1
|
Ray JK, Stürmlinger LL, von Krause M, Lux U, Zietlow AL. Disentangling the trajectories of maternal depressive symptoms and partnership problems in the transition to parenthood and their impact on child adjustment difficulties. Dev Psychopathol 2024; 36:1988-2003. [PMID: 37974466 DOI: 10.1017/s0954579423001335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Maternal perinatal depression (PND) and partnership problems have been identified to influence the development of later child adjustment difficulties. However, PND and partnership problems are closely linked which makes it difficult to draw conclusions about the exact transmission pathways. The aim of the present study was to investigate to what extent PND symptoms and partnership problems influence each other longitudinally and to examine the influence of their trajectories on child adjustment difficulties at the age of three. Analyses were based on publicly available data from the German family panel "pairfam". N = 354 mothers were surveyed on depressive symptoms and partnership problems annually from pregnancy (T0) until child age three (T4). Child adjustment difficulties were assessed at age three. Results of latent change score modeling showed that partnership problems predicted change in PND symptoms at T0 and T3 while PND symptoms did not predict change in partnership problems. Child adjustment difficulties at age three were predicted by PND symptoms, but not by partnership problems. Partnership problems predicted externalizing, but not internalizing symptoms. Results underline the effects of family factors for the development of child adjustment difficulties and emphasize the importance of early interventions from pregnancy onwards.
Collapse
Affiliation(s)
- J K Ray
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - L L Stürmlinger
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - M von Krause
- Faculty of Behavioral and Cultural Studies, Institute of Psychology, University of Heidelberg, Heidelberg, Germany
| | - U Lux
- Department Family and Family Policies, German Youth Institute (DJI), Munich, Germany
- Department of Psychology and Pedagogy, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - A-L Zietlow
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Vinci M, Greco D, Treccarichi S, Chiavetta V, Figura MG, Musumeci A, Greco V, Federico C, Calì F, Saccone S. Bioinformatic Evaluation of KLF13 Genetic Variant: Implications for Neurodevelopmental and Psychiatric Symptoms. Genes (Basel) 2024; 15:1056. [PMID: 39202416 PMCID: PMC11354057 DOI: 10.3390/genes15081056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
The Krüppel-like factor (KLF) family represents a group of transcription factors (TFs) performing different biological processes that are crucial for proper neuronal function, including neuronal development, synaptic plasticity, and neuronal survival. As reported, genetic variants within the KLF family have been associated with a wide spectrum of neurodevelopmental and psychiatric symptoms. In a patient exhibiting attention deficit hyperactivity disorder (ADHD) combined with both neurodevelopmental and psychiatric symptoms, whole-exome sequencing (WES) analysis revealed a de novo heterozygous variant within the Krüppel-like factor 13 (KLF13) gene, which belongs to the KLF family and regulates axonal growth, development, and regeneration in mice. Moreover, in silico analyses pertaining to the likely pathogenic significance of the variant and the impact of the mutation on the KLF13 protein structure suggested a potential deleterious effect. In fact, the variant was localized in correspondence to the starting residue of the N-terminal domain of KLF13, essential for protein-protein interactions, DNA binding, and transcriptional activation or repression. This study aims to highlight the potential involvement of the KLF13 gene in neurodevelopmental and psychiatric disorders. Nevertheless, we cannot rule out that excluded variants, those undetectable by WES, or the polygenic risk may have contributed to the patient's phenotype given ADHD's high polygenic risk. However, further functional studies are required to validate its potential contribution to these disorders.
Collapse
Affiliation(s)
- Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Donatella Greco
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Valeria Chiavetta
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Maria Grazia Figura
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Antonino Musumeci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Vittoria Greco
- Department of Biomedical Science, University of Messina, 98122 Messina, Italy;
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| |
Collapse
|
3
|
Robinson LR, Bitsko RH, O'Masta B, Holbrook JR, Ko J, Barry CM, Maher B, Cerles A, Saadeh K, MacMillan L, Mahmooth Z, Bloomfield J, Rush M, Kaminski JW. A Systematic Review and Meta-analysis of Parental Depression, Antidepressant Usage, Antisocial Personality Disorder, and Stress and Anxiety as Risk Factors for Attention-Deficit/Hyperactivity Disorder (ADHD) in Children. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2024; 25:272-290. [PMID: 35641729 PMCID: PMC10949950 DOI: 10.1007/s11121-022-01383-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/20/2022]
Abstract
Poor parental mental health and stress have been associated with children's mental disorders, including attention-deficit/hyperactivity disorder (ADHD), through social, genetic, and neurobiological pathways. To determine the strength of the associations between parental mental health and child ADHD, we conducted a set of meta-analyses to examine the association of parent mental health indicators (e.g., parental depression, antidepressant usage, antisocial personality disorder, and stress and anxiety) with subsequent ADHD outcomes in children. Eligible ADHD outcomes included diagnosis or symptoms. Fifty-eight articles published from 1980 to 2019 were included. We calculated pooled effect sizes, accounting for each study's conditional variance, separately for test statistics based on ADHD as a dichotomous (e.g., diagnosis or clinical cutoffs) or continuous measurement (e.g., symptoms of ADHD subtypes of inattentiveness and hyperactivity/impulsivity). Parental stress and parental depression were significantly associated with increased risk for ADHD overall and both symptoms and diagnosis. Specifically, maternal stress and anxiety, maternal prenatal stress, maternal depression, maternal post-partum depression, and paternal depression were positively associated with ADHD. In addition, parental depression was associated with symptoms of ADHD inattentive and hyperactive/impulsive subtypes. Parental antisocial personality disorder was also positively associated with ADHD overall and specifically ADHD diagnosis. Prenatal antidepressant usage was associated with ADHD when measured dichotomously only. These findings raise the possibility that prevention strategies promoting parental mental health and addressing parental stress could have the potential for positive long-term impacts on child health, well-being, and behavioral outcomes.
Collapse
Affiliation(s)
- Lara R Robinson
- Division of Human Development and Disability, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Rebecca H Bitsko
- Division of Human Development and Disability, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Joseph R Holbrook
- Division of Human Development and Disability, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jean Ko
- Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
- U.S. Public Health Service Commissioned Corps, Rockville, MD, USA
| | - Caroline M Barry
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Brion Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | - Jeanette Bloomfield
- Division of Human Development and Disability, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Jennifer W Kaminski
- Division of Human Development and Disability, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
4
|
Predescu E, Vaidean T, Rapciuc AM, Sipos R. Metabolomic Markers in Attention-Deficit/Hyperactivity Disorder (ADHD) among Children and Adolescents-A Systematic Review. Int J Mol Sci 2024; 25:4385. [PMID: 38673970 PMCID: PMC11050195 DOI: 10.3390/ijms25084385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD), characterized by clinical diversity, poses diagnostic challenges often reliant on subjective assessments. Metabolomics presents an objective approach, seeking biomarkers for precise diagnosis and targeted interventions. This review synthesizes existing metabolomic insights into ADHD, aiming to reveal biological mechanisms and diagnostic potentials. A thorough PubMed and Web of Knowledge search identified studies exploring blood/urine metabolites in ADHD-diagnosed or psychometrically assessed children and adolescents. Synthesis revealed intricate links between ADHD and altered amino acid metabolism, neurotransmitter dysregulation (especially dopamine and serotonin), oxidative stress, and the kynurenine pathway impacting neurotransmitter homeostasis. Sleep disturbance markers, notably in melatonin metabolism, and stress-induced kynurenine pathway activation emerged. Distinct metabolic signatures, notably in the kynurenine pathway, show promise as potential diagnostic markers. Despite limitations like participant heterogeneity, this review underscores the significance of integrated therapeutic approaches targeting amino acid metabolism, neurotransmitters, and stress pathways. While guiding future research, this overview of the metabolomic findings in ADHD suggests directions for precision diagnostics and personalized ADHD interventions.
