1
|
Chandy M, Jimenez-Tellez N, Wu JC. The relationship between cannabis and cardiovascular disease: clearing the haze. Nat Rev Cardiol 2025:10.1038/s41569-025-01121-6. [PMID: 39849111 DOI: 10.1038/s41569-025-01121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
Cannabis has been consumed for centuries, but global regulatory changes over the past three decades have increased the availability and consumption of cannabis. Cannabinoids are touted to have therapeutic potential for many diseases and could be a replacement for opioids for analgesia and sedation. However, cannabinoids can cause substantial adverse cardiovascular events that would mitigate any potential benefit. The endocannabinoid system regulates mood, satiety and memory, and modulates the cardiovascular system. The link between cannabinoids and cardiovascular disease, which used to be limited to evidence from preclinical studies, case reports and case series, is now evident in epidemiological studies. Cannabinoids adversely affect the cardiovascular system, causing myocardial infarction, cerebrovascular accidents, arrhythmia and heart failure. The effects of novel cannabinoids are unknown, and synthetic cannabinoids have the potential to cause even more substantial harm than traditional cannabinoids. Therefore, with the increasing availability and use of cannabis, the acute and chronic effects of this drug are becoming apparent.
Collapse
Affiliation(s)
- Mark Chandy
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Western University, London, Ontario, Canada.
| | - Nerea Jimenez-Tellez
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Pędzińska-Betiuk A, Gergs U, Weresa J, Remiszewski P, Harasim-Symbor E, Malinowska B. Comparison of Cardioprotective Potential of Cannabidiol and β-Adrenergic Stimulation Against Hypoxia/Reoxygenation Injury in Rat Atria and Ventricular Papillary Muscles. Pharmaceuticals (Basel) 2024; 17:1379. [PMID: 39459019 PMCID: PMC11509923 DOI: 10.3390/ph17101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Hypoxia is one of the most significant pathogenic factors in cardiovascular diseases. Preclinical studies suggest that nonpsychoactive cannabidiol (CBD) and β-adrenoceptor stimulation might possess cardioprotective potential against ischemia-reperfusion injury. The current study evaluates the influence of hypoxia-reoxygenation (H/R) on the function of atria and ventricular papillary muscles in the presence of CBD and the nonselective β-adrenoceptor agonist isoprenaline (ISO). METHODS The concentration curves for ISO were constructed in the presence of CBD (1 µM) before or after H/R. In chronic experiments (CBD 10 mg/kg, 14 days), the left atria isolated from spontaneously hypertensive (SHR) and their normotensive control (WKY) rats were subjected to H/R following ISO administration. RESULTS Hypoxia decreased the rate and force of contractions in all compartments. The right atria were the most resistant to hypoxia regardless of prior β-adrenergic stimulation. Previous β-adrenergic stimulation improved recovery in isolated left atria and right (but not left) papillary muscles. Acute (but not chronic) CBD administration increased the effects of ISO in left atria and right (but not left) papillary muscles. Hypertension accelerates left atrial recovery during reoxygenation. CONCLUSIONS H/R directly modifies the function of particular cardiac compartments in a manner dependent on cardiac region and β-adrenergic prestimulation. The moderate direct cardioprotective potential of CBD and β-adrenergic stimulation against H/R is dependent on the cardiac region, and it is less than in the whole heart with preserved coronary flow. In clinical terms, our research expands the existing knowledge about the impact of cannabidiol on cardiac ischemia, the world's leading cause of death.
Collapse
Affiliation(s)
- Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany;
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| | - Patryk Remiszewski
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| |
Collapse
|
3
|
Hu T, Duan R, Gao H, Bai X, Huang X, Yan X, An L, Ma Y, Chen R, Hong S, Gan M. Exosomes from myoblasts induced by hypoxic preconditioning improved ventricular conduction by increasing Cx43 expression in hypothermia ischemia reperfusion hearts. Cytotechnology 2024; 76:533-546. [PMID: 39188650 PMCID: PMC11344748 DOI: 10.1007/s10616-024-00634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/25/2024] [Indexed: 08/28/2024] Open
Abstract
Myocardial ischemia-reperfusion arrhythmia after cardiac surgery is common and seriously affects quality of life. Remote ischemic preconditioning can reduce the myocardial damage caused by severe ischemia. However, the underlying mechanism is not well understood. This study aimed to investigate the effects of exosomes derived from C2C12 mouse myoblasts after hypoxic preconditioning (HP) on ventricular conduction in hypothermic ischemia-reperfusion hearts. Myocardial ischemia-reperfusion model rats were established using the Langendorff cardiac perfusion system. Exosomes derived from normoxic (ExoA) and hypoxia-preconditioned (ExoB) C2C12 cells were injected into the jugular vein of the model rats. The time to heartbeat restoration, arrhythmia type and duration, and heart rate were recorded after myocardial ischemia-reperfusion. Conduction velocity on the surface of left ventricle was measured using a microelectrode array after 30 min of balanced perfusion, 15 min of reperfusion, and 30 min of reperfusion. Immunohistochemistry and western blotting were performed to determine the distribution and relative expression of connexin 43 (Cx43). ExoB contained more exosomes than ExoA, showing that HP stimulated the release of exosomes. The IR + ExoB group showed faster recovery of ventricular myocardial activity, a lower arrhythmia score, faster conduction velocity, and better electrical conductivity than the IR group. ExoB increased the expression of Cx43 and reduced its lateralization in the ventricular muscle. Our study showed that exosomes induced by hypoxic preconditioning can improve ventricular myocardial conduction and reperfusion arrhythmia in isolated hearts after hypothermic ischemia-reperfusion. Graphical abstract
Collapse
Affiliation(s)
- Tingju Hu
- Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550001 Guizhou China
| | - Rui Duan
- Department of Pain, The Second People’s Hospital of Guiyang, Guiyang, 550081 Guizhou China
| | - Hong Gao
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang, 550004 Guizhou China
| | - Xue Bai
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Xiang Huang
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Xu Yan
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Li An
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Yanyan Ma
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Rui Chen
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550001 Guizhou China
| | - Sen Hong
- Department of Pain, The Second People’s Hospital of Guiyang, Guiyang, 550081 Guizhou China
| | - Mi Gan
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| |
Collapse
|
4
|
Sannar EM, Winter JR, Franke RK, Werner E, Rochowiak R, Romani PW, Miller OS, Bainbridge JL, Enabulele O, Thompson T, Natvig C, Mikulich-Gilbertson SK, Tartaglia NR. Cannabidiol for treatment of Irritability and Aggressive Behavior in Children and Adolescents with ASD: Background and Methods of the CAnnabidiol Study in Children with Autism Spectrum DisordEr (CASCADE) Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.12.24311894. [PMID: 39211864 PMCID: PMC11361222 DOI: 10.1101/2024.08.12.24311894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Introduction Autism spectrum disorder (ASD) is a neurodevelopmental disorder commonly associated with behavioral challenges. There are few evidence based pharmacological interventions available for the treatment of behavioral symptoms associated with ASD. Cannabidiol (CBD), the non-psychoactive component of cannabis, has potential neuroprotective, antiepileptic, anxiolytic, and antipsychotic effects and may be useful in treating the behavioral symptoms of ASD. Methods We describe the research methods of a 27-week double-blind placebo-controlled cross-over trial of cannabidiol for the treatment of irritability and aggression associated with ASD, utilizing the irritability subscale of the Aberrant Behavior Checklist-2nd edition (ABC-2) as the primary outcome measure. Adverse effects and safety monitoring protocols are included. Several secondary and exploratory outcomes measures also include anxiety, communication, repetitive behaviors, attention, hyperactivity, autism family experience, and telehealth functional behavior assessment. Conclusion There is a significant need for clinical research exploring alternative medications for the treatment of behavioral symptoms of ASD. Cannabidiol (CBD) is being studied for the management of irritability, aggression, and other problem behaviors associated with ASD.
Collapse
|
5
|
Hu H, Li Q, Wang J, Cheng Y, Zhao J, Hu C, Yin X, Wu Y, Sang R, Jiang H, Sun Y, Wang S. Mitochondria-targeted sonodynamic modulation of neuroinflammation to protect against myocardial ischemia‒reperfusion injury. Acta Biomater 2024:S1742-7061(24)00445-8. [PMID: 39122136 DOI: 10.1016/j.actbio.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Sympathetic hyperactivation and inflammatory responses are the main causes of myocardial ischemia‒reperfusion (I/R) injury and myocardial I/R-related ventricular arrhythmias (VAs). Previous studies have demonstrated that light-emitting diodes (LEDs) could modulate post-I/R neuroinflammation, thus providing protection against myocardial I/R injury. Nevertheless, further applications of LEDs are constrained due to the low penetration depth (<1 cm) and potential phototoxicity. Low-intensity focused ultrasound (LIFU), an emerging noninvasive neuromodulation strategy with deeper penetration depth (∼10 cm), has been confirmed to modulate sympathetic nerve activity and inflammatory responses. Sonodynamic therapy (SDT), which combines LIFU with sonosensitizers, confers additional advantages, including superior therapeutic efficacy, precise localization of neuronal modulation and negligible side effects. Herein, LIFU and SDT were introduced to modulate post-myocardial I/R neuroinflammation to protect against myocardial I/R injury. The results indicated that LIFU and SDT inhibited sympathetic neural activity, suppressed the activation of astrocytes and microglia, and promoted microglial polarization towards the M2 phenotype, thereby attenuating myocardial I/R injury and preventing I/R-related malignant VAs. These insights suggest that LIFU and SDT inspire a noninvasive and efficient neuroinflammatory modulation strategy with great clinical translation potential thus benefiting more patients with myocardial I/R in the future. STATEMENT OF SIGNIFICANCE: Myocardial ischemia-reperfusion (I/R) may cause I/R injury and I/R-induced ventricular arrhythmias. Sympathetic hyperactivation and inflammatory response play an adverse effect in myocardial I/R injury. Previous studies have shown that light emitting diode (LED) can regulate I/R-induced neuroinflammation, thus playing a myocardial protective role. However, due to the low penetration depth and potential phototoxicity of LED, it is difficult to achieve clinical translation. Herein, we introduced sonodynamic modulation of neuroinflammation to protect against myocardial I/R injury, based on mitochondria-targeted nanosonosensitizers (CCNU980 NPs). We demonstrated that sonodynamic modulation could promote microglial autophagy, thereby preventing myocardial I/R injury and I/R-induced ventricular arrhythmias. This is the first example of sonodynamic modulation of myocardial I/R-induced neuroinflammation, providing a novel strategy for clinical translation.
