1
|
Slade B, Williams B, Engelbrecht R, Ciorciari J. Improving executive functioning and reducing the risk of Alzheimer's disease with music therapy: A narrative review of potential neural mechanisms. J Alzheimers Dis 2025:13872877251327762. [PMID: 40123371 DOI: 10.1177/13872877251327762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The incidence of Alzheimer's disease (AD) and the concurrent cost of healthcare will increase as the population continues to age. Pharmaceutical interventions effectively manage symptoms of AD but carry side effects and ineffectively address underlying causes and disease prevention. Non-pharmaceutical interventions for AD, such as music training and therapy do not carry these side effects and can improve symptoms, and should therefore be explored as stand-alone or co-therapy for AD. In addition, music encapsulates modifiable lifestyle factors, such as cognitive stimulation, that have been shown to delay progression of and prevent AD. However, the neural mechanisms underpinning how music improves AD symptoms are not fully understood and whether music can target compensatory processes, activate neural networks, or even slow or prevent AD needs further research. Research suggests neural mechanism may involve stimulating brain areas to promote neurogenesis, dopaminergic rewards systems, and the default mode network (DMN). Alternatively, this review proposes that music improve symptoms of AD via the fronto-parietal control network (FPCN), the salience network (SN) and DMN, and neural compensation. This review will then present evidence for how music could activate the FPCN, SN, and DMN to improve their efficiency, organization, and cognitive functions they govern, protecting the brain from damage, slowing progression, and possibly preventing AD. Establishing how music improves symptoms of AD can lead to tailored music therapy protocols that target functional neural networks responsible for impaired executive functions common in AD.
Collapse
Affiliation(s)
- Benjamin Slade
- Centre for Mental Health and Brain Science, Swinburne University of Technology, John Street Hawthorn VIC, Melbourne, Australia
| | - Ben Williams
- School of Health Sciences, Swinburne University of Technology, John Street Hawthorn VIC, Melbourne, Australia
| | - Romy Engelbrecht
- Department of Psychological Sciences, Swinburne University of Technology, John Street Hawthorn VIC, Melbourne, Australia
| | - Joseph Ciorciari
- Centre for Mental Health and Brain Science, Swinburne University of Technology, John Street Hawthorn VIC, Melbourne, Australia
- Department of Psychological Sciences, Swinburne University of Technology, John Street Hawthorn VIC, Melbourne, Australia
| |
Collapse
|
2
|
Guler E, Yekeler HB, Uner B, Dogan M, Asghar A, Ikram F, Yazir Y, Gunduz O, Kalaskar DM, Cam ME. In Vitro Neuroprotective Effect Evaluation of Donepezil‐Loaded PLGA Nanoparticles‐Embedded PVA/PEG Nanofibers on SH‐SY5Y Cells and AP‐APP Plasmid Related Alzheimer Cell Line Model. MACROMOLECULAR MATERIALS AND ENGINEERING 2025; 310. [DOI: 10.1002/mame.202400160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Indexed: 03/30/2025]
Abstract
AbstractRecently developed nanoparticles and nanofibers present new brain‐specific treatment strategies, especially for Alzheimer's disease treatment. In this study, donepezil (DO)‐loaded PLGA nanoparticles (DNP) are embedded in PVA/PEG nanofibers (DNPF) produced by pressurized gyration for sublingual administration. SEM images showed produced drug‐loaded and pure nanofibers, which have sizes between 978 and 1123 nm, demonstrated beadless morphology and homogeneous distribution. FT‐IR, XRD, and DSC results proved the produced nanoparticles and fibers to consist of the DO and other polymers. The in vitro drug release test presented that the release profile of DO is completed at the end of the 18th day. It is released by the first order kinetic model. DNPF has an ultra‐fast release profile via its disintegration within 2 sec, which proved itself to be suitable for the administration sublingually. All samples presented above ≈90% cell viability via their non‐toxic natures on SH‐SY5Y human neuroblastoma cells by using Alamar blue assay. The anti‐Alzheimer effects of DO, DNP, and DNPF are evaluated on the Aβ1−42‐induced SH‐SY5Y cells at 1, 5, and 10 µM as treatment groups. The 1 µM dosage exhibited the most significant neuroprotective effects, which showed enhanced cellular uptake and superior modulation of Alzheimer's‐related proteins, including tau and Aβ.
Collapse
Affiliation(s)
- Ece Guler
- Department of Pharmacology, School of Pharmacy Istanbul Kent University Istanbul 34406 Kagithane Türkiye
- Center for Nanotechnology and Biomaterials Application and Research Marmara University Istanbul 34722 Türkiye
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
| | - Humeyra Betul Yekeler
- Center for Nanotechnology and Biomaterials Application and Research Marmara University Istanbul 34722 Türkiye
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
- Department of Pharmacology, Faculty of Pharmacy Marmara University Istanbul 34854 Türkiye
| | - Burcu Uner
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
- Department of Pharmaceutical Technology, School of Pharmacy Istanbul Kent University Istanbul 34406 Türkiye
- Department of Pharmaceutical and Administrative Science University of Health Science and Pharmacy in St. Louis St. Louis 63110 MO USA
- Department of Anesthesiology Center for Clinical Pharmacology Washington University School of Medicine in St. Louis St. Louis 63110 MO USA
| | - Murat Dogan
- Department of Pharmaceutical Biotechnology Faculty of Pharmacy Sivas Cumhuriyet University Sivas 58140 Türkiye
- Cancer Survivorship Institute Robert H. Lurie Comprehensive Cancer Center Northwestern University 625 N. Michigan Ave., Suite 2100 Chicago 60611 IL USA
| | - Asima Asghar
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| | - Fakhera Ikram
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| | - Yusufhan Yazir
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty Kocaeli University Kocaeli 41380 Turkiye
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research Marmara University Istanbul 34722 Türkiye
- Department of Metallurgical and Materials Engineering Faculty of Technology Marmara University Istanbul 34730 Türkiye
| | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
| | - Muhammet Emin Cam
- Department of Pharmacology, School of Pharmacy Istanbul Kent University Istanbul 34406 Kagithane Türkiye
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
- Biomedical Engineering Department University of Aveiro Aveiro 3810‐193 Portugal
| |
Collapse
|
3
|
Guler E, Yekeler HB, Uner B, Dogan M, Asghar A, Ikram F, Yazir Y, Gunduz O, Kalaskar DM, Cam ME. In Vitro Neuroprotective Effect Evaluation of Donepezil‐Loaded PLGA Nanoparticles‐Embedded PVA/PEG Nanofibers on SH‐SY5Y Cells and AP‐APP Plasmid Related Alzheimer Cell Line Model. MACROMOLECULAR MATERIALS AND ENGINEERING 2025; 310. [DOI: 4.https:/doi.org/10.1002/mame.202400160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Indexed: 03/30/2025]
Abstract
AbstractRecently developed nanoparticles and nanofibers present new brain‐specific treatment strategies, especially for Alzheimer's disease treatment. In this study, donepezil (DO)‐loaded PLGA nanoparticles (DNP) are embedded in PVA/PEG nanofibers (DNPF) produced by pressurized gyration for sublingual administration. SEM images showed produced drug‐loaded and pure nanofibers, which have sizes between 978 and 1123 nm, demonstrated beadless morphology and homogeneous distribution. FT‐IR, XRD, and DSC results proved the produced nanoparticles and fibers to consist of the DO and other polymers. The in vitro drug release test presented that the release profile of DO is completed at the end of the 18th day. It is released by the first order kinetic model. DNPF has an ultra‐fast release profile via its disintegration within 2 sec, which proved itself to be suitable for the administration sublingually. All samples presented above ≈90% cell viability via their non‐toxic natures on SH‐SY5Y human neuroblastoma cells by using Alamar blue assay. The anti‐Alzheimer effects of DO, DNP, and DNPF are evaluated on the Aβ1−42‐induced SH‐SY5Y cells at 1, 5, and 10 µM as treatment groups. The 1 µM dosage exhibited the most significant neuroprotective effects, which showed enhanced cellular uptake and superior modulation of Alzheimer's‐related proteins, including tau and Aβ.
