but tolerance issues and undesirable side effects are common. Additionally, residual risk may be present in patients with persistently low HDL-C and other complications despite a reduction in LDL-C. These observations have fueled interest in the development of new pharmacotherapies that positively impact circulating lipoproteins. The goal of this review is to discuss the therapeutic potential of synthetic apolipoprotein mimetic peptides. These include apoA-I mimetic peptides that have undergone initial clinical assessment. We also discuss newer apoE mimetics that mediate the clearance of atherogenic lipids from the circulation and possess anti-inflammatory properties. One of these (AEM-28) has recently been given orphan drug status and is undergoing clinical trials.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, Divisions of Cardiovascular Disease, Gerontology, Geriatric Medicine University of Alabama at Birmingham, Birmingham, AL
| | - David W Garber
- Palliative Care, University of Alabama at Birmingham, Birmingham, AL
| | - G M Anantharamaiah
- Palliative Care, University of Alabama at Birmingham, Birmingham, AL Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW New therapeutic strategies are needed for the rapid stabilization of acute coronary syndrome (ACS) patients by treating nonculprit lesions. Reconstituted HDL (rHDL), which is apoA-I combined with phospholipids, is currently being tested in clinical trials for this purpose and is the subject of this review. RECENT FINDINGS At least four different formulations (SRC-rHDL, CSL-111, CSL-112 and ETC-216) have been tested in clinical trials. The various rHDL preparations have been shown to be effective in the rapid mobilization of excess cholesterol from cells and in regressing atherosclerotic plaques in animal models. Two of the rHDL agents, namely ETC-216 and CSL-111, have been shown to be effective after only a few treatments in reducing plaque volume in ACS patients, as assessed by intravascular ultrasound, but no clinical trials assessing clinical endpoints have yet been completed. SUMMARY rHDL is a promising new potential therapy for ACS patients, but much work remains to be done, and there are many unresolved questions. Progress in developing rHDL into a therapy will depend on improving our understanding of their mechanism of action, determining the optimum formulation and delivery and how to monitor rHDL therapy.
Collapse
Affiliation(s)
- Brian R Krause
- aAlphaCore Pharma, Ann Arbor, Michigan bLipoprotein Metabolism Section, Cardiopulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
17
|
Diditchenko S, Gille A, Pragst I, Stadler D, Waelchli M, Hamilton R, Leis A, Wright SD. Novel Formulation of a Reconstituted High-Density Lipoprotein (CSL112) Dramatically Enhances ABCA1-Dependent Cholesterol Efflux. Arterioscler Thromb Vasc Biol 2013; 33:2202-11. [DOI: 10.1161/atvbaha.113.301981] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Svetlana Diditchenko
- From the CSL Behring AG, Berne, Switzerland (S.D., D.S., M.W.); CSL Limited, Parkville, Australia (A.G., R.H.); CSL Behring GmbH, Marburg, Germany (I.P.); AAHL Biosecurity Microscopy Facility, Geelong, Australia (A.L.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Andreas Gille
- From the CSL Behring AG, Berne, Switzerland (S.D., D.S., M.W.); CSL Limited, Parkville, Australia (A.G., R.H.); CSL Behring GmbH, Marburg, Germany (I.P.); AAHL Biosecurity Microscopy Facility, Geelong, Australia (A.L.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Ingo Pragst
- From the CSL Behring AG, Berne, Switzerland (S.D., D.S., M.W.); CSL Limited, Parkville, Australia (A.G., R.H.); CSL Behring GmbH, Marburg, Germany (I.P.); AAHL Biosecurity Microscopy Facility, Geelong, Australia (A.L.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Dominik Stadler
- From the CSL Behring AG, Berne, Switzerland (S.D., D.S., M.W.); CSL Limited, Parkville, Australia (A.G., R.H.); CSL Behring GmbH, Marburg, Germany (I.P.); AAHL Biosecurity Microscopy Facility, Geelong, Australia (A.L.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Marcel Waelchli
- From the CSL Behring AG, Berne, Switzerland (S.D., D.S., M.W.); CSL Limited, Parkville, Australia (A.G., R.H.); CSL Behring GmbH, Marburg, Germany (I.P.); AAHL Biosecurity Microscopy Facility, Geelong, Australia (A.L.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Ross Hamilton
- From the CSL Behring AG, Berne, Switzerland (S.D., D.S., M.W.); CSL Limited, Parkville, Australia (A.G., R.H.); CSL Behring GmbH, Marburg, Germany (I.P.); AAHL Biosecurity Microscopy Facility, Geelong, Australia (A.L.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Andrew Leis
- From the CSL Behring AG, Berne, Switzerland (S.D., D.S., M.W.); CSL Limited, Parkville, Australia (A.G., R.H.); CSL Behring GmbH, Marburg, Germany (I.P.); AAHL Biosecurity Microscopy Facility, Geelong, Australia (A.L.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Samuel D. Wright
- From the CSL Behring AG, Berne, Switzerland (S.D., D.S., M.W.); CSL Limited, Parkville, Australia (A.G., R.H.); CSL Behring GmbH, Marburg, Germany (I.P.); AAHL Biosecurity Microscopy Facility, Geelong, Australia (A.L.); and CSL Behring, King of Prussia, PA (S.D.W.)
| |
Collapse
|
18
|
Boekholdt SM, Arsenault BJ, Hovingh GK, Mora S, Pedersen TR, Larosa JC, Welch KMA, Amarenco P, Demicco DA, Tonkin AM, Sullivan DR, Kirby A, Colhoun HM, Hitman GA, Betteridge DJ, Durrington PN, Clearfield MB, Downs JR, Gotto AM, Ridker PM, Kastelein JJP. Levels and changes of HDL cholesterol and apolipoprotein A-I in relation to risk of cardiovascular events among statin-treated patients: a meta-analysis. Circulation 2013; 128:1504-12. [PMID: 23965489 DOI: 10.1161/circulationaha.113.002670] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND It is unclear whether levels of high-density lipoprotein cholesterol (HDL-C) or apolipoprotein A-I (apoA-I) remain inversely associated with cardiovascular risk among patients who achieve very low levels of low-density lipoprotein cholesterol on statin therapy. It is also unknown whether a rise in HDL-C or apoA-I after initiation of statin therapy is associated with a reduced cardiovascular risk. METHODS AND RESULTS We performed a meta-analysis of 8 statin trials in which lipids and apolipoproteins were determined in all study participants at baseline and at 1-year follow-up. Individual patient data were obtained for 38,153 trial participants allocated to statin therapy, of whom 5387 suffered a major cardiovascular event. HDL-C levels were associated with a reduced risk of major cardiovascular events (adjusted hazard ratio [HR], 0.83; 95% confidence interval [CI], 0.81-0.86 per 1 standard deviation increment), as were apoA-I levels (HR, 0.79; 95% CI, 0.72-0.82). This association was also observed among patients achieving on-statin low-density lipoprotein cholesterol levels <50 mg/dL. An increase of HDL-C was not associated with reduced cardiovascular risk (HR, 0.98; 95% CI, 0.94-1.01 per 1 standard deviation increment), whereas a rise in apoA-I was (HR, 0.93; 95% CI, 0.90-0.97). CONCLUSIONS Among patients treated with statin therapy, HDL-C and apoA-I levels were strongly associated with a reduced cardiovascular risk, even among those achieving very low low-density lipoprotein cholesterol. An apoA-I increase was associated with a reduced risk of major cardiovascular events, whereas for HDL-C this was not the case. These findings suggest that therapies that increase apoA-I concentration require further exploration with regard to cardiovascular risk reduction.