Collapse
Affiliation(s)
- Haoyuan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qian Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Jiale Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ye Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jiahui Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Changhao Hu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xinyue Yin
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuzhe Wu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ruiqi Sang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China.
| | - Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
6
|
Naya NM, Kelly J, Hogwood A, Abbate A, Toldo S. Therapeutic potential of cannabidiol (CBD) in the treatment of cardiovascular diseases. Expert Opin Investig Drugs 2024; 33:699-712. [PMID: 38703078 DOI: 10.1080/13543784.2024.2351513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Cannabidiol (CBD) is the primary non-psychoactive chemical derived from Cannabis Sativa, and its growing popularity is due to its potential therapeutic properties while avoiding the psychotropic effects of other phytocannabinoids, such as tetrahydrocannabinol (THC). Numerous pre-clinical studies in cellular and animal models and human clinical trials have demonstrated a positive impact of CBD on physiological and pathological processes. Recently, the FDA approved its use for the treatment of seizures, and clinical trials to test the efficacy of CBD in myocarditis and pericarditis are ongoing. AREAS COVERED We herein reviewed the current literature on the reported effects of CBD in the cardiovascular system, highlighting the physiological effects and the outcomes of using CBD as a therapeutic tool in pathological conditions to address this significant global health concern. EXPERT OPINION The comprehensive examination of the literature emphasizes the potential of CBD as a therapeutic option for treating cardiovascular diseases through its anti-inflammatory, vasodilatory, anti-fibrotic, and antioxidant properties in different conditions such as diabetic cardiomyopathy, myocarditis, doxorubicin-induced cardiotoxicity, and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Austin Hogwood
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
7
|
Pędzińska-Betiuk A, Schlicker E, Weresa J, Malinowska B. Re-evaluation of the cardioprotective effects of cannabinoids against ischemia-reperfusion injury according to the IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria. Front Pharmacol 2024; 15:1382995. [PMID: 38873412 PMCID: PMC11170160 DOI: 10.3389/fphar.2024.1382995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 06/15/2024] Open
Abstract
Ischemic heart disease, associated with high morbidity and mortality, represents a major challenge for the development of drug-based strategies to improve its prognosis. Results of pre-clinical studies suggest that agonists of cannabinoid CB2 receptors and multitarget cannabidiol might be potential cardioprotective strategies against ischemia-reperfusion injury. The aim of our study was to re-evaluate the cardioprotective effects of cannabinoids against ischemia-reperfusion injury according to the IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria published recently by the European Union (EU) CARDIOPROTECTION COST ACTION. To meet the minimum criteria of those guidelines, experiments should be performed (i) on healthy small animals subjected to ischemia with reperfusion lasting for at least 2 hours and (ii) confirmed in small animals with comorbidities and co-medications and (iii) in large animals. Our analysis revealed that the publications regarding cardioprotective effects of CB2 receptor agonists and cannabidiol did not meet all three strict steps of IMPACT. Thus, additional experiments are needed to confirm the cardioprotective activities of (endo)cannabinoids mainly on small animals with comorbidities and on large animals. Moreover, our publication underlines the significance of the IMPACT criteria for a proper planning of preclinical experiments regarding cardiac ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
8
|
Wright NJD. A review of the direct targets of the cannabinoids cannabidiol, Δ9-tetrahydrocannabinol, N-arachidonoylethanolamine and 2-arachidonoylglycerol. AIMS Neurosci 2024; 11:144-165. [PMID: 38988890 PMCID: PMC11230856 DOI: 10.3934/neuroscience.2024009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 07/12/2024] Open
Abstract
Marijuana has been used by humans for thousands of years for both medicinal and recreational purposes. This included the treatment of pain, inflammation, seizures, and nausea. In the 1960s, the structure of the principal psychoactive ingredient Δ9-tetrahydrocannabinol was determined, and over the next few decades, two cannabinoid receptors were characterized along with the human endocannabinoid system and what it affects. This includes metabolism, the cardiovascular and reproductive systems, and it is involved in such conditions as inflammation, cancer, glaucoma, and liver and musculoskeletal disorders. In the central nervous system, the endocannabinoid system has been linked to appetite, learning, memory, and conditions such as depression, anxiety, schizophrenia, stroke, multiple sclerosis, neurodegeneration, addiction, and epilepsy. It was the profound effectiveness of cannabidiol, a non-psychoactive ingredient of marijuana, to relieve the symptoms of Dravet syndrome, a severe form of childhood epilepsy, that recently helped spur marijuana research. This has helped substantially to change society's attitude towards this potential source of useful drugs. However, research has also revealed that the actions of endocannabinoids, such as anandamide and 2-arachidonoylglycerol, and the phytocannabinoids, tetrahydrocannabinol and cannabidiol, were not just due to interactions with the two cannabinoid receptors but by acting directly on many other targets including various G-protein receptors and cation channels, such as the transient receptor potential channels for example. This mini-review attempts to survey the effects of these 4 important cannabinoids on these currently identified targets.
Collapse
|
9
|
Aran A, Cayam Rand D. Cannabinoid treatment for the symptoms of autism spectrum disorder. Expert Opin Emerg Drugs 2024; 29:65-79. [PMID: 38226593 DOI: 10.1080/14728214.2024.2306290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting approximately 3% of school-age children. The core symptoms are deficits in social communication and restricted and repetitive patterns of behavior. Associated problems in cognition, language, behavior, sleep and mood are prevalent. Currently, no established pharmacological treatment exists for core ASD symptoms. Risperidone and aripiprazole are used to manage associated irritability, but their effectiveness is limited and adverse events are common. AREAS COVERED This mini-review summarizes existing scientific literature and ongoing clinical trials concerning cannabinoid treatment for ASD. Uncontrolled case series have documented improvements in both core ASD symptoms and related behavioral challenges in children treated with cannabis extracts rich in cannabidiol (CBD). Placebo-controlled studies involving CBD-rich cannabis extracts and/or pure CBD in children with ASD have demonstrated mixed efficacy results. A similar outcome was observed in a placebo-controlled study of pure CBD addressing social avoidance in Fragile X syndrome. Importantly, these studies have shown relatively high safety and tolerability. EXPERT OPINION While current clinical data suggest the potential of CBD and CBD-rich cannabis extract in managing core and behavioral deficits in ASD, it is prudent to await the results of ongoing placebo-controlled trials before considering CBD treatment for ASD.
Collapse
Affiliation(s)
- Adi Aran
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Israel School of Medicine, Hebrew university of Jerusalem, Jerusalem, Israel
| | - Dalit Cayam Rand
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Israel School of Medicine, Hebrew university of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Chu FX, Wang X, Li B, Xu LL, Di B. The NLRP3 inflammasome: a vital player in inflammation and mediating the anti-inflammatory effect of CBD. Inflamm Res 2024; 73:227-242. [PMID: 38191853 DOI: 10.1007/s00011-023-01831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The NLRP3 inflammasome is a vital player in the emergence of inflammation. The priming and activation of the NLRP3 inflammasome is a major trigger for inflammation which is a defense response against adverse stimuli. However, the excessive activation of the NLRP3 inflammasome can lead to the development of various inflammatory diseases. Cannabidiol, as the second-most abundant component in cannabis, has a variety of pharmacological properties, particularly anti-inflammation. Unlike tetrahydrocannabinol, cannabidiol has a lower affinity for cannabinoid receptors, which may be the reason why it is not psychoactive. Notably, the mechanism by which cannabidiol exerts its anti-inflammatory effect is still unclear. METHODS We have performed a literature review based on published original and review articles encompassing the NLRP3 inflammasome and cannabidiol in inflammation from central databases, including PubMed and Web of Science. RESULTS AND CONCLUSIONS In this review, we first summarize the composition and activation process of the NLRP3 inflammasome. Then, we list possible molecular mechanisms of action of cannabidiol. Next, we explain the role of the NLRP3 inflammasome and the anti-inflammatory effect of cannabidiol in inflammatory disorders. Finally, we emphasize the capacity of cannabidiol to suppress inflammation by blocking the NLRP3 signaling pathway, which indicates that cannabidiol is a quite promising anti-inflammatory compound.
Collapse
Affiliation(s)
- Feng-Xin Chu
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao Wang
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Bo Li
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li-Li Xu
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| | - Bin Di
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
11
|
Martinez Naya N, Kelly J, Corna G, Golino M, Polizio AH, Abbate A, Toldo S, Mezzaroma E. An Overview of Cannabidiol as a Multifunctional Drug: Pharmacokinetics and Cellular Effects. Molecules 2024; 29:473. [PMID: 38257386 PMCID: PMC10818442 DOI: 10.3390/molecules29020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Cannabidiol (CBD), a non-psychoactive compound derived from Cannabis Sativa, has garnered increasing attention for its diverse therapeutic potential. This comprehensive review delves into the complex pharmacokinetics of CBD, including factors such as bioavailability, distribution, safety profile, and dosage recommendations, which contribute to the compound's pharmacological profile. CBD's role as a pharmacological inhibitor is explored, encompassing interactions with the endocannabinoid system and ion channels. The compound's anti-inflammatory effects, influencing the Interferon-beta and NF-κB, position it as a versatile candidate for immune system regulation and interventions in inflammatory processes. The historical context of Cannabis Sativa's use for recreational and medicinal purposes adds depth to the discussion, emphasizing CBD's emergence as a pivotal phytocannabinoid. As research continues, CBD's integration into clinical practice holds promise for revolutionizing treatment approaches and enhancing patient outcomes. The evolution in CBD research encourages ongoing exploration, offering the prospect of unlocking new therapeutic utility.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Giuliana Corna
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires 1199, Argentina;
| | - Michele Golino
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23220, USA;
- Department of Medicine and Surgery, University of Insubria, 2110 Varese, Italy
| | - Ariel H. Polizio
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23220, USA;
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Eleonora Mezzaroma
- School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23220, USA
| |
Collapse
|
12
|
Guo Y, Wei R, Deng J, Guo W. Research progress in the management of vascular disease with cannabidiol: a review. J Cardiothorac Surg 2024; 19:6. [PMID: 38172934 PMCID: PMC10765825 DOI: 10.1186/s13019-023-02476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
The morbidity and mortality rates associated with vascular disease (VD) have been gradually increasing. Currently, the most common treatment for VD is surgery, with the progress in drug therapy remaining slow. Cannabidiol (CBD) is a natural extract of Cannabis sativa L. with sedative, analgesic, and nonaddictive properties. CBD binds to 56 cardiovascular-related receptors and exerts extensive regulatory effects on the cardiovascular system, making it a potential pharmacological agent for the management of VD. However, most CBD studies have focused on neurological and cardiac diseases, and research on the management of VD with CBD is still rare. In this review, we summarize the currently available data on CBD in the management of VD, addressing four aspects: the major molecular targets of CBD in VD management, pharmacokinetic properties, therapeutic effects of CBD on common VDs, and side effects. The findings indicate that CBD has anti-anxiety, anti-oxidation, and anti-inflammatory properties and can inhibit abnormal proliferation and apoptosis of vascular smooth muscle and endothelial cells; these effects suggest CBD as a therapeutic agent for atherosclerosis, stress-induced hypertension, diabetes-related vasculopathy, ischemia-reperfusion injury, and vascular damage caused by smoking and alcohol abuse. This study provides a theoretical basis for further research on CBD in the management of VD.
Collapse
Affiliation(s)
- Yilong Guo
- Medical School of Chinese PLA, Beijing, 100037, China
- Department of Vascular and Endovascular Surgery, The First Medical Centre of PLA General Hospital, 28#, Fuxing Road, Beijing, 100037, China
| | - Ren Wei
- Department of Vascular and Endovascular Surgery, The First Medical Centre of PLA General Hospital, 28#, Fuxing Road, Beijing, 100037, China
| | - Jianqing Deng
- Senior Department of Cardiology, The Six Medical Centre of PLA General Hospital, Beijing, 100037, China
| | - Wei Guo
- Medical School of Chinese PLA, Beijing, 100037, China.
- Department of Vascular and Endovascular Surgery, The First Medical Centre of PLA General Hospital, 28#, Fuxing Road, Beijing, 100037, China.
| |
Collapse
|
13
|
Abstract
Cannabidiol (CBD) is one of the most interesting constituents of cannabis, garnering significant attention in the medical community in recent years due to its proven benefit for reducing refractory seizures in pediatric patients. Recent legislative changes in the United States have made CBD readily available to the general public, with up to 14% of adults in the United States having tried it in 2019. CBD is used to manage a myriad of symptoms, including anxiety, pain, and sleep disturbances, although rigorous evidence for these indications is lacking. A significant advantage of CBD over the other more well-known cannabinoid delta-9-tetrahydroncannabinol (THC) is that CBD does not produce a "high." As patients increasingly self-report its use to manage their medical conditions, and as the opioid epidemic continues to drive the quest for alternative pain management approaches, the aims of this narrative review are to provide a broad overview of the discovery, pharmacology, and molecular targets of CBD, its purported and approved neurologic indications, evidence for its analgesic potential, regulatory implications for patients and providers, and future research needs.