Collapse
Affiliation(s)
- Ece Guler
- Department of Pharmacology, School of Pharmacy Istanbul Kent University Istanbul 34406 Kagithane Türkiye
- Center for Nanotechnology and Biomaterials Application and Research Marmara University Istanbul 34722 Türkiye
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
| | - Humeyra Betul Yekeler
- Center for Nanotechnology and Biomaterials Application and Research Marmara University Istanbul 34722 Türkiye
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
- Department of Pharmacology, Faculty of Pharmacy Marmara University Istanbul 34854 Türkiye
| | - Burcu Uner
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
- Department of Pharmaceutical Technology, School of Pharmacy Istanbul Kent University Istanbul 34406 Türkiye
- Department of Pharmaceutical and Administrative Science University of Health Science and Pharmacy in St. Louis St. Louis 63110 MO USA
- Department of Anesthesiology Center for Clinical Pharmacology Washington University School of Medicine in St. Louis St. Louis 63110 MO USA
| | - Murat Dogan
- Department of Pharmaceutical Biotechnology Faculty of Pharmacy Sivas Cumhuriyet University Sivas 58140 Türkiye
- Cancer Survivorship Institute Robert H. Lurie Comprehensive Cancer Center Northwestern University 625 N. Michigan Ave., Suite 2100 Chicago 60611 IL USA
| | - Asima Asghar
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| | - Fakhera Ikram
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| | - Yusufhan Yazir
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty Kocaeli University Kocaeli 41380 Turkiye
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research Marmara University Istanbul 34722 Türkiye
- Department of Metallurgical and Materials Engineering Faculty of Technology Marmara University Istanbul 34730 Türkiye
| | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
| | - Muhammet Emin Cam
- Department of Pharmacology, School of Pharmacy Istanbul Kent University Istanbul 34406 Kagithane Türkiye
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
- Biomedical Engineering Department University of Aveiro Aveiro 3810‐193 Portugal
| |
Collapse
|
4
|
Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman D, Karaman R. Promising Natural Remedies for Alzheimer's Disease Therapy. Molecules 2025; 30:922. [PMID: 40005231 PMCID: PMC11858286 DOI: 10.3390/molecules30040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the intricacies of Alzheimer's disease (AD), its origins, and the potential advantages of various herbal extracts and natural compounds for enhancing memory and cognitive performance. Future studies into AD treatments are encouraged by the review's demonstration of the effectiveness of phytoconstituents that were extracted from a number of plants. In addition to having many beneficial effects, such as improved cholinergic and cognitive function, herbal medicines are also much less harmful, more readily available, and easier to use than other treatments. They also pass without difficulty through the blood-brain barrier (BBB). This study focused on natural substances and their effects on AD by using academic databases to identify peer-reviewed studies published between 2015 and 2024. According to the literature review, 66 phytoconstituents that were isolated from 21 distinct plants have shown efficacy, which could be encouraging for future research on AD therapies. Since most clinical trials produce contradictory results, the study suggests that larger-scale studies with longer treatment durations are necessary to validate or refute the therapeutic efficacy of herbal AD treatments.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Department of Chemistry, Birzeit University, West Bank, Ramallah 00972, Palestine;
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Aseel Wasel Ghanem
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Sara AbuMadi
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Dania Thaher
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Weam Jaghama
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Donia Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
5
|
Gungor O, Veziroglu YE, Kose A, Gungor SA, Kose M. New 1,2,3-triazoles and their oxime derivatives: AChE/BChE enzyme inhibitory and DNA binding properties. J Biomol Struct Dyn 2025; 43:1593-1610. [PMID: 38084715 DOI: 10.1080/07391102.2023.2292298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2025]
Abstract
1,2,3-Triazole compounds (1a-3a) and their oxime derivatives (1b-3b) were synthesized. The structures of these synthesized compounds were characterized using common spectroscopic methods. Crystal structures of the compounds 3, 2b and 3b were determined by single crystal X-ray diffraction studies. The acetylcholinesteras (AChE) and butyrylcholinesterase (BChE) cholinesterase inhibitor (ChEI) and DNA/calf serum albumin (BSA) binding properties of the compounds were examined. DNA binding studies have shown that compounds interact with DNA through 1,2,3-triazole and oxime groups. When the binding constant Kb values were compared, it was revealed that compound 3b (Kb = 4.6 × 105 M-1) with oxime in its structure binds more strongly than the others. In addition, in vitro BSA binding studies showed that compounds 1b and 3b exhibited higher binding affinity. These results confirm that the quenching is due to the formation of a compound resulting from the static quenching mechanism, rather than being initiated by a dynamic mechanism. Likewise, when the enzyme activity of the compounds was examined, the compounds exhibited high inhibitory activity against AChE. The highest activity was observed for compounds 2b and 3b (8.6 ± 0.05 and 4.8 ± 0.052 µM). It was observed that the compounds were not selective with respect to BChE. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ozge Gungor
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Türkiye
| | - Yunus Emre Veziroglu
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Türkiye
| | - Aysegul Kose
- Department of Property Protection and Safety, Elbistan Vocational School, Istiklal University, Kahramanmaras, Türkiye
| | - Seyit Ali Gungor
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Türkiye
| | - Muhammet Kose
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Türkiye
| |
Collapse
|
6
|
Kumar N, Devi B, Jangid K, Kumar V. Pharmacophore-based virtual screening of the chromone derivatives as potential therapeutic for Alzheimer's disease. J Biomol Struct Dyn 2025:1-15. [PMID: 39873194 DOI: 10.1080/07391102.2025.2458327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/10/2024] [Indexed: 01/30/2025]
Abstract
Alzheimer's disease is one of the most complex neurological disorders and millions of people are suffering from this disease all over the world. In the past two decades acetylcholinesterase (AChE) has been the most explored pathological hallmark. The generation of potent AChE inhibitors has grown as a rapid pathological tool for the efficacious treatment of the disease. Hence, AChE enzyme is extensively explored as a drug discovery tool for the development of potent therapeutics. We have used chromone derivatives with known biological activities for developing a Gaussian field-based 3D QSAR pharmacophore model using PHASE module of Schrodinger with statistically significant R2 and Q2 values of 0.92 and 0.9209, respectively. ChEMBL and MCULE databases were screened using the best pharmacophore hypothesis model (AAHHRR_4) with features of two hydrogen bond acceptors (A1, A2), two hydrophobic regions (H1, H2), and two aromatic regions (R1, R2). These were subjected to structure-based virtual screening using extra precision, MM/GBSA and ADME calculations for calculating the binding free energies and pharmacokinetic properties, respectively. Subsequently, two hit molecules i.e. CHEMBL1319989 and MCULE-2246633290 were identified. The leads exhibited higher docking score (-8.859 and -9.984 kcal/mol) and ΔGbinding (-57.63 and -56.45 kcal/mol) as compared to the reference (ΔGbinding= -53.79 kcal/mol). MD simulation study exhibited stable interactions with the binding free energy (ΔGMMPBSA) of -27.29 and -21.26 kcal/mol for CHEMBL1319989 and MCULE-2246633290, respectively. So, the generated pharmacophore model may be considered as a valuable tool for the development of potent AChE inhibitors for the treatment of AD.
Collapse
Affiliation(s)
- Naveen Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, India
| | - Bharti Devi
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, India
| | - Kailash Jangid
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, India
| |
Collapse
|
7
|
Prejanò M, Romeo I, Felipe Hernández‐Ayala L, Gabriel Guzmán‐López E, Alcaro S, Galano A, Marino T. Evaluating Quinolines: Molecular Dynamics Approach to Assess Their Potential as Acetylcholinesterase Inhibitors for Alzheimer's Disease. Chemphyschem 2025; 26:e202400653. [PMID: 39301943 PMCID: PMC11747580 DOI: 10.1002/cphc.202400653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Quinoline represents a promising scaffold for developing potential drugs because of the wide range of biological and pharmacological activities that it exhibits. In the present study, quinoline derivatives obtained from CADMA-Chem docking protocol were investigated in the mean of molecular dynamics simulations as potential inhibitors of acetylcholinesterase enzyme. The examined species can be partitioned between neutral, dq815 (2,3 dihydroxyl-quinoline-4-carbaldehyde), dq829 (2,3 dihydroxyl-quinoline-8-carboxylic acid methane ester), dq1356 (3,4 dihydroxyl-quinoline-6-carbaldehyde), dq1368 (3,4 dihydroxyl-quinoline-8-carboxylic acid methane ester) and dq2357 (5,6 dihydroxyl-quinoline-8-carboxylic acid methane ester), and deprotonated, dq815_dep, dq829_dep, dq1356_dep and dq2357_dep. Twelve molecular dynamics simulations were performed including those of natural acetylcholine, of the well-known donepezil inhibitor and of the founder quinoline chosen as reference. Key intermolecular interactions were detected and discussed to describe the different dynamic behavior of all the considered species. Binding energies calculation from MMPBSA well accounts for the dynamic behavior observed in the simulation time proposing dq1368 as promising candidate for the inhibition of acetylcholinesterase. Retrosynthetic route for the production of the investigated compounds is also proposed.
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della Calabria87036Arcavacata di RendeItaly
| | - Isabella Romeo
- Dipartimento di Scienze della Salute and Net4Science Academic Spin-OffUniversità degli Studi“Magna Græcia” di Catanzaro88100CatanzaroItaly
| | - Luis Felipe Hernández‐Ayala
- Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaAv. Ferrocarril San Rafael Atlixco 186Col. Leyes de Reforma 1 A SecciónAlcaldía Iztapalapa, Mexico City09310Mexico
- Consejo Nacional de Humanidades Ciencias y TecnologíasCiudad de México03940México
| | - Eduardo Gabriel Guzmán‐López
- Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaAv. Ferrocarril San Rafael Atlixco 186Col. Leyes de Reforma 1 A SecciónAlcaldía Iztapalapa, Mexico City09310Mexico
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute and Net4Science Academic Spin-OffUniversità degli Studi“Magna Græcia” di Catanzaro88100CatanzaroItaly
| | - Annia Galano
- Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaAv. Ferrocarril San Rafael Atlixco 186Col. Leyes de Reforma 1 A SecciónAlcaldía Iztapalapa, Mexico City09310Mexico
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della Calabria87036Arcavacata di RendeItaly
| |
Collapse
|
8
|
Poslunsey M, Wood MR, Han C, Stauffer SR, Panarese JD, Melancon BJ, Engers JL, Dickerson JW, Peng W, Noetzel MJ, Cho HP, Rodriguez AL, Hopkins CR, Morrison R, Crouch RD, Bridges TM, Blobaum AL, Boutaud O, Daniels JS, Kates MJ, Castelhano A, Rook JM, Niswender CM, Jones CK, Conn PJ, Lindsley CW. Discovery of VU0467319: an M 1 Positive Allosteric Modulator Candidate That Advanced into Clinical Trials. ACS Chem Neurosci 2025; 16:95-107. [PMID: 39660766 PMCID: PMC11697341 DOI: 10.1021/acschemneuro.4c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
Herein we detail the first disclosure of VU0467319 (VU319), an M1 Positive Allosteric Modulator (PAM) clinical candidate that successfully completed a Phase I Single Ascending Dose (SAD) clinical trial. VU319 (16) is a moderately potent M1 PAM (M1 PAM EC50 = 492 nM ± 2.9 nM, 71.3 ± 9.9% ACh Max), with minimal M1 agonism (EC50 > 30 μM), that displayed high CNS penetration (Kps > 0.67 and Kp,uus > 0.9) and multispecies pharmacokinetics permissive of further development. Based on robust efficacy in multiple preclinical models of cognition, an ancillary pharmacology profile devoid of appreciable off-target activities, and a lack of cholinergic adverse effects (AEs) in rats, dogs and nonhuman primates, VU319 advanced into IND-enabling studies. After completing 4-week rat and dog GLP toxicology without AEs, including absence of cholinergic effects, the first in human Phase I SAD clinical trial of VU319 (NCT03220295) was performed at Vanderbilt, where a similar lack of adverse effects, including absence of cholinergic effects was noted. Moreover, signals of target engagement were seen at the highest dose tested. Thus, VU319 demonstrated the feasibility of achieving selective targeting of central M1 muscarinic receptors without eliciting cholinergic AEs that have plagued other drugs targeting CNS cholinergic neurotransmission.
Collapse
Affiliation(s)
- Michael
S. Poslunsey
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Michael R. Wood
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Changho Han
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Shaun R. Stauffer
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Joseph D. Panarese
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Bruce J. Melancon
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Julie L. Engers
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jonathan W. Dickerson
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Weimin Peng
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Meredith J. Noetzel
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Hyekyung P. Cho
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Corey R. Hopkins
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Ryan Morrison
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Rachel D. Crouch
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - J. Scott Daniels
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Michael J. Kates
- Davos
Pharma, Upper Saddle River, New Jersey 07458, United States
| | | | - Jerri M. Rook
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - Carrie K. Jones
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
9
|
Alvarado YJ, González-Paz L, Paz JL, Loroño-González MA, Santiago Contreras J, Lossada C, Vivas A, Marrero-Ponce Y, Martinez-Rios F, Rodriguez-Lugo P, Balladores Y, Vera-Villalobos J. Biological Implications of the Intrinsic Deformability of Human Acetylcholinesterase Induced by Diverse Compounds: A Computational Study. BIOLOGY 2024; 13:1065. [PMID: 39765732 PMCID: PMC11672903 DOI: 10.3390/biology13121065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
The enzyme acetylcholinesterase (AChE) plays a crucial role in the termination of nerve impulses by hydrolyzing the neurotransmitter acetylcholine (ACh). The inhibition of AChE has emerged as a promising therapeutic approach for the management of neurological disorders such as Lewy body dementia and Alzheimer's disease. The potential of various compounds as AChE inhibitors was investigated. In this study, we evaluated the impact of natural compounds of interest on the intrinsic deformability of human AChE using computational biophysical analysis. Our approach incorporates classical dynamics, elastic networks (ENM and NMA), statistical potentials (CUPSAT and SWOTein), energy frustration (Frustratometer), and volumetric cavity analyses (MOLE and PockDrug). The results revealed that cyanidin induced significant changes in the flexibility and rigidity of AChE, especially in the distribution and volume of internal cavities, compared to model inhibitors such as TZ2PA6, and through a distinct biophysical-molecular mechanism from the other inhibitors considered. These findings suggest that cyanidin could offer potential mechanistic pathways for future research and applications in the development of new treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ysaías J. Alvarado
- Laboratorio de Química Biofísica Experimental y Teórica (LQBET), Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Maracaibo 4001, Zulia, República Bolivariana de Venezuela; (Y.J.A.); (P.R.-L.)
| | - Lenin González-Paz
- Laboratorio de Modelado, Dinamica y Bioquímica Subcelular (LMDBS), Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Maracaibo 4001, Zulia, República Bolivariana de Venezuela; (C.L.); (A.V.)
| | - José L. Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Marcos A. Loroño-González
- Departamento Académico de Fisicoquímica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Julio Santiago Contreras
- Departamento Académico de Química Orgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Carla Lossada
- Laboratorio de Modelado, Dinamica y Bioquímica Subcelular (LMDBS), Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Maracaibo 4001, Zulia, República Bolivariana de Venezuela; (C.L.); (A.V.)
| | - Alejandro Vivas
- Laboratorio de Modelado, Dinamica y Bioquímica Subcelular (LMDBS), Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Maracaibo 4001, Zulia, República Bolivariana de Venezuela; (C.L.); (A.V.)
| | - Yovani Marrero-Ponce
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, México or (Y.M.-P.); (F.M.-R.)
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Universidad San Francisco de Quito (USFQ), Escuela de Medicina, Edificio de Especialidades Médicas, Diego de Robles y vía interoceánica, Quito 170157, Ecuador
| | - Felix Martinez-Rios
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, México or (Y.M.-P.); (F.M.-R.)
| | - Patricia Rodriguez-Lugo
- Laboratorio de Química Biofísica Experimental y Teórica (LQBET), Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Maracaibo 4001, Zulia, República Bolivariana de Venezuela; (Y.J.A.); (P.R.-L.)
| | - Yanpiero Balladores
- Laboratorio de Física de la Materia Condensada, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas, República Bolivariana de Venezuela;
| | - Joan Vera-Villalobos
- Laboratorio de Análisis Químico Instrumental (LAQUINS), Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Escuela Superior Politécnica del Litoral, Guayaquil ECO90211, Ecuador;
| |
Collapse
|
10
|
Vahid ZF, Eskandani M, Dadashi H, Vandghanooni S, Rashidi MR. Recent advances in potential enzymes and their therapeutic inhibitors for the treatment of Alzheimer's disease. Heliyon 2024; 10:e40756. [PMID: 39717593 PMCID: PMC11664286 DOI: 10.1016/j.heliyon.2024.e40756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Alzheimer's disease (AD), a chronic neurodegenerative disease, is clinically characterized by loss of memory and learning ability among other neurological deficits. Amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles involve in AD etiology. Meanwhile, enzymes and their inhibitors have become the focus of research in AD treatment. In this review, the molecular mechanisms involved in the pathogenesis of AD were overviewed and various enzymes such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase, γ-secretase, monoamine oxidase (MAO), and receptor of advanced glycation end products (RAGE) were highlighted as potential targets for AD treatment. Several hybrid molecules with essential substructures derived from various chemotypes have demonstrated desired pharmacological activity. It is envisioned that the development of new drugs that inhibit enzymes involved in AD is a future trend in the management of the disease.
Collapse
Affiliation(s)
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Dadashi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Medicinal Chemistry Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Singh A, Sharma A, Singh K, Kaur K, Mohana P, Prajapati J, Kaur U, Goswami D, Arora S, Chadha R, Singh Bedi PM. Development of coumarin-inspired bifunctional hybrids as a new class of anti-Alzheimer's agents with potent in vivo efficacy. RSC Med Chem 2024:d4md00782d. [PMID: 39790122 PMCID: PMC11707525 DOI: 10.1039/d4md00782d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
Considering the multifactorial and complex nature of Alzheimer's disease and the requirement of an optimum multifunctional anti-Alzheimer's agent, a series of triazole tethered coumarin-eugenol hybrid molecules was designed as potential multifunctional anti-Alzheimer's agents using donepezil and a template. The designed hybrid molecules were synthesized via a click chemistry approach and preliminarily screened for cholinesterase and Aβ1-42 aggregation inhibition. Among them, AS15 emerged as a selective inhibitor of AChE (IC50 = 0.047 μM) over butyrylcholinesterase (BuChE: IC50 ≥ 10 μM) with desired Aβ1-42 aggregation inhibition (72.21% at 50 μM) properties. In addition, AS15 showed protective effects against DNA damage caused by hydroxyl radicals originating from H2O2. Molecular docking and simulation studies confirmed the favorable interactions of AChE and the Aβ1-42 monomer desired for their inhibition. AS15 exhibited an LD50 value of 300 mg kg-1 and showed significant improvements in memory and learning behavior in scopolamine-induced cognition impairment mouse-based animal models (Y-maze test and Morris water maze test) for behavioral analysis. Overall outcomes suggest AS15 as a potential preclinical multifunctional candidate for the management of Alzheimer's disease, and it serves as a promising lead for further development of potent and safer multifunctional anti-Alzheimer's agents.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujrat University Ahmedabad Gujrat 380009 India
| | - Uttam Kaur
- University School of Business Management, Chandigarh University Gharuan 140413 India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujrat University Ahmedabad Gujrat 380009 India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh 160014 India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
- Drug and Pollution testing Laboratory, Guru Nanak Dev University Amritsar Punjab 143005 India
| |
Collapse
|
12
|
S S, L.S. D, Rajendran P, N H, Singh S A. Exploring the potential of probiotics in Alzheimer's disease and gut dysbiosis. IBRO Neurosci Rep 2024; 17:441-455. [PMID: 39629018 PMCID: PMC11612366 DOI: 10.1016/j.ibneur.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/06/2024] Open
Abstract
Alzheimer's disease is a fatal neurodegenerative disorder that causes memory loss and cognitive decline in older people. There is increasing evidence suggesting that gut microbiota alteration is a cause of Alzheimer's disease pathogenesis. This review explores the link between gut dysbiosis and the development of Alzheimer's disease contributing to neuroinflammation, amyloid β accumulation, and cognitive decline. We examine the recent studies that illustrate the gut-brain axis (GBA) as a bidirectional communication between the gut and brain and how its alteration can influence neurological health. Furthermore, we discuss the potential of probiotic supplementation as a management approach to restore gut microbiota balance, and ultimately improve cognitive function in AD patients. Based on current research findings, this review aims to provide insights into the promising role of probiotics in Alzheimer's disease management and the need for further investigation into microbiota-targeted interventions.
Collapse
Affiliation(s)
- Sowmiya S
- Department of Pharmacology, Dr M.G.R. Educational and Research Institute, Poonamalle High Road, Velappanchavadi, Chennai, Tamil Nadu 600 077, India
| | - Dhivya L.S.
- Department of Pharmaceutical Chemistry, Dr M.G.R. Educational and Research Institute, Poonamalle High Road, Velappanchavadi, Chennai, Tamil Nadu 600 077, India
| | - Praveen Rajendran
- Department of Pharmacology, Dr M.G.R. Educational and Research Institute, Poonamalle High Road, Velappanchavadi, Chennai, Tamil Nadu 600 077, India
| | - Harikrishnan N
- Department of pharmaceutical analysis, Dr M.G.R. Educational and Research Institute, Poonamalle High Road, Velappanchavadi, Chennai, Tamil Nadu 600 077, India
| | - Ankul Singh S
- Department of Pharmacology, Dr M.G.R. Educational and Research Institute, Poonamalle High Road, Velappanchavadi, Chennai, Tamil Nadu 600 077, India
| |
Collapse
|
13
|
Das A, Sinha K, Chakrabarty S. Elucidating the molecular mechanism of noncompetitive inhibition of acetylcholinesterase by an antidiabetic drug chlorpropamide: identification of new allosteric sites. Phys Chem Chem Phys 2024; 26:28894-28903. [PMID: 39535041 DOI: 10.1039/d4cp02921f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Acetylcholinesterase (AChE) has emerged as an important drug target for the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Recent experimental studies indicate that certain antidiabetic drugs can be repurposed as potent AChE inhibitors. Enzymatic kinetic assays suggest that the antidiabetic drug chlorpropamide (CPM) acts as a noncompetitive inhibitor, but the mechanism of action and the binding site(s) of interaction with AChE are not known. In this work, we have carried out molecular dynamics (MD) simulations to discover a new allosteric site in addition to the known peripheral anionic site (PAS) as a potential binding site of this noncompetitive inhibitor. We show that the conformational ensemble of the catalytic triad, particularly the HIS447, undergoes a significant population shift on ligand binding that is responsible for deactivation of the enzyme. We also elucidate the pathway of the allosteric signaling in terms of locally correlated domains of the inter-residue interaction network. Thus, our work identifies a new allosteric site for AChE inhibition and eludiates the underlying mechanistic principles. These results would be useful for the rational design of new noncompetitive inhibitors for AChE.
Collapse
Affiliation(s)
- Abhinandan Das
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India.
| | - Krishnendu Sinha
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India.
| | - Suman Chakrabarty
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
14
|
Agarwal U, Verma S, Tonk RK. Chromenone: An emerging scaffold in anti-Alzheimer drug discovery. Bioorg Med Chem Lett 2024; 111:129912. [PMID: 39089526 DOI: 10.1016/j.bmcl.2024.129912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Alzheimer's disease (AD) presents a growing global health concern. In recent decades, natural and synthetic chromenone have emerged as promising drug candidates due to their multi-target potential. Natural chromenone, quercetin, scopoletin, esculetin, coumestrol, umbelliferone, bergapten, and methoxsalen (xanthotoxin), and synthetic chromenone hybrids comprising structures like acridine, 4-aminophenyl, 3-arylcoumarins, quinoline, 1,3,4-oxadiazole, 1,2,3-triazole, and tacrine, have been explored for their potential to combat AD. Key reactions used for synthesis of chromenone hybrids include Perkin and Pechmann condensation. The activity of chromenone hybrids has been reported against several drug targets, including AChE, BuChE, BACE-1, and MAO-A/B. This review comprehensively explores natural, semisynthetic, and synthetic chromenone, elucidating their synthetic routes, possible mode of action/drug targets and structure-activity relationships (SAR). The acquired knowledge provides valuable insights for the development of new chromenone hybrids against AD.
Collapse
Affiliation(s)
- Uma Agarwal
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India
| | - Saroj Verma
- Pharmaceutical Chemistry Division, School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India.
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India.
| |
Collapse
|
15
|
Shahid A, Bhatia M. Hydrogen Sulfide: A Versatile Molecule and Therapeutic Target in Health and Diseases. Biomolecules 2024; 14:1145. [PMID: 39334911 PMCID: PMC11430449 DOI: 10.3390/biom14091145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, research has unveiled the significant role of hydrogen sulfide (H2S) in many physiological and pathological processes. The role of endogenous H2S, H2S donors, and inhibitors has been the subject of studies that have aimed to investigate this intriguing molecule. The mechanisms by which H2S contributes to different diseases, including inflammatory conditions, cardiovascular disease, viral infections, and neurological disorders, are complex. Despite noteworthy progress, several questions remain unanswered. H2S donors and inhibitors have shown significant therapeutic potential for various diseases. This review summarizes our current understanding of H2S-based therapeutics in inflammatory conditions, cardiovascular diseases, viral infections, and neurological disorders.
Collapse
Affiliation(s)
- Aqsa Shahid
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
16
|
Mateev E, Karatchobanov V, Dedja M, Diamantakos K, Mateeva A, Muhammed MT, Irfan A, Kondeva-Burdina M, Valkova I, Georgieva M, Zlatkov A. Novel Pyrrole Derivatives as Multi-Target Agents for the Treatment of Alzheimer's Disease: Microwave-Assisted Synthesis, In Silico Studies and Biological Evaluation. Pharmaceuticals (Basel) 2024; 17:1171. [PMID: 39338334 PMCID: PMC11435393 DOI: 10.3390/ph17091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Considering the complex pathogenesis of Alzheimer's disease (AD), the multi-target ligand strategy is expected to provide superior effects for the treatment of the neurological disease compared to the classic single target strategy. Thus, one novel pyrrole-based hydrazide (vh0) and four corresponding hydrazide-hydrazones (vh1-4) were synthesized by applying highly efficient MW-assisted synthetic protocols. The synthetic pathway provided excellent yields and reduced reaction times under microwave conditions compared to conventional heating. The biological assays indicated that most of the novel pyrroles are selective MAO-B inhibitors with IC50 in the nanomolar range (665 nM) and moderate AChE inhibitors. The best dual-acting MAO-B/AChE inhibitor (IC50hMAOB-0.665 μM; IC50eeAChE-4.145 μM) was the unsubstituted pyrrole-based hydrazide (vh0). Importantly, none of the novel molecules displayed hMAOA-blocking capacities. The radical-scavenging properties of the compounds were examined using DPPH and ABTS in vitro tests. Notably, the hydrazide vh0 demonstrated the best antioxidant activities. In addition, in silico simulations using molecular docking and MM/GBSA, targeting the AChE (PDB ID: 4EY6) and MAO-B (PDB: 2V5Z), were utilized to obtain active conformations and to optimize the most prominent dual inhibitor (vh0). The ADME and in vitro PAMPA studies demonstrated that vh0 could cross the blood-brain barrier, and it poses good lead-like properties. Moreover, the optimized molecular structures and the frontier molecular orbitals were examined via DFT studies at 6-311G basis set in the ground state.
Collapse
Affiliation(s)
- Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Valentin Karatchobanov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Marjano Dedja
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Konstantinos Diamantakos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Alexandrina Mateeva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Türkiye;
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria;
| | - Iva Valkova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria;
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| |
Collapse
|
17
|
Žužek MC. Advances in Cholinesterase Inhibitor Research-An Overview of Preclinical Studies of Selected Organoruthenium(II) Complexes. Int J Mol Sci 2024; 25:9049. [PMID: 39201735 PMCID: PMC11354293 DOI: 10.3390/ijms25169049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Cholinesterase (ChE) inhibitors are crucial therapeutic agents for the symptomatic treatment of certain chronic neurodegenerative diseases linked to functional disorders of the cholinergic system. Significant research efforts have been made to develop novel derivatives of classical ChE inhibitors and ChE inhibitors with novel scaffolds. Over the past decade, ruthenium complexes have emerged as promising novel therapeutic alternatives for the treatment of neurodegenerative diseases. Our research group has investigated a number of newly synthesized organoruthenium(II) complexes for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Three complexes (C1a, C1-C, and C1) inhibit ChE in a pharmacologically relevant range. C1a reversibly inhibits AChE and BChE without undesirable peripheral effects, making it a promising candidate for the treatment of Alzheimer's disease. C1-Cl complex reversibly and competitively inhibits ChEs, particularly AChE. It inhibits nerve-evoked skeletal muscle twitch and tetanic contraction in a concentration-dependent manner with no effect on directly elicited twitch and tetanic contraction and is promising for further preclinical studies as a competitive neuromuscular blocking agent. C1 is a selective, competitive, and reversible inhibitor of BChE that inhibits horse serum BChE (hsBChE) without significant effect on the peripheral neuromuscular system and is a highly species-specific inhibitor of hsBChE that could serve as a species-specific drug target. This research contributes to the expanding knowledge of ChE inhibitors based on ruthenium complexes and highlights their potential as promising therapeutic candidates for chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Monika C Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Kadyan P, Singh L. Unraveling the mechanistic interplay of mediators orchestrating the neuroprotective potential of harmine. Pharmacol Rep 2024; 76:665-678. [PMID: 38758470 DOI: 10.1007/s43440-024-00602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Neurodegenerative diseases (NDDs) encompass a range of conditions characterized by the specific dysfunction and continual decline of neurons, glial cells, and neural networks within the brain and spinal cord. The majority of NDDs exhibit similar underlying causes, including oxidative stress, neuroinflammation, and malfunctioning of mitochondria. Elevated levels of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), alongside decreased expression of brain-derived neurotrophic factor (BDNF) and glutamate transporter subtype 1 (GLT-1), constitute significant factors contributing to the pathogenesis of NDDs. Additionally, the dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) gene has emerged as a significant target for the treatment of NDDs at the preclinical level. It significantly contributes to developmental brain defects, early onset neurodegeneration, neuronal loss, and dementia in Down syndrome. Moreover, an impaired ubiquitin-proteosome system (UPS) also plays a pathological role in NDDs. Malfunctioning of UPS leads to abnormal protein buildup or aggregation of α-synuclein. α-Synuclein is a highly soluble unfolded protein that accumulates in Lewy bodies and Lewy neurites in Parkinson's disease and other synucleinopathies. Recent research highlights the promising potential of natural products in combating NDDs relative to conventional therapies. Alkaloids have emerged as promising candidates in the fight against NDDs. Harmine is a tricyclic β-carboline alkaloid (harmala alkaloid) with one indole nucleus and a six-membered pyrrole ring. It is extracted from Banisteria caapi and Peganum harmala L. and exhibits diverse pharmacological properties, encompassing neuroprotective, antioxidant, anti-inflammatory, antidepressant, etc. Harmine has been reported to mediate its neuroprotective via reducing the level of inflammatory mediators, NADPH oxidase, AChE, BChE and reactive oxygen species (ROS). Whereas, it has been observed to increase the levels of BDNF, GLT-1 and anti-oxidant enzymes, along with protein kinase-A (PKA)-mediated UPS activation. This review aims to discuss the mechanistic interplay of various mediators involved in the neuroprotective effect of harmine.
Collapse
Affiliation(s)
- Pankaj Kadyan
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
19
|
Soufi H, Moussaoui M, Baammi S, Baassi M, Salah M, Daoud R, El Allali A, Belghiti ME, Moutaabbid M, Belaaouad S. Multi-combined QSAR, molecular docking, molecular dynamics simulation, and ADMET of Flavonoid derivatives as potent cholinesterase inhibitors. J Biomol Struct Dyn 2024; 42:6027-6041. [PMID: 37485860 DOI: 10.1080/07391102.2023.2238314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
In searching for a new and efficient therapeutic agent against Alzheimer's disease, a Quantitative structure-activity relationship (QSAR) was derived for 45 Flavonoid derivatives recently synthesized and evaluated as cholinesterase inhibitors. The multiple linear regression method (MLR) was adopted to develop an adequate mathematical model that describes the relationship between a variety of molecular descriptors of the studied compounds and their biological activities (cholinesterase inhibitors). Golbraikh and Tropsha criteria were applied to verify the validity of the built model. The built MLR model was statistically reliable, robust, and predictive (R2 = 0.801, Q2cv = 0.876, R2test = 0.824). Dreiding energy and Molar Refractivity were the major factors that govern the Anti-cholinesterase activity. These results were further exploited to design a new series of Flavonoid derivatives with higher Anti-cholinesterase activities than the existing ones. Thereafter, molecular docking and molecular dynamic studies were performed to predict the binding types of the designed compounds and to investigate their stability at the active site of the Butyrylcholinestérase BuChE protein. The negative and low binding affinity calculated for all designed compounds shows that designed compound 1 has a favorable affinity for the 4TPK. Moreover, molecular dynamics simulation studies confirmed the stability of designed compound 1 in the active pocket of 4TPK over 100 ns. Finally, the ADMET analysis was incorporated to analyze the pharmacokinetics and toxicity parameters. The designed compounds were found to meet the ADMET descriptor criteria at an acceptable level having respectable intestinal permeability and water solubility and can reach the intended destinations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hatim Soufi
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
| | - Mohamed Moussaoui
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
| | - Soukayna Baammi
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Mouna Baassi
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
| | - Mohammed Salah
- Team of Chemoinformatics Research and Spectroscopy and Quantum Chemistry, Department of Chemistry, Faculty of Science, University Chouaib Doukkali, El Jadida, Morocco
| | - Rachid Daoud
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Achraf El Allali
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir, Morocco
| | - M E Belghiti
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
- Laboratory of Nernest Technology, Sherbrook, QC, Canada
| | - Mohammed Moutaabbid
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
| | - Said Belaaouad
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
| |
Collapse
|
20
|
Al-Mansori A, Al-Sbiei A, Bashir GH, Qureshi MM, Tariq S, Altahrawi A, al-Ramadi BK, Fernandez-Cabezudo MJ. Effect of acetylcholinesterase inhibition on immune cells in the murine intestinal mucosa. Heliyon 2024; 10:e33849. [PMID: 39071679 PMCID: PMC11283160 DOI: 10.1016/j.heliyon.2024.e33849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
The gastrointestinal tract (GI) is the largest immune organ whose function is controlled by a complex network of neurons from the enteric nervous system (ENS) as well as the sympathetic and parasympathetic system. Evolving evidence indicates that cross-communication between gut-innervating neurons and immune cells regulates many essential physiological functions including protection against mucosal infections. We previously demonstrated that following paraoxon treatment, 70 % of the mice were able to survive an oral infection with S. typhimurium, a virulent strain of Salmonella enterica serovar Typhimurium. The present study aims to investigate the effect that rivastigmine, a reversible AChE inhibitor used for the treatment of neurodegenerative diseases, has on the murine immune defenses of the intestinal mucosa. Our findings show that, similar to what is observed with paraoxon, administration of rivastigmine promoted the release of secretory granules from goblet and Paneth cells, resulting in increased mucin layer. Surprisingly, however, and unlike paraoxon, rivastigmine treatment did not affect overall mortality of infected mice. In order to investigate the mechanistic basis for the differential effects observed between paraoxon and rivastigmine, we used multi-color flowcytometric analysis to characterize the immune cell landscape in the intraepithelial (IE) and lamina propria (LP) compartments of intestinal mucosa. Our data indicate that treatment with paraoxon, but not rivastigmine, led to an increase of resident CD3+CD8+ T lymphocytes in the ileal mucosa (epithelium and lamina propria) and CD11b- CD11c+ dendritic cells in the LP. Our findings indicate the requirement for persistent cholinergic pathway engagement to effect a change in the cellular landscape of the mucosal tissue that is necessary for protection against lethal bacterial infections. Moreover, optimal protection requires a collaboration between innate and adaptive mucosal immune responses in the intestine.
Collapse
Affiliation(s)
- Alreem Al-Mansori
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Ghada H. Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Mohammed M. Qureshi
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Abeer Altahrawi
- Department of Pathology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
21
|
Monaco M, Trebesova H, Grilli M. Muscarinic Receptors and Alzheimer's Disease: New Perspectives and Mechanisms. Curr Issues Mol Biol 2024; 46:6820-6835. [PMID: 39057049 PMCID: PMC11276210 DOI: 10.3390/cimb46070407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases on a global scale. Historically, this pathology has been linked to cholinergic transmission, and despite the scarcity of effective therapies, numerous alternative processes and targets have been proposed as potential avenues for comprehending this complex illness. Nevertheless, the fundamental pathophysiological mechanisms underpinning AD remain largely enigmatic, with a growing body of evidence advocating for the significance of muscarinic receptors in modulating the brain's capacity to adapt and generate new memories. This review summarizes the current state of the art in the field of muscarinic receptors' involvement in AD. A specific key factor was the relationship between comorbidity and the emergence of new mechanisms.
Collapse
Affiliation(s)
- Martina Monaco
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (H.T.)
| | - Hanna Trebesova
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (H.T.)
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (H.T.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148 Genoa, Italy
| |
Collapse
|
22
|
Adedokun MA, Enye LA, Akinluyi ET, Ajibola TA, Edem EE. Black seed oil reverses chronic antibiotic-mediated depression and social behaviour deficits via modulation of hypothalamic mitochondrial-dependent markers and insulin expression. IBRO Neurosci Rep 2024; 16:267-279. [PMID: 38379607 PMCID: PMC10876594 DOI: 10.1016/j.ibneur.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic antibiotic use has been reported to impair mitochondrial indices, hypothalamus-mediated metabolic function, and amygdala-regulated emotional processes. Natural substances such as black seed (Nigella sativa) oil could be beneficial in mitigating these impairments. This study aimed to assess the impact of black seed oil (NSO) on depression and sociability indices, redox imbalance, mitochondrial-dependent markers, and insulin expression in mice subjected to chronic ampicillin exposure. Forty adult male BALB/c mice (30 ± 2 g) were divided into five groups: the CTRL group received normal saline, the ABT group received ampicillin, the NSO group received black seed oil, the ABT/NSO group concurrently received ampicillin and black seed oil, and the ABT+NSO group experienced pre-exposure to ampicillin followed by subsequent treatment with black seed oil. The ampicillin-exposed group exhibited depressive-like behaviours, impaired social interactive behaviours, and disruptions in mitochondrial-dependent markers in plasma and hypothalamic tissues, accompanied by an imbalance in antioxidant levels. Moreover, chronic antibiotic exposure downregulated insulin expression in the hypothalamus. However, these impairments were significantly ameliorated in the ABT/NSO, and ABT+NSO groups compared to the untreated antibiotic-exposed group. Overall, findings from this study suggest the beneficial role of NSO as an adjuvant therapy in preventing and abrogating mood behavioural and neural-metabolic impairments of chronic antibiotic exposure.
Collapse
Affiliation(s)
- Mujeeb Adekunle Adedokun
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Linus Anderson Enye
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Elizabeth Toyin Akinluyi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Toheeb Adesumbo Ajibola
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Edem Ekpenyong Edem
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
23
|
Sofela SO, Ibrahim A, Ogbodo UC, Bodun DS, Nwankwo DO, Mafimisebi M, Abdulrasheed B, Balogun T, Opeyemi I. Computational identification of potential acetylcholinesterase (AChE) and monoamine oxidase-B inhibitors from Vitis vinifera: a case study of Alzheimer's disease (AD). In Silico Pharmacol 2024; 12:49. [PMID: 38828442 PMCID: PMC11143168 DOI: 10.1007/s40203-024-00214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease that affects people aged 60 years and above. Yet, the discovery of potent therapeutic agents against this disease has no utmost progress and a number of drug candidates could not make it out of the clinical trials at varied stages. At the same time, the currently available anti-cholinesterase (AChE) and monoamine oxidase-B (MAO-B) for the treatment of AD can only improve the clinical symptoms while the recently approved immunotherapy agent "remains questionable. Thus, the need for novel therapeutic agents with the potential to treat the aetiology of the disease. Herein, this study sought to examine the potential of a number of bioactive compounds derived from Vitis vinifera as a promising agent against AChE and MAO-B. Using a computational approach via molecular docking 23 bioactive agents were screened against AChE and MAO-B, and the compounds with a binding score below that of the standard ligand were further subjected to drug-likeness and pharmacokinetic screening. Eight and thirteen of the studied agents optimally saturated the active pocket of the AChE and MAO-B respectively, forming principal interactions with a number of amino acids at the active pocket of the targets and among these compounds only rutin failed the drug-likeness test by violating four parameters while all showed moderate pharmacokinetics features. A number of Vitis vinifera-derived bioactive compounds show excellent inhibitory potential against AChE and MAO-B, and moderate pharmacokinetic features when compared to the reference ligand (tacrine). These compounds are therefore proposed as novel AChE and MAO-B inhibitors for the treatment of AD and wet-lab analysis is necessary to affirm their potency.
Collapse
Affiliation(s)
| | - Abdulwasiu Ibrahim
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria
- Kwara Emerging Scholars Forum, Ilorin, Kwara State Nigeria
| | - Uchechukwu C. Ogbodo
- Department of Applied Biochemistry, Faculty of Biosciences, Nnamadi Azikiwe University, Awka, Nigeria
| | - Damilola S. Bodun
- Department of Biochemistry, Adekunle Ajasin University Akungba Akoko, Akungba Akoko, Nigeria
| | - Daniel O. Nwankwo
- Department of Biochemistry, Adekunle Ajasin University Akungba Akoko, Akungba Akoko, Nigeria
| | - Mojirade Mafimisebi
- Department of Chemistry, Adekunle Ajasin University Akungba Akoko, Akungba Akoko, Nigeria
| | - Buhari Abdulrasheed
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - Toheeb Balogun
- Department of Biochemistry, Adekunle Ajasin University Akungba Akoko, Akungba Akoko, Nigeria
| | - Isaac Opeyemi
- Department of Chemistry, Adekunle Ajasin University Akungba Akoko, Akungba Akoko, Nigeria
| |
Collapse
|
24
|
Loda I, D’Angelo E, Marzetti E, Kerminen H. Prevention, Assessment, and Management of Malnutrition in Older Adults with Early Stages of Cognitive Disorders. Nutrients 2024; 16:1566. [PMID: 38892503 PMCID: PMC11173938 DOI: 10.3390/nu16111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Malnutrition is common in older adults, and its risk is greater in those living with dementia. Relative to cognitively healthy peers, the prevalence of malnutrition is also increased in individuals with early stages of cognitive disorders owing to pathophysiological, cognitive, and psychosocial changes related to cognitive impairment. Malnutrition is associated with adverse health outcomes, including faster cognitive and functional decline. Here, we provide an overview of the prevention, assessment, and management of malnutrition in older adults, with a special focus on the aspects that are important to consider in individuals with early stages of cognitive disorders. Strategies to prevent malnutrition include systematic screening for malnourishment using validated tools to detect those at risk. If the screening reveals an increased risk of malnutrition, a detailed assessment including the individual's nutritional, medical, and functional status as well as dietary intake should be performed. The management of malnutrition in the early stages of cognitive disorders should be based on the findings of a comprehensive assessment and be personalized according to the individual's specific characteristics. In the article, we also provide an overview of the evidence on vitamin supplements and specific dietary patterns to prevent cognitive decline or attenuate its progression.
Collapse
Affiliation(s)
- Irene Loda
- Scuola di Specialità in Geriatria, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Emanuela D’Angelo
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
| | - Hanna Kerminen
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
- Faculty of Medicine and Health Technology, The Gerontology Research Center (GEREC), Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| |
Collapse
|
25
|
Verma A, Waiker DK, Singh N, Singh A, Saraf P, Bhardwaj B, Kumar P, Krishnamurthy S, Srikrishna S, Shrivastava SK. Lead optimization based design, synthesis, and pharmacological evaluation of quinazoline derivatives as multi-targeting agents for Alzheimer's disease treatment. Eur J Med Chem 2024; 271:116450. [PMID: 38701714 DOI: 10.1016/j.ejmech.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The complexity and multifaceted nature of Alzheimer's disease (AD) have driven us to further explore quinazoline scaffolds as multi-targeting agents for AD treatment. The lead optimization strategy was utilized in designing of new series of derivatives (AK-1 to AK-14) followed by synthesis, characterization, and pharmacological evaluation against human cholinesterase's (hChE) and β-secretase (hBACE-1) enzymes. Amongst them, compounds AK-1, AK-2, and AK-3 showed good and significant inhibitory activity against both hAChE and hBACE-1 enzymes with favorable permeation across the blood-brain barrier. The most active compound AK-2 revealed significant propidium iodide (PI) displacement from the AChE-PAS region and was non-neurotoxic against SH-SY5Y cell lines. The lead molecule (AK-2) also showed Aβ aggregation inhibition in a self- and AChE-induced Aβ aggregation, Thioflavin-T assay. Further, compound AK-2 significantly ameliorated Aβ-induced cognitive deficits in the Aβ-induced Morris water maze rat model and demonstrated a significant rescue in eye phenotype in the Aꞵ-phenotypic drosophila model of AD. Ex-vivo immunohistochemistry (IHC) analysis on hippocampal rat brains showed reduced Aβ and BACE-1 protein levels. Compound AK-2 suggested good oral absorption via pharmacokinetic studies and displayed a good and stable ligand-protein interaction in in-silico molecular modeling analysis. Thus, the compound AK-2 can be regarded as a lead molecule and should be investigated further for the treatment of AD.
Collapse
Affiliation(s)
- Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Neha Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Abhinav Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Bhagwati Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
26
|
Waiker DK, Verma A, Gajendra TA, Namrata, Roy A, Kumar P, Trigun SK, Srikrishna S, Krishnamurthy S, Davisson VJ, Shrivastava SK. Design, synthesis, and biological evaluation of some 2-(3-oxo-5,6-diphenyl-1,2,4-triazin-2(3H)-yl)-N-phenylacetamide hybrids as MTDLs for Alzheimer's disease therapy. Eur J Med Chem 2024; 271:116409. [PMID: 38663285 DOI: 10.1016/j.ejmech.2024.116409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024]
Abstract
Inspite of established symptomatic relief drug targets, a multi targeting approach is highly in demand to cure Alzheimer's disease (AD). Simultaneous inhibition of cholinesterase (ChE), β secretase-1 (BACE-1) and Dyrk1A could be promising in complete cure of AD. A series of 18 diaryl triazine based molecular hybrids were successfully designed, synthesized, and tested for their hChE, hBACE-1, Dyrk1A and Aβ aggregation inhibitory potentials. Compounds S-11 and S-12 were the representative molecules amongst the series with multi-targeted inhibitory effects. Compound S-12 showed hAChE inhibition (IC50 value = 0.486 ± 0.047 μM), BACE-1 inhibition (IC50 value = 0.542 ± 0.099 μM) along with good anti-Aβ aggregation effects in thioflavin-T assay. Only compound S-02 of the series has shown Dyrk1A inhibition (IC50 value = 2.000 ± 0.360 μM). Compound S-12 has also demonstrated no neurotoxic liabilities against SH-SY5Y as compared to donepezil. The in vivo behavioral studies of the compound S-12 in the scopolamine- and Aβ-induced animal models also demonstrated attanuation of learning and memory functions in rats models having AD-like characteristics. The ex vivo studies, on the rat hippocampal brain demonstrated reduction in certain biochemical markers of the AD brain with a significant increase in ACh level. The Western blot and Immunohistochemistry further revealed lower tau, APP and BACE-1 molecular levels. The drosophilla AD model also revealed improved eyephenotype after treatment with compound S-12. The molecular docking studies of the compounds suggested that compound S-12 was interacting with the ChE-PAS & CAS residues and catalytic dyad residues of the BACE-1 enzymes. The 100 ns molecular dynamics simulation studies of the ligand-protein complexed with hAChE and hBACE-1 also suggested stable ligand-protein confirmation throughout the simulation run.
Collapse
Affiliation(s)
- Digambar Kumar Waiker
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology - Banaras Hindu University, Varanasi, 221005, India
| | - Akash Verma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology - Banaras Hindu University, Varanasi, 221005, India
| | - T A Gajendra
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, 221005, India
| | - Namrata
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anima Roy
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, 221005, India
| | - Vincent Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sushant Kumar Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology - Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
27
|
Yu N, Pasha M, Chua JJE. Redox changes and cellular senescence in Alzheimer's disease. Redox Biol 2024; 70:103048. [PMID: 38277964 PMCID: PMC10840360 DOI: 10.1016/j.redox.2024.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The redox process and cellular senescence are involved in a range of essential physiological functions. However, they are also implicated in pathological processes underlying age-related neurodegenerative disorders, including Alzheimer's disease (AD). Elevated levels of reactive oxygen species (ROS) are generated as a result of abnormal accumulation of beta-amyloid peptide (Aβ), tau protein, and heme dyshomeostasis and is further aggravated by mitochondria dysfunction and endoplasmic reticulum (ER) stress. Excessive ROS damages vital cellular components such as proteins, DNA and lipids. Such damage eventually leads to impaired neuronal function and cell death. Heightened oxidative stress can also induce cellular senescence via activation of the senescence-associated secretory phenotype to further exacerbate inflammation and tissue dysfunction. In this review, we focus on how changes in the redox system and cellular senescence contribute to AD and how they are affected by perturbations in heme metabolism and mitochondrial function. While potential therapeutic strategies targeting such changes have received some attention, more research is necessary to bring them into clinical application.
Collapse
Affiliation(s)
- Nicole Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mazhar Pasha
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
28
|
Rani A, Zia-Ul-Sabah, Tabassum F, Sharma AK. Molecular interplay between phytoconstituents of Ficus Racemosa and neurodegenerative diseases. Eur J Neurosci 2024; 59:1833-1847. [PMID: 38217338 DOI: 10.1111/ejn.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
Neurodegenerative diseases (NDs) are a significant global health concern, primarily affecting middle and older populations. Recently, there has been growing interest in herbal therapeutics as a potential approach to address diverse neuropathological conditions. Despite the widespread prevalence of NDs, limited phytochemical has been reported for their promising therapeutic potential with distinct underlying mechanisms. Additionally, the intricate molecular pathways influenced by herbal phytoconstituents, particularly in neurodegenerative disorders, are also not well documented. This report explores the phytoconstituents of Ficus racemosa (F. racemosa), an unfamiliar plant of the Moraceae family, for their potential interactions with pathological pathways of NDs. The influential phytoconstituents of F. racemosa, including polyphenols, glycosides, terpenoids, and furocoumarin, have been reported for targeting diverse pathological states. We proposed the most convincing molecular interplay between leading phytoconstituents and detrimental signalling cascades. However, extensive research is required to thoroughly understand the phytochemical persuaded intricate molecular pathway. The comprehensive evidence strongly suggests that F. racemosa and its natural compounds could be valuable in treating NDs. This points towards an exciting path for future research and the development of potential treatments based on a molecular level.
Collapse
Affiliation(s)
- Anu Rani
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
| | - Zia-Ul-Sabah
- Department of Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Fauzia Tabassum
- Department of Pharmacology, Vision College, Riyadh, Saudi Arabia
| | - Arun K Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
| |
Collapse
|
29
|
Jalil S, Hussain Z, Abid SMA, Hameed A, Iqbal J. Quinoline-sulfonamides as a multi-targeting neurotherapeutic for cognitive decline: in vitro, in silico studies and ADME evaluation of monoamine oxidases and cholinesterases inhibitors. RSC Adv 2024; 14:8905-8920. [PMID: 38495980 PMCID: PMC10941260 DOI: 10.1039/d3ra05501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial irreversible neurological disorder with multiple enzymes involved. In the treatment of AD, multifunctional agents targeting cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors have shown promising results. Herein, a series of novel quinoline-sulfonamides (a1-18) were designed and synthesized as a dual inhibitor of MAOs and ChEs. The in vitro results showed that compounds a5, a12, a11, and a6 exhibited the most potent compounds against specific enzymes. They had IC50 value 0.59 ± 0.04 for MAO-A, 0.47 ± 0.03 for MAO-B, 0.58 ± 0.05 for BChE and 1.10 ± 0.77 for AChE μM respectively. Furