1
|
Guo X, Yang S, Cai Z, Zhu S, Wang H, Liu Q, Zhang Z, Feng J, Chen X, Li Y, Deng J, Liu J, Li J, Tan X, Fu Z, Xu K, Zhou L, Chen Y. SARS-CoV-2 specific adaptations in N protein inhibit NF-κB activation and alter pathogenesis. J Cell Biol 2025; 224:e202404131. [PMID: 39680116 DOI: 10.1083/jcb.202404131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/28/2024] [Accepted: 10/10/2024] [Indexed: 12/17/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and severe acute respiratory syndrome coronavirus (SARS-CoV) exhibit differences in their inflammatory responses and pulmonary damage, yet the specific mechanisms remain unclear. Here, we discovered that the SARS-CoV-2 nucleocapsid (N) protein inhibits the activation of the nuclear factor-κB (NF-κB) pathway and downstream signal transduction by impeding the assembly of the transforming growth factor β-activated kinase1 (TAK1)-TAK1 binding protein 2/3 (TAB2/3) complex. In contrast, the SARS-CoV N protein does not impact the NF-κB pathway. By comparing the amino acid sequences of the SARS-CoV-2 and SARS-CoV N proteins, we identified Glu-290 and Gln-349 as critical residues in the C-terminal domain (CTD) of the SARS-CoV-2 N protein, essential for its antagonistic function. These findings were further validated in a SARS-CoV-2 trans-complementation system using cellular and animal models. Our results reveal the distinctions in inflammatory responses triggered by SARS-CoV-2 and SARS-CoV, highlighting the significance of specific amino acid alterations in influencing viral pathogenicity.
Collapse
Affiliation(s)
- Xiao Guo
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shimin Yang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Zeng Cai
- Institute for Vaccine Research at Animal Bio-safety Level III Laboratory, Wuhan University School of Medicine, Wuhan, China
| | - Shunhua Zhu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Hongyun Wang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qianyun Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Zhen Zhang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xianying Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yingjian Li
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jikai Deng
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jiejie Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jiali Li
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xue Tan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Zhiying Fu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Ke Xu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Li Zhou
- Institute for Vaccine Research at Animal Bio-safety Level III Laboratory, Wuhan University School of Medicine, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Institute for Vaccine Research at Animal Bio-safety Level III Laboratory, Wuhan University School of Medicine, Wuhan, China
| |
Collapse
|
2
|
Alirezaee A, Mirmoghtadaei M, Heydarlou H, Akbarian A, Alizadeh Z. Interferon therapy in alpha and Delta variants of SARS-CoV-2: The dichotomy between laboratory success and clinical realities. Cytokine 2024; 186:156829. [PMID: 39693873 DOI: 10.1016/j.cyto.2024.156829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
The COVID-19 pandemic has caused significant morbidity and mortality worldwide. The emergence of the Alpha and Delta variants of SARS-CoV-2 has led to a renewed interest in using interferon therapy as a potential treatment option. Interferons are a group of signaling proteins produced by host cells in response to viral infections. They play a critical role in the innate immune response to viral infections by inducing an antiviral state in infected and neighboring cells. Interferon therapy has shown promise as a potential treatment option for COVID-19. In this review paper, we review the current knowledge regarding interferon therapy in the context of the Alpha and Delta variants of SARS-CoV-2 and discuss the challenges that must be overcome to translate laboratory findings into effective clinical treatments.
Collapse
Affiliation(s)
- Atefe Alirezaee
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Mirmoghtadaei
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Heydarlou
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Asiye Akbarian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Alizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Raza ML, Imam MH, Zehra W, Jamil S. Neuro-inflammatory pathways in COVID-19-induced central nervous system injury: Implications for prevention and treatment strategies. Exp Neurol 2024; 382:114984. [PMID: 39368535 DOI: 10.1016/j.expneurol.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
This review explores the neuroinflammatory pathways underlying COVID-19-induced central nervous system (CNS) injury, with a focus on mechanisms of brain damage and strategies for prevention. A comprehensive literature review was conducted to summarize current knowledge on the pathways by which SARS-CoV-2 reaches the brain, the neuroinflammatory responses triggered by viral infection, neurological symptoms and long COVID. Results: We discuss the mechanisms of neuroinflammation in COVID-19, including blood-brain barrier disruption, cytokine storm, microglial activation, and peripheral immune cell infiltration. Additionally, we highlight potential strategies for preventing CNS injury, including pharmacological interventions, immunomodulatory therapies, and lifestyle modifications. Conclusively, Understanding the neuroinflammatory pathways in COVID-19-induced CNS injury is crucial for developing effective prevention and treatment strategies to protect brain health during and after viral infection.
Collapse
Affiliation(s)
- Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | | | | | - Subia Jamil
- Faculty of Pharmacy, Jinnah University for Women, University, Karachi, Pakistan
| |
Collapse
|
4
|
Chaudhuri A, Das S, Chakrabarti S. Mutational and evolutionary dynamics of non-structural and spike proteins from variants of concern (VOC) of SARS-CoV-2 in India. Int J Biol Macromol 2024; 282:137154. [PMID: 39488303 DOI: 10.1016/j.ijbiomac.2024.137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Monitoring the genetic diversity and emerging mutations in SARS-CoV-2 remains crucial for understanding its evolution, given the virus's persistence in India. This study analyzes lineage dynamics, mutation screening, structural analysis, and phylodynamics of SARS-CoV-2 variants of concern (VOC) in India from October 2020 to September 2023. The predominant variants identified were alpha, beta, delta, and omicron, with delta and omicron making up 76.05 % of sequenced genomes. The B.1.617.2 lineage of the delta variant was the major contributor to COVID-19 cases before the rise of omicron. Mutation screening of non-structural proteins (NSPs) and spike proteins revealed distinct profiles for each VOC. Co-mutation patterns were analyzed, showing structural and energetic alterations. Phylogenetic analysis indicated that nsp1, nsp3, nsp4, nsp13, and nsp14 were strongly associated with increased mutation load. The study also highlighted that nsp14 and spike have similar mutability patterns, underscoring nsp14's critical role in SARS-CoV-2 infectivity and persistence. This research provides a comprehensive view of SARS-CoV-2's evolution and persistence in India.
Collapse
Affiliation(s)
- Ankur Chaudhuri
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata 700091, WB, India.
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata 700091, WB, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata 700091, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Shi K, Hu X, Long F, Shi Y, Pan Y, Feng S, Li Z, Yin Y. Genetic diversity and evolution of porcine hemagglutinating encephalomyelitis virus in Guangxi province of China during 2021-2024. Front Microbiol 2024; 15:1474552. [PMID: 39444682 PMCID: PMC11496168 DOI: 10.3389/fmicb.2024.1474552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is the only known porcine neurotropic coronavirus, which is prevalent worldwide at present. It is of great significance to understand the genetic and evolutionary characteristics of PHEV in order to perform effective measures for prevention and control of this disease. In this study, a total of 6,986 tissue samples and nasopharyngeal swabs were collected from different regions of Guangxi province in southern China during 2021-2024, and were tested for PHEV using a quadruplex RT-qPCR. The positivity rate of PHEV was 2.81% (196/6,986), of which tissue samples and nasopharyngeal swabs had 2.05% (87/4,246) and 3.98% (109/2,740) positivity rates, respectively. Fifty PHEV positive samples were selected for PCR amplification and gene sequencing. Sequence analysis revealed that the nucleotide homology and amino acid similarities of S, M, and N genes were 94.3%-99.3% and 92.3%-99.2%, 95.0%-99.7% and 94.7%-100.0%, 94.0%-99.5% and 93.5%-99.3%, respectively, indicating M and N genes were more conservative than S gene. Phylogenetic trees based on these three genes revealed that PHEV strains from different countries could be divided into two groups G1 and G2, and the PHEV strains from Guangxi province obtained in this study distributed in subgroups G1c and G2b. Bayesian analysis revealed that the population size of PHEV has been in a relatively stable state since its discovery until it expanded sharply around 2015, and still on the slow rise thereafter. S gene sequences analysis indicated that PHEV strains existed variation of mutation, and recombination. The results indicated that the prevalent PHEV strains in Guangxi province had complex evolutionary trajectories and high genetic diversity. To the best of our knowledge, this is the first report on the genetic and evolutionary characteristics of PHEV in southern China.
Collapse
Affiliation(s)
- Kaichuang Shi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Xin Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yi Pan
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| |
Collapse
|
6
|
Qiu H, Yuan XY, Holloway K, Wood H, Cabral T, Grant C, McQueen P, Westmacott G, Beniac DR, Lin L, Carpenter M, Kobasa D, Gräfenhan T, Cheney IW. Development and characterization of monoclonal antibodies recognizing nucleocapsid protein of multiple SARS-CoV-2 variants. Heliyon 2024; 10:e35325. [PMID: 39170261 PMCID: PMC11336563 DOI: 10.1016/j.heliyon.2024.e35325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Rapid antigen test (RAT) is widely used for SARS-CoV-2 infection diagnostics. However, test sensitivity has decreased recently due to the emergence of the Omicron variant and its sublineages. Here we developed a panel of SARS-CoV-2 nucleocapsid protein (NP) specific mouse monoclonal antibodies (mAbs) and assessed their sensitivity and specificity to important SARS-CoV-2 variants. We identified seven mAbs that exhibited strong reactivity to SARS-CoV-2 variants and recombinant NP (rNP) by Western immunoblot or ELISA. Their specificity to SARS-CoV-2 was confirmed by negative or low reactivity to rNPs from SARS-CoV-1, MERS, and common human coronaviruses (HCoV-HKU1, HCoV-CO43, HCoV-NL63, and HCoV-229E). These seven mAbs were further tested by immunoplaque assay against selected variants of concern (VOCs), including two Omicron sublineages, and five mAbs (F461G13, F461G7, F459G7, F457G3, and F461G6), showed strong reactions, warranting further suitability testing for the development of diagnostic assay.