Collapse
Affiliation(s)
- Alexandra Sideris
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Hospital for Special Surgery, New York, New York
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
- HSS Research Institute, New York, New York
| | - Lisa V Doan
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
14
|
Zhang J, Lin C, Jin S, Wang H, Wang Y, Du X, Hutchinson MR, Zhao H, Fang L, Wang X. The pharmacology and therapeutic role of cannabidiol in diabetes. EXPLORATION (BEIJING, CHINA) 2023; 3:20230047. [PMID: 37933286 PMCID: PMC10582612 DOI: 10.1002/exp.20230047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 11/08/2023]
Abstract
In recent years, cannabidiol (CBD), a non-psychotropic cannabinoid, has garnered substantial interest in drug development due to its broad pharmacological activity and multi-target effects. Diabetes is a chronic metabolic disease that can damage multiple organs in the body, leading to the development of complications such as abnormal kidney function, vision loss, neuropathy, and cardiovascular disease. CBD has demonstrated significant therapeutic potential in treating diabetes mellitus and its complications owing to its various pharmacological effects. This work summarizes the role of CBD in diabetes and its impact on complications such as cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy. Strategies for discovering molecular targets for CBD in the treatment of diabetes and its complications are also proposed. Moreover, ways to optimize the structure of CBD based on known targets to generate new CBD analogues are explored.
Collapse
Affiliation(s)
- Jin Zhang
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Sha Jin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and EcologyCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenPeople's Republic of China
| | - Mark R. Hutchinson
- Discipline of PhysiologyAdelaide Medical SchoolUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
- ARC Centre for Nanoscale BioPhotonicsUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
| | - Huiying Zhao
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Le Fang
- Department of NeurologyThe China‐Japan Union Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Xiaohui Wang
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
- Beijing National Laboratory for Molecular SciencesBeijingPeople's Republic of China
| |
Collapse
|
15
|
Szőke K, Kajtár R, Gyöngyösi A, Czompa A, Fésüs A, Lőrincz EB, Petróczi FD, Herczegh P, Bak I, Borbás A, Bereczki I, Lekli I. Pharmacological Evaluation of Newly Synthesized Cannabidiol Derivates on H9c2 Cells. Antioxidants (Basel) 2023; 12:1714. [PMID: 37760017 PMCID: PMC10525859 DOI: 10.3390/antiox12091714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Cannabidiol (CBD) is a nonpsychoactive phytocannabinoid that can be found in Cannabis sativa and possesses numerous pharmacological effects. Due to these promising effects, CBD can be used in a wide variety of diseases, for instance cardiovascular diseases. However, CBD, like tetrahydrocannabinol (THC), has low bioavailability, poor water solubility, and a variable pharmacokinetic profile, which hinders its therapeutic use. Chemical derivatization of CBD offers us potential ways to overcome these issues. We prepared three new CBD derivatives substituted on the aromatic ring by Mannich-type reactions, which have not been described so far for the modification of cannabinoids, and studied the protective effect they have on cardiomyocytes exposed to oxidative stress and hypoxia/reoxygenation (H/R) compared to the parent compound. An MTT assay was performed to determine the viability of rat cardiomyocytes treated with test compounds. Trypan blue exclusion and lactate dehydrogenase (LDH) release assays were carried out to study the effect of the new compounds in cells exposed to H2O2 or hypoxia/reoxygenation (H/R). Direct antioxidant activity was evaluated by a total antioxidant capacity (TAC) assay. To study antioxidant protein levels, HO-1, SOD, catalase, and Western blot analysis were carried out. pIC50 (the negative log of the IC50) values were as follows: CBD1: 4.113, CBD2: 3.995, CBD3: 4.190, and CBD: 4.671. The newly synthesized CBD derivatives prevented cell death induced by H/R, especially CBD2. CBD has the largest direct antioxidant activity. The levels of antioxidant proteins were increased differently after pretreatment with synthetic CBD derivatives and CBD. Taken together, our newly synthesized CBD derivatives are able to decrease cytotoxicity during oxidative stress and H/R. The compounds have similar or better effects than CBD on H9c2 cells.
Collapse
Affiliation(s)
- Kitti Szőke
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (R.K.); (A.G.); (A.C.); (A.F.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, 4032 Debrecen, Hungary
| | - Richárd Kajtár
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (R.K.); (A.G.); (A.C.); (A.F.); (I.B.)
| | - Alexandra Gyöngyösi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (R.K.); (A.G.); (A.C.); (A.F.); (I.B.)
| | - Attila Czompa
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (R.K.); (A.G.); (A.C.); (A.F.); (I.B.)
| | - Adina Fésüs
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (R.K.); (A.G.); (A.C.); (A.F.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, 4032 Debrecen, Hungary
| | - Eszter Boglárka Lőrincz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (E.B.L.); (F.D.P.); (P.H.); (A.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Ferenc Dániel Petróczi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (E.B.L.); (F.D.P.); (P.H.); (A.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (E.B.L.); (F.D.P.); (P.H.); (A.B.)
| | - István Bak
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (R.K.); (A.G.); (A.C.); (A.F.); (I.B.)
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (E.B.L.); (F.D.P.); (P.H.); (A.B.)
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (E.B.L.); (F.D.P.); (P.H.); (A.B.)
- National Laboratory of Virology, Szentágothai Research Centre, 7624 Pécs, Hungary
- ELKH-DE Pharmamodul Research Team, University of Debrecen, 4032 Debrecen, Hungary
| | - István Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (R.K.); (A.G.); (A.C.); (A.F.); (I.B.)
| |
Collapse
|
16
|
Christensen C, Rose M, Cornett C, Allesø M. Decoding the Postulated Entourage Effect of Medicinal Cannabis: What It Is and What It Isn't. Biomedicines 2023; 11:2323. [PMID: 37626819 PMCID: PMC10452568 DOI: 10.3390/biomedicines11082323] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The 'entourage effect' term was originally coined in a pre-clinical study observing endogenous bio-inactive metabolites potentiating the activity of a bioactive endocannabinoid. As a hypothetical afterthought, this was proposed to hold general relevance to the usage of products based on Cannabis sativa L. The term was later juxtaposed to polypharmacy pertaining to full-spectrum medicinal Cannabis products exerting an overall higher effect than the single compounds. Since the emergence of the term, a discussion of its pharmacological foundation and relevance has been ongoing. Advocates suggest that the 'entourage effect' is the reason many patients experience an overall better effect from full-spectrum products. Critics state that the term is unfounded and used primarily for marketing purposes in the Cannabis industry. This scoping review aims to segregate the primary research claiming as well as disputing the existence of the 'entourage effect' from a pharmacological perspective. The literature on this topic is in its infancy. Existing pre-clinical and clinical studies are in general based on simplistic methodologies and show contradictory findings, with the clinical data mostly relying on anecdotal and real-world evidence. We propose that the 'entourage effect' is explained by traditional pharmacological terms pertaining to other plant-based medicinal products and polypharmacy in general (e.g., synergistic interactions and bioenhancement).
Collapse
Affiliation(s)
- Catalina Christensen
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Martin Rose
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Claus Cornett
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark;
| | - Morten Allesø
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| |
Collapse
|
17
|
Martinez Naya N, Kelly J, Corna G, Golino M, Abbate A, Toldo S. Molecular and Cellular Mechanisms of Action of Cannabidiol. Molecules 2023; 28:5980. [PMID: 37630232 PMCID: PMC10458707 DOI: 10.3390/molecules28165980] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cannabidiol (CBD) is the primary non-psychoactive chemical from Cannabis Sativa, a plant used for centuries for both recreational and medicinal purposes. CBD lacks the psychotropic effects of Δ9-tetrahydrocannabinol (Δ9-THC) and has shown great therapeutic potential. CBD exerts a wide spectrum of effects at a molecular, cellular, and organ level, affecting inflammation, oxidative damage, cell survival, pain, vasodilation, and excitability, among others, modifying many physiological and pathophysiological processes. There is evidence that CBD may be effective in treating several human disorders, like anxiety, chronic pain, psychiatric pathologies, cardiovascular diseases, and even cancer. Multiple cellular and pre-clinical studies using animal models of disease and several human trials have shown that CBD has an overall safe profile. In this review article, we summarize the pharmacokinetics data, the putative mechanisms of action of CBD, and the physiological effects reported in pre-clinical studies to give a comprehensive list of the findings and major effects attributed to this compound.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| | - Giuliana Corna
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires 1199, Argentina
| | - Michele Golino
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
- Department of Medicine and Surgery, University of Insubria, 2110 Varese, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| |
Collapse
|
18
|
Castillo-Arellano J, Canseco-Alba A, Cutler SJ, León F. The Polypharmacological Effects of Cannabidiol. Molecules 2023; 28:3271. [PMID: 37050032 PMCID: PMC10096752 DOI: 10.3390/molecules28073271] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Cannabidiol (CBD) is a major phytocannabinoid present in Cannabis sativa (Linneo, 1753). This naturally occurring secondary metabolite does not induce intoxication or exhibit the characteristic profile of drugs of abuse from cannabis like Δ9-tetrahydrocannabinol (∆9-THC) does. In contrast to ∆9-THC, our knowledge of the neuro-molecular mechanisms of CBD is limited, and its pharmacology, which appears to be complex, has not yet been fully elucidated. The study of the pharmacological effects of CBD has grown exponentially in recent years, making it necessary to generate frequently updated reports on this important metabolite. In this article, a rationalized integration of the mechanisms of action of CBD on molecular targets and pharmacological implications in animal models and human diseases, such as epilepsy, pain, neuropsychiatric disorders, Alzheimer's disease, and inflammatory diseases, are presented. We identify around 56 different molecular targets for CBD, including enzymes and ion channels/metabotropic receptors involved in neurologic conditions. Herein, we compiled the knowledge found in the scientific literature on the multiple mechanisms of actions of CBD. The in vitro and in vivo findings are essential for fully understanding the polypharmacological nature of this natural product.
Collapse
Affiliation(s)
- Jorge Castillo-Arellano
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ana Canseco-Alba
- Laboratory of Reticular Formation Physiology, National Institute of Neurology and Neurosurgery of Mexico (INNN), Mexico City 14269, Mexico
| | - Stephen J. Cutler
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
19
|
Assadpour E, Rezaei A, Das SS, Krishna Rao BV, Singh SK, Kharazmi MS, Jha NK, Jha SK, Prieto MA, Jafari SM. Cannabidiol-Loaded Nanocarriers and Their Therapeutic Applications. Pharmaceuticals (Basel) 2023; 16:ph16040487. [PMID: 37111244 PMCID: PMC10141492 DOI: 10.3390/ph16040487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Cannabidiol (CBD), one of the most promising constituents isolated from Cannabis sativa, exhibits diverse pharmacological actions. However, the applications of CBD are restricted mainly due to its poor oral bioavailability. Therefore, researchers are focusing on the development of novel strategies for the effective delivery of CBD with improved oral bioavailability. In this context, researchers have designed nanocarriers to overcome limitations associated with CBD. The CBD-loaded nanocarriers assist in improving the therapeutic efficacy, targetability, and controlled biodistribution of CBD with negligible toxicity for treating various disease conditions. In this review, we have summarized and discussed various molecular targets, targeting mechanisms and types of nanocarrier-based delivery systems associated with CBD for the effective management of various disease conditions. This strategic information will help researchers in the establishment of novel nanotechnology interventions for targeting CBD.
Collapse
Affiliation(s)
- Elham Assadpour
- Food Industry Research Co., Gorgan 49138-15739, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138-15739, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, India
| | - Balaga Venkata Krishna Rao
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - Seid Mahdi Jafari
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Correspondence:
| |
Collapse
|
20
|
Jeon KH, Park SH, Bae WJ, Kim SW, Park HJ, Kim S, Kim TH, Jeon SH, Park I, Park HJ, Kwon Y. Cannabidiol, a Regulator of Intracellular Calcium and Calpain. Cannabis Cannabinoid Res 2023; 8:119-125. [PMID: 35196129 DOI: 10.1089/can.2021.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cannabidiol (CBD) is one of the most abundant components of Cannabis and has long been used in Cannabis-based preparations. Recently, CBD has become a promising pharmacological agent because of its beneficial properties in the pathophysiology of several diseases. Although CBD is a kind of cannabinoid and acts on cannabinoid receptors (CB1 and CB2), molecular targets involved in diverse therapeutic properties of CBD have not been identified because CBD also interacts with other molecular targets. Considering that CBD alters the intracellular calcium level by which calpain activity is controlled, and both CBD and calpain are associated with various diseases related to calcium signaling, including neurological disorders, this review provides an overview of calpain and calcium signaling as possible molecular targets of CBD. As calpain is known to play an important role in the pathophysiology of neurological disease, a deeper understanding of its relationship with CBD will be meaningful. To understand the role of CBD as a calpain regulator, in silico structural analysis on the binding mode of CBD with calpain was performed.
Collapse
Affiliation(s)
- Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Drug Development Research Core Center, Ewha Womans University, Seoul, Republic of Korea
| | - Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, Colorado, USA
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Green Medicine Co., Ltd., Busan, Republic of Korea
| | - Hyo Jung Park
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soomin Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Seung Hwan Jeon
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ilbum Park
- Yuhan Care Co., Ltd., Yuhan Care R&D Center, Yongin, Republic of Korea
| | - Hyun-Je Park
- Yuhan Care Co., Ltd., Yuhan Natural Product R&D Center, Andong, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Drug Development Research Core Center, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Dziemitko S, Harasim-Symbor E, Chabowski A. How do phytocannabinoids affect cardiovascular health? An update on the most common cardiovascular diseases. Ther Adv Chronic Dis 2023; 14:20406223221143239. [PMID: 36636553 PMCID: PMC9830002 DOI: 10.1177/20406223221143239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular disease (CVD) causes millions of deaths worldwide each year. Despite the great progress in therapies available for patients with CVD, some limitations, including drug complications, still exist. Hence, the endocannabinoid system (ECS) was proposed as a new avenue for CVDs treatment. The ECS components are widely distributed through the body, including the heart and blood vessels, thus the action of its endogenous and exogenous ligands, in particular, phytocannabinoids play a key role in various pathological states. The cardiovascular action of cannabinoids is complex as they affect vasculature and myocardium directly via specific receptors and exert indirect effects through the central and peripheral nervous system. The growing interest in phytocannabinoid studies, however, has extended the knowledge about their molecular targets as well as therapeutical properties; nonetheless, some areas of their actions are not yet fully recognized. Researchers have reported various cannabinoids, especially cannabidiol, as a promising approach to CVDs; hence, the purpose of this review is to summarize and update the cardiovascular actions of the most potent phytocannabinoids and the potential therapeutic role of ECS in CVDs, including ischemic reperfusion injury, arrhythmia, heart failure as well as hypertension.
Collapse
Affiliation(s)
- Sylwia Dziemitko
- Department of Physiology, Medical University of
Bialystok, Bialystok 15-222, Poland
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of
Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of
Bialystok, Bialystok, Poland
| |
Collapse
|
22
|
Viczjan G, Szilagyi A, Takacs B, Ovari I, Szekeres R, Tarjanyi V, Erdei T, Teleki V, Zsuga J, Szilvassy Z, Juhasz B, Varga B, Gesztelyi R. The effect of a long-term treatment with cannabidiol-rich hemp extract oil on the adenosinergic system of the zucker diabetic fatty (ZDF) rat atrium. Front Pharmacol 2022; 13:1043275. [PMID: 36588715 PMCID: PMC9797669 DOI: 10.3389/fphar.2022.1043275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Cannabidiol (CBD), the most extensively studied non-intoxicating phytocannabinoid, has been attracting a lot of interest worldwide owing to its numerous beneficial effects. The aim of this study was to explore the effect that CBD exerts on the adenosinergic system of paced left atria isolated from obese type Zucker Diabetic Fatty (ZDF) rats, maintained on diabetogenic rat chow, received 60 mg/kg/day CBD or vehicle via gavage for 4 weeks. We found that N6-cyclopentyladenosine (CPA), a relatively stable and poorly transported A1 adenosine receptor agonist, elicited a significantly weaker response in the CBD-treated group than in the vehicle-treated one. In contrast, adenosine, a quickly metabolized and transported adenosine receptor agonist, evoked a significantly stronger response in the CBD-treated group than in the vehicle-treated counterpart (excepting its highest concentrations). These results can be explained only with the adenosine transport inhibitory property of CBD (and not with its adenosine receptor agonist activity). If all the effects of CBD are attributed to the interstitial adenosine accumulation caused by CBD in the myocardium, then a significantly increased adenosinergic activation can be assumed during the long-term oral CBD treatment, suggesting a considerably enhanced adenosinergic protection in the heart. Considering that our results may have been influenced by A1 adenosine receptor downregulation due to the chronic interstitial adenosine accumulation, an adenosinergic activation smaller than it seemed cannot be excluded, but it was above the CBD-naïve level in every case. Additionally, this is the first study offering functional evidence about the adenosine transport inhibitory action of CBD in the myocardium.
Collapse
Affiliation(s)
- Gabor Viczjan
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary,University of Debrecen, Doctoral School of Nutrition and Food Sciences, Debrecen, Hungary
| | - Anna Szilagyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Barbara Takacs
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ignac Ovari
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Reka Szekeres
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vera Tarjanyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Erdei
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vanda Teleki
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Zsuga
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Szilvassy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bela Juhasz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary,*Correspondence: Rudolf Gesztelyi,
| |
Collapse
|
23
|
Henry N, Fraser JF, Chappell J, Langley T, Roberts JM. Cannabidiol’s Multifactorial Mechanisms Has Therapeutic Potential for Aneurysmal Subarachnoid Hemorrhage: a Review. Transl Stroke Res 2022; 14:283-296. [PMID: 36109476 PMCID: PMC10160197 DOI: 10.1007/s12975-022-01080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/08/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
AbstractSubarachnoid hemorrhage (SAH) is a major health burden that accounts for approximately 5% of all strokes. The most common cause of a non-traumatic SAH is the rupture of a cerebral aneurysm. The most common symptom associated with SAH is a headache, often described as “the worst headache of my life.” Delayed cerebral ischemia (DCI) is a major factor associated with patient mortality following SAH and is often associated with SAH-induced cerebral vasospasm (CV). Cannabidiol (CBD) is emerging as a potential drug for many therapeutic purposes, including epilepsy, anxiety, and pain relief. We aim to review the potential use of CBD as a treatment option for post-SAH critically ill patients. Through a literature review, we evaluated the known pharmacology and physiological effects of CBD and correlated those with the pathophysiological outcomes associated with cerebral vasospasm following subarachnoid hemorrhage. Although overlap exists, data were formatted into three major categories: anti-inflammatory, vascular, and neuroprotective effects. Based on the amount of information known about the actions of CBD, we hypothesize the anti-inflammatory effects are likely to be the most promising therapeutic mechanism. However, its cardiovascular effects through calcium regulation and its neuroprotective effects against cell death, excitotoxicity, and oxidative stress are all plausible mechanisms by which post-SAH critically ill patients may benefit from both early and late intervention with CBD. More research is needed to better understand if and how CBD might affect neurological and vascular functions in the brain following injury such as subarachnoid hemorrhage.
Collapse
|
24
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, Trezza V, van Loveren H, Albert O, Dumas C, Germini A, Gelbmann W, Kass G, Kouloura E, Noriega Fernandez E, Rossi A, Knutsen HK. Statement on safety of cannabidiol as a novel food: data gaps and uncertainties. EFSA J 2022; 20:e07322. [PMID: 35686177 PMCID: PMC9172591 DOI: 10.2903/j.efsa.2022.7322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The European Commission has determined that cannabidiol (CBD) can be considered as a novel food (NF), and currently, 19 applications are under assessment at EFSA. While assessing these, it has become clear that there are knowledge gaps that need to be addressed before a conclusion on the safety of CBD can be reached. Consequently, EFSA has issued this statement, summarising the state of knowledge on the safety of CBD consumption and highlighting areas where more data are needed. Literature searches for both animal and human studies have been conducted to identify safety concerns. Many human studies have been carried out with Epidyolex®, a CBD drug authorised to treat refractory epilepsies. In the context of medical conditions, adverse effects are tolerated if the benefit outweighs the adverse effect. This is, however, not acceptable when considering CBD as a NF. Furthermore, most of the human data referred to in the CBD applications investigated the efficacy of Epidyolex (or CBD) at therapeutic doses. No NOAEL could be identified from these studies. Given the complexity and importance of CBD receptors and pathways, interactions need to be taken into account when considering CBD as a NF. The effects on drug metabolism need to be clarified. Toxicokinetics in different matrices, the half‐life and accumulation need to be examined. The effect of CBD on liver, gastrointestinal tract, endocrine system, nervous system and on psychological function needs to be clarified. Studies in animals show significant reproductive toxicity, and the extent to which this occurs in humans generally and in women of child‐bearing age specifically needs to be assessed. Considering the significant uncertainties and data gaps, the Panel concludes that the safety of CBD as a NF cannot currently be established.
Collapse
|
25
|
Martinelli G, Magnavacca A, Fumagalli M, DellʼAgli M, Piazza S, Sangiovanni E. Cannabis sativa and Skin Health: Dissecting the Role of Phytocannabinoids. PLANTA MEDICA 2022; 88:492-506. [PMID: 33851375 DOI: 10.1055/a-1420-5780] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of Cannabis sativa is currently recognized to ease certain types of chronic pain, reduce chemotherapy-induced nausea, and improve anxiety. Nevertheless, few studies highlighted the therapeutic potential of C. sativa extracts and related phytocannabinoids for a variety of widespread skin disorders including acne, atopic dermatitis, psoriasis, pruritus, and pain. This review summarized the current evidence on the effects of phytocannabinoids at the cutaneous level through the collection of in vitro, in vivo, and clinical studies published on PubMed, Scopus, Embase, and Web of Science until October 2020. Phytocannabinoids have demonstrated potential anti-inflammatory, antioxidant, anti-aging, and anti-acne properties by various mechanisms involving either CB1/2-dependent and independent pathways. Not only classical immune cells, but also several skin-specific actors, such as keratinocytes, fibroblasts, melanocytes, and sebocytes, may represent a target for phytocannabinoids. Cannabidiol, the most investigated compound, revealed photoprotective, antioxidant, and anti-inflammatory mechanisms at the cutaneous level, while the possible impact on cell differentiation, especially in the case of psoriasis, would require further investigation. Animal models and pilot clinical studies supported the application of cannabidiol in inflammatory-based skin diseases. Also, one of the most promising applications of non-psychotropic phytocannabinoids is the treatment of seborrheic disorders, especially acne. In conclusion, the incomplete knowledge of the role of the endocannabinoid system in skin disorders emerged as an important limit for pharmacological investigations. Moreover, the limited studies conducted on C. sativa extracts suggested a higher potency than single phytocannabinoids, thus stimulating new research on phytocannabinoid interaction.
Collapse
Affiliation(s)
- Giulia Martinelli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Andrea Magnavacca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Marco Fumagalli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Mario DellʼAgli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Han X, Song X, Song D, Xie G, Guo H, Wu N, Li J. Comparison between cannabidiol and sertraline for the modulation of post-traumatic stress disorder-like behaviors and fear memory in mice. Psychopharmacology (Berl) 2022; 239:1605-1620. [PMID: 35396940 DOI: 10.1007/s00213-022-06132-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/28/2022] [Indexed: 12/30/2022]
Abstract
RATIONALE AND OBJECTIVES Post-traumatic stress disorder (PTSD) is characterized by poor adaptation to a traumatic experience and disturbances in fear memory regulation, and currently lacks effective medication. Cannabidiol is a main constituent of Cannabis sativa; it has no psychotomimetic effects and has been implicated in modulating fear learning in mammals. Using a mouse PTSD model, we investigated the effects of CBD on PTSD-like behaviors and the modulation of trauma-related fear memory, a crucial process leading to core symptoms of PTSD. METHODS We applied the modified pre-shock model to evaluated PTSD-like behaviors from days 3 to 26. The measures included the freezing time to the conditioned context, open field test, elevated plus maze test, and social interaction test. CBD and sertraline were administered at different stages of fear memory. RESULTS CBD (10 mg/kg, i.p.) administration alleviated main PTSD-like symptoms in the mouse pre-shock model by attenuating trauma-related fear memory and anxiety-like behavior, and increasing social interaction behavior. The effects of CBD were apparent irrespective of whether it was administered before, during, or after re-exposure to the aversive context. However, sertraline (15 mg/kg, p.o.) was only effective when administered before the behavioral test. CBD also reduced the consolidation, retrieval, and reconsolidation of trauma-related fear memory, whereas sertraline only reduced fear-memory retrieval. CONCLUSION CBD produced anti-PTSD-like actions in mice and disrupted trauma-related fear memory by interfering with multiple aspects of fear memory processing. These findings indicate that CBD may be a promising candidate for treating PTSD.
Collapse
Affiliation(s)
- Xiao Han
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Xiankui Song
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Dake Song
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Guanbo Xie
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Hongyan Guo
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| |
Collapse
|
27
|
Cavalheiro EKFF, Costa AB, Salla DH, da Silva MR, Mendes TF, da Silva LE, Turatti CDR, de Bitencourt RM, Rezin GT. Cannabis sativa as a Treatment for Obesity: From Anti-Inflammatory Indirect Support to a Promising Metabolic Re-Establishment Target. Cannabis Cannabinoid Res 2022; 7:135-151. [PMID: 34242511 PMCID: PMC9070748 DOI: 10.1089/can.2021.0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction: Obesity is defined as an excess of accumulation of fat that can be harmful to health. Storage of excess fat in the adipose tissue triggers an inflammatory process, which makes obesity a low-grade chronic inflammatory disease. Obesity is considered a complex and multifactorial disease; hence, no intervention strategy appears to be an ideal treatment for all individuals. Therefore, new therapeutic alternatives are often studied for the treatment of this disease. Currently, herbal medicines are gaining ground in the treatment of obesity and its comorbidities. In this context, much attention is being paid to Cannabis sativa derivatives, and their therapeutic functions are being widely studied, including in treating obesity. Objective: Highlight the pharmacological properties of Δ9-tetrahydrocannabivarin (THCV), Δ9-tetrahydrocannabidinol (THC), and cannabidiol (CBD), the predominant isolated components of Cannabis sativa, as well as its therapeutic potential in the treatment of obesity. Methods: This is a narrative review that shows the existing scientific evidence on the clinical application of Cannabis sativa as a possible treatment for obesity. Data collection was performed in the PubMed electronic database. The following word combinations were used: Cannabis and obesity, Cannabis sativa and obesity, THCV and obesity, THC and obesity, CBD and obesity, and Cannabis sativa and inflammation. Results: Evidence shows that Cannabis sativa derivatives have therapeutic potential due to their anti-inflammatory properties. In addition, people who use cannabis have a lower body mass index than those who do not, making the plant an option to reduce and reverse inflammation and comorbidities in obesity. Conclusion: It is concluded that phytocannabinoids derived from Cannabis sativa have therapeutic potential due to its anti-inflammatory, antioxidant, and neuroprotective properties, making the plant a study option to reduce and reverse inflammation and comorbidities associated with obesity.
Collapse
Affiliation(s)
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Daniéle Hendler Salla
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Talita Farias Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Cristini da Rosa Turatti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Rafael Mariano de Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
- Laboratory of Behavioral Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| |
Collapse
|
28
|
Isaev D, Shabbir W, Dinc EY, Lorke DE, Petroianu G, Oz M. Cannabidiol Inhibits Multiple Ion Channels in Rabbit Ventricular Cardiomyocytes. Front Pharmacol 2022; 13:821758. [PMID: 35185573 PMCID: PMC8850628 DOI: 10.3389/fphar.2022.821758] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cannabidiol (CBD), a major non-psychotropic cannabinoid found in the Cannabis plant, has been shown to exert anti-nociceptive, anti-psychotic, and anti-convulsant effects and to also influence the cardiovascular system. In this study, the effects of CBD on major ion currents were investigated using the patch-clamp technique in rabbit ventricular myocytes. CBD inhibited voltage-gated Na+ and Ca2+ channels with IC50 values of 5.4 and 4.8 µM, respectively. In addition, CBD, at lower concentrations, suppressed ion currents mediated by rapidly and slowly activated delayed rectifier K+ channels with IC50 of 2.4 and 2.1 µM, respectively. CBD, up to 10 μM, did not have any significant effect on inward rectifier IK1 and transient outward Ito currents. The effects of CBD on these currents developed gradually, reaching steady-state levels within 5–8 min, and recoveries were usually slow and partial. Hill coefficients higher than unity in concentration-inhibition curves suggested multiple CBD binding sites on these channels. These findings indicate that CBD affects cardiac electrophysiology by acting on a diverse range of ion channels and suggest that caution should be exercised when CBD is administered to carriers of cardiac channelopathies or to individuals using drugs known to affect the rhythm or the contractility of the heart.
Collapse
Affiliation(s)
- Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Waheed Shabbir
- Department of Medicine, Division of Nephrology and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States
| | - Ege Y. Dinc
- Department of Neurology, Diskapi Training and Research Hospital, Ankara, Turkey
| | - Dietrich E Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Georg Petroianu
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
- *Correspondence: Murat Oz,
| |
Collapse
|
29
|
Gallego-Landin I, García-Baos A, Castro-Zavala A, Valverde O. Reviewing the Role of the Endocannabinoid System in the Pathophysiology of Depression. Front Pharmacol 2021; 12:762738. [PMID: 34938182 PMCID: PMC8685322 DOI: 10.3389/fphar.2021.762738] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/11/2021] [Indexed: 01/04/2023] Open
Abstract
Major depressive disorder is a high-impact, debilitating disease and it is currently considered the most prevalent mental illness. It is associated with disability, as well as increased morbidity and mortality. Despite its significant repercussions in our society, its exact pathophysiology remains unclear and therefore, available antidepressant treatment options are limited and, in some cases, ineffective. In the past years, research has focused on the development of a multifactorial theory of depression. Simultaneously, evidence supporting the role of the endocannabinoid system in the neurobiology of neuropsychiatric diseases has emerged. Studies have shown that the endocannabinoid system strongly impacts neurotransmission, and the neuroendocrine and neuroimmune systems, which are known to be dysfunctional in depressive patients. Accordingly, common antidepressants were shown to have a direct impact on the expression of cannabinoid receptors throughout the brain. Therefore, the relationship between the endocannabinoid system and major depressive disorder is worth consideration. Nevertheless, most studies focus on smaller pieces of what is undoubtedly a larger mosaic of interdependent processes. Therefore, the present review summarizes the existing literature regarding the role of the endocannabinoid system in depression aiming to integrate this information into a holistic picture for a better understanding of the relationship between the two.
Collapse
Affiliation(s)
- Ines Gallego-Landin
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
30
|
Hooshangi Shayesteh MR, Haghi-Aminjan H, Baeeri M, Rahimifard M, Hassani S, Gholami M, Momtaz S, Salami SA, Armandeh M, Bameri B, Samadi M, Mousavi T, Ostad SN, Abdollahi M. Modification of the hemodynamic and molecular features of phosphine, a potent mitochondrial toxicant in the heart, by cannabidiol. Toxicol Mech Methods 2021; 32:288-301. [PMID: 34711111 DOI: 10.1080/15376516.2021.1998851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aluminum phosphide (AlP) poisoning is common in many countries responsible for high mortality. The heart is the main target organ in AlP poisoning. Several studies have reported the beneficial effects of cannabidiol (CBD) in reducing heart injuries. This study aimed to investigate the possible protective effect of CBD on cardiac toxicity caused by AlP poisoning. Study groups included almond oil, normal saline, sole CBD (100 µg/kg), AlP (11.5 mg/kg), and four groups of AlP + CBD (following AlP gavage, CBD administrated at doses of 5, 25, 50, and 100 μg/kg via intravenous (iv) injection). Thirty minutes after AlP treatment, an electronic cardiovascular device (PowerLab) was used to record electrocardiographic (ECG) changes, heart rate (HR), and blood pressure (BP) for three hours. Cardiac tissue was examined for the activities of mitochondrial complexes, ADP/ATP ratio, the release of cytochrome C, mitochondrial membrane potential (MMP), apoptosis, oxidative stress parameter, and cardiac biomarkers at 12 and 24 hours time points. AlP administration caused abnormal ECG, decreased HR, and BP. AlP also significantly reduced mitochondrial complex I and IV activity and ADP/ATP ratio. The level of cytochrome C release, apoptosis, oxidative stress, and cardiac biomarkers was considerably increased by AlP, which was compensated following CBD administration. CBD was able to improve hemodynamic function to some extent in AlP poisoned rats. CBD restored ATP levels and mitochondrial function and decreased oxidative damage and thus, prevented the heart cells from entering the apoptotic stage. Further clinical trials are needed to explore any possible benefits of CBD in AlP-poisoned patients.
Collapse
Affiliation(s)
| | - Hamed Haghi-Aminjan
- Pharmaceutical Science Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehdi Gholami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | | | - Maryam Armandeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Behnaz Bameri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahedeh Samadi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taraneh Mousavi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
31
|
Tang J, Ren W, Liu Y, Gao H, Wang Y, Huang S. Effects of post-treatment electroacupuncture on ventricular monophasic action potential and cardiac function in a rat model of ischemia/reperfusion injury. Acupunct Med 2021; 40:89-98. [PMID: 34553613 DOI: 10.1177/09645284211039229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND To determine the effects of post-treatment electroacupuncture (EA) on the electrophysiological properties of ventricular muscle in rats with ischemia/reperfusion (IR) injury. METHODS Male Sprague-Dawley (SD) rats were randomly assigned into sham-operated (SH), IR and IR + EA groups (n = 8 each). The IR model was generated by ligation of the left anterior descending (LAD) coronary artery for 30 min. After establishing the IR model, EA was administered at PC6 for 30 min while opening the coronary artery and allowing reperfusion for 30 min. Heart rate (HR), mean arterial pressure and monophasic action potential (MAP) of cardiac muscle in the outer membrane of the antetheca of the left ventricle before coronary artery ligation (T0), after coronary artery ligation for 30 min (T1) and after reperfusion for 30 min (T2) were recorded. At the same time, ventricular electrophysiological parameters including ventricular effective refractory period (ERP), conduction velocity (CV) and ventricular fibrillation threshold (VFT) were measured. Then, the cardiac function and the levels of creatine kinase-muscle/brain (CK-MB) and cardiac troponin I (cTnI) were monitored. Based on these data, monophasic action potential amplitude (MAPA), the maximum depolarization velocity (Vmax) and the MAP durations at 50% and 90% repolarization (MAPD50 and MAPD90) were calculated to determine the incidence of arrhythmia during reperfusion. RESULTS Compared with the SH group, the IR group showed an obviously decreased HR as well as reduced mean arterial pressure, Vmax, CV, ERP and MAPA. All indices of cardiac function except left ventricular end-diastolic pressure (LVEDP) decreased (i.e. ventricular systolic pressure (LVSP), left ventricular ejection fraction (LVEF), fractional shortening (FS) and rate of the ventricular pressure rise/drop (±dp/dt)). Furthermore, the MAPD50 and MAPD90 were prolonged, and the levels of CK-MB and cTnI increased (p < 0.05). In comparison to the IR group, HR and the mean arterial pressure were increased. All indices of cardiac function except LVEDP increased (LVSP, LVEF, FS and ±dp/dt). Vmax, CV, ERP and MAPA were also increased in the IR + EA group. However, MAPD50 and MAPD90 were distinctly shortened, and the levels of CK-MB and cTnI decreased (p < 0.05). There were no statistically significant differences in VFT between the three groups (p > 0.05). CONCLUSION EA post-treatment can relieve prolongation of repolarization and slowed depolarization of ventricular muscle during IR, thus decreasing the rate of incidence of reperfusion arrhythmia.
Collapse
Affiliation(s)
- Jian Tang
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenxin Ren
- Department of Anesthesiology, Guizhou Medical University, Guiyang, China
| | - Yanqiu Liu
- Department of Anesthesiology, The Fourth People's Hospital of Guiyang, Guiyang, China
| | - Hong Gao
- Department of Anesthesiology, No. 3 Affiliated Hospital of Guizhou Medical University, Duyun, China
| | - Yuanliang Wang
- Department of Surgical, Universität Heidelberg, Heidelberg, Germany
| | - Suisui Huang
- Department of Anesthesiology, Guizhou Medical University, Guiyang, China
| |
Collapse
|
32
|
Franco‐Vadillo A, Toledo‐Blass M, Rivera‐Herrera Z, Guevara‐Balcazar G, Orihuela‐Rodriguez O, Morales‐Carmona JA, Kormanovski‐Kovzova A, Lopez‐Sanchez P, Rubio‐Gayosso I, Castillo‐Hernandez MDC. Cannabidiol-mediated RISK PI3K/AKT and MAPK/ERK pathways decreasing reperfusion myocardial damage. Pharmacol Res Perspect 2021; 9:e00784. [PMID: 34176244 PMCID: PMC8236079 DOI: 10.1002/prp2.784] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022] Open
Abstract
Myocardial ischemia continues to be the first cause of morbimortality in the world; the definitive treatment is reperfusion; however, this action causes additional damage to ischemic myocardial tissue; this forces to seek therapies of cardioprotection to reduce this additional damage. There are many cardioprotective agents; within these, cannabinoids have shown to have beneficial effects, mainly cannabidiol (CBD). CBD is a non psychoactive cannabinoid. To evaluate the effect in experimental models of CBD in myocardial ischemia reperfusion in rats, twelve-week-old male rats have been used. The animals were divides in 3 groups: control(C), ischemia reperfusion (IR) and CBD pretreatment (1/day/5mg/kg /10days). Langendorff organ isolate studies were performed, and the area of infarction was assessed with triphenyl tetrazolium, in addition to molecular analysis of AT1 and AT2 receptors and Akt and Erk proteins and their phosphorylated forms related to RISK pathways. It was observed that there is an improvement with the use of CBD increasing inotropism and cardiac lusitropism, improving considerably the cardiovascular functionality. These could be related to the reduction of the area of infarction and activation of the AT2 receptor and the RISK pathway with absence of activation of the AT2 receptor (these could relate the reduction of the infarct area and the restoration of cardiovascular function with the activation of the AT2 receptor and the RISK pathway with the absence of activation of the AT2 receptor). The use of cannabinoids was shown to have beneficial effects when used as a treatment for myocardial reperfusion damage.
Collapse
Affiliation(s)
- Antonio Franco‐Vadillo
- Sección de Estudios de Posgrado e InvestigaciónEscuela Superior de MedicinaInstituto Politecnico NacionalMexico CityMexicoMexico
| | - Mireille Toledo‐Blass
- Sección de Estudios de Posgrado e InvestigaciónEscuela Superior de MedicinaInstituto Politecnico NacionalMexico CityMexicoMexico
| | - Zeltzin Rivera‐Herrera
- Sección de Estudios de Posgrado e InvestigaciónEscuela Superior de MedicinaInstituto Politecnico NacionalMexico CityMexicoMexico
| | - Gustavo Guevara‐Balcazar
- Sección de Estudios de Posgrado e InvestigaciónEscuela Superior de MedicinaInstituto Politecnico NacionalMexico CityMexicoMexico
| | - Oscar Orihuela‐Rodriguez
- Hospital de Especialidades, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro SocialMexico CityMexicoMexico
| | - Jose A. Morales‐Carmona
- Sección de Estudios de Posgrado e InvestigaciónEscuela Superior de MedicinaInstituto Politecnico NacionalMexico CityMexicoMexico
| | - Alexandre Kormanovski‐Kovzova
- Sección de Estudios de Posgrado e InvestigaciónEscuela Superior de MedicinaInstituto Politecnico NacionalMexico CityMexicoMexico
| | - Pedro Lopez‐Sanchez
- Sección de Estudios de Posgrado e InvestigaciónEscuela Superior de MedicinaInstituto Politecnico NacionalMexico CityMexicoMexico
| | - Ivan Rubio‐Gayosso
- Sección de Estudios de Posgrado e InvestigaciónEscuela Superior de MedicinaInstituto Politecnico NacionalMexico CityMexicoMexico
| | | |
Collapse
|
33
|
Malinowska B, Baranowska-Kuczko M, Kicman A, Schlicker E. Opportunities, Challenges and Pitfalls of Using Cannabidiol as an Adjuvant Drug in COVID-19. Int J Mol Sci 2021; 22:1986. [PMID: 33671463 PMCID: PMC7922403 DOI: 10.3390/ijms22041986] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may lead to coronavirus disease 2019 (COVID-19) which, in turn, may be associated with multiple organ dysfunction. In this review, we present advantages and disadvantages of cannabidiol (CBD), a non-intoxicating phytocannabinoid from the cannabis plant, as a potential agent for the treatment of COVID-19. CBD has been shown to downregulate proteins responsible for viral entry and to inhibit SARS-CoV-2 replication. Preclinical studies have demonstrated its effectiveness against diseases of the respiratory system as well as its cardioprotective, nephroprotective, hepatoprotective, neuroprotective and anti-convulsant properties, that is, effects that may be beneficial for COVID-19. Only the latter two properties have been demonstrated in clinical studies, which also revealed anxiolytic and antinociceptive effects of CBD (given alone or together with Δ9-tetrahydrocannabinol), which may be important for an adjuvant treatment to improve the quality of life in patients with COVID-19 and to limit post-traumatic stress symptoms. However, one should be aware of side effects of CBD (which are rarely serious), drug interactions (also extending to drugs acting against COVID-19) and the proper route of its administration (vaping may be dangerous). Clearly, further clinical studies are necessary to prove the suitability of CBD for the treatment of COVID-19.
Collapse
Affiliation(s)
- Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (M.B.-K.); (A.K.)
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (M.B.-K.); (A.K.)
- Department of Clinical Pharmacy, Medical University of Białystok, 15-222 Białystok, Poland
| | - Aleksandra Kicman
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (M.B.-K.); (A.K.)
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
34
|
Cannabidiol as a Potential Treatment for Anxiety and Mood Disorders: Molecular Targets and Epigenetic Insights from Preclinical Research. Int J Mol Sci 2021; 22:ijms22041863. [PMID: 33668469 PMCID: PMC7917759 DOI: 10.3390/ijms22041863] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
Cannabidiol (CBD) is the most abundant non-psychoactive component of cannabis; it displays a very low affinity for cannabinoid receptors, facilitates endocannabinoid signaling by inhibiting the hydrolysis of anandamide, and stimulates both transient receptor potential vanilloid 1 and 2 and serotonin type 1A receptors. Since CBD interacts with a wide variety of molecular targets in the brain, its therapeutic potential has been investigated in a number of neuropsychiatric diseases, including anxiety and mood disorders. Specifically, CBD has received growing attention due to its anxiolytic and antidepressant properties. As a consequence, and given its safety profile, CBD is considered a promising new agent in the treatment of anxiety and mood disorders. However, the exact molecular mechanism of action of CBD still remains unknown. In the present preclinical review, we provide a summary of animal-based studies that support the use of CBD as an anxiolytic- and antidepressant-like compound. Next, we describe neuropharmacological evidence that links the molecular pharmacology of CBD to its behavioral effects. Finally, by taking into consideration the effects of CBD on DNA methylation, histone modifications, and microRNAs, we elaborate on the putative role of epigenetic mechanisms in mediating CBD’s therapeutic outcomes.
Collapse
|
35
|
Mastinu A, Ribaudo G, Ongaro A, Bonini SA, Memo M, Gianoncelli A. Critical Review on the Chemical Aspects of Cannabidiol (CBD) and Harmonization of Computational Bioactivity Data. Curr Med Chem 2021; 28:213-237. [PMID: 32039672 DOI: 10.2174/0929867327666200210144847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
Cannabidiol (CBD) is a non-psychotropic phytocannabinoid which represents one of the constituents of the "phytocomplex" of Cannabis sativa. This natural compound is attracting growing interest since when CBD-based remedies and commercial products were marketed. This review aims to exhaustively address the extractive and analytical approaches that have been developed for the isolation and quantification of CBD. Recent updates on cutting-edge technologies were critically examined in terms of yield, sensitivity, flexibility and performances in general, and are reviewed alongside original representative results. As an add-on to currently available contributions in the literature, the evolution of the novel, efficient synthetic approaches for the preparation of CBD, a procedure which is appealing for the pharmaceutical industry, is also discussed. Moreover, with the increasing interest on the therapeutic potential of CBD and the limited understanding of the undergoing biochemical pathways, the reader will be updated about recent in silico studies on the molecular interactions of CBD towards several different targets attempting to fill this gap. Computational data retrieved from the literature have been integrated with novel in silico experiments, critically discussed to provide a comprehensive and updated overview on the undebatable potential of CBD and its therapeutic profile.
Collapse
Affiliation(s)
- Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| |
Collapse
|
36
|
Pędzińska-Betiuk A, Weresa J, Schlicker E, Harasim-Symbor E, Toczek M, Kasacka I, Gajo B, Malinowska B. Chronic cannabidiol treatment reduces the carbachol-induced coronary constriction and left ventricular cardiomyocyte width of the isolated hypertensive rat heart. Toxicol Appl Pharmacol 2021; 411:115368. [PMID: 33338514 DOI: 10.1016/j.taap.2020.115368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/29/2020] [Accepted: 12/13/2020] [Indexed: 11/29/2022]
Abstract
Cannabidiol (CBD) is suggested to possess cardioprotective properties. We examined the influence of chronic (10 mg/kg once daily for 2 weeks) CBD administration on heart structure (e.g. cardiomyocyte width) and function (e.g. stimulatory and inhibitory responses induced by β-adrenoceptor (isoprenaline) and muscarinic receptor (carbachol) activation, respectively). Experiments were performed on hearts and/or left atria isolated from spontaneously (SHR) and deoxycorticosterone (DOCA-salt) hypertensive rats; Wistar-Kyoto (WKY) and sham-operated rats (SHAM) served as the respective normotensive controls. CBD diminished the width of cardiomyocytes in left ventricle and reduced the carbachol-induced vasoconstriction of coronary arteries both in DOCA-salt and SHR. However, it failed to affect left ventricular hypertrophy and even aggravated the impaired positive and negative lusitropic effects elicited by isoprenaline and carbachol, respectively. In normotensive hearts CBD led to untoward structural and functional effects, which occurred only in WKY or SHAM or, like the decrease in β1-adrenoceptor density, in either control strain. In conclusion, due to its modest beneficial effect in hypertension and its adverse effects in normotensive hearts, caution should be taken when using CBD as a drug in therapy.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Antihypertensive Agents/toxicity
- Cannabidiol/toxicity
- Carbachol/pharmacology
- Cell Size/drug effects
- Coronary Vessels/drug effects
- Coronary Vessels/physiopathology
- Disease Models, Animal
- Hypertension/complications
- Hypertension/drug therapy
- Hypertension/physiopathology
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Isolated Heart Preparation
- Isoproterenol/pharmacology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/metabolism
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left/drug effects
- Rats
Collapse
Affiliation(s)
- Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland.
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Marek Toczek
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Bernadetta Gajo
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
37
|
Neuromolecular Mechanisms of Cannabis Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:15-28. [PMID: 33332001 DOI: 10.1007/978-3-030-57369-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Most of our current understanding of the neuromolecular mechanisms of Cannabis action focusses on two plant cannabinoids, THC and CBD. THC acts primarily through presynaptic CB cannabinoid receptors to regulate neurotransmitter release in the brain, spinal cord and peripheral nerves. CBD action, on the other hand, is probably mediated through multiple molecular targets.
Collapse
|
38
|
Morales P, Jagerovic N. Synthetic and Natural Derivatives of Cannabidiol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:11-25. [PMID: 33537934 DOI: 10.1007/978-3-030-61663-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The non-psychoactive component of Cannabis Sativa, cannabidiol (CBD), has centered the attention of a large body of research in the last years. Recent clinical trials have led to the FDA approval of CBD for the treatment of children with drug-resistant epilepsy. Even though it is not yet in clinical phases, its use in sleep-wake pathological alterations has been widely demonstrated.Despite the outstanding current knowledge on CBD therapeutic effects in numerous in vitro and in vivo disease models, diverse questions still arise from its molecular pharmacology. CBD has been shown to modulate a wide variety of targets including the cannabinoid receptors, orphan GPCRs such as GPR55 and GPR18, serotonin, adenosine, and opioid receptors as well as ligand-gated ion channels among others. Its pharmacology is rather puzzling and needs to be further explored in the disease context.Also, the metabolism and interactions of this phytocannabinoid with other commercialized drugs need to be further considered to elucidate its clinical potential for the treatment of specific pathologies.Besides CBD, natural and synthetic derivatives of this chemotype have also been reported exhibiting diverse functional profiles and providing a deeper understanding of the potential of this scaffold.In this chapter, we analyze the knowledge gained so far on CBD and its analogs specially focusing on its molecular targets and metabolic implications. Phytogenic and synthetic CBD derivatives may provide novel approaches to improve the therapeutic prospects offered by this promising chemotype.
Collapse
|
39
|
de Almeida DL, Devi LA. Diversity of molecular targets and signaling pathways for CBD. Pharmacol Res Perspect 2020; 8:e00682. [PMID: 33169541 PMCID: PMC7652785 DOI: 10.1002/prp2.682] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Cannabidiol (CBD) is the second most abundant component of the Cannabis plant and is known to have effects distinct from Δ9 -tetrahydrocannabinol (THC). Many studies that examined the behavioral effects of CBD concluded that it lacks the psychotomimetic effects attributed to THC. However, CBD was shown to have a broad spectrum of effects on several conditions such as anxiety, inflammation, neuropathic pain, and epilepsy. It is currently thought that CBD engages different targets and hence CBD's effects are thought to be due to multiple molecular mechanisms of action. A well-accepted set of targets include GPCRs and ion channels, with the serotonin 5-HT1A receptor and the transient receptor potential cation channel TRPV1 channel being the two main targets. CBD has also been thought to target G protein-coupled receptors (GPCRs) such as cannabinoid and opioid receptors. Other studies have suggested a role for additional GPCRs and ion channels as targets of CBD. Currently, the clinical efficacy of CBD is not completely understood. Evidence derived from randomized clinical trials, in vitro and in vivo models and real-world observations support the use of CBD as a drug treatment option for anxiety, neuropathy, and many other conditions. Hence an understanding of the current status of the field as it relates to the targets for CBD is of great interest so, in this review, we include findings from recent studies that highlight these main targets.
Collapse
MESH Headings
- Animals
- Cannabidiol/administration & dosage
- Cannabidiol/metabolism
- Humans
- Molecular Targeted Therapy/methods
- Molecular Targeted Therapy/trends
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Dopamine/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Douglas L. de Almeida
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiOne Gustave L. Levy PlaceNew YorkNYUSA
- Department of PharmacologyInstitute of Biological SciencesUFMG, Av. Antônio CarlosBelo HorizonteBrazil
| | - Lakshmi A. Devi
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiOne Gustave L. Levy PlaceNew YorkNYUSA
| |
Collapse
|
40
|
Perin P, Mabou Tagne A, Enrico P, Marino F, Cosentino M, Pizzala R, Boselli C. Cannabinoids, Inner Ear, Hearing, and Tinnitus: A Neuroimmunological Perspective. Front Neurol 2020; 11:505995. [PMID: 33329293 PMCID: PMC7719758 DOI: 10.3389/fneur.2020.505995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cannabis has been used for centuries for recreational and therapeutic purposes. Whereas, the recreative uses are based on the psychotropic effect of some of its compounds, its therapeutic effects range over a wide spectrum of actions, most of which target the brain or the immune system. Several studies have found cannabinoid receptors in the auditory system, both at peripheral and central levels, thus raising the interest in cannabinoid signaling in hearing, and especially in tinnitus, which is affected also by anxiety, memory, and attention circuits where cannabinoid effects are well described. Available studies on animal models of tinnitus suggest that cannabinoids are not likely to be helpful in tinnitus treatment and could even be harmful. However, the pharmacology of cannabinoids is very complex, and most studies focused on neural CB1R-based responses. Cannabinoid effects on the immune system (where CB2Rs predominate) are increasingly recognized as essential in understanding nervous system pathological responses, and data on immune cannabinoid targets have emerged in the auditory system as well. In addition, nonclassical cannabinoid targets (such as TRP channels) appear to play an important role in the auditory system as well. This review will focus on neuroimmunological mechanisms for cannabinoid effects and their possible use as protective and therapeutic agents in the ear and auditory system, especially in tinnitus.
Collapse
Affiliation(s)
- Paola Perin
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | | | | | | | | | - Roberto Pizzala
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
41
|
Molecular Targets of Cannabidiol in Experimental Models of Neurological Disease. Molecules 2020; 25:molecules25215186. [PMID: 33171772 PMCID: PMC7664437 DOI: 10.3390/molecules25215186] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD) is a non-psychoactive phytocannabinoid known for its beneficial effects including antioxidant and anti-inflammatory properties. Moreover, CBD is a compound with antidepressant, anxiolytic, anticonvulsant and antipsychotic effects. Thanks to all these properties, the interest of the scientific community for it has grown. Indeed, CBD is a great candidate for the management of neurological diseases. The purpose of our review is to summarize the in vitro and in vivo studies published in the last 15 years that describe the biochemical and molecular mechanisms underlying the effects of CBD and its therapeutic application in neurological diseases. CBD exerts its neuroprotective effects through three G protein coupled-receptors (adenosine receptor subtype 2A, serotonin receptor subtype 1A and G protein-coupled receptor 55), one ligand-gated ion channel (transient receptor potential vanilloid channel-1) and one nuclear factor (peroxisome proliferator-activated receptor γ). Moreover, the therapeutical properties of CBD are also due to GABAergic modulation. In conclusion, CBD, through multi-target mechanisms, represents a valid therapeutic tool for the management of epilepsy, Alzheimer’s disease, multiple sclerosis and Parkinson’s disease.
Collapse
|
42
|
Therapeutic Applications of Cannabinoids in Cardiomyopathy and Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4587024. [PMID: 33194003 PMCID: PMC7641267 DOI: 10.1155/2020/4587024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
A large number of cannabinoids have been discovered that could play a role in mitigating cardiac affections. However, none of them has been as widely studied as cannabidiol (CBD), most likely because, individually, the others offer only partial effects or can activate potential harmful pathways. In this regard, CBD has proven to be of great value as a cardioprotective agent since it is a potent antioxidant and anti-inflammatory molecule. Thus, we conducted a review to condensate the currently available knowledge on CBD as a therapy for different experimental models of cardiomyopathies and heart failure to detect the molecular pathways involved in cardiac protection. CBD therapy can greatly limit the production of oxygen/nitrogen reactive species, thereby limiting cellular damage, protecting mitochondria, avoiding caspase activation, and regulating ionic homeostasis. Hence, it can affect myocardial contraction by restricting the activation of inflammatory pathways and cytokine secretion, lowering tissular infiltration by immune cells, and reducing the area of infarct and fibrosis formation. These effects are mediated by the activation or inhibition of different receptors and target molecules of the endocannabinoid system. In the final part of this review, we explore the current state of CBD in clinical trials as a treatment for cardiovascular diseases and provide evidence of its potential benefits in humans.
Collapse
|
43
|
Lourenço DM, Ribeiro-Rodrigues L, Sebastião AM, Diógenes MJ, Xapelli S. Neural Stem Cells and Cannabinoids in the Spotlight as Potential Therapy for Epilepsy. Int J Mol Sci 2020; 21:E7309. [PMID: 33022963 PMCID: PMC7582633 DOI: 10.3390/ijms21197309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is one of the most common brain diseases worldwide, having a huge burden in society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy, continuing to experience seizures overtime. Therefore, the search for new drugs and therapeutic targets is highly important. One key aspect to be targeted is the aberrant adult hippocampal neurogenesis (AHN) derived from Neural Stem Cells (NSCs). Indeed, targeting seizure-induced AHN may reduce recurrent seizures and shed some light on the mechanisms of disease. The endocannabinoid system is a known modulator of AHN, and due to the known endogenous antiepileptic properties, it is an interesting candidate for the generation of new antiepileptic drugs. However, further studies and clinical trials are required to investigate the putative mechanisms by which cannabinoids can be used to treat epilepsy. In this manuscript, we will review how cannabinoid-induced modulation of NSCs may promote neural plasticity and whether these drugs can be used as putative antiepileptic treatment.
Collapse
Affiliation(s)
- Diogo M. Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
44
|
The Effects of Cannabidiol, a Non-Intoxicating Compound of Cannabis, on the Cardiovascular System in Health and Disease. Int J Mol Sci 2020; 21:ijms21186740. [PMID: 32937917 PMCID: PMC7554803 DOI: 10.3390/ijms21186740] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating and generally well-tolerated constituent of cannabis which exhibits potential beneficial properties in a wide range of diseases, including cardiovascular disorders. Due to its complex mechanism of action, CBD may affect the cardiovascular system in different ways. Thus, we reviewed the influence of CBD on this system in health and disease to determine the potential risk of cardiovascular side effects during CBD use for medical and wellness purposes and to elucidate its therapeutic potential in cardiovascular diseases. Administration of CBD to healthy volunteers or animals usually does not markedly affect hemodynamic parameters. Although CBD has been found to exhibit vasodilatory and antioxidant properties in hypertension, it has not affected blood pressure in hypertensive animals. Hypotensive action of CBD has been mainly revealed under stress conditions. Many positive effects of CBD have been observed in experimental models of heart diseases (myocardial infarction, cardiomyopathy, myocarditis), stroke, neonatal hypoxic ischemic encephalopathy, sepsis-related encephalitis, cardiovascular complications of diabetes, and ischemia/reperfusion injures of liver and kidneys. In these pathological conditions CBD decreased organ damage and dysfunction, oxidative and nitrative stress, inflammatory processes and apoptosis, among others. Nevertheless, further clinical research is needed to recommend the use of CBD in the treatment of cardiovascular diseases.
Collapse
|
45
|
Network construction of aberrantly expressed miRNAs and their target mRNAs in ventricular myocardium with ischemia-reperfusion arrhythmias. J Cardiothorac Surg 2020; 15:216. [PMID: 32787945 PMCID: PMC7425585 DOI: 10.1186/s13019-020-01262-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
Background Hypothermic ischemia-reperfusion arrhythmia remains the main factor affecting cardiac resuscitation under cardiopulmonary bypass. Existing research shows that certain miRNAs exhibit significantly different expressions and effects in arrhythmias, however, the effect of miRNAs on the progression of hypothermic ischemic–reperfusion arrhythmias (RA) and its potential mechanism remain to be further explored. Methods Sprague-Dawley (SD) rats were randomly divided into two groups (n = 8): a normal control group (Group C) and a hypothermic ischemia-reperfusion group (Group IR), which were used to establish a Langendorff isolated cardiac perfusion model. According to the arrhythmia scoring system, rats in group IR were divided into a high-risk group (IR-H) and a low-risk group (IR-L). miRNAs expression profiles of ventricular myocardium with global hypothermic ischemia–reperfusion and those of ventricular myocardium with hypothermic ischemia–RA were established through high-throughput sequencing. Furthermore, the aberrantly expressed miRNAs in myocardium with and without hypothermic ischemia–RA were screened and verified. The target genes of these aberrantly expressed miRNAs were predicted using RNAhybrid and MiRanda software. Based on Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, we determined the mRNA targets associated with these miRNAs and studied the miRNA–mRNA interaction during the cardiovascular disease progression. The aberrantly expressed miRNAs related to hypothermic ischemia–RA were validated by Real-time Quantitative polymerase chain reaction (RT-qPCR). Results Eight significantly aberrantly expressed miRNAs (rno-miR-122-5p, rno-miR-429, novel_miR-1, novel_miR-16, novel_miR-17, novel_miR-19, novel_miR-30, and novel_miR-43) were identified, among which six were up-regulated and two were down-regulated. Moreover, target genes and signaling pathways associated with these aberrantly expressed miRNAs were predicted and analyzed. The miRNA–mRNA interaction network graph showed that GJA1 gene was considered as the target of novel_miR-17. Conclusions Aberrantly expressed miRNAs were possibly associated with the formation mechanism of hypothermic ischemia–RA. Specific miRNAs, such as novel_miR-17 and rno-miR-429 are probably new potential targets for further functional studies of hypothermic ischemia–RA.
Collapse
|
46
|
Richards JR. Mechanisms for the Risk of Acute Coronary Syndrome and Arrhythmia Associated With Phytogenic and Synthetic Cannabinoid Use. J Cardiovasc Pharmacol Ther 2020; 25:508-522. [PMID: 32588641 DOI: 10.1177/1074248420935743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phytogenic cannabinoids from Cannabis sativa and synthetic cannabinoids are commonly used substances for their recreational and medicinal properties. There are increasing reports of cardiotoxicity in close temporal association with cannabinoid use in patients with structurally normal hearts and absence of coronary arterial disease. Associated adverse events include myocardial ischemia, conduction abnormalities, arrhythmias, and sudden death. This review details the effects of phytogenic and synthetic cannabinoids on diverse receptors based on evidence from in vitro, human, and animal studies to establish a molecular basis for these deleterious clinical effects. The synergism between endocannabinoid dysregulation, cannabinoid receptor, and noncannabinoid receptor binding, and impact on cellular ion flux and coronary microvascular circulation is delineated. Pharmacogenetic factors placing certain patients at higher risk for cardiotoxicity are also correlated with the diverse effects of cannabinoids.
Collapse
Affiliation(s)
- John R Richards
- Department of Emergency Medicine, 70083University of California Davis Medical Center, Sacramento, California, CA, USA
| |
Collapse
|
47
|
Martínez V, Iriondo De-Hond A, Borrelli F, Capasso R, del Castillo MD, Abalo R. Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? Int J Mol Sci 2020; 21:E3067. [PMID: 32357565 PMCID: PMC7246936 DOI: 10.3390/ijms21093067] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cannabis sativa is an aromatic annual flowering plant with several botanical varieties, used for different purposes, like the production of fibers, the production of oil from the seeds, and especially for recreational or medical purposes. Phytocannabinoids (terpenophenolic compounds derived from the plant), include the well-known psychoactive cannabinoid Δ9-tetrahydrocannabinol, and many non-psychoactive cannabinoids, like cannabidiol. The endocannabinoid system (ECS) comprises of endocannabinoid ligands, enzymes for synthesis and degradation of such ligands, and receptors. This system is widely distributed in the gastrointestinal tract, where phytocannabinoids exert potent effects, particularly under pathological (i.e., inflammatory) conditions. Herein, we will first look at the hemp plant as a possible source of new functional food ingredients and nutraceuticals that might be eventually useful to treat or even prevent gastrointestinal conditions. Subsequently, we will briefly describe the ECS and the general pharmacology of phytocannabinoids. Finally, we will revise the available data showing that non-psychoactive phytocannabinoids, particularly cannabidiol, may be useful to treat different disorders and diseases of the gastrointestinal tract. With the increasing interest in the development of functional foods for a healthy life, the non-psychoactive phytocannabinoids are hoped to find a place as nutraceuticals and food ingredients also for a healthy gastrointestinal tract function.
Collapse
Affiliation(s)
- Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Neurosciences Institute, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Amaia Iriondo De-Hond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - María Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Raquel Abalo
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Campus de Alcorcón, Avda. de Atenas s/n, 28022 Madrid, Spain
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain;
| |
Collapse
|
48
|
Abstract
ABSTRACT:Cannabidiol (CBD) has been generating increasing interest in medicine due to its therapeutic properties and an apparent lack of negative side effects. Research has suggested that high dosages of CBD can be taken acutely and chronically with little to no risk. This review focuses on the neuroprotective effects of a CBD, with an emphasis on its implications for recovering from a mild traumatic brain injury (TBI) or concussion. CBD has been shown to influence the endocannabinoid system, both by affecting cannabinoid receptors and other receptors involved in the endocannabinoid system such as vanilloid receptor 1, adenosine receptors, and 5-hydroxytryptamine via cannabinoid receptor-independent mechanisms. Concussions can result in many physiological consequences, potentially resulting in post-concussion syndrome. While impairments in cerebrovascular and cardiovascular physiology following concussion have been shown, there is unfortunately still no single treatment available to enhance recovery. CBD has been shown to influence the blood brain barrier, brain-derived neurotrophic factors, cognitive capacity, the cerebrovasculature, cardiovascular physiology, and neurogenesis, all of which have been shown to be altered by concussion. CBD can therefore potentially provide treatment to enhance neuroprotection by reducing inflammation, regulating cerebral blood flow, enhancing neurogenesis, and protecting the brain against reactive oxygen species. Double-blind randomized controlled trials are still required to validate the use of CBD as medication following mild TBIs, such as concussion.
Collapse
|
49
|
Shayesteh MR, Haghi-Aminjan H, Mousavi MJ, Momtaz S, Abdollahi M. The Protective Mechanism of Cannabidiol in Cardiac Injury: A Systematic Review of Non-Clinical Studies. Curr Pharm Des 2019; 25:2499-2507. [DOI: 10.2174/2210327909666190710103103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/26/2019] [Indexed: 11/22/2022]
Abstract
Background:
Cardiac disease is accounted as the leading cause of worldwide morbidity and mortality.
The disease is characterized by the overproduction of reactive oxygen and/or nitrogen species (ROS/RNS), and
induction of oxidative stress. Cannabidiol (CBD) is a non-psychoactive ingredient of marijuana that has been
reported to be safe and well tolerated in patients. Due to its pleiotropic effect, CBD has been shown to exert cytoprotective
effects. This study intended to clarify the mechanisms and the potential role of CBD regarding cardiac
injuries treatment.
Methods:
A systematic literature search was conducted, according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines, in the electronic databases including PubMed, Web of
Science, Scopus, and Embase up to June 2019 using predefined search terms in the titles and abstracts. Accordingly,
a set of pre-specified inclusion and exclusion criteria were considered and 8 articles were ultimately included
in this study.
Results:
Our findings demonstrate that CBD has multi-functional protective assets to improve cardiac injuries;
preliminary through scavenging of free radicals, and reduction of oxidative stress, apoptosis, and inflammation.
Conclusion:
CBD can protect against cardiac injuries, mainly through its antioxidative and antiapoptotic effects
on the basis of non-clinical studies. The cardioprotective effects of the CBD need to be further studied in welldesigned
clinical trials.
Collapse
Affiliation(s)
- Mohammad R.H. Shayesteh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad J. Mousavi
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Elsaid S, Kloiber S, Le Foll B. Effects of cannabidiol (CBD) in neuropsychiatric disorders: A review of pre-clinical and clinical findings. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:25-75. [PMID: 31601406 DOI: 10.1016/bs.pmbts.2019.06.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cannabis sativa (cannabis) is one of the oldest plants cultivated by men. Cannabidiol (CBD) is the major non-psychomimetic compound derived from cannabis. It has been proposed to have a therapeutic potential over a wide range of neuropsychiatric disorders. In this narrative review, we have summarized a selected number of pre-clinical and clinical studies, examining the effects of CBD in neuropsychiatric disorders. In some pre-clinical studies, CBD was demonstrated to potentially exhibit anti-epileptic, anti-oxidant, anti-inflammatory anti-psychotic, anxiolytic and anti-depressant properties. Moreover, CBD was shown to reduce addictive effects of some drugs of abuse. In clinical studies, CBD was shown to be safe, well-tolerated and efficacious in mitigating the symptoms associated with several types of seizure disorders and childhood epilepsies. Given that treatment with CBD alone was insufficient at managing choreic movements in patients with Huntington's disease, other cannabis-derived treatments are currently being investigated. Patients with Parkinson's disease (PD) have reported improvements in sleep and better quality of life with CBD; however, to fully elucidate the therapeutic potential of CBD on the symptoms of PD-associated movement disorders, larger scale, randomized, placebo-controlled studies still need to be conducted in the future. Currently, there are no human studies that investigated the effects of CBD in either Alzheimer's disease or unipolar depression, warranting further investigation in this area, considering that CBD was shown to have effects in pre-clinical studies. Although, anxiolytic properties of CBD were reported in the Social Anxiety Disorder, antipsychotic effects in schizophrenia and anti-addictive qualities in alcohol and drug addictions, here too, larger, randomized, placebo-controlled trials are needed to evaluate the therapeutic potential of CBD.
Collapse
Affiliation(s)
- Sonja Elsaid
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stefan Kloiber
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; General Adult Psychiatry and Health Systems Division, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON,Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON,Canada; Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|