Collapse
Affiliation(s)
- S Matthijs Boekholdt
- Departments of Cardiology (S.M.B.) and Vascular Medicine (B.J.A., G.K.H., J.J.P.K.), Academic Medical Center, Amsterdam, The Netherlands; Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital, Boston, MA (S.M., P.M.R.); Center of Preventive Medicine, Oslo University Hospital, Ulleval and University of Oslo, Norway (T.R.P.); State University of New York Health Science Center, Brooklyn, NY (J.C.L.); Rosalind Franklin University of Medicine and Science, North Chicago, IL (K.M.A.W.); Department of Neurology and Stroke Center, Bichat University Hospital, Paris, France (P.A.); Global Pharmaceuticals Pfizer, New York, NY (D.A.D.); Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (A.M.T.); Department of Biochemistry and Lipid Clinic, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia (D.R.S.); NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia (A.K.); Medical Research Institute, University of Dundee, Dundee, United Kingdom (H.M.C.); Centre for Diabetes, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (G.A.H.); Department of Medicine, Royal Free and University College Medical School, London, United Kingdom (D.J.B.); School of Biomedicine, University of Manchester, Manchester, United Kingdom (P.N.D.); Touro University, Mare Island, CA (M.B.C.); Department of Medicine, University of Texas Health Science Center, and VERDICT, South Texas Veterans Health Care System, San Antonio, TX (J.R.D.); and Weill Cornell Medical College, New York, NY (A.M.G.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Spirig R, Schaub A, Kropf A, Miescher S, Spycher MO, Rieben R. Reconstituted high-density lipoprotein modulates activation of human leukocytes. PLoS One 2013; 8:e71235. [PMID: 23967171 PMCID: PMC3743844 DOI: 10.1371/journal.pone.0071235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/28/2013] [Indexed: 01/17/2023] Open
Abstract
An anti-inflammatory effect of reconstituted High Density Lipoprotein (rHDL) has been demonstrated in atherosclerosis and in sepsis models. An increase of adhesion molecules as well as tissue factor expression on endothelial cells in response to inflammatory or danger signals are attenuated by the treatment with rHDL. Here we show the inhibitory effect of rHDL on the activation of human leukocytes in a whole blood assay as well as on monocyte-derived human dendritic cells (DC). Multiplex analysis of human whole blood showed that phytohaemagglutinin (PHA)-induced secretion of the cytokines IL-1β, IL-1RA, IL-2R, IL-6, IL-7, IL-12(p40), IL-15 and IFN-α was inhibited. Furthermore, an inhibitory effect on the production of the chemokines CCL-2, CCL-4, CCL-5, CXCL-9 and CXCL-10 was observed. Activation of granulocytes and CD14+ monocytes by PHA is inhibited dose-dependently by rHDL shown as decreased up-regulation of ICAM-1 surface expression. In addition, we found a strong inhibitory effect of rHDL on toll-like receptor 2 (TLR2)- and TLR4-mediated maturation of DC. Treatment of DC with rHDL prevented the up-regulation of cell surface molecules CD80, CD83 and CD86 and it inhibited the TLR-driven activation of inflammatory transcription factor NF-κB. These findings suggest that rHDL prevents activation of crucial cellular players of cellular immunity and could therefore be a useful reagent to impede inflammation as well as the link between innate and adaptive immunity.
Collapse
Affiliation(s)
- Rolf Spirig
- Laboratory of Cardiovascular Research, Department of Clinical Research, University of Bern, Bern, Switzerland
- CSL Behring AG, Bern, Switzerland
| | | | | | | | | | - Robert Rieben
- Laboratory of Cardiovascular Research, Department of Clinical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
20
|
Kempen HJ, Gomaraschi M, Bellibas SE, Plassmann S, Zerler B, Collins HL, Adelman SJ, Calabresi L, Wijngaard PLJ. Effect of repeated apoA-IMilano/POPC infusion on lipids, (apo)lipoproteins, and serum cholesterol efflux capacity in cynomolgus monkeys. J Lipid Res 2013; 54:2341-53. [PMID: 23828780 DOI: 10.1194/jlr.m033779] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MDCO-216, a complex of dimeric recombinant apoA-IMilano (apoA-IM) and palmitoyl-oleoyl-phosphatidylcholine (POPC), was administered to cynomolgus monkeys at 30, 100, and 300 mg/kg every other day for a total of 21 infusions, and effects on lipids, (apo)lipoproteins, and ex-vivo cholesterol efflux capacity were monitored. After 7 or 20 infusions, free cholesterol (FC) and phospholipids (PL) were strongly increased, and HDL-cholesterol (HDL-C), apoA-I, and apoA-II were strongly decreased. We then measured short-term effects on apoA-IM, lipids, and (apo)lipoproteins after the first or the last infusion. After the first infusion, PL and FC went up in the HDL region and also in the LDL and VLDL regions. ApoE shifted from HDL to LDL and VLDL regions, while ApoA-IM remained located in the HDL region. On day 41, ApoE levels were 8-fold higher than on day 1, and FC, PL, and apoE resided mostly in LDL and VLDL regions. Drug infusion quickly decreased the endogenous cholesterol esterification rate. ABCA1-mediated cholesterol efflux on day 41 was markedly increased, whereas scavenger receptor type B1 (SRB1) and ABCG1-mediated effluxes were only weakly increased. Strong increase of FC is due to sustained stimulation of ABCA1-mediated efflux, and drop in HDL and formation of large apoE-rich particles are due to lack of LCAT activation.
Collapse
|
21
|
Maugeais C, Annema W, Blum D, Mary JL, Tietge UJF. rHDL administration increases reverse cholesterol transport in mice, but is not additive on top of ezetimibe or cholestyramine treatment. Atherosclerosis 2013; 229:94-101. [PMID: 23725986 DOI: 10.1016/j.atherosclerosis.2013.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 03/12/2013] [Accepted: 04/02/2013] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Promoting reverse cholesterol transport (RCT) is a major atheroprotective property of HDL. The present study explored the effect of stimulating the first step of RCT (cholesterol efflux from macrophages) alone or in combination with stimulating the last step of RCT (fecal sterol excretion). METHODS AND RESULTS Reconstituted HDL (rHDL) was injected into wild-type mice either with or without administration of the cholesterol absorption inhibitor ezetimibe or the bile acid sequestrant cholestyramine. Single dose administration of rHDL (100 mg apoA-I/kg) resulted in an early (4 h) increase in plasma free cholesterol levels (p < 0.001), without affecting hepatic cholesterol levels or fecal mass sterol excretion. rHDL injection also increased [(3)H]cholesterol appearance in plasma at an early time-point (4 h) after intraperitoneal administration of [(3)H]cholesterol-labeled mouse macrophage foam cells and fecal radioactivity excretion indicating completed RCT was increased by 26% (p < 0.05). Ezetimibe treatment inhibited intestinal cholesterol absorption by 74% (p < 0.01), but also the bile acid sequestrant cholestyramine decreased cholesterol absorption significantly (24%, p < 0.01). Consequently, ezetimibe increased RCT 2.1-fold (p < 0.001) primarily within fecal neutral sterols, while cholestyramine increased RCT by 3.6-fold (p < 0.001), primarily within bile acids (p < 0.001), but also within neutral sterols (p < 0.001). However, no additive effects of both intestinal sterol uptake inhibitors were observed on top of rHDL administration. CONCLUSION These data demonstrate that increasing the first step of RCT by rHDL administration results in transient cholesterol mobilization from macrophages to plasma. This effect is not further enhanced by stimulating the last step of RCT, fecal sterol excretion.
Collapse
Affiliation(s)
- Cyrille Maugeais
- F. Hoffmann La Roche Ltd. pRED, Cardiovascular & Metabolic Diseases, Basel, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Torsney E, Pirianov G, Charolidi N, Shoreim A, Gaze D, Petrova S, Laing K, Meisinger T, Xiong W, Baxter BT, Cockerill GW. Elevation of plasma high-density lipoproteins inhibits development of experimental abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2012; 32:2678-86. [PMID: 23023368 DOI: 10.1161/atvbaha.112.00009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Patients with abdominal aortic aneurysms have lower concentrations of high-density lipoproteins (HDLs), leading us to investigate whether increasing plasma HDLs could influence aneurysm formation. METHODS AND RESULTS Using the angiotensin II-induced hypercholesterolemic and the CaCl(2)-induced normocholesterolemic mouse model of AAA, we investigated the hypothesis that elevation of HDLs inhibits AAA. HDLs elevated before or at the time of AAA induction reduced AAA formation in both models but had no effect on early ruptures. Analysis of protein lysates from specific aortic segments demonstrated site-specific effects of HDLs on early signal transduction and cellular attrition. We found that HDLs reduced extracellular signal related kinases 1/2 activation in the suprarenal segment, while having no effect on p38 mitogen-associated protein kinase activation in any aortic segment and inhibiting c-Jun N-terminal kinase activation in all aortic segments. In addition, HDL elevation inhibited angiotensin II-induced apoptosis while inducing autophagy in the suprarenal segment of the aorta. Using Illumina gene array profiling we investigated the ability of HDL to modulate basal suprarenal aortic gene expression. CONCLUSIONS Increasing plasma HDLs inhibit experimental AAA formation, independent of hypercholesterolemia via reduced extracellular signal related kinases 1/2 activation and alteration of the balance of cellular attrition. HDLs modulate genes involved in matrix remodelling, cell migration, and proliferation.
Collapse
Affiliation(s)
- Evelyn Torsney
- Division of Clinical Sciences, St George's University of London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|