Collapse
Affiliation(s)
- Hongyu Qiu
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Xin-Yong Yuan
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Kimberly Holloway
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Heidi Wood
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Teresa Cabral
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Chris Grant
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Peter McQueen
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Garrett Westmacott
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Daniel R. Beniac
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Lisa Lin
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Michael Carpenter
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Darwyn Kobasa
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | | | - Ian Wayne Cheney
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| |
Collapse
|
7
|
Tsai PH, Sun JR, Chien Y, Chan MS, Khor W, Yang HC, Huang CH, Hsiung CN, Hwa TY, Lin YY, Yeh CL, Wang ML, Yang YP, Chen YM, Tsai FT, Lee MS, Cheng YH, Tsai SK, Liu PC, Chou SJ, Chiou SH. Modifications of lipid pathways restrict SARS-CoV-2 propagation in human induced pluripotent stem cell-derived 3D airway organoids. J Adv Res 2024; 60:127-140. [PMID: 37557954 PMCID: PMC11156708 DOI: 10.1016/j.jare.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Modifications of lipid metabolism were closely associated with the manifestations and prognosis of coronavirus disease of 2019 (COVID-19). Pre-existing metabolic conditions exacerbated the severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection while modulations of aberrant lipid metabolisms alleviated the manifestations. To elucidate the underlying mechanisms, an experimental platform that reproduces human respiratory physiology is required. METHODS Here we generated induced pluripotent stem cell-derived airway organoids (iPSC-AOs) that resemble the human native airway. Single-cell sequencing (ScRNAseq) and microscopic examination verified the cellular heterogeneity and microstructures of iPSC-AOs, respectively. We subjected iPSC-AOs to SARS-CoV-2 infection and investigated the treatment effect of lipid modifiers statin drugs on viral pathogenesis, gene expression, and the intracellular trafficking of the SARS-CoV-2 entry receptor angiotensin-converting enzyme-2 (ACE-2). RESULTS In SARS-CoV-2-infected iPSC-AOs, immunofluorescence staining detected the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins and bioinformatics analysis further showed the aberrant enrichment of lipid-associated pathways. In addition, SARS-CoV-2 hijacked the host RNA replication machinery and generated the new isoforms of a high-density lipoprotein constituent apolipoprotein A1 (APOA1) and the virus-scavenging protein deleted in malignant brain tumors 1 (DMBT1). Manipulating lipid homeostasis using cholesterol-lowering drugs (e.g. Statins) relocated the viral entry receptor angiotensin-converting enzyme-2 (ACE-2) and decreased N protein expression, leading to the reduction of SARS-CoV-2 entry and replication. The same lipid modifications suppressed the entry of luciferase-expressing SARS-CoV-2 pseudoviruses containing the S proteins derived from different SARS-CoV-2 variants, i.e. wild-type, alpha, delta, and omicron. CONCLUSIONS Together, our data demonstrated that modifications of lipid pathways restrict SARS-CoV-2 propagation in the iPSC-AOs, which the inhibition is speculated through the translocation of ACE2 from the cell membrane to the cytosol. Considering the highly frequent mutation and generation of SARS-CoV-2 variants, targeting host metabolisms of cholesterol or other lipids may represent an alternative approach against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11217, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan; Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Man Sheung Chan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Winnie Khor
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11217, Taiwan; Department of Microbiology and Immunology, National Defense Medical Center, Taipei 11217, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Ni Hsiung
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
| | - Teh-Yang Hwa
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Ling Yeh
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Fu-Ting Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Meng-Shiue Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yun-Hsiang Cheng
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11217, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan; Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Shan-Ko Tsai
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11217, Taiwan
| | - Ping-Cheng Liu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 11217, Taiwan; Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Shih-Jie Chou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
8
|
Khan WH, Ahmad R, Alam R, Khan N, Rather IA, Wani MY, Singh RB, Ahmad A. Role of ribosomal pathways and comorbidity in COVID-19: Insight from SARS-CoV-2 proteins and host proteins interaction network analysis. Heliyon 2024; 10:e29967. [PMID: 38694063 PMCID: PMC11059120 DOI: 10.1016/j.heliyon.2024.e29967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
The COVID-19 pandemic has become a significant global issue in terms of public health. While it is largely associated with respiratory complications, recent reports indicate that patients also experience neurological symptoms and other health issues. The objective of this study is to examine the network of protein-protein interactions (PPI) between SARS-CoV-2 proteins and human host proteins, pinpoint the central genes within this network implicated in disease pathology, and assess their viability as targets for drug development. The study adopts a network-based approach to construct a network of 29 SARS-CoV-2 proteins interacting with 2896 host proteins, with 176 host genes being identified as interacting genes with all the viral proteins. Gene ontology and pathway analysis of these host proteins revealed their role in biological processes such as translation, mRNA splicing, and ribosomal pathways. We further identified EEF2, RPS3, RPL9, RPS16, and RPL11 as the top 5 most connected hub genes in the disease-causing network, with significant interactions among each other. These hub genes were found to be involved in ribosomal pathways and cytoplasmic translation. Further a disease-gene interaction was also prepared to investigate the role of hub genes in other disorders and to understand the condition of comorbidity in COVID-19 patients. We also identified 13 drug molecules having interactions with all the hub genes, and estradiol emerged as the top potential drug target for the COVID-19 patients. Our study provides valuable insights using the protein-protein interaction network of SARS-CoV-2 proteins with host proteins and highlights the molecular basis of manifestation of COVID-19 and proposes drug for repurposing. As the pandemic continues to evolve, it is anticipated that investigating SARS-CoV-2 proteins will remain a critical area of focus for researchers globally, particularly in addressing potential challenges posed by specific SARS-CoV-2 variants in the future.
Collapse
Affiliation(s)
- Wajihul Hasan Khan
- Department of Microbiology, All India Institute of Medical Sciences, Delhi, 110029, India
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Ragib Alam
- Department of Microbiology, All India Institute of Medical Sciences, Delhi, 110029, India
| | - Nida Khan
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - R.K. Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| |
Collapse
|
9
|
Ho WY, Shen ZH, Chen Y, Chen TH, Lu X, Fu YS. Therapeutic implications of quercetin and its derived-products in COVID-19 protection and prophylactic. Heliyon 2024; 10:e30080. [PMID: 38765079 PMCID: PMC11098804 DOI: 10.1016/j.heliyon.2024.e30080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel human coronavirus, which has triggered a global pandemic of the coronavirus infectious disease 2019 (COVID-19). Outbreaks of emerging infectious diseases continue to challenge human health worldwide. The virus conquers human cells through the angiotensin-converting enzyme 2 receptor-driven pathway by mostly targeting the human respiratory tract. Quercetin is a natural flavonoid widely represented in the plant kingdom. Cumulative evidence has demonstrated that quercetin and its derivatives have various pharmacological properties including anti-cancer, anti-hypertension, anti-hyperlipidemia, anti-hyperglycemia, anti-microbial, antiviral, neuroprotective, and cardio-protective effects, because it is a potential treatment for severe inflammation and acute respiratory distress syndrome. Furthermore, it is the main life-threatening condition in patients with COVID-19. This article provides a comprehensive review of the primary literature on the predictable effectiveness of quercetin and its derivatives docked to multi-target of SARS-CoV-2 and host cells via in silico and some of validation through in vitro, in vivo, and clinically to fight SARS-CoV-2 infections, contribute to the reduction of inflammation, which suggests the preventive and therapeutic latency of quercetin and its derived-products against COVID-19 pandemic, multisystem inflammatory syndromes (MIS), and long-COVID.
Collapse
Affiliation(s)
- Wan-Yi Ho
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zi-Han Shen
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Yijing Chen
- Department of Dentisty, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Ting-Hsu Chen
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - XiaoLin Lu
- Anatomy Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Yaw-Syan Fu
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Anatomy Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, 361023, Fujian, China
| |
Collapse
|
10
|
Combe M, Cherif E, Deremarque T, Rivera-Ingraham G, Seck-Thiam F, Justy F, Doudou JC, Carod JF, Carage T, Procureur A, Gozlan RE. Wastewater sequencing as a powerful tool to reveal SARS-CoV-2 variant introduction and spread in French Guiana, South America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171645. [PMID: 38479523 DOI: 10.1016/j.scitotenv.2024.171645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/19/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
The origin of introduction of a new pathogen in a country, the evolutionary dynamics of an epidemic within a country, and the role of cross-border areas on pathogen dynamics remain complex to disentangle and are often poorly understood. For instance, cross-border areas represent the ideal location for the sharing of viral variants between countries, with international air travel, land travel and waterways playing an important role in the cross-border spread of infectious diseases. Unfortunately, monitoring the point of entry and the evolutionary dynamics of viruses in space and time within local populations remain challenging. Here we tested the efficiency of wastewater-based epidemiology and genotyping in monitoring Covid-19 epidemiology and SARS-CoV-2 variant dynamics in French Guiana, a tropical country located in South America. Our results suggest that wastewater-based epidemiology and genotyping are powerful tools to monitor variant introduction and disease evolution within a tropical country but the inclusion of both clinical and wastewater samples could still improve our understanding of genetic diversity co-circulating. Wastewater sequencing also revealed the cryptic transmission of SARS-CoV-2 variants within the country. Interestingly, we found some amino acid changes specific to the variants co-circulating in French Guiana, suggesting a local evolution of the SARS-CoV-2 variants after their introduction. More importantly, our results showed that the proximity to bordering countries was not the origin of the emergence of the French Guianese B.1.160.25 variant, but rather that this variant emerged from an ancestor B.1.160 variant introduced by European air plane travelers, suggesting thus that air travel remains a significant risk for cross-border spread of infectious diseases. Overall, we suggest that wastewater-based epidemiology and genotyping provides a cost effective and non-invasive approach for pathogen monitoring and an early-warning tool for disease emergence and spread within a tropical country.
Collapse
Affiliation(s)
- Marine Combe
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France.
| | - Emira Cherif
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | | | - Georgina Rivera-Ingraham
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France; Centre IRD de Cayenne, Guyane Française, France
| | | | | | | | - Jean-François Carod
- Laboratoire et Pôle Appui aux Fonctions Cliniques, Centre Hospitalier de l'Ouest Guyanais (CHOG), 97320 Saint-Laurent du Maroni, Guyane Française, France
| | - Thierry Carage
- Laboratoire de Biologie Médicale Carage de Kourou, 6 avenue Leopold Heder, 97310 Kourou, Guyane Française, France
| | - Angélique Procureur
- Laboratoire de Biologie Médicale Carage de Kourou, 6 avenue Leopold Heder, 97310 Kourou, Guyane Française, France
| | | |
Collapse
|
11
|
Alkhalil SS, Alosaimi SE, Alosaimi ME, Mohammedsaleh ZM, Al Abdulmonem W, Alkhamiss AS, Alghsham RS, Aljohani ASM, Shater AF, Saleh FM, Almohaimeed HM, Soliman MH. Enumeration of olive derived lignan, pinoresinol for activity against recent Omicron variant spike protein for structure-based drug design, DFT, molecular dynamics simulations, and MMGBSA studies. J Appl Genet 2024; 65:341-354. [PMID: 38030871 DOI: 10.1007/s13353-023-00802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
The coronavirus disease 2019 (COVID-19) was first found in Wuhan, China, in December 2019. Because the virus spreads quickly, it quickly became a global worry. Coronaviridae is the family that contains both SARS-CoV-2 and the viruses that came before (i.e., MERS-CoV and SARS-CoV). Recent sources portray that the COVID-19 virus has affected 344,710,576 people worldwide and killed about 5,598,511 people in the last 2 years. The B.1.1.529 strain, later called "Omicron," was named a Variant of Concern on November 24, 2021. The SARS-CoV-2 virus has gone through a never-ending chain of changes that have never happened before. As a result, it has many different traits. Most of these changes have occurred in the spike protein, where antibodies bind. Because of these changes, the Omicron type is very contagious and easy to pass on. There have been a lot of studies done to try to figure out this new challenge in the COVID-19 strains race, but there is still a lot that needs to be explained. This study focuses on virtual screening, docking, and molecular dynamic analysis; we aimed to identify therapeutic candidates for the SARS-CoV-2 variant Omicron based on their ability to inhibit non-structural proteins. We investigate the prediction of the properties of a substantial database of drug molecules obtained from the OliveNet™ database. Compounds that did not exhibit adequate gastrointestinal absorption and failed the Lipinski test are not considered for further research. The filtered compounds were coupled with our primary target, SARS-CoV-2 Omicron spike protein. We focused on SARS-CoV-2 Omicron spike protein and filtering potent olive compounds. Pinoresinol, the most likely candidate, is bound best (- 8.5 kcal/mol). Pinoresinol's strong interaction with the active site made the complex's dynamic structure more resilient. MD simulations explain the protein-ligand complex's stability and function. Pinoresinol may be a promising SARS-CoV-2 Omicron spike protein receptor lead drug, and additional research may assist the scientific community.
Collapse
Affiliation(s)
- Samia S Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Riyadh, Saudi Arabia.
| | - Shoruq E Alosaimi
- Respiratory Services Department, King Abdullah Specialized Children's Hospital (KASCH), P.O. Box 14611,, Riyadh, Saudi Arabia
| | - Manal E Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Abdullah Saleh Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Ruqaih S Alghsham
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Fayez M Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman, University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mona H Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu, 46429, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Gori Savellini G, Anichini G, Manetti F, Trivisani CI, Cusi MG. Deletion of 82-85 N-Terminal Residues in SARS-CoV-2 Nsp1 Restricts Virus Replication. Viruses 2024; 16:689. [PMID: 38793572 PMCID: PMC11125901 DOI: 10.3390/v16050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Non-structural protein 1 (Nsp1) represents one of the most crucial SARS-CoV-2 virulence factors by inhibiting the translation of host mRNAs and promoting their degradation. We selected naturally occurring virus lineages with specific Nsp1 deletions located at both the N- and C-terminus of the protein. Our data provide new insights into how Nsp1 coordinates these functions on host and viral mRNA recognition. Residues 82-85 in the N-terminal part of Nsp1 likely play a role in docking the 40S mRNA entry channel, preserving the inhibition of host gene expression without affecting cellular mRNA decay. Furthermore, this domain prevents viral mRNAs containing the 5'-leader sequence to escape translational repression. These findings support the presence of distinct domains within the Nsp1 protein that differentially modulate mRNA recognition, translation and turnover. These insights have implications for the development of drugs targeting viral proteins and provides new evidences of how specific mutations in SARS-CoV-2 Nsp1 could attenuate the virus.
Collapse
Affiliation(s)
| | - Gabriele Anichini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy (C.I.T.)
| | | | - Maria Grazia Cusi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
13
|
Stelitano D, Cortese M. Electron microscopy: The key to resolve RNA viruses replication organelles. Mol Microbiol 2024; 121:679-687. [PMID: 37777341 DOI: 10.1111/mmi.15173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023]
Abstract
Positive-sense single-stranded RNA viruses significantly reshape intracellular membranes to generate viral replication organelles that form a controlled niche in which nucleic acids, enzymes, and cofactors accumulate to assure an efficient replication of the viral genome. In recent years, advancements in electron microscopy (EM) techniques have enabled imaging of these viral factories in a near-native state providing significantly higher molecular details that have led to progress in our general understanding of virus biology. In this review, we describe the contribution of the cutting-edge EM approaches to the current knowledge of replication organelles biogenesis, structure, and functions.
Collapse
Affiliation(s)
- Debora Stelitano
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Scuola Superiore Meridionale, Naples, Italy
| | - Mirko Cortese
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Università della Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
14
|
Nikaein A, Chemmalakuzhy A, Khan S, Hunt J, Haumpy D, Choudhary A, Pinter A, Sanchez A, Lerman M. Monitored COVID-19 vaccine humoral response in immunocompromised solid organ transplant recipients. Hum Immunol 2024; 85:110760. [PMID: 38310028 DOI: 10.1016/j.humimm.2024.110760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
The SARS-CoV-2 pandemic has resulted in rapid research and vaccine development to help curtail unchecked transmission. However, these studies cannot be applied as easily among every population, such as immunocompromised individuals. In this study, we observed the humoral response of 70 total heart and renal transplant patients to mRNA SARS-CoV-2 vaccinations to help further understand the effectiveness of vaccination in post-transplant patients following second or booster vaccinations. Antibodies were measured by bead technology to detect IgG, as well as IgG/IgM Rapid Cassette tests for confirmation. Immunocompromised patients had a noticeably lower humoral response than non-immunocompromised populations, with an even lower response among Black patients. Our findings also show for the first time various antibody responses to different motifs of the virus, with the lowest being against the S2 motif. A potential link between the duration of immunosuppression and vaccine response was also observed, where patients on immunosuppressants for longer had a stronger response to vaccination compared to recent transplant patients in our study. In addition, younger transplant recipients had a better humoral response to vaccination, and vaccine effectiveness was disproportionate between races. This finding reinforces the continuation of the guidelines for accelerated vaccination schedules for immunocompromised patients.
Collapse
Affiliation(s)
- Afzal Nikaein
- Texas Medical Specialty, Inc, 7777 Forest Lane, Dallas, TX 75230, United States.
| | | | - Salman Khan
- Medical City Dallas, 7777 Forest Lane, Dallas, TX 75230, United States
| | - Judson Hunt
- Medical City Dallas, 7777 Forest Lane, Dallas, TX 75230, United States
| | - Derek Haumpy
- Texas Medical Specialty, Inc, 7777 Forest Lane, Dallas, TX 75230, United States
| | - Alok Choudhary
- Public Health Research Institute, New Jersey Medical School, Rutgers University, 185 S Orange Ave, Newark, NJ 07130, United States
| | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers University, 185 S Orange Ave, Newark, NJ 07130, United States
| | - Ayrton Sanchez
- Texas Medical Specialty, Inc, 7777 Forest Lane, Dallas, TX 75230, United States
| | - Mark Lerman
- Medical City Dallas, 7777 Forest Lane, Dallas, TX 75230, United States
| |
Collapse
|
15
|
Gerashchenko GV, Hryshchenko NV, Melnichuk NS, Marchyshak TV, Chernushyn SY, Demchyshina IV, Chernenko LM, Kuzin IV, Tkachuk ZY, Kashuba VI, Tukalo MA. Genetic characteristics of SARS-CoV-2 virus variants observed upon three waves of the COVID-19 pandemic in Ukraine between February 2021-January 2022. Heliyon 2024; 10:e25618. [PMID: 38380034 PMCID: PMC10877268 DOI: 10.1016/j.heliyon.2024.e25618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The aim of our study was to identify and characterize the SARS-CoV-2 variants in COVID-19 patients' samples collected from different regions of Ukraine to determine the relationship between SARS-CoV-2 phylogenetics and COVID-19 epidemiology. Patients and methods Samples were collected from COVID-19 patients during 2021 and the beginning of 2022 (401 patients). The SARS-CoV-2 genotyping was performed by parallel whole genome sequencing. Results The obtained SARS-CoV-2 genotypes showed that three waves of the COVID-19 pandemic in Ukraine were represented by three main variants of concern (VOC), named Alpha, Delta and Omicron; each VOC successfully replaced the earlier variant. The VOC Alpha strain was presented by one B.1.1.7 lineage, while VOC Delta showed a spectrum of 25 lineages that had different prevalence in 19 investigated regions of Ukraine. The VOC Omicron in the first half of the pandemic was represented by 13 lines that belonged to two different clades representing B.1 and B.2 Omicron strains. Each of the three epidemic waves (VOC Alpha, Delta, and Omicron) demonstrated their own course of disease, associated with genetic changes in the SARS-CoV-2 genome. The observed epidemiological features are associated with the genetic characteristics of the different VOCs, such as point mutations, deletions and insertions in the viral genome. A phylogenetic and transmission analysis showed the different mutation rates; there were multiple virus sources with a limited distribution between regions. Conclusions The evolution of SARS-CoV-2 virus and high levels of morbidity due to COVID-19 are still registered in the world. Observed multiple virus sourses with the limited distribution between regions indicates the high efficiency of the anti-epidemic policy pursued by the Ministry of Health of Ukraine to prevent the spread of the epidemic, despite the low level of vaccination of the Ukrainian population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zenovii Yu Tkachuk
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kyiv, Ukraine
| | - Vladimir I. Kashuba
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kyiv, Ukraine
| | - Mykhailo A. Tukalo
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
16
|
Valadan R, Alizadeh-Navaei R, Lagzian M, Saeedi M, Roozbeh F, Hedayatizadeh-Omran A, Amanlou M. Repurposing naproxen as a potential nucleocapsid antagonist of beta-coronaviruses: targeting a conserved protein in the search for a broad-spectrum treatment option. J Biomol Struct Dyn 2024:1-16. [PMID: 38407203 DOI: 10.1080/07391102.2024.2321245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
Ongoing mutations in the coronavirus family, especially beta-coronaviruses, raise new concerns about the possibility of new unexpected outbreaks. Therefore, it is crucial to explore new alternative treatments to reduce the impact of potential future strains until new vaccines can be developed. A promising approach to combat the virus is to target its conserved parts such as the nucleocapsid, especially via repurposing of existing drugs. The possibility of this approach is explored here to find a potential anti-nucleocapsid compound to target these viruses. 3D models of the N- and C-terminal domains (CTDs) of the nucleocapsid consensus sequence were constructed. Each domain was then screened against an FDA-approved drug database, and the most promising candidate was selected for further analysis. A 100 ns molecular dynamics (MD) simulation was conducted to analyze the final candidate in more detail. Naproxen was selected and found to interact with the N-terminal domain via conserved salt bridges and hydrogen bonds which are completely conserved among all Coronaviridae members. MD analysis also revealed that all relevant coordinates of naproxen with N terminal domain were kept during 100 ns of simulation time. This study also provides insights into the specific interaction of naproxen with conserved RNA binding pocket of the nucleocapsid that could interfere with the packaging of the viral genome into capsid and virus assembly. Additionally, the in-vitro binding assay demonstrated direct interaction between naproxen and recombinant nucleocapsid protein, further supporting the computational predictions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reza Valadan
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Milad Lagzian
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Roozbeh
- Infectious Specialist, Mazandaran University of Medical Sciences, Sari, Iran
| | - Akbar Hedayatizadeh-Omran
- Gastrointestinal Cancer Research Center, Non-Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Hanna G, Benjamin MM, Choo YM, De R, Schinazi RF, Nielson SE, Hevel JM, Hamann MT. Informatics and Computational Approaches for the Discovery and Optimization of Natural Product-Inspired Inhibitors of the SARS-CoV-2 2'- O-Methyltransferase. JOURNAL OF NATURAL PRODUCTS 2024; 87:217-227. [PMID: 38242544 PMCID: PMC10898454 DOI: 10.1021/acs.jnatprod.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024]
Abstract
The urgent need for new classes of orally available, safe, and effective antivirals─covering a breadth of emerging viruses─is evidenced by the loss of life and economic challenges created by the HIV-1 and SARS-CoV-2 pandemics. As frontline interventions, small-molecule antivirals can be deployed prophylactically or postinfection to control the initial spread of outbreaks by reducing transmissibility and symptom severity. Natural products have an impressive track record of success as prototypic antivirals and continue to provide new drugs through synthesis, medicinal chemistry, and optimization decades after discovery. Here, we demonstrate an approach using computational analysis typically used for rational drug design to identify and develop natural product-inspired antivirals. This was done with the goal of identifying natural product prototypes to aid the effort of progressing toward safe, effective, and affordable broad-spectrum inhibitors of Betacoronavirus replication by targeting the highly conserved RNA 2'-O-methyltransferase (2'-O-MTase). Machaeriols RS-1 (7) and RS-2 (8) were identified using a previously outlined informatics approach to first screen for natural product prototypes, followed by in silico-guided synthesis. Both molecules are based on a rare natural product group. The machaeriols (3-6), isolated from the genus Machaerium, endemic to Amazonia, inhibited the SARS-CoV-2 2'-O-MTase more potently than the positive control, Sinefungin (2), and in silico modeling suggests distinct molecular interactions. This report highlights the potential of computationally driven screening to leverage natural product libraries and improve the efficiency of isolation or synthetic analog development.
Collapse
Affiliation(s)
- George
S. Hanna
- Department
of Drug Discovery, Biomedical Sciences and Public Health, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Menny M. Benjamin
- Department
of Drug Discovery, Biomedical Sciences and Public Health, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Yeun-Mun Choo
- Department
of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ramyani De
- Center
for ViroScience and Cure, Laboratory of Biochemical Pharmacology,
Department of Pediatrics, Emory University
School of Medicine, 1760 Haygood Drive, NE Atlanta, Georgia 30322, United States
| | - Raymond F. Schinazi
- Center
for ViroScience and Cure, Laboratory of Biochemical Pharmacology,
Department of Pediatrics, Emory University
School of Medicine, 1760 Haygood Drive, NE Atlanta, Georgia 30322, United States
| | - Sarah E. Nielson
- Department
of Chemistry & Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Joan M. Hevel
- Department
of Chemistry & Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Mark T. Hamann
- Department
of Drug Discovery, Biomedical Sciences and Public Health, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
18
|
Ferreira P, Soares R, López-Fernández H, Vazquez N, Reboiro-Jato M, Vieira CP, Vieira J. Multiple Lines of Evidence Support 199 SARS-CoV-2 Positively Selected Amino Acid Sites. Int J Mol Sci 2024; 25:2428. [PMID: 38397104 PMCID: PMC10889775 DOI: 10.3390/ijms25042428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
SARS-CoV-2 amino acid variants that contribute to an increased transmissibility or to host immune system escape are likely to increase in frequency due to positive selection and may be identified using different methods, such as codeML, FEL, FUBAR, and MEME. Nevertheless, when using different methods, the results do not always agree. The sampling scheme used in different studies may partially explain the differences that are found, but there is also the possibility that some of the identified positively selected amino acid sites are false positives. This is especially important in the context of very large-scale projects where hundreds of analyses have been performed for the same protein-coding gene. To account for these issues, in this work, we have identified positively selected amino acid sites in SARS-CoV-2 and 15 other coronavirus species, using both codeML and FUBAR, and compared the location of such sites in the different species. Moreover, we also compared our results to those that are available in the COV2Var database and the frequency of the 10 most frequent variants and predicted protein location to identify those sites that are supported by multiple lines of evidence. Amino acid changes observed at these sites should always be of concern. The information reported for SARS-CoV-2 can also be used to identify variants of concern in other coronaviruses.
Collapse
Affiliation(s)
- Pedro Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ricardo Soares
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Hugo López-Fernández
- CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (M.R.-J.)
- CINBIO, SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Noé Vazquez
- CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (M.R.-J.)
- CINBIO, SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Miguel Reboiro-Jato
- CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (M.R.-J.)
- CINBIO, SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Cristina P. Vieira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| |
Collapse
|
19
|
Tsukamoto Y, Igarashi M, Kato H. Targeting cap1 RNA methyltransferases as an antiviral strategy. Cell Chem Biol 2024; 31:86-99. [PMID: 38091983 DOI: 10.1016/j.chembiol.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024]
Abstract
Methylation is one of the critical modifications that regulates numerous biological processes. Guanine capping and methylation at the 7th position (m7G) have been shown to mature mRNA for increased RNA stability and translational efficiency. The m7G capped cap0 RNA remains immature and requires additional methylation at the first nucleotide (N1-2'-O-Me), designated as cap1, to achieve full maturation. This cap1 RNA with N1-2'-O-Me prevents its recognition by innate immune sensors as non-self. Viruses have also evolved various strategies to produce self-like capped RNAs with the N1-2'-O-Me that potentially evades the antiviral response and establishes an efficient replication. In this review, we focus on the importance of the presence of N1-2'-O-Me in viral RNAs and discuss the potential for drug development by targeting host and viral N1-2'-O-methyltransferases.
Collapse
Affiliation(s)
- Yuta Tsukamoto
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
20
|
Levi R, Zerhouni EG, Altuvia S. Predicting the spread of SARS-CoV-2 variants: An artificial intelligence enabled early detection. PNAS NEXUS 2024; 3:pgad424. [PMID: 38170049 PMCID: PMC10759796 DOI: 10.1093/pnasnexus/pgad424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
During more than 3 years since its emergence, SARS-CoV-2 has shown great ability to mutate rapidly into diverse variants, some of which turned out to be very infectious and have spread throughout the world causing waves of infections. At this point, many countries have already experienced up to six waves of infections. Extensive academic work has focused on the development of models to predict the pandemic trajectory based on epidemiological data, but none has focused on predicting variant-specific spread. Moreover, important scientific literature analyzes the genetic evolution of SARS-CoV-2 variants and how it might functionally affect their infectivity. However, genetic attributes have not yet been incorporated into existing epidemiological modeling that aims to capture infection trajectory. Thus, this study leverages variant-specific genetic characteristics together with epidemiological information to systematically predict the future spread trajectory of newly detected variants. The study describes the analysis of 9.0 million SARS-CoV-2 genetic sequences in 30 countries and identifies temporal characteristic patterns of SARS-CoV-2 variants that caused significant infection waves. Using this descriptive analysis, a machine-learning-enabled risk assessment model has been developed to predict, as early as 1 week after their first detection, which variants are likely to constitute the new wave of infections in the following 3 months. The model's out-of-sample area under the curve (AUC) is 86.3% for predictions after 1 week and 90.8% for predictions after 2 weeks. The methodology described in this paper could contribute more broadly to the development of improved predictive models for variants of other infectious viruses.
Collapse
Affiliation(s)
- Retsef Levi
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - El Ghali Zerhouni
- Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shoshy Altuvia
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem, 9112102, Israel
| |
Collapse
|
21
|
Dorji T, Dorji K, Wangchuk T, Pelki T, Gyeltshen S. Genetic diversity and evolutionary patterns of SARS-CoV-2 among the Bhutanese population during the pandemic. Osong Public Health Res Perspect 2023; 14:494-507. [PMID: 38204428 PMCID: PMC10788421 DOI: 10.24171/j.phrp.2023.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic, caused by a dynamic virus, has had a profound global impact. Despite declining global COVID-19 cases and mortality rates, the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains a major concern. This study provides a comprehensive analysis of the genomic sequences of SARS-CoV-2 within the Bhutanese population during the pandemic. The primary aim was to elucidate the molecular epidemiology and evolutionary patterns of SARS-CoV-2 in Bhutan, with a particular focus on genetic variations and lineage dynamics. METHODS Whole-genome sequences of SARS-CoV-2 collected from Bhutan between May 2020 and February 2023 (n=135) were retrieved from the Global Initiative on Sharing All Influenza Database. RESULTS The SARS-CoV-2 variants in Bhutan were predominantly classified within the Nextstrain clade 20A (31.1%), followed by clade 21L (20%) and clade 22D (15.6%). We identified 26 Pangolin lineages with variations in their spatial and temporal distribution. Bayesian time-scaled phylogenetic analysis estimated the time to the most recent common ancestor as February 15, 2020, with a substitution rate of 0.97×10-3 substitutions per site per year. Notably, the spike glycoprotein displayed the highest mutation frequency among major viral proteins, with 116 distinct mutations, including D614G. The Bhutanese isolates also featured mutations such as E484K, K417N, and S477N in the spike protein, which have implications for altered viral properties. CONCLUSION This is the first study to describe the genetic diversity of SARS-CoV-2 circulating in Bhutan during the pandemic, and this data can inform public health policies and strategies for preventing future outbreaks in Bhutan.
Collapse
Affiliation(s)
- Tshering Dorji
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Kunzang Dorji
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Tandin Wangchuk
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Tshering Pelki
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Sonam Gyeltshen
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| |
Collapse
|
22
|
Yevsieieva LV, Lohachova KO, Kyrychenko A, Kovalenko SM, Ivanov VV, Kalugin ON. Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-CoV-2. RSC Adv 2023; 13:35500-35524. [PMID: 38077980 PMCID: PMC10698513 DOI: 10.1039/d3ra06479d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024] Open
Abstract
The pandemic caused by the coronavirus SARS-CoV-2 led to a global crisis in the world healthcare system. Despite some progress in the creation of antiviral vaccines and mass vaccination of the population, the number of patients continues to grow because of the spread of new SARS-CoV-2 mutations. There is an urgent need for direct-acting drugs capable of suppressing or stopping the main mechanisms of reproduction of the coronavirus SARS-CoV-2. Several studies have shown that the successful replication of the virus in the cell requires proteolytic cleavage of the protein structures of the virus. Two proteases are crucial in replicating SARS-CoV-2 and other coronaviruses: the main protease (Mpro) and the papain-like protease (PLpro). In this review, we summarize the essential viral proteins of SARS-CoV-2 required for its viral life cycle as targets for chemotherapy of coronavirus infection and provide a critical summary of the development of drugs against COVID-19 from the drug repurposing strategy up to the molecular design of novel covalent and non-covalent agents capable of inhibiting virus replication. We overview the main antiviral strategy and the choice of SARS-CoV-2 Mpro and PLpro proteases as promising targets for pharmacological impact on the coronavirus life cycle.
Collapse
Affiliation(s)
- Larysa V Yevsieieva
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Kateryna O Lohachova
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Alexander Kyrychenko
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Sergiy M Kovalenko
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Volodymyr V Ivanov
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Oleg N Kalugin
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| |
Collapse
|
23
|
Trifonova A, Syarov A, Takov S, Angelov K, Vazharova R, Terzieva V. Combination of two rare mutations in the SARS-CoV-2 M gene in patients with severe and prolonged COVID-19. Infect Dis (Lond) 2023; 55:803-807. [PMID: 37493404 DOI: 10.1080/23744235.2023.2238077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 virus significantly changed our knowledge about coronaviruses. The interplay between SARS-CoV-2 and the human host, the infection ranges from asymptomatic to lethal, and differences in the degree of disease severity are important examples. METHODS In this retrospective study, 24 nasopharyngeal swabs from 21 out of 457 patients with SARS-CoV-2 infection were analysed by whole-genome sequencing. The principal selection criteria were the duration of infection and disease severity. RESULTS Two co-occurring rare mutations in the SARS-CoV-2 M gene were detected in six samples. Three of these samples were collected from an immunocompromised patient with fatal outcome, two from an immunocompetent patient, and one from a patient with severe disease and fatal outcome, all with a prolonged course of infection. CONCLUSIONS Although this interesting finding was demonstrated in a small number of patients, the results increase the knowledge regarding the significance of mutations in the M gene of SARS-CoV-2 in the context of persistent infection and viral escape mechanisms.
Collapse
Affiliation(s)
- Angelina Trifonova
- Laboratory of Clinical Microbiology and Virology, Lozenetz University Hospital, Sofia University "Sv. Kliment Ohridski", Sofia, Bulgaria
| | - Atanas Syarov
- Laboratory of Molecular Biology and Clinical Genetics, Lozenetz University Hospital, Sofia University "Sv. Kliment Ohridski", Sofia, Bulgaria
| | - Svetlomir Takov
- Internal Diseases Clinic, Lozenetz University Hospital, Sofia University "Sv. Kliment Ohridski", Sofia, Bulgaria
| | - Krassimir Angelov
- Internal Diseases Clinic, Lozenetz University Hospital, Sofia University "Sv. Kliment Ohridski", Sofia, Bulgaria
| | - Radoslava Vazharova
- Laboratory of Molecular Biology and Clinical Genetics, Lozenetz University Hospital, Sofia University "Sv. Kliment Ohridski", Sofia, Bulgaria
| | - Velislava Terzieva
- Laboratory of Clinical Microbiology and Virology, Lozenetz University Hospital, Sofia University "Sv. Kliment Ohridski", Sofia, Bulgaria
| |
Collapse
|
24
|
Najjari Z, Sadri F, Varshosaz J. Smart stimuli-responsive drug delivery systems in spotlight of COVID-19. Asian J Pharm Sci 2023; 18:100873. [PMID: 38173712 PMCID: PMC10762358 DOI: 10.1016/j.ajps.2023.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
The world has been dealing with a novel severe acute respiratory syndrome (SARS-CoV-2) since the end of 2019, which threatens the lives of many people worldwide. COVID-19 causes respiratory infection with different symptoms, from sneezing and coughing to pneumonia and sometimes gastric symptoms. Researchers worldwide are actively developing novel drug delivery systems (DDSs), such as stimuli-responsive DDSs. The ability of these carriers to respond to external/internal and even multiple stimuli is essential in creating "smart" DDS that can effectively control dosage, sustained release, individual variations, and targeted delivery. To conduct a comprehensive literature survey for this article, the terms "Stimuli-responsive", "COVID-19″ and "Drug delivery" were searched on databases/search engines like "Google Scholar", "NCBI", "PubMed", and "Science Direct". Many different types of DDSs have been proposed, including those responsive to various exogenous (light, heat, ultrasound and magnetic field) or endogenous (microenvironmental changes in pH, ROS and enzymes) stimuli. Despite significant progress in DDS research, several challenging issues must be addressed to fill the gaps in the literature. Therefore, this study reviews the drug release mechanisms and applications of endogenous/exogenous stimuli-responsive DDSs while also exploring their potential with respect to COVID-19.
Collapse
Affiliation(s)
- Zeinab Najjari
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Sadri
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
25
|
Kosenko M, Onkhonova G, Susloparov I, Ryzhikov A. SARS-CoV-2 proteins structural studies using synchrotron radiation. Biophys Rev 2023; 15:1185-1194. [PMID: 37974992 PMCID: PMC10643813 DOI: 10.1007/s12551-023-01153-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
In the process of the development of structural biology, both the size and the complexity of the determined macromolecular structures have grown significantly. As a result, the range of application areas for the results of structural studies of biological macromolecules has expanded. Significant progress in the development of structural biology methods has been largely achieved through the use of synchrotron radiation. Modern sources of synchrotron radiation allow to conduct high-performance structural studies with high temporal and spatial resolution. Thus, modern techniques make it possible to obtain not only static structures, but also to study dynamic processes, which play a key role in understanding biological mechanisms. One of the key directions in the development of structural research is the drug design based on the structures of biomolecules. Synchrotron radiation offers insights into the three-dimensional time-resolved structure of individual viral proteins and their complexes at atomic resolution. The rapid and accurate determination of protein structures is crucial for understanding viral pathogenicity and designing targeted therapeutics. Through the application of experimental techniques, including X-ray crystallography and small-angle X-ray scattering (SAXS), it is possible to elucidate the structural details of SARS-CoV-2 virion containing 4 structural, 16 nonstructural proteins (nsp), and several accessory proteins. The most studied potential targets for vaccines and drugs are the structural spike (S) protein, which is responsible for entering the host cell, as well as nonstructural proteins essential for replication and transcription, such as main protease (Mpro), papain-like protease (PLpro), and RNA-dependent RNA polymerase (RdRp). This article provides a brief overview of structural analysis techniques, with focus on synchrotron radiation-based methods applied to the analysis of SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Maksim Kosenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Galina Onkhonova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Ivan Susloparov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Alexander Ryzhikov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| |
Collapse
|
26
|
Awad AM, Hansen K, Del Rio D, Flores D, Barghash RF, Kakkola L, Julkunen I, Awad K. Insights into COVID-19: Perspectives on Drug Remedies and Host Cell Responses. Biomolecules 2023; 13:1452. [PMID: 37892134 PMCID: PMC10604481 DOI: 10.3390/biom13101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
In light of the COVID-19 global pandemic caused by SARS-CoV-2, ongoing research has centered on minimizing viral spread either by stopping viral entry or inhibiting viral replication. Repurposing antiviral drugs, typically nucleoside analogs, has proven successful at inhibiting virus replication. This review summarizes current information regarding coronavirus classification and characterization and presents the broad clinical consequences of SARS-CoV-2 activation of the angiotensin-converting enzyme 2 (ACE2) receptor expressed in different human cell types. It provides publicly available knowledge on the chemical nature of proposed therapeutics and their target biomolecules to assist in the identification of potentially new drugs for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ahmed M. Awad
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Kamryn Hansen
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Diana Del Rio
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Derek Flores
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Reham F. Barghash
- Institute of Chemical Industries Research, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Laura Kakkola
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20014 Turku, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20014 Turku, Finland
- Clinical Microbiology, Turku University Hospital, 20521 Turku, Finland
| | - Kareem Awad
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20014 Turku, Finland
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Dokki, Cairo 12622, Egypt
| |
Collapse
|
27
|
Koirala P, Dhakal S, Malla B, Ghimire A, Siddiqui MA, Dawadi P. SARS-CoV-2 Burden in Wastewater and its Elimination Using Disinfection. Microbiol Insights 2023; 16:11786361231201598. [PMID: 37745090 PMCID: PMC10517603 DOI: 10.1177/11786361231201598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Background Pathogenic viruses have been abundant and diverse in wastewater, reflecting the pattern of infection in humans. Human feces, urine, and perhaps other washouts that frequently circulate in sewage systems may contaminate wastewater with SARS-CoV-2. It's crucial to effectively disinfect wastewater since poorly handled wastewater could put the population at risk of infection. Aims To emphasize the presence and spread of SARS-CoV-2 in sewage (wastewater) through viral shedding from the patients to detect the virus in the population using wastewater-based epidemiology. Also, to effectively manage the transmission of SARS-CoV-2 and reduce the spread of the virus in the population using disinfectants is highlighted. Methods We evaluated articles from December 2019 to August 2022 that addressed SARS-CoV-2 shedding in wastewater and surveillance through wastewater-based epidemiology. We included the papers on wastewater disinfection for the elimination of SARS-CoV-2. Google Scholar, PubMed, and Research4Life are the three electronic databases from which all of the papers were retrieved. Results It is possible for viral shedding to get into the wastewater. The enumeration of viral RNA from it can be used to monitor virus circulation in the human community. SARS-CoV-2 can be removed from wastewater by using modern disinfection techniques such as sodium hypochlorite, liquid chlorine, chlorine dioxide, peracetic acid, and ultraviolet light. Conclusion SARS-CoV-2 burden estimates at the population level can be obtained via longitudinal examination of wastewater, and SARS-CoV-2 can be removed from the wastewater through disinfection.
Collapse
Affiliation(s)
- Prashanna Koirala
- National Animal Breeding and Genetics Research Center, Nepal Agricultural Research Council, Lalitpur, Nepal
| | - Sandesh Dhakal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Bikram Malla
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Archana Ghimire
- Department of Development Education, School of Education, Kathmandu University, Hattiban, Lalitpur, Nepal
| | - Mohammad Ataullah Siddiqui
- Molecular Biotechnology Unit, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Prabin Dawadi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
28
|
Justo Arevalo S, Castillo-Chávez A, Uribe Calampa CS, Zapata Sifuentes D, Huallpa CJ, Landa Bianchi G, Garavito-Salini Casas R, Quiñones Aguilar M, Pineda Chavarría R. What do we know about the function of SARS-CoV-2 proteins? Front Immunol 2023; 14:1249607. [PMID: 37790934 PMCID: PMC10544941 DOI: 10.3389/fimmu.2023.1249607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
The COVID-19 pandemic has highlighted the importance in the understanding of the biology of SARS-CoV-2. After more than two years since the first report of COVID-19, it remains crucial to continue studying how SARS-CoV-2 proteins interact with the host metabolism to cause COVID-19. In this review, we summarize the findings regarding the functions of the 16 non-structural, 6 accessory and 4 structural SARS-CoV-2 proteins. We place less emphasis on the spike protein, which has been the subject of several recent reviews. Furthermore, comprehensive reviews about COVID-19 therapeutic have been also published. Therefore, we do not delve into details on these topics; instead we direct the readers to those other reviews. To avoid confusions with what we know about proteins from other coronaviruses, we exclusively report findings that have been experimentally confirmed in SARS-CoV-2. We have identified host mechanisms that appear to be the primary targets of SARS-CoV-2 proteins, including gene expression and immune response pathways such as ribosome translation, JAK/STAT, RIG-1/MDA5 and NF-kβ pathways. Additionally, we emphasize the multiple functions exhibited by SARS-CoV-2 proteins, along with the limited information available for some of these proteins. Our aim with this review is to assist researchers and contribute to the ongoing comprehension of SARS-CoV-2's pathogenesis.
Collapse
Affiliation(s)
- Santiago Justo Arevalo
- Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima, Peru
- Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Daniela Zapata Sifuentes
- Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima, Peru
- Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - César J. Huallpa
- Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | | | | | | | |
Collapse
|
29
|
Bagdonas M, Čerepenkaitė K, Mickevičiūtė A, Kananavičiūtė R, Grybaitė B, Anusevičius K, Rukšėnaitė A, Kojis T, Gedgaudas M, Mickevičius V, Matulis D, Zubrienė A, Matulienė J. Screening, Synthesis and Biochemical Characterization of SARS-CoV-2 Protease Inhibitors. Int J Mol Sci 2023; 24:13491. [PMID: 37686295 PMCID: PMC10488051 DOI: 10.3390/ijms241713491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The severe acute respiratory syndrome-causing coronavirus 2 (SARS-CoV-2) papain-like protease (PLpro) and main protease (Mpro) play an important role in viral replication events and are important targets for anti-coronavirus drug discovery. In search of these protease inhibitors, we screened a library of 1300 compounds using a fluorescence thermal shift assay (FTSA) and identified 53 hits that thermally stabilized or destabilized PLpro. The hit compounds structurally belonged to two classes of small molecules: thiazole derivatives and symmetrical disulfide compounds. Compound dissociation constants (Kd) were determined using an enzymatic inhibition method. Seven aromatic disulfide compounds were identified as efficient PLpro inhibitors with Kd values in the micromolar range. Two disulfides displayed six-fold higher potency for PLpro (Kd = 0.5 µM) than for Mpro. The disulfide derivatives bound covalently to both proteases, as confirmed through mass spectrometry. The identified compounds can serve as lead compounds for further chemical optimization toward anti-COVID-19 drugs.
Collapse
Affiliation(s)
- Martynas Bagdonas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (M.B.); (K.Č.); (A.M.); (T.K.); (M.G.); (D.M.)
| | - Kamilė Čerepenkaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (M.B.); (K.Č.); (A.M.); (T.K.); (M.G.); (D.M.)
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (M.B.); (K.Č.); (A.M.); (T.K.); (M.G.); (D.M.)
| | - Rūta Kananavičiūtė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenų pl. 19, LT-50254 Kaunas, Lithuania; (B.G.); (K.A.); (V.M.)
| | - Kazimieras Anusevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenų pl. 19, LT-50254 Kaunas, Lithuania; (B.G.); (K.A.); (V.M.)
| | - Audronė Rukšėnaitė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania;
| | - Tautvydas Kojis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (M.B.); (K.Č.); (A.M.); (T.K.); (M.G.); (D.M.)
| | - Marius Gedgaudas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (M.B.); (K.Č.); (A.M.); (T.K.); (M.G.); (D.M.)
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenų pl. 19, LT-50254 Kaunas, Lithuania; (B.G.); (K.A.); (V.M.)
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (M.B.); (K.Č.); (A.M.); (T.K.); (M.G.); (D.M.)
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (M.B.); (K.Č.); (A.M.); (T.K.); (M.G.); (D.M.)
| | - Jurgita Matulienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (M.B.); (K.Č.); (A.M.); (T.K.); (M.G.); (D.M.)
| |
Collapse
|
30
|
Li K, Melnychuk S, Sandstrom P, Ji H. Tracking the evolution of the SARS-CoV-2 Delta variant of concern: analysis of genetic diversity and selection across the whole viral genome. Front Microbiol 2023; 14:1222301. [PMID: 37614597 PMCID: PMC10443222 DOI: 10.3389/fmicb.2023.1222301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023] Open
Abstract
Background Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has diversified extensively, producing five highly virulent lineages designated as variants of concern (VOCs). The Delta VOC emerged in India with increased transmission, immune evasion, and mortality, causing a massive global case surge in 2021. This study aims to understand how the Delta VOC evolved by characterizing mutation patterns in the viral population before and after its emergence. Furthermore, we aim to identify the influence of positive and negative selection on VOC evolution and understand the prevalence of different mutation types in the viral genome. Methods Three groups of whole viral genomes were retrieved from GISAID, sourced from India, with collection periods as follows: Group A-during the initial appearance of SARS-CoV-2; Group B-just before the emergence of the Delta variant; Group C-after the establishment of the Delta variant in India. Mutations in >1% of each group were identified with BioEdit to reveal differences in mutation quantity and type. Sites under positive or negative selection were identified with FUBAR. The results were compared to determine how mutations correspond with selective pressures and how viral mutation profiles changed to reflect genetic diversity before and after VOC emergence. Results The number of mutations increased progressively in Groups A-C, with Group C reporting a 2.2- and 1.9-fold increase from Groups A and B, respectively. Among all the observed mutations, Group C had the highest percentage of deletions (22.7%; vs. 4.2% and 2.6% in Groups A and B, respectively), and most mutations altered the final amino acid code, such as non-synonymous substitutions and deletions. Conversely, Group B had the most synonymous substitutions that are effectively silent. The number of sites experiencing positive selection increased in Groups A-C, but Group B had 2.4- and 2.6 times more sites under negative selection compared to Groups A and C, respectively. Conclusion Our findings demonstrated that viral genetic diversity continuously increased during and after the emergence of the Delta VOC. Despite this, Group B reports heightened negative selection, which potentially preserves important gene regions during evolution. Group C contains an unprecedented quantity of mutations and positively selected sites, providing strong evidence of active viral adaptation in the population.
Collapse
Affiliation(s)
- Katherine Li
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Stephanie Melnychuk
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Paul Sandstrom
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hezhao Ji
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
31
|
Messina A, Signorelli MS. COVID-19 associated psychosis. Ind Psychiatry J 2023; 32:215-221. [PMID: 38161482 PMCID: PMC10756597 DOI: 10.4103/ipj.ipj_27_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 01/03/2024] Open
Abstract
Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic was declared, cases of psychosis, delusions, hallucinations, and disorganized behavior have been reported worldwide, both during the acute phase of COVID-19 and after recovery. Given the recent emergence of COVID-19, data are still accumulating, and it is premature to correlate COVID-19 with psychotic disorders causally. However, SARS-CoV-2 has been shown to have the ability to cross the blood-brain barrier and penetrate neurons. This finding and the amount of published work on COVID-19 and psychotic disorders compel special attention to elucidate the link between SARS-CoV-2 and the occurrence of psychotic symptoms. In this article, several reviews and case reports that have analyzed the link between COVID-19 and psychotic disorders are reviewed. In light of the data that have emerged at the present time, study criteria were proposed to identify COVID-19-related psychosis.
Collapse
Affiliation(s)
- Antonino Messina
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| |
Collapse
|
32
|
Bensaid K, Lamara Mahammed L, Habchi K, Saidani M, Allam I, Djidjik R. Evaluation of the Humoral and Cellular Immune Response Post COVID-19 Infection in Kidney Transplant Recipients. J Clin Med 2023; 12:3900. [PMID: 37373595 DOI: 10.3390/jcm12123900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney transplantation is a major risk factor for severe forms of coronavirus disease 2019 (COVID-19). The dynamics and the persistence of the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in this immunocompromised population remain largely unknown. This study aimed to evaluate the persistence of humoral and cellular immune response in kidney transplant recipients (KTRs) and to establish whether immunosuppressive therapy influenced long-term immunity in this population. We report here the analysis of anti-SARS-CoV-2 antibodies and T cell-mediated immune responses in 36 KTRs compared to a control group who recovered from mild COVID-19. After a mean time of 5.22 ± 0.96 months post symptom onset for kidney transplant recipients, 97.22% of patients and 100% of the control group displayed anti-S1 immunoglobulin G SARS-CoV-2 antibodies (p > 0.05). No significant difference was reported in the median of neutralizing antibodies between the groups (97.50 [55.25-99] in KTRs vs. 84 [60-98] in control group, p = 0.35). A significant difference in SARS-CoV-2-specific T cell reactivity was found in the KTRs compared to the healthy controls. The levels of IFNγ release after stimulation by Ag1, Ag2 and Ag3 were higher in the control group compared to the kidney transplant group (p = 0.007, p = 0.025 and p = 0.008, respectively). No statistically significant correlation between humoral and cellular immunity was found in the KTRs. Our findings indicated that humoral immunity persisted similarly for up to 4 to 6 months post symptom onset in both the KTRs and the control group; however, T cell response was significantly higher in the healthy population compared to the immunocompromised patients.
Collapse
Affiliation(s)
- Kahina Bensaid
- Immunology Department, Beni-Messous Teaching Hospital, Faculty of Pharmacy, University of Algiers, Algiers 16000, Algeria
| | - Lydia Lamara Mahammed
- Immunology Department, Beni-Messous Teaching Hospital, Faculty of Pharmacy, University of Algiers, Algiers 16000, Algeria
| | - Khadidja Habchi
- Nephrology Department, Beni-Messous Teaching Hospital, Faculty of Medicine, University of Algiers, Algiers 16000, Algeria
| | - Messaoud Saidani
- Nephrology Department, Beni-Messous Teaching Hospital, Faculty of Medicine, University of Algiers, Algiers 16000, Algeria
| | - Ines Allam
- Immunology Department, Beni-Messous Teaching Hospital, Faculty of Pharmacy, University of Algiers, Algiers 16000, Algeria
| | - Reda Djidjik
- Immunology Department, Beni-Messous Teaching Hospital, Faculty of Pharmacy, University of Algiers, Algiers 16000, Algeria
| |
Collapse
|
33
|
Basheer A, Zahoor I, Yaqub T. Genomic architecture and evolutionary relationship of BA.2.75: A Centaurus subvariant of Omicron SARS-CoV-2. PLoS One 2023; 18:e0281159. [PMID: 37224159 PMCID: PMC10208454 DOI: 10.1371/journal.pone.0281159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/13/2023] [Indexed: 05/26/2023] Open
Abstract
In this study, we explored the genomic architecture and phylogenomic relationship of BA.2.75, a subvariant of Omicron SARS-CoV-2. A set of 1468 whole-genome sequences of BA.2.75, submitted by 28 countries worldwide were retrieved from GISAID and used for finding genomic mutations. Moreover, the phylogenetic analysis of BA.2.75 was performed by using 2948 whole-genome sequences of all sub-variants of Omicron along with the Delta variant of SAS-CoV-2. We detected 1885 mutations, which were further grouped into 1025 missense mutations, 740 silent mutations, 72 mutations in non-coding regions, 16 in-frame deletions, 02 in-frame insertions, 8 frameshift deletions, 8 frameshift insertions and 14 stop-gained variants. Additionally, we also found 11 characteristic mutations having a prevalence of 81-99% and were not observed in any of the previously reported variant of SARS-CoV-2. Out of these mutations K147E, W152R, F157L, E210V, V213G, G339H were found in the NTD, and G446S & N460K in the RBD region of the Spike protein, whereas S403L and T11A were present in the NSP3, and E protein respectively. The phylogenetic relationship of this variant revealed that BA.2.75 is descended from the Omicron sub-variant BA.5. This evolutionary relationship suggests that the surge of BA.5 infections can reduce the severity of the infections accredited to BA.2.75. These findings would also improve our knowledge and understanding that how genetic similarities in different variants of SARS-CoV-2 can prime the immune system to fight off the infection caused by one subvariant, after defeating the other.
Collapse
Affiliation(s)
- Atia Basheer
- Genetics and Genomics Laboratory, Dept. of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imran Zahoor
- Genetics and Genomics Laboratory, Dept. of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tahir Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
34
|
Vilain M, Aris-Brosou S. Machine Learning Algorithms Associate Case Numbers with SARS-CoV-2 Variants Rather Than with Impactful Mutations. Viruses 2023; 15:1226. [PMID: 37376526 DOI: 10.3390/v15061226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 06/29/2023] Open
Abstract
During the SARS-CoV-2 pandemic, much effort has been geared towards creating models to predict case numbers. These models typically rely on epidemiological data, and as such overlook viral genomic information, which could be assumed to improve predictions, as different variants show varying levels of virulence. To test this hypothesis, we implemented simple models to predict future case numbers based on the genomic sequences of the Alpha and Delta variants, which were co-circulating in Texas and Minnesota early during the pandemic. Sequences were encoded, matched with case numbers at a future time based on collection date, and used to train two algorithms: one based on random forests and one based on a feed-forward neural network. While prediction accuracies were ≥93%, explainability analyses showed that the models were not associating case numbers with mutations known to have an impact on virulence, but with individual variants. This work highlights the necessity of gaining a better understanding of the data used for training and of conducting explainability analysis to assess whether model predictions are misleading.
Collapse
Affiliation(s)
- Matthieu Vilain
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
35
|
Liang F. Quantitative Mutation Analysis of Genes and Proteins of Major SARS-CoV-2 Variants of Concern and Interest. Viruses 2023; 15:v15051193. [PMID: 37243278 DOI: 10.3390/v15051193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Of various SARS-CoV-2 variants, some have drawn special concern or interest because of their heightened disease threat. The mutability of individual SARS-CoV-2 genes/proteins presumably varies. The present study quantified gene/protein mutations in 13 major SARS-CoV-2 variants of concern/interest, and analyzed viral protein antigenicity using bioinformatics. The results from 187 carefully perused genome clones showed significantly higher mean percent mutations in the spike, ORF8, nucleocapsid, and NSP6 than in other viral proteins. The ORF8 and spike proteins also tolerated higher maximal percent mutations. The omicron variant presented more percent mutations in the NSP6 and structural proteins, whereas the delta featured more in the ORF7a. Omicron subvariant BA.2 exhibited more mutations in ORF6, and omicron BA.4 had more in NSP1, ORF6, and ORF7b, relative to omicron BA.1. Delta subvariants AY.4 and AY.5 bore more mutations in ORF7b and ORF8 than delta B.1.617.2. Predicted antigen ratios of SARS-CoV-2 proteins significantly vary (range: 38-88%). To overcome SARS-CoV-2 immune evasion, the relatively conserved, potentially immunogenic NSP4, NSP13, NSP14, membrane, and ORF3a viral proteins may serve as more suitable targets for molecular vaccines or therapeutics than the mutation-prone NSP6, spike, ORF8, or nucleocapsid protein. Further investigation into distinct mutations of the variants/subvariants may help understand SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Fengyi Liang
- Department of Anatomy, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117594, Singapore
| |
Collapse
|
36
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Poggio E, Vallese F, Hartel AJW, Morgenstern TJ, Kanner SA, Rauh O, Giamogante F, Barazzuol L, Shepard KL, Colecraft HM, Clarke OB, Brini M, Calì T. Perturbation of the host cell Ca 2+ homeostasis and ER-mitochondria contact sites by the SARS-CoV-2 structural proteins E and M. Cell Death Dis 2023; 14:297. [PMID: 37120609 PMCID: PMC10148623 DOI: 10.1038/s41419-023-05817-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Coronavirus disease (COVID-19) is a contagious respiratory disease caused by the SARS-CoV-2 virus. The clinical phenotypes are variable, ranging from spontaneous recovery to serious illness and death. On March 2020, a global COVID-19 pandemic was declared by the World Health Organization (WHO). As of February 2023, almost 670 million cases and 6,8 million deaths have been confirmed worldwide. Coronaviruses, including SARS-CoV-2, contain a single-stranded RNA genome enclosed in a viral capsid consisting of four structural proteins: the nucleocapsid (N) protein, in the ribonucleoprotein core, the spike (S) protein, the envelope (E) protein, and the membrane (M) protein, embedded in the surface envelope. In particular, the E protein is a poorly characterized viroporin with high identity amongst all the β-coronaviruses (SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-OC43) and a low mutation rate. Here, we focused our attention on the study of SARS-CoV-2 E and M proteins, and we found a general perturbation of the host cell calcium (Ca2+) homeostasis and a selective rearrangement of the interorganelle contact sites. In vitro and in vivo biochemical analyses revealed that the binding of specific nanobodies to soluble regions of SARS-CoV-2 E protein reversed the observed phenotypes, suggesting that the E protein might be an important therapeutic candidate not only for vaccine development, but also for the clinical management of COVID designing drug regimens that, so far, are very limited.
Collapse
Affiliation(s)
- Elena Poggio
- Department of Biology, University of Padova, Padova, Italy
| | - Francesca Vallese
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Andreas J W Hartel
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Travis J Morgenstern
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Scott A Kanner
- Doctoral Program in Neurobiology and Behavior, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Oliver Rauh
- Membrane Biophysics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Kenneth L Shepard
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
- Doctoral Program in Neurobiology and Behavior, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Oliver Biggs Clarke
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy.
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| |
Collapse
|
38
|
Boswell Z, Verga JU, Mackle J, Guerrero-Vazquez K, Thomas OP, Cray J, Wolf BJ, Choo YM, Croot P, Hamann MT, Hardiman G. In-Silico Approaches for the Screening and Discovery of Broad-Spectrum Marine Natural Product Antiviral Agents Against Coronaviruses. Infect Drug Resist 2023; 16:2321-2338. [PMID: 37155475 PMCID: PMC10122865 DOI: 10.2147/idr.s395203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/16/2023] [Indexed: 05/10/2023] Open
Abstract
The urgent need for SARS-CoV-2 controls has led to a reassessment of approaches to identify and develop natural product inhibitors of zoonotic, highly virulent, and rapidly emerging viruses. There are yet no clinically approved broad-spectrum antivirals available for beta-coronaviruses. Discovery pipelines for pan-virus medications against a broad range of betacoronaviruses are therefore a priority. A variety of marine natural product (MNP) small molecules have shown inhibitory activity against viral species. Access to large data caches of small molecule structural information is vital to finding new pharmaceuticals. Increasingly, molecular docking simulations are being used to narrow the space of possibilities and generate drug leads. Combining in-silico methods, augmented by metaheuristic optimization and machine learning (ML) allows the generation of hits from within a virtual MNP library to narrow screens for novel targets against coronaviruses. In this review article, we explore current insights and techniques that can be leveraged to generate broad-spectrum antivirals against betacoronaviruses using in-silico optimization and ML. ML approaches are capable of simultaneously evaluating different features for predicting inhibitory activity. Many also provide a semi-quantitative measure of feature relevance and can guide in selecting a subset of features relevant for inhibition of SARS-CoV-2.
Collapse
Affiliation(s)
- Zachary Boswell
- School of Biological Sciences and Institute for Global Security, Queen's University, Belfast, Northern Ireland, UK
| | - Jacopo Umberto Verga
- School of Biological Sciences and Institute for Global Security, Queen's University, Belfast, Northern Ireland, UK
- Genomic Data Science, University of Galway, Galway, Ireland
| | - James Mackle
- School of Biological Sciences and Institute for Global Security, Queen's University, Belfast, Northern Ireland, UK
| | | | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, H91TK33Ireland
| | - James Cray
- Department of Biomedical Education and Anatomy, College of Medicine and Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA
| | - Bethany J Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Yeun-Mun Choo
- Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Peter Croot
- Irish Centre for Research in Applied Geoscience, Earth and Ocean Sciences and Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Mark T Hamann
- Departments of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gary Hardiman
- School of Biological Sciences and Institute for Global Security, Queen's University, Belfast, Northern Ireland, UK
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
39
|
Narwal M, Armache JP, Edwards TJ, Murakami KS. SARS-CoV-2 polyprotein substrate regulates the stepwise M pro cleavage reaction. J Biol Chem 2023; 299:104697. [PMID: 37044215 PMCID: PMC10084705 DOI: 10.1016/j.jbc.2023.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
The processing of the Coronavirus polyproteins pp1a and pp1ab by the main protease Mpro to produce mature proteins is a crucial event in virus replication and a promising target for antiviral drug development. Mpro cleaves polyproteins in a defined order, but how Mpro and/or the polyproteins determine the order of cleavage remains enigmatic due to a lack of structural information about polyprotein-bound Mpro. Here, we present the cryo-EM structures of SARS-CoV-2 Mpro in an apo form and in complex with the nsp7-10 region of the pp1a polyprotein. The complex structure shows that Mpro interacts with only the recognition site residues between nsp9 and nsp10, without any association with the rest of the polyprotein. Comparison between the apo form and polyprotein-bound structures of Mpro highlights the flexible nature of the active site region of Mpro, which allows it to accommodate 10 recognition sites found in the polyprotein. These observations suggest that the role of Mpro in selecting a preferred cleavage site is limited and underscore the roles of the structure, conformation and/or dynamics of the polyproteins in determining the sequence of polyprotein cleavage by Mpro.
Collapse
Affiliation(s)
- Manju Narwal
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Center for Structural Biology, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Thomas J Edwards
- National Cryo-EM Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Center for Structural Biology, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
40
|
Askari H, Rabiei F, Lohrasbi F, Ghadir S, Ghasemi-Kasman M. The Latest Cellular and Molecular Mechanisms of COVID-19 on Non-Lung Organs. Brain Sci 2023; 13:brainsci13030415. [PMID: 36979225 PMCID: PMC10046222 DOI: 10.3390/brainsci13030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding the transmission pathways of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will aid in developing effective therapies directed at the virus’s life cycle or its side effects. While severe respiratory distress is the most common symptom of a coronavirus 2019 (COVID-19) infection, the virus is also known to cause damage to almost every major organ and system in the body. However, it is not obvious whether pathological changes in extra-respiratory organs are caused by direct infection, indirect, or combination of these effects. In this narrative review, we first elaborate on the characteristics of SARS-CoV-2, followed by the mechanisms of this virus on various organs such as brain, eye, and olfactory nerve and different systems such as the endocrine and gastrointestinal systems.
Collapse
Affiliation(s)
- Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Correspondence: ; Tel./Fax: +98-11-32190557
| |
Collapse
|
41
|
Azizogli AR, Pai V, Coppola F, Jafari R, Dodd-o JB, Harish R, Balasubramanian B, Kashyap J, Acevedo-Jake AM, Král P, Kumar VA. Scalable Inhibitors of the Nsp3-Nsp4 Coupling in SARS-CoV-2. ACS OMEGA 2023; 8:5349-5360. [PMID: 36798146 PMCID: PMC9923439 DOI: 10.1021/acsomega.2c06384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/29/2022] [Indexed: 06/18/2023]
Abstract
The human Betacoronavirus SARS-CoV-2 is a novel pathogen claiming millions of lives and causing a global pandemic that has disrupted international healthcare systems, economies, and communities. The virus is fast mutating and presenting more infectious but less lethal versions. Currently, some small-molecule therapeutics have received FDA emergency use authorization for the treatment of COVID-19, including Lagevrio (molnupiravir) and Paxlovid (nirmaltrevir/ritonavir), which target the RNA-dependent RNA polymerase and the 3CLpro main protease, respectively. Proteins downstream in the viral replication process, specifically the nonstructural proteins (Nsps1-16), are potential drug targets due to their crucial functions. Of these Nsps, Nsp4 is a particularly promising drug target due to its involvement in the SARS-CoV viral replication and double-membrane vesicle formation (mediated via interaction with Nsp3). Given the degree of sequence conservation of these two Nsps across the Betacoronavirus clade, their protein-protein interactions and functions are likely to be conserved as well in SARS-CoV-2. Through AlphaFold2 and its recent advancements, protein structures were generated of Nsp3 and 4 lumenal loops of interest. Then, using a combination of molecular docking suites and an existing library of lead-like compounds, we virtually screened 7 million ligands to identify five putative ligand inhibitors of Nsp4, which could present an alternative pharmaceutical approach against SARS-CoV-2. These ligands exhibit promising lead-like properties (ideal molecular weight and log P profiles), maintain fixed-Nsp4-ligand complexes in molecular dynamics (MD) simulations, and tightly associate with Nsp4 via hydrophobic interactions. Additionally, alternative peptide inhibitors based on Nsp3 were designed and shown in MD simulations to provide a highly stable binding to the Nsp4 protein. Finally, these therapeutics were attached to dendrimer structures to promote their multivalent binding with Nsp4, especially its large flexible luminal loop (Nsp4LLL). The therapeutics tested in this study represent many different approaches for targeting large flexible protein structures, especially those localized to the ER. This study is the first work targeting the membrane rearrangement system of viruses and will serve as a potential avenue for treating viruses with similar replicative function.
Collapse
Affiliation(s)
- Abdul-Rahman Azizogli
- Department
of Biological Sciences, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Varun Pai
- Department
of Biological Sciences, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Francesco Coppola
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
| | - Roya Jafari
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
| | - Joseph B. Dodd-o
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Rohan Harish
- Department
of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Bhavani Balasubramanian
- Department
of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Jatin Kashyap
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Amanda M. Acevedo-Jake
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Petr Král
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
- Departments
of Physics, Pharmaceutical Sciences, and Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Vivek A. Kumar
- Department
of Biological Sciences, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
- Department
of Chemical and Materials Engineering, New
Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department
of Endodontics, Rutgers School of Dental
Medicine, Newark, New Jersey 07103, United States
| |
Collapse
|
42
|
Wang X, Yang Y, Sun Z, Zhou X. Crystal structure of the membrane (M) protein from a bat betacoronavirus. PNAS NEXUS 2023; 2:pgad021. [PMID: 36874273 PMCID: PMC9982069 DOI: 10.1093/pnasnexus/pgad021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/20/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
The membrane (M) protein is the most abundant structural protein of coronaviruses including MERS-CoV, SARS-CoV, and SARS-CoV-2, and plays a central role in virus assembly through its interaction with various partner proteins. However, mechanistic details about how M protein interacts with others remain elusive due to lack of high-resolution structures. Here, we present the first crystal structure of a betacoronavirus M protein from Pipistrellus bat coronavirus HKU5 (batCOV5-M), which is closely related to MERS-CoV, SARS-CoV, and SARS-CoV-2 M proteins. Furthermore, an interaction analysis indicates that the carboxy-terminus of the batCOV5 nucleocapsid (N) protein mediates its interaction with batCOV5-M. Combined with a computational docking analysis an M-N interaction model is proposed, providing insight into the mechanism of M protein-mediated protein interactions.
Collapse
Affiliation(s)
- Xiaodong Wang
- State Key Laboratory of Biotherapy, Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuwei Yang
- State Key Laboratory of Biotherapy, Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ziyi Sun
- State Key Laboratory of Biotherapy, Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoming Zhou
- State Key Laboratory of Biotherapy, Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
43
|
Cellular and humoral immune response to the fourth Pfizer-BioNTech COVID-19 vaccine dose in individuals aged 60 years and older. Vaccine 2023; 41:914-921. [PMID: 36572602 PMCID: PMC9767892 DOI: 10.1016/j.vaccine.2022.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
With the emergence of the severe acute respiratory syndrome 2 (SARS-CoV-2) B.1.1.529/BA.1 (Omicron) variant in early 2022, Israel began vaccinating individuals 6o years of age or older with a fourth BNT162b2 vaccine. While the decision was based on little experimental data, longer follow-up showed clinical effectiveness of the fourth dose with reduction in the number of severely affected individuals. However, the immune response to fourth vaccine dose in this age group was not yet characterized, and little is known about the immunogenicity of repeated vaccine dosing in this age group. We therefore aimed to evaluate the humoral and cellular immune response pre- and 3-week post- the fourth vaccine dose in patients age 60 years or older. For this purpose, blood samples were collected from donors age 60 years or older, all received their 3rd vaccine dose 5 months prior. Serum samples were evaluated for the presence of anti-Spike protein (anti-S) antibodies (N = 133), and peripheral blood mononuclear cells (PBMCs) were evaluated by flow cytometry for their ability to respond to the SARS-CoV-2 wild type Spike-glycoprotein peptide mix, Membrane-glycoprotein (M) peptide mix and to the mutated Spike-regions of the Omicron variant (N = 34). Three weeks after the fourth vaccine dose, 24 out of 34 donors (70.5%) showed significant increase in the number of cells responding to the wild type S-peptide mix. Of note, out of 34 donors, 11 donors (32.3%) had pre-boost anti-M T-cell response, none of which had history of confirmed COVID-19, suggesting possible asymptomatic exposure. Interestingly, in M non-responding individuals, no statistically significant increase in the cellular response was observed following stimulation with omicron S-mutated regions. While there are limited data regarding the longevity of the observed response, our results are in accordance with the described clinical efficacy, provide mechanistic evidence to support it and argue against vaccine-induced or age-related immunosenescence.
Collapse
|
44
|
Lashgari NA, Roudsari NM, Shamsnia H, Shayan M, Momtaz S, Abdolghaffari AH, Matbou Riahi M, Jamialahmadi T, Guest PC, Reiner Ž, Sahebkar A. Statins: Beneficial Effects in Treatment of COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:457-476. [PMID: 37378783 DOI: 10.1007/978-3-031-28012-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The recent viral disease COVID-19 has attracted much attention. The disease is caused by SARS-CoV-19 virus which has different variants and mutations. The mortality rate of SARS-CoV-19 is high and efforts to establish proper therapeutic solutions are still ongoing. Inflammation plays a substantial part in the pathogenesis of this disease causing mainly lung tissue destruction and eventually death. Therefore, anti-inflammatory drugs or treatments that can inhibit inflammation are important options. Various inflammatory pathways such as nuclear factor Kappa B (NF-κB), signal transducer of activators of transcription (STAT), nod-like receptor family protein 3 (NLRP), toll-like receptors (TLRs), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways and mediators, such as interleukin (IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), and interferon-γ (INF-γ), cause cell apoptosis, reduce respiratory capacity and oxygen supply, eventually inducing respiratory system failure and death. Statins are well known for controlling hypercholesterolemia and may serve to treat COVID-19 due to their pleiotropic effects among which are anti-inflammatory in nature. In this chapter, the anti-inflammatory effects of statins and their possible beneficial effects in COVID-19 treatment are discussed. Data were collected from experimental and clinical studies in English (1998-October 2022) from Google Scholar, PubMed, Scopus, and the Cochrane Library.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hedieh Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Matbou Riahi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Jaewjaroenwattana J, Phoolcharoen W, Pasomsub E, Teengam P, Chailapakul O. Electrochemical paper-based antigen sensing platform using plant-derived monoclonal antibody for detecting SARS-CoV-2. Talanta 2023; 251:123783. [PMID: 35977451 PMCID: PMC9357285 DOI: 10.1016/j.talanta.2022.123783] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/09/2022]
Abstract
The current approaches of diagnostic platforms for detecting SARS-CoV-2 infections mostly relied on adapting the existing technology. In this work, a simple and low-cost electrochemical sensing platform for detecting SAR-CoV-2 antigen was established. The proposed sensor combined the innovative disposable paper-based immunosensor and cost-effective plant-based anti-SARS-CoV-2 monoclonal antibody CR3022, expressed in Nicotiana benthamiana. The cellulose nanocrystal was modified on screen-printed graphene electrode to provide the abundant COOH functional groups on electrode surface, leading to the high ability for antibody immobilization. The quantification of the presence receptor binding domain (RBD) spike protein of SARS-CoV-2 was performed using differential pulse voltammetry by monitoring the changing current of [Fe(CN)6]3-/4- redox solution. The current change of [Fe(CN)6]3-/4- before and after the presence of target RBD could be clearly distinguished, providing a linear relationship with RBD concentration in the range from 0.1 pg/mL to 500 ng/mL with the minimum limit of detection of 2.0 fg/mL. The proposed platform was successfully applied to detect RBD in nasopharyngeal swab samples with satisfactory results. Furthermore, the paper-based immunosensor was extended to quantify the RBD level in spiked saliva samples, demonstrating the broadly applicability of this system. This electrochemical paper-based immunosensor has the potential to be employed as a point-of-care testing for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Jutamas Jaewjaroenwattana
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Ekawat Pasomsub
- Division of Virology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prinjaporn Teengam
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
46
|
Escudero-Pérez B, Lawrence P, Castillo-Olivares J. Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. Front Immunol 2023; 14:1156758. [PMID: 37153606 PMCID: PMC10158532 DOI: 10.3389/fimmu.2023.1156758] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Correlates of protection (CoP) are biological parameters that predict a certain level of protection against an infectious disease. Well-established correlates of protection facilitate the development and licensing of vaccines by assessing protective efficacy without the need to expose clinical trial participants to the infectious agent against which the vaccine aims to protect. Despite the fact that viruses have many features in common, correlates of protection can vary considerably amongst the same virus family and even amongst a same virus depending on the infection phase that is under consideration. Moreover, the complex interplay between the various immune cell populations that interact during infection and the high degree of genetic variation of certain pathogens, renders the identification of immune correlates of protection difficult. Some emerging and re-emerging viruses of high consequence for public health such as SARS-CoV-2, Nipah virus (NiV) and Ebola virus (EBOV) are especially challenging with regards to the identification of CoP since these pathogens have been shown to dysregulate the immune response during infection. Whereas, virus neutralising antibodies and polyfunctional T-cell responses have been shown to correlate with certain levels of protection against SARS-CoV-2, EBOV and NiV, other effector mechanisms of immunity play important roles in shaping the immune response against these pathogens, which in turn might serve as alternative correlates of protection. This review describes the different components of the adaptive and innate immune system that are activated during SARS-CoV-2, EBOV and NiV infections and that may contribute to protection and virus clearance. Overall, we highlight the immune signatures that are associated with protection against these pathogens in humans and could be used as CoP.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Braunschweig, Germany
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), Lyon, France
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| |
Collapse
|
47
|
Klatte N, Shields DC, Agoni C. Modelling the Transitioning of SARS-CoV-2 nsp3 and nsp4 Lumenal Regions towards a More Stable State on Complex Formation. Int J Mol Sci 2022; 24:ijms24010720. [PMID: 36614163 PMCID: PMC9821074 DOI: 10.3390/ijms24010720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
During coronavirus infection, three non-structural proteins, nsp3, nsp4, and nsp6, are of great importance as they induce the formation of double-membrane vesicles where the replication and transcription of viral gRNA takes place, and the interaction of nsp3 and nsp4 lumenal regions triggers membrane pairing. However, their structural states are not well-understood. We investigated the interactions between nsp3 and nsp4 by predicting the structures of their lumenal regions individually and in complex using AlphaFold2 as implemented in ColabFold. The ColabFold prediction accuracy of the nsp3-nsp4 complex was increased compared to nsp3 alone and nsp4 alone. All cysteine residues in both lumenal regions were modelled to be involved in intramolecular disulphide bonds. A linker region in the nsp4 lumenal region emerged as crucial for the interaction, transitioning to a structured state when predicted in complex. The key interactions modelled between nsp3 and nsp4 appeared stable when the transmembrane regions of nsp3 and nsp4 were added to the modelling either alone or together. While molecular dynamics simulations (MD) demonstrated that the proposed model of the nsp3 lumenal region on its own is not stable, key interactions between nsp and nsp4 in the proposed complex model appeared stable after MD. Together, these observations suggest that the interaction is robust to different modelling conditions. Understanding the functional importance of the nsp4 linker region may have implications for the targeting of double membrane vesicle formation in controlling coronavirus infection.
Collapse
Affiliation(s)
- Nele Klatte
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Belfield, Ireland
| | - Denis C. Shields
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Belfield, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Belfield, Ireland
- Correspondence:
| | - Clement Agoni
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Belfield, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Belfield, Ireland
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu Natal, Durban 4041, South Africa
| |
Collapse
|
48
|
Ahmadi K, Shahbazi B, Zakeri AJ, Gouklani H. Characterization of SARS-CoV-2 omicron variants from Iran and evaluation of the effect of mutations on the spike, nucleocapsid, ORF8, and ORF9b proteins function. J Biomol Struct Dyn 2022; 41:11415-11430. [PMID: 36576175 DOI: 10.1080/07391102.2022.2162131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022]
Abstract
The SARS-CoV-2 'Omicron' strain, with 15 mutations in the receptor binding domain (RBD), was detected in South Africa and rapidly spread worldwide. SARS-CoV-2 ORF9b protein by binding to the TOM70 receptor and ORF8 protein by binding to MHC-I, IF3 receptors inhibit the host's immune response. In this study, genomics variations were evaluated for 96 samples isolated from Iran from March to July 2022 using the Nextclade web server and informatics tools. We identified the mutations occurring in the SARS-CoV-2 proteins. We also evaluated the effect of mutations on spike protein interaction with the ACE2 receptor, ORF9b protein interaction with the TOM70 receptor, and structural stability of ORF8 and nucleocapsid proteins using docking and molecular dynamics. Results indicated that during March and April 2022, the BA.2 strain was dominant in the south of Iran, while during June 2022, the BA.5 strain was dominant. BF.5 strain had the most divergence among SARS-CoV-2 strains reported from south of Iran. The binding affinity of BA.5 and BF.5 strains spike protein to ACE2 receptor is similar, and compared to BA.2 strain, was stronger. The BF.5 ORF9b K40R mutation causes a better binding affinity of the protein to the TOM70 receptor. Also, mutations that occurred in the ORF8 protein led to instability in the dimer formation of this protein and improved immune response for mutations that occurred in BA.2 strain, while this mutation did not occur in BF.5 strain. The mutations that were detected in nucleocapsid protein CTD and NTD domains caused the stability of these domains.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abdul-Jabbar Zakeri
- Social Determinants in Health Promotion Research Center, Research Institute for Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hamed Gouklani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
49
|
Fiaz N, Zahoor I, Saima S, Basheer A. Genomic landscape of alpha-variant of SARS-CoV-2 circulated in Pakistan. PLoS One 2022; 17:e0276171. [PMID: 36512569 PMCID: PMC9746927 DOI: 10.1371/journal.pone.0276171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, we investigated the genomic variability of alpha-VOC of SARS-CoV-2 in Pakistan, in context of the global population of this variant. A set of 461 whole-genome sequences of Pakistani samples of alpha-variant, retrieved from GISAID, were aligned in MAFFT and used as an input to the Coronapp web-application. Phylogenetic tree was constructed through maximum-likelihood method by downloading the 100 whole-genome sequences of alpha-variant for each of the 12 countries having the largest number of Pakistani diasporas. We detected 1725 mutations, which were further categorized into 899 missense mutations, 654 silent mutations, 52 mutations in non-coding regions, 25 in-frame deletions, 01 in-frame insertion, 51 frameshift deletions, 21 frameshift insertions, 21 stop-gained variants, and 1 stop-gained deletion. We found NSP3 and Spike as the most variable proteins with 355 and 233 mutations respectively. However, some characteristic mutations like Δ144(S), G204R(N), and T1001I, I2230T, del3675-3677(ORF1ab) were missing in the Pakistani population of alpha-variant. Likewise, R1518K(NSP3), P83L(NSP9), and A52V, H164Y(NSP13) were found for the first time in this study. Interestingly, Y145 deletion(S) had 99% prevalence in Pakistan but globally it was just 4.2% prevalent. Likewise, R68S substitution (ORF3a), F120 frameshift deletion, L120 insertion, L118V substitution (ORF8), and N280Y(NSP2) had 20.4%, 14.3%, 14.8%, 9.1%, 13.9% prevalence locally but globally they were just 0.1%, 0.2%, 0.04%, 1.5%, and 2.4% prevalent respectively. The phylogeny analysis revealed that majority of Pakistani samples were grouped together in the same clusters with Italian, and Spanish samples suggesting the transmission of alpha-variant to Pakistan from these western European countries.
Collapse
Affiliation(s)
- Nazia Fiaz
- Genetic and Genomic Laboratory, Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imran Zahoor
- Genetic and Genomic Laboratory, Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Saima Saima
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Atia Basheer
- Genetic and Genomic Laboratory, Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
- * E-mail:
| |
Collapse
|
50
|
Molecular Dynamics Simulations to Decipher the Role of Phosphorylation of SARS-CoV-2 Nonstructural Proteins (nsps) in Viral Replication. Viruses 2022; 14:v14112436. [PMID: 36366534 PMCID: PMC9693435 DOI: 10.3390/v14112436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is a post-translational modification that enables various cellular activities and plays essential roles in protein interactions. Phosphorylation is an important process for the replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). To shed more light on the effects of phosphorylation, we used an ensemble of neural networks to predict potential kinases that might phosphorylate SARS-CoV-2 nonstructural proteins (nsps) and molecular dynamics (MD) simulations to investigate the effects of phosphorylation on nsps structure, which could be a potential inhibitory target to attenuate viral replication. Eight target candidate sites were found as top-ranked phosphorylation sites of SARS-CoV-2. During the process of molecular dynamics (MD) simulation, the root-mean-square deviation (RMSD) analysis was used to measure conformational changes in each nsps. Root-mean-square fluctuation (RMSF) was employed to measure the fluctuation in each residue of 36 systems considered, allowing us to evaluate the most flexible regions. These analysis shows that there are significant structural deviations in the residues namely nsp1 THR 72, nsp2 THR 73, nsp3 SER 64, nsp4 SER 81, nsp4 SER 455, nsp5 SER284, nsp6 THR 238, and nsp16 SER 132. The identified list of residues suggests how phosphorylation affects SARS-CoV-2 nsps function and stability. This research also suggests that kinase inhibitors could be a possible component for evaluating drug binding studies, which are crucial in therapeutic discovery research.
Collapse
|