Collapse
Affiliation(s)
- Elena Predescu
- Department of Neuroscience, Psychiatry and Pediatric Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 57 Republicii Street, 400489 Cluj-Napoca, Romania;
| | - Tudor Vaidean
- Clinic of Pediatric Psychiatry and Addiction, Clinical Emergency Hospital for Children, 57 Republicii Street, 400489 Cluj-Napoca, Romania;
| | - Andreea-Marlena Rapciuc
- Clinical Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Roxana Sipos
- Department of Neuroscience, Psychiatry and Pediatric Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 57 Republicii Street, 400489 Cluj-Napoca, Romania;
| |
Collapse
|
5
|
Hubers N, Hagenbeek FA, Pool R, Déjean S, Harms AC, Roetman PJ, van Beijsterveldt CEM, Fanos V, Ehli EA, Vermeiren RRJM, Bartels M, Hottenga JJ, Hankemeier T, van Dongen J, Boomsma DI. Integrative multi-omics analysis of genomic, epigenomic, and metabolomics data leads to new insights for Attention-Deficit/Hyperactivity Disorder. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32955. [PMID: 37534875 DOI: 10.1002/ajmg.b.32955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The evolving field of multi-omics combines data and provides methods for simultaneous analysis across several omics levels. Here, we integrated genomics (transmitted and non-transmitted polygenic scores [PGSs]), epigenomics, and metabolomics data in a multi-omics framework to identify biomarkers for Attention-Deficit/Hyperactivity Disorder (ADHD) and investigated the connections among the three omics levels. We first trained single- and next multi-omics models to differentiate between cases and controls in 596 twins (cases = 14.8%) from the Netherlands Twin Register (NTR) demonstrating reasonable in-sample prediction through cross-validation. The multi-omics model selected 30 PGSs, 143 CpGs, and 90 metabolites. We confirmed previous associations of ADHD with glucocorticoid exposure and the transmembrane protein family TMEM, show that the DNA methylation of the MAD1L1 gene associated with ADHD has a relation with parental smoking behavior, and present novel findings including associations between indirect genetic effects and CpGs of the STAP2 gene. However, out-of-sample prediction in NTR participants (N = 258, cases = 14.3%) and in a clinical sample (N = 145, cases = 51%) did not perform well (range misclassification was [0.40, 0.57]). The results highlighted connections between omics levels, with the strongest connections between non-transmitted PGSs, CpGs, and amino acid levels and show that multi-omics designs considering interrelated omics levels can help unravel the complex biology underlying ADHD.
Collapse
Affiliation(s)
- Nikki Hubers
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Sébastien Déjean
- Toulouse Mathematics Institute, UMR 5219, University of Toulouse, CNRS, Toulouse, France
| | - Amy C Harms
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Peter J Roetman
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, Cagliari, Italy
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA
| | - Robert R J M Vermeiren
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Youz, Parnassia Group, the Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Zhong L, He H, Zhang J, Gao X, Yin F, Zuo P, Song R. Gene Interaction of Dopaminergic Synaptic Pathway Genes in Attention-Deficit Hyperactivity Disorder: a Case-Control Study in Chinese Children. Mol Neurobiol 2024; 61:42-54. [PMID: 37578679 PMCID: PMC10791714 DOI: 10.1007/s12035-023-03523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Attention-deficit hyperactivity disorder is a highly inherited neurodevelopmental disorder. Previous genetic research has linked ADHD to certain genes in the dopaminergic synaptic pathway. Nonetheless, research on this relationship has produced varying results across various populations. China is a multi-ethnic country with its own unique genetic characteristics. Therefore, such a population can provide useful information about the relationship between gene polymorphisms in dopaminergic synaptic pathways and ADHD. This study looked at the genetic profiles of 284 children in China's Xinjiang. In total, 142 ADHD children and 142 control subjects were enrolled. Following the extraction of DNA from oral mucosal cells, 13 SNPs for three candidate genes (SLC6A3, DRD2, and GRIN2B) in the dopaminergic synaptic pathway of ADHD were screened. Based on the results of single nucleotide polymorphism (SNP) analyses, we found that the DRD2 gene variants rs6277 and rs6275, and the SLC6A3 gene variant rs2652511, were significantly associated with ADHD in boys and girls, respectively, after adjusting for false discovery rate (FDR) in terms of allele frequencies. Furthermore, our generalized multifactorial downscaling approach identified a significant association between rs6275 and rs1012586. These findings suggest that DRD2 and SLC6A3 genes have a crucial role in ADHD susceptibility. Additionally, we observed that the interaction between GRIN2B and DRD2 genes may contribute to the susceptibility of Chinese children with ADHD.
Collapse
Affiliation(s)
- Lin Zhong
- Medical College of Shihezi University, Xinjiang, Shihezi, 832000, China
| | - Hongyao He
- Medical College of Shihezi University, Xinjiang, Shihezi, 832000, China
| | - Jing Zhang
- Medical College of Shihezi University, Xinjiang, Shihezi, 832000, China
| | - Xiaoyan Gao
- Medical College of Shihezi University, Xinjiang, Shihezi, 832000, China
| | - Feifei Yin
- Medical College of Shihezi University, Xinjiang, Shihezi, 832000, China
| | - Pengxiang Zuo
- Medical College of Shihezi University, Xinjiang, Shihezi, 832000, China.
| | - Ranran Song
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
7
|
Aquino GA, Perry NB, Aviles AI, Hazen N, Jacobvitz D. Developmental antecedents of attention-deficit/hyperactivity disorder symptoms in middle childhood: The role of father-child interactions and children's emotional underregulation. Dev Psychopathol 2023:1-9. [PMID: 37092656 DOI: 10.1017/s0954579423000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The present study examined the influence of fathers' parenting quality during infancy on children's emotion regulation during toddlerhood and, subsequently, attention-deficit/hyperactivity disorder (ADHD) symptoms in middle childhood. Fathers and their 8-month-old infants (N = 124) were followed over time to obtain home observations of parenting quality at 8 and 24 months, laboratory observations of children's emotion regulation at 24 months, and teacher reports of children's ADHD symptoms at 7 years. A path analysis revealed that fathers' emotional disengagement in infancy and minimizing responses to children's distress in toddlerhood forecast children's development of ADHD symptoms in middle childhood. Further, a significant indirect effect was found such that fathers' parenting at 8 and 24 months predicted subsequent development of ADHD symptoms at age 7 through toddlers' difficulty regulating emotion. Implications of this study for early intervention and directions for future research are discussed.
Collapse
Affiliation(s)
- Gabriela A Aquino
- Department of Human Development & Family Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Nicole B Perry
- Department of Human Development & Family Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Ashleigh I Aviles
- Department of Human Development & Family Sciences, The University of Texas at Austin, Austin, TX, USA
- Institute of Human Development and Social Change, NYU Steinhardt School of Culture, Education, and Human Development, New York, NY, USA
| | - Nancy Hazen
- Department of Human Development & Family Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Deborah Jacobvitz
- Department of Human Development & Family Sciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
8
|
Choi YJ, Cho J, Hong YC, Lee DW, Moon S, Park SJ, Lee KS, Shin CH, Lee YA, Kim BN, Kaminsky Z, Kim JI, Lim YH. DNA methylation is associated with prenatal exposure to sulfur dioxide and childhood attention-deficit hyperactivity disorder symptoms. Sci Rep 2023; 13:3501. [PMID: 36859453 PMCID: PMC9977725 DOI: 10.1038/s41598-023-29843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Epigenetic influence plays a role in the association between exposure to air pollution and attention deficit hyperactivity disorder (ADHD); however, research regarding sulfur dioxide (SO2) is scarce. Herein, we investigate the associations between prenatal SO2 exposure and ADHD rating scale (ARS) at ages 4, 6 and 8 years repeatedly in a mother-child cohort (n = 329). Whole blood samples were obtained at ages 2 and 6 years, and genome-wide DNA methylation (DNAm) was analyzed for 51 children using the Illumina Infinium HumanMethylation BeadChip. We analyzed the associations between prenatal SO2 exposure and DNAm levels at ages 2 and 6, and further investigated the association between the DNAm and ARS at ages 4, 6 and 8. Prenatal SO2 exposure was associated with ADHD symptoms. From candidate gene analysis, DNAm levels at the 6 CpGs at age 2 were associated with prenatal SO2 exposure levels. Of the 6 CpGs, cg07583420 (INS-IGF2) was persistently linked with ARS at ages 4, 6 and 8. Epigenome-wide analysis showed that DNAm at 6733 CpG sites were associated with prenatal SO2 exposure, of which 58 CpGs involved in Notch signalling pathway were further associated with ARS at age 4, 6 and 8 years, persistently. DNAm at age 6 was not associated with prenatal SO2 exposure. Changes in DNAm levels associated with prenatal SO2 exposure during early childhood are associated with increases in ARS in later childhood.
Collapse
Affiliation(s)
- Yoon-Jung Choi
- National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinwoo Cho
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Dong-Wook Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Public Healthcare Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sungji Moon
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Park
- Department of Surgery, Wonkwang University Sanbon Hospital, Gunpo, Republic of Korea
| | - Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Public Health Research Institute, National Medical Center, Seoul, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Zachary Kaminsky
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Section of Environmental Epidemiology, Department of Public Health, University of Copenhagen, Østerster Farimagsgade 5, 1014, København K, Copenhagen, Denmark.
| |
Collapse
|
9
|
Sato JR, Biazoli CE, Bueno APA, Caye A, Pan PM, Santoro M, Honorato-Mauer J, Salum GA, Hoexter MQ, Bressan RA, Jackowski AP, Miguel EC, Belangero S, Rohde LA. Polygenic risk score for attention-deficit/hyperactivity disorder and brain functional networks segregation in a community-based sample. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12838. [PMID: 36811275 PMCID: PMC10067387 DOI: 10.1111/gbb.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/24/2023]
Abstract
Neuroimaging studies suggest that brain development mechanisms might explain at least some behavioural and cognitive attention-deficit/hyperactivity disorder (ADHD) symptoms. However, the putative mechanisms by which genetic susceptibility factors influence clinical features via alterations of brain development remain largely unknown. Here, we set out to integrate genomics and connectomics tools by investigating the associations between an ADHD polygenic risk score (ADHD-PRS) and functional segregation of large-scale brain networks. With this aim, ADHD symptoms score, genetic and rs-fMRI (resting-state functional magnetic resonance image) data obtained in a longitudinal community-based cohort of 227 children and adolescents were analysed. A follow-up was conducted approximately 3 years after the baseline, with rs-fMRI scanning and ADHD likelihood assessment in both stages. We hypothesised a negative correlation between probable ADHD and the segregation of networks involved in executive functions, and a positive correlation with the default-mode network (DMN). Our findings suggest that ADHD-PRS is correlated with ADHD at baseline, but not at follow-up. Despite not surviving for multiple comparison correction, we found significant correlations between ADHD-PRS and segregation of cingulo-opercular networks and DMN at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation. These directions of associations corroborate the proposed counter-balanced role of attentional networks and DMN in attentional processes. However, the association between ADHD-PRS and brain networks functional segregation was not found at follow-up. Our results provide evidence for specific influences of genetic factors on development of attentional networks and DMN. We found significant correlations between polygenic risk score for ADHD (ADHD-PRS) and segregation of cingulo-opercular networks and default-mode network (DMN) at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation.
Collapse
Affiliation(s)
- João Ricardo Sato
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil.,Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,Department of Radiology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Big Data, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil.,Department of Experimental and Biological Psychology, Queen Mary University of London, London, UK
| | - Ana Paula Arantes Bueno
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Arthur Caye
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Hospital de Clínicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Mario Pan
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil
| | - Marcos Santoro
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Jessica Honorato-Mauer
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Giovanni Abrahão Salum
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Hospital de Clínicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Queiroz Hoexter
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Psychiatry, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Rodrigo Affonseca Bressan
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil
| | - Andrea Parolin Jackowski
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,Department of Education, ICT and Learning, Østfold University College, Halden, Norway
| | - Euripedes Constantino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Sintia Belangero
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Hospital de Clínicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,UniEduK, Jaguariúna, Brazil.,ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clinica de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Meijer M, Franke B, Sandi C, Klein M. Epigenome-wide DNA methylation in externalizing behaviours: A review and combined analysis. Neurosci Biobehav Rev 2023; 145:104997. [PMID: 36566803 DOI: 10.1016/j.neubiorev.2022.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
DNA methylation (DNAm) is one of the most frequently studied epigenetic mechanisms facilitating the interplay of genomic and environmental factors, which can contribute to externalizing behaviours and related psychiatric disorders. Previous epigenome-wide association studies (EWAS) for externalizing behaviours have been limited in sample size, and, therefore, candidate genes and biomarkers with robust evidence are still lacking. We 1) performed a systematic literature review of EWAS of attention-deficit/hyperactivity disorder (ADHD)- and aggression-related behaviours conducted in peripheral tissue and cord blood and 2) combined the most strongly associated DNAm sites observed in individual studies (p < 10-3) to identify candidate genes and biological systems for ADHD and aggressive behaviours. We observed enrichment for neuronal processes and neuronal cell marker genes for ADHD. Astrocyte and granulocytes cell markers among genes annotated to DNAm sites were relevant for both ADHD and aggression-related behaviours. Only 1 % of the most significant epigenetic findings for ADHD/ADHD symptoms were likely to be directly explained by genetic factors involved in ADHD. Finally, we discuss how the field would greatly benefit from larger sample sizes and harmonization of assessment instruments.
Collapse
Affiliation(s)
- Mandy Meijer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carmen Sandi
- Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
11
|
The role of DNA methylation in progression of neurological disorders and neurodegenerative diseases as well as the prospect of using DNA methylation inhibitors as therapeutic agents for such disorders. IBRO Neurosci Rep 2022; 14:28-37. [PMID: 36590248 PMCID: PMC9794904 DOI: 10.1016/j.ibneur.2022.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide studies related to neurological disorders and neurodegenerative diseases have pointed to the role of epigenetic changes such as DNA methylation, histone modification, and noncoding RNAs. DNA methylation machinery controls the dynamic regulation of methylation patterns in discrete brain regions. Objective This review aims to describe the role of DNA methylation in inhibiting and progressing neurological and neurodegenerative disorders and therapeutic approaches. Methods A Systematic search of PubMed, Web of Science, and Cochrane Library was conducted for all qualified studies from 2000 to 2022. Results For the current need of time, we have focused on the DNA methylation role in neurological and neurodegenerative diseases and the expression of genes involved in neurodegeneration such as Alzheimer's, Depression, and Rett Syndrome. Finally, it appears that the various epigenetic changes do not occur separately and that DNA methylation and histone modification changes occur side by side and affect each other. We focused on the role of modification of DNA methylation in several genes associated with depression (NR3C1, NR3C2, CRHR1, SLC6A4, BDNF, and FKBP5), Rett syndrome (MECP2), Alzheimer's, depression (APP, BACE1, BIN1 or ANK1) and Parkinson's disease (SNCA), as well as the co-occurring modifications to histones and expression of non-coding RNAs. Understanding these epigenetic changes and their interactions will lead to better treatment strategies. Conclusion This review captures the state of understanding of the epigenetics of neurological and neurodegenerative diseases. With new epigenetic mechanisms and targets undoubtedly on the horizon, pharmacological modulation and regulation of epigenetic processes in the brain holds great promise for therapy.
Collapse
|
12
|
Liu X, Zhang G. Functional urination or defecation disorders may be warning signs of attention-deficit/hyperactivity disorder among children in rural China. J Affect Disord 2022; 316:63-70. [PMID: 35981625 DOI: 10.1016/j.jad.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND This study was designed to investigate the prevalence of attention-deficit/hyperactivity disorder (ADHD) and its association with functional urination and defecation disorders among children in rural China. METHODS A cross-sectional study was conducted with children aged 6-18 in rural schools in southwest China using a survey questionnaire. The Swanson, Nolan, and Pelham Questionnaire-IV (SNAP-IV) was used to measure ADHD symptoms, and standardized questions about urination and defecation were used to measure lower urinary tract symptoms (LUTS) and functional defecation disorders (FDDs). The association of ADHD with LUTS and FDDs was analyzed by matched logistic regression after propensity score matching was performed to minimize the influence of potential confounders, including demographic characteristics. RESULTS A total of 17,279 participants were included in the analyses. The prevalence of ADHD was 2 % mainly among boys before age 12, after which it showed a decreasing trend with age, resulting in a concomitant reduction in gender differences. The risk of ADHD was positively associated with the presence of enuresis, holding maneuvers, intermittency, and encopresis, with encopresis having the strongest association (P = 0.001). The presence of holding maneuvers, intermittency, excessive volitional stool retention, and encopresis were associated with a higher risk of ADHD at 6-15 years-old, with intermittency exhibiting an increasingly positive association with ADHD risk across ages 6-15. CONCLUSIONS ADHD was associated with LUTS and FDDs, which highlights that functional urination and/or defecation disorders could serve as warning signs for ADHD that should trigger screening, especially in relatively backward regions with little ADHD awareness.
Collapse
Affiliation(s)
- Xiaorui Liu
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Gaofu Zhang
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| |
Collapse
|
13
|
Kelvington BA, Nickl-Jockschat T, Abel T. Neurobiological insights into twice-exceptionality: Circuits, cells, and molecules. Neurobiol Learn Mem 2022; 195:107684. [PMID: 36174887 PMCID: PMC9888516 DOI: 10.1016/j.nlm.2022.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 02/02/2023]
Abstract
Twice-exceptional learners face a unique set of challenges arising from the intersection of extraordinary talent and disability. Neurobiology research has the capacity to complement pedagogical research and provide support for twice-exceptional learners. Very few studies have attempted to specifically address the neurobiological underpinnings of twice-exceptionality. However, neurobiologists have built a broad base of knowledge in nervous system function spanning from the level of neural circuits to the molecular basis of behavior. It is known that distinct neural circuits mediate different neural functions, which suggests that 2e learning may result from enhancement in one circuit and disruption in another. Neural circuits are known to adapt and change in response to experience, a cellular process known as neuroplasticity. Plasticity is controlled by a bidirectional connection between the synapse, where neural signals are received, and the nucleus, where regulated gene expression can return to alter synaptic function. Complex molecular mechanisms compose this connection in distinct neural circuits, and genetic alterations in these mechanisms are associated with both memory enhancements and psychiatric disorder. Understanding the consequences of these changes at the molecular, cellular, and circuit levels will provide critical insights into the neurobiological bases of twice-exceptionality.
Collapse
Affiliation(s)
- Benjamin A Kelvington
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Thomas Nickl-Jockschat
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
14
|
Zetterström TSC, Quansah E, Grootveld M. Effects of Methylphenidate on the Dopamine Transporter and Beyond. Curr Top Behav Neurosci 2022; 57:127-157. [PMID: 35507284 DOI: 10.1007/7854_2022_333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The dopamine transporter (DAT) is the main target of methylphenidate (MPH), which remains the number one drug prescribed worldwide for the treatment of Attention-Deficit Hyperactivity Disorder (ADHD). In addition, abnormalities of the DAT have been widely associated with ADHD. Based on clinical and preclinical studies, the direction of DAT abnormalities in ADHD are, however, still unclear. Moreover, chronic treatment of MPH has been shown to increase brain DAT expression in both animals and ADHD patients, suggesting that findings of overexpressed levels of DAT in ADHD patients are possibly attributable to the effects of long-term MPH treatment rather than the pathology of the condition itself. In this chapter, we will discuss some of the effects exerted by MPH, which are related to its actions on catecholamine protein targets and brain metabolites, together with genes and proteins mediating neuronal plasticity. For this purpose, we present data from biochemical, proton nuclear magnetic resonance spectroscopy (1H-NMR) and gene/protein expression studies. Overall, results of the studies discussed in this chapter show that MPH has a complex biological/pharmacological action well beyond the DAT.
Collapse
Affiliation(s)
- Tyra S C Zetterström
- Pharmacology and Neuroscience Research Group, Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK.
| | - Emmanuel Quansah
- Pharmacology and Neuroscience Research Group, Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Martin Grootveld
- Pharmacology and Neuroscience Research Group, Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| |
Collapse
|
15
|
Peedicayil J. The Role of Epigenetics in the Pathogenesis and Potential Treatment of Attention Deficit Hyperactivity Disorder. Curr Neuropharmacol 2022; 20:1642-1650. [PMID: 34544344 PMCID: PMC9881064 DOI: 10.2174/1570159x19666210920091036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence that dysregulated epigenetic mechanisms of gene expression are involved in the pathogenesis of attention deficit hyperactivity disorder (ADHD). This review presents a comprehensive summary of the current state of research on the role of epigenetics in the pathogenesis of ADHD. The potential role of epigenetic drugs in the treatment of ADHD is also reviewed. Several studies suggest that there are epigenetic abnormalities in preclinical models of ADHD and in ADHD patients. Regarding DNA methylation, many studies have reported DNA hypermethylation. There is evidence that there is increased histone deacetylation in ADHD patients. Abnormalities in the expression of microRNAs (miRNAs) in ADHD patients have also been found. Some currently used drugs for treating ADHD, in addition to their more well-established mechanisms of action, have been shown to alter epigenetic mechanisms of gene expression. Clinical trials of epigenetic drugs in patients with ADHD report favorable results. These data suggest that abnormal epigenetic mechanisms of gene expression may be involved in the pathogenesis of ADHD. Drugs acting on epigenetic mechanisms may be a potential new class of drugs for treating ADHD.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India,Address correspondence to this author at the Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India;Tel: 91-0416-2284237; E-mail:
| |
Collapse
|
16
|
Hohmann S, Häge A, Millenet S, Banaschewski T. [The Genetic Basis of ADHD - An Update]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2022; 50:203-217. [PMID: 35514173 DOI: 10.1024/1422-4917/a000868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Genetic Basis of ADHD - An Update Abstract. Genetic risks play an important role in the etiology of attention-deficit/hyperactivity disorder (ADHD). This review presents the current state of knowledge concerning the genetic basis of the disorder. It discusses the results of twin- and family-based studies, linkage and association studies as well as recent findings resulting from Genome Wide Association Studies (GWAS). Furthermore, it elaborates on the relevance of polygenic risk scores, rare variants, and epigenetic alterations, especially in light of findings on genetic pleiotropy in the context of frequent psychiatric comorbidities in patients with ADHD.
Collapse
Affiliation(s)
- Sarah Hohmann
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Alexander Häge
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Sabina Millenet
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Tobias Banaschewski
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| |
Collapse
|
17
|
Spencer AE, Oblath R, Sheldrick RC, Ng LC, Silverstein M, Garg A. Social Determinants of Health and ADHD Symptoms in Preschool-Age Children. J Atten Disord 2022; 26:447-455. [PMID: 33641514 PMCID: PMC8408273 DOI: 10.1177/1087054721996458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Attention-Deficit/Hyperactivity Disorder (ADHD) disproportionately affects socioeconomically disadvantaged children, but for unclear reasons. We examined the association between social determinants of health (SDH) and ADHD symptoms in a national sample of preschool-age children. METHODS We conducted exploratory factor analysis (EFA) and exploratory structural equation modeling (ESEM) with a sample of 7,565 preschool-age children from the 2016 National Survey of Children's Health, to examine the association between ADHD symptoms and SDH. RESULTS EFA indicated a one-factor structure for ADHD symptoms, and three factors for SDH (socioeconomic status, access to basic needs, and caregiver well-being). Independently, all three SDH were significantly associated with higher ADHD symptoms. However, in the ESEM model, only worse caregiver well-being (β = .39, p < .01) was significantly associated with ADHD symptoms, and fully mediated the relationship between SDH and ADHD symptoms. CONCLUSION Addressing caregiver well-being in preschoolers with ADHD symptoms could be an early intervention strategy.
Collapse
Affiliation(s)
- Andrea E. Spencer
- Boston University School of Medicine, Boston Medical Center, MA, USA
| | - Rachel Oblath
- Boston University School of Medicine, Boston Medical Center, MA, USA
| | | | | | | | - Arvin Garg
- Boston University School of Medicine, Boston Medical Center, MA, USA
| |
Collapse
|
18
|
Attention Deficit Hyperactivity Disorder and Bipolar Disorder: Diagnosis, Treatments, and Clinical Considerations: A Narrative Review. PSYCHIATRY INTERNATIONAL 2021. [DOI: 10.3390/psychiatryint3010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Attention-deficit Hyperactivity Disorder is one of the most common childhood mental health disorders, affecting about 5.6% of the population worldwide. Several studies have specifically shown a high prevalence of comorbid mood disorders, such as depression and bipolar disorder (BD), in those diagnosed with ADHD. Several common symptoms of ADHD are also found in BD, which are characterized by alternating periods of euthymia and mood disturbances. The inattention and impulsivity of ADHD can be seen in manic and hypomanic episodes of BD. Over the past decade, there has been an increased interest in research between the correlation of ADHD and pediatric bipolar disorder (PBD) in children. Some experts hypothesize that more children are comorbidly diagnosed with ADHD and PBD because of how many clinicians treat children with ADHD. Other factors, which may affect the dual diagnoses of ADHD and PBD, are overlapping diagnostic criteria for the two disorders, the inevitable biases seen when one disorder is diagnosed without the other, and related risk factors leading to prodromal relationships. By examining clinical trials, a better understanding of whether ADHD and PBD have a stepwise progression or if other factors influence these comorbidities, such as blurred lines of diagnostic criteria. Those with ADHD are also at an increased risk of impairment at work and in social settings. This manuscript explores both progression of this disease and its clinical connections to other disorders.
Collapse
|
19
|
DNA Methylation in LIME1 and SPTBN2 Genes Is Associated with Attention Deficit in Children. CHILDREN-BASEL 2021; 8:children8020092. [PMID: 33572947 PMCID: PMC7912017 DOI: 10.3390/children8020092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
DNA methylation levels are associated with neurodevelopment. Attention-deficit/hyperactivity disorder (ADHD), characterized by attention deficits, is a common neurodevelopmental disorder. We used methylation microarray and pyrosequencing to detect peripheral blood DNA methylation markers of ADHD. DNA methylation profiling data from the microarray assays identified potential differentially methylated CpG sites between 12 ADHD patients and 9 controls. Five candidate CpG sites (cg00446123, cg20513976, cg07922513, cg17096979, and cg02506324) in four genes (LIME1, KCNAB2, CAPN9, and SPTBN2) were further examined with pyrosequencing. The attention of patients were tested using the Conners’ Continuous Performance Test (CPT). In total, 126 ADHD patients with a mean age of 9.2 years (78.6% males) and 72 healthy control subjects with a mean age of 9.3 years (62.5% males) were recruited. When all participants were categorized by their CPT performance, the DNA methylation levels in LIME1 (cg00446123 and cg20513976) were found to be significantly higher and those in SPTBN2 (cg02506324) were significantly lower in children with worse CPT performance. Therefore, DNA methylation of two CpG sites in LIME1 and one CpG site in SPTBN2 is associated with attention deficits in children. DNA methylation biomarkers may assist in identifying attention deficits of children in clinical settings.
Collapse
|
20
|
Association of norepinephrine transporter methylation with in vivo NET expression and hyperactivity-impulsivity symptoms in ADHD measured with PET. Mol Psychiatry 2021; 26:1009-1018. [PMID: 31383926 PMCID: PMC7910214 DOI: 10.1038/s41380-019-0461-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 01/29/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with a robust genetic influence. The norepinephrine transporter (NET) is of particular interest as it is one of the main targets in treatment of the disorder. As ADHD is a complex and polygenetic condition, the possible regulation by epigenetic processes has received increased attention. We sought to determine possible differences in NET promoter DNA methylation between patients with ADHD and healthy controls. DNA methylation levels in the promoter region of the NET were determined in 23 adult patients with ADHD and 23 healthy controls. A subgroup of 18 patients with ADHD and 18 healthy controls underwent positron emission tomography (PET) with the radioligand (S,S)-[18F]FMeNER-D2 to quantify the NET in several brain areas in vivo. Analyses revealed significant differences in NET methylation levels at several cytosine-phosphate-guanine (CpG) sites between groups. A defined segment of the NET promoter ("region 1") was hypermethylated in patients in comparison with controls. In ADHD patients, a negative correlation between methylation of a CpG site in this region and NET distribution in the thalamus, locus coeruleus, and the raphe nuclei was detected. Furthermore, methylation of several sites in region 1 was negatively associated with the severity of hyperactivity-impulsivity symptoms. Our results point to an epigenetic dysregulation in ADHD, possibly due to a compensatory mechanisms or additional factors involved in transcriptional processing.
Collapse
|
21
|
DNA methylation associated with persistent ADHD suggests TARBP1 as novel candidate. Neuropharmacology 2020; 184:108370. [PMID: 33137342 DOI: 10.1016/j.neuropharm.2020.108370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by age-inappropriate symptoms of inattention and/or hyperactivity and impulsivity. ADHD is highly prevalent in childhood and often persists into adulthood. Both genetic variants and environmental factors play a role in the onset and persistence of ADHD, and epigenetic changes, such as DNA methylation are considered as a link for their interplay. To investigate this, we studied DNA methylation in 37 candidate genes by performing targeted bisulfite sequencing of DNA isolated from whole blood of N = 88 individuals diagnosed with adult ADHD and N = 91 unaffected individuals (mean age 34.2 years). Differentially methylated sites were assessed by generalized linear models testing ADHD status and ADHD symptoms, accounting for a methylation-based smoking score, age, sex, and blood cell count. DNA methylation of single sites within DRD4 and KLDR1 was associated with adult ADHD status, and multiple DNA methylation sites within TARBP1 were associated with ADHD symptoms in adulthood and childhood. Awaiting replication, findings of this pilot study point to TARBP1 as a new candidate gene for ADHD symptoms. Our work also stresses the need for research to further examine the effects of environmental factors, such as nicotine exposure, on epigenetic modifications associated with psychiatric traits.
Collapse
|
22
|
Hemmingsen CH, Kjaer SK, Jezek AH, Verhulst FC, Pagsberg AK, Kamper-Jørgensen M, Mørch LS, Hargreave M. Maternal use of hormonal contraception and risk of childhood ADHD: a nationwide population-based cohort study. Eur J Epidemiol 2020; 35:795-805. [PMID: 32968938 DOI: 10.1007/s10654-020-00673-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/04/2020] [Indexed: 11/30/2022]
Abstract
Although maternal use of hormones has been suspected of increasing the risk for childhood attention-deficit/hyperactivity disorder (ADHD), no study has examined hormonal contraception use in this context. We examined the association between maternal hormonal contraception use before or during pregnancy and ADHD risk in children. This nationwide population-based cohort study included 1,056,846 children born in Denmark between 1998 and 2014. Prescriptions for hormonal contraceptives redeemed by the mother was categorized as: no use, previous use (> 3 months before pregnancy), and recent use (≤ 3 months before or during pregnancy). Children were followed for ADHD, from birth until 31 December 2015. Cox proportional hazard models were used to estimate hazard ratios (HRs) with 95% confidence intervals (CIs). During 9,819,565 person-years of follow-up (median: 9.2), ADHD was diagnosed or a prescription for ADHD medication redeemed for 23,380 children (2.2%). The adjusted HR for ADHD was higher in children of mothers who had previously (HR 1.23; 95% CI 1.18-1.28) or recently (HR 1.30; 95% CI 1.24-1.37) used hormonal contraception than in those of mothers with no use. The highest estimates were seen for use of non-oral progestin products with HRs of 1.90 (95% CI 1.59-2.26) for previous use, 2.23 (95% CI 1.96-2.54) for recent use, and 3.10 (95% CI 1.62-5.91) for use during pregnancy. Maternal use of hormonal contraception was associated with an increased risk for ADHD in the offspring; more pronounced for non-oral progestin-only than other products.
Collapse
Affiliation(s)
- Caroline H Hemmingsen
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Susanne K Kjaer
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Gynaecology, Rigshospitalet, Copenhagen, Denmark
| | - Andrea H Jezek
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Frank C Verhulst
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands.,Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Katrine Pagsberg
- Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Kamper-Jørgensen
- Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lina S Mørch
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.,Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marie Hargreave
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|
23
|
Rovira P, Sánchez-Mora C, Pagerols M, Richarte V, Corrales M, Fadeuilhe C, Vilar-Ribó L, Arribas L, Shireby G, Hannon E, Mill J, Casas M, Ramos-Quiroga JA, Soler Artigas M, Ribasés M. Epigenome-wide association study of attention-deficit/hyperactivity disorder in adults. Transl Psychiatry 2020; 10:199. [PMID: 32561708 PMCID: PMC7305172 DOI: 10.1038/s41398-020-0860-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder that often persists into adulthood. There is growing evidence that epigenetic dysregulation participates in ADHD. Given that only a limited number of epigenome-wide association studies (EWASs) of ADHD have been conducted so far and they have mainly focused on pediatric and population-based samples, we performed an EWAS in a clinical sample of adults with ADHD. We report one CpG site and four regions differentially methylated between patients and controls, which are located in or near genes previously involved in autoimmune diseases, cancer or neuroticism. Our sensitivity analyses indicate that smoking status is not responsible for these results and that polygenic risk burden for ADHD does not greatly impact the signatures identified. Additionally, we show an overlap of our EWAS findings with genetic signatures previously described for ADHD and with epigenetic signatures for smoking behavior and maternal smoking. These findings support a role of DNA methylation in ADHD and emphasize the need for additional efforts in larger samples to clarify the role of epigenetic mechanisms on ADHD across the lifespan.
Collapse
Affiliation(s)
- Paula Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain
| | - Mireia Pagerols
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Corrales
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christian Fadeuilhe
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Lorena Arribas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Gemma Shireby
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Miquel Casas
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain.
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain.
| |
Collapse
|
24
|
Meijer M, Klein M, Hannon E, van der Meer D, Hartman C, Oosterlaan J, Heslenfeld D, Hoekstra PJ, Buitelaar J, Mill J, Franke B. Genome-Wide DNA Methylation Patterns in Persistent Attention-Deficit/Hyperactivity Disorder and in Association With Impulsive and Callous Traits. Front Genet 2020; 11:16. [PMID: 32082368 PMCID: PMC7005250 DOI: 10.3389/fgene.2020.00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/07/2020] [Indexed: 12/27/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that often persists into adulthood. ADHD and related personality traits, such as impulsivity and callousness, are caused by genetic and environmental factors and their interplay. Epigenetic modifications of DNA, including methylation, are thought to mediate between such factors and behavior and may behave as biomarkers for disorders. Here, we set out to study DNA methylation in persistent ADHD and related traits. We performed epigenome-wide association studies (EWASs) on peripheral whole blood from participants in the NeuroIMAGE study (age range 12-23 years). We compared participants with persistent ADHD (n = 35) with healthy controls (n = 19) and with participants with remittent ADHD (n = 19). Additionally, we performed EWASs of impulsive and callous traits derived from the Conners Parent Rating Scale and the Callous-Unemotional Inventory, respectively, across all participants. For every EWAS, the linear regression model analyzed included covariates for age, sex, smoking scores, and surrogate variables reflecting blood cell type composition and genetic background. We observed no epigenome-wide significant differences in single CpG site methylation between participants with persistent ADHD and healthy controls or participants with remittent ADHD. However, epigenome-wide analysis of differentially methylated regions provided significant findings showing that hypermethylated regions in the APOB and LPAR5 genes were associated with ADHD persistence compared to ADHD remittance (p = 1.68 * 10-24 and p = 9.06 * 10-7, respectively); both genes are involved in cholesterol signaling. Both findings appeared to be linked to genetic variation in cis. We found neither significant epigenome-wide single CpG sites nor regions associated with impulsive and callous traits; the top-hits from these analyses were annotated to genes involved in neurotransmitter release and the regulation of the biological clock. No link to genetic variation was observed for these findings, which thus might reflect environmental influences. In conclusion, in this pilot study with a small sample size, we observed several DNA-methylation-disorder/trait associations of potential significance for ADHD and the related behavioral traits. Although we do not wish to draw conclusions before replication in larger, independent samples, cholesterol signaling and metabolism may be of relevance for the onset and/or persistence of ADHD.
Collapse
Affiliation(s)
- Mandy Meijer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eilis Hannon
- Medical School, University of Exeter, Exeter, United Kingdom
| | - Dennis van der Meer
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Catharina Hartman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jaap Oosterlaan
- Experimental and Clinical Neuropsychology Section, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Emma Neuroscience Group, Department of Pediatrics, Amsterdam Reproduction & Development, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dirk Heslenfeld
- Experimental and Clinical Neuropsychology Section, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pieter J. Hoekstra
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan Buitelaar
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, Netherlands
- Karakter Child and Adolescent Psychiatric University Centre, Nijmegen, Netherlands
| | - Jonathan Mill
- Medical School, University of Exeter, Exeter, United Kingdom
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
25
|
Mooney MA, Ryabinin P, Wilmot B, Bhatt P, Mill J, Nigg JT. Large epigenome-wide association study of childhood ADHD identifies peripheral DNA methylation associated with disease and polygenic risk burden. Transl Psychiatry 2020; 10:8. [PMID: 32066674 PMCID: PMC7026179 DOI: 10.1038/s41398-020-0710-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Epigenetic variation in peripheral tissues is being widely studied as a molecular biomarker of complex disease and disease-related exposures. To date, few studies have examined differences in DNA methylation associated with attention-deficit hyperactivity disorder (ADHD). In this study, we profiled genetic and methylomic variation across the genome in saliva samples from children (age 7-12 years) with clinically established ADHD (N = 391) and nonpsychiatric controls (N = 213). We tested for differentially methylated positions (DMPs) associated with both ADHD diagnosis and ADHD polygenic risk score, by using linear regression models including smoking, medication effects, and other potential confounders in our statistical models. Our results support previously reported associations between ADHD and DNA methylation levels at sites annotated to VIPR2, and identify several novel disease-associated DMPs (p < 1e-5), although none of them were genome-wide significant. The two top-ranked, ADHD-associated DMPs (cg17478313 annotated to SLC7A8 and cg21609804 annotated to MARK2) are also significantly associated with nearby SNPs (p = 1.2e-46 and p = 2.07e-59), providing evidence that disease-associated DMPs are under genetic control. We also report a genome-wide significant association between ADHD polygenic risk and variable DNA methylation at a site annotated to the promoter of GART and SON (p = 6.71E-8). Finally, we show that ADHD-associated SNPs colocalize with SNPs associated with methylation levels in saliva. This is the first large-scale study of DNA methylation in children with ADHD. Our results represent novel epigenetic biomarkers for ADHD that may be useful for patient stratification, reinforce the importance of genetic effects on DNA methylation, and provide plausible molecular mechanisms for ADHD risk variants.
Collapse
Affiliation(s)
- Michael A. Mooney
- grid.5288.70000 0000 9758 5690Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690OHSU Knight Cancer Institute, Portland, OR USA
| | - Peter Ryabinin
- grid.5288.70000 0000 9758 5690Oregon Clinical and Translational Research Institute, Portland, OR USA
| | - Beth Wilmot
- grid.5288.70000 0000 9758 5690Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Oregon Clinical and Translational Research Institute, Portland, OR USA
| | - Priya Bhatt
- grid.5288.70000 0000 9758 5690Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, OR USA
| | - Jonathan Mill
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, Exeter University, Exeter, UK
| | - Joel T. Nigg
- grid.5288.70000 0000 9758 5690Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR USA
| |
Collapse
|
26
|
Integrated Analysis of microRNA and mRNA Expression Profiles: An Attempt to Disentangle the Complex Interaction Network in Attention Deficit Hyperactivity Disorder. Brain Sci 2019; 9:brainsci9100288. [PMID: 31652596 PMCID: PMC6826944 DOI: 10.3390/brainsci9100288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 12/11/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a childhood-onset neurodevelopmental disorder, whose etiology and pathogenesis are still largely unknown. In order to uncover novel regulatory networks and molecular pathways possibly related to ADHD, we performed an integrated miRNA and mRNA expression profiling analysis in peripheral blood samples of children with ADHD and age-matched typically developing (TD) children. The expression levels of 13 miRNAs were evaluated with microfluidic qPCR, and differentially expressed (DE) mRNAs were detected on an Illumina HiSeq 2500 genome analyzer. The miRNA targetome was identified using an integrated approach of validated and predicted interaction data extracted from seven different bioinformatic tools. Gene Ontology (GO) and pathway enrichment analyses were carried out. Results showed that six miRNAs (miR-652-3p, miR-942-5p, let-7b-5p, miR-181a-5p, miR-320a, and miR-148b-3p) and 560 genes were significantly DE in children with ADHD compared to TD subjects. After correction for multiple testing, only three miRNAs (miR-652-3p, miR-148b-3p, and miR-942-5p) remained significant. Genes known to be associated with ADHD (e.g., B4GALT2, SLC6A9 TLE1, ANK3, TRIO, TAF1, and SYNE1) were confirmed to be significantly DE in our study. Integrated miRNA and mRNA expression data identified critical key hubs involved in ADHD. Finally, the GO and pathway enrichment analyses of all DE genes showed their deep involvement in immune functions, reinforcing the hypothesis that an immune imbalance might contribute to the ADHD etiology. Despite the relatively small sample size, in this study we were able to build a complex miRNA-target interaction network in children with ADHD that might help in deciphering the disease pathogenesis. Validation in larger samples should be performed in order to possibly suggest novel therapeutic strategies for treating this complex disease.
Collapse
|
27
|
Schmitz J, Kumsta R, Moser D, Güntürkün O, Ocklenburg S. DNA methylation of dopamine-related gene promoters is associated with line bisection deviation in healthy adults. Sci Rep 2019; 9:5902. [PMID: 30976054 PMCID: PMC6459813 DOI: 10.1038/s41598-019-42553-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/03/2019] [Indexed: 11/09/2022] Open
Abstract
Handedness and language lateralization are the most investigated phenotypes among functional hemispheric asymmetries, i.e. differences in function between the left and the right half of the human brain. Both phenotypes are left hemisphere-dominant, while investigations of the molecular factors underlying right hemisphere-dominant phenotypes are less prominent. In the classical line bisection task, healthy subjects typically show a leftward attentional bias due to a relative dominance of the right hemisphere for visuospatial attention. Based on findings of variations in dopamine-related genes affecting performance in the line bisection task, we first tested whether DNA methylation in non-neuronal tissue in the promoter regions of DBH, SLC6A3, and DRD2 are associated with line bisection deviation. We replicated the typical behavioral pattern and found an effect of DNA methylation in the DBH promoter region on line bisection deviation in right-aligned trials. A second exploratory analysis indicated that an overall DNA methylation profile of genes involved in dopamine function predicts line bisection performance in right-aligned trials. Genetic variation in dopamine-related genes has been linked to attention deficit hyperactivity disorder (ADHD), a neurodevelopmental trait associated with rightward attentional bias. Overall, our findings point towards epigenetic markers for functional hemispheric asymmetries in non-neuronal tissue not only for left hemisphere-dominant, but also for right hemisphere-dominant phenotypes.
Collapse
Affiliation(s)
- Judith Schmitz
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany.
| | - Robert Kumsta
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Dirk Moser
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Onur Güntürkün
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| | - Sebastian Ocklenburg
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| |
Collapse
|
28
|
Mahadevan J, Kandasamy A, Benegal V. Situating adult attention-deficit/hyperactivity disorder in the externalizing spectrum: Etiological, diagnostic, and treatment considerations. Indian J Psychiatry 2019; 61:3-12. [PMID: 30745648 PMCID: PMC6341912 DOI: 10.4103/psychiatry.indianjpsychiatry_549_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adult attention-deficit/hyperactivity disorder (ADHD) has a population prevalence of 5%. However, its prevalence is much higher in mental health and substance use treatment settings. It is associated with significant physical and psychiatric morbidity, as well as social, occupational, and legal consequences. Adult ADHD is considered to be a part of the externalizing spectrum with which it shares both homotypic comorbidity and heterotypic continuity across the lifespan. This is attributable to a shared genetic basis, which interacts with environmental risk factors such as nutritional deficiencies and psychosocial adversity to bring about epigenetic changes. This is seen to result in a lag in brain maturation particularly in the areas of the brain related to executive functioning (top-down regulation) such as the prefrontal and cingulate cortices. This delay when coupled with impairments in reward processing, leads to a preference for immediate small rewards and is common to externalizing disorders. Adult ADHD is increasingly understood to not merely be associated with the classically described symptoms of hyperactivity, impulsivity and inattention, but also issues with motivation, emotional recognition and regulation, excessive mind wandering, and behavioral self-regulation. These symptoms are also observed in other disorders which overlap with the externalizing spectrum such as oppositional defiant disorder, conduct disorder, antisocial and borderline personality disorder. It is therefore important to develop both broad-based and specific interventions to be able to target these deficits which can reduce the burden and improve outcomes.
Collapse
Affiliation(s)
- Jayant Mahadevan
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Arun Kandasamy
- Department of Psychiatry, Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Vivek Benegal
- Department of Psychiatry, Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
29
|
Nigg JT. Toward an Emerging Paradigm for Understanding Attention-Deficit/Hyperactivity Disorder and Other Neurodevelopmental, Mental, and Behavioral Disorders: Environmental Risks and Epigenetic Associations. JAMA Pediatr 2018; 172:619-621. [PMID: 29799950 PMCID: PMC6511283 DOI: 10.1001/jamapediatrics.2018.0920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Joel T. Nigg
- Department of Psychiatry, Oregon Health & Science University, Portland
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland
| |
Collapse
|
30
|
Farah R, Haraty H, Salame Z, Fares Y, Ojcius DM, Said Sadier N. Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomed J 2018; 41:63-87. [PMID: 29866603 PMCID: PMC6138769 DOI: 10.1016/j.bj.2018.03.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/13/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022] Open
Abstract
Current research efforts on neurological diseases are focused on identifying novel disease biomarkers to aid in diagnosis, provide accurate prognostic information and monitor disease progression. With advances in detection and quantification methods in genomics, proteomics and metabolomics, saliva has emerged as a good source of samples for detection of disease biomarkers. Obtaining a sample of saliva offers multiple advantages over the currently tested biological fluids as it is a non-invasive, painless and simple procedure that does not require expert training or harbour undesirable side effects for the patients. Here, we review the existing literature on salivary biomarkers and examine their validity in diagnosing and monitoring neurodegenerative and neuropsychiatric disorders such as autism and Alzheimer's, Parkinson's and Huntington's disease. Based on the available research, amyloid beta peptide, tau protein, lactoferrin, alpha-synuclein, DJ-1 protein, chromogranin A, huntingtin protein, DNA methylation disruptions, and micro-RNA profiles provide display a reliable degree of consistency and validity as disease biomarkers.
Collapse
Affiliation(s)
- Raymond Farah
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Haraty
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Ziad Salame
- Research Department, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA.
| | - Najwane Said Sadier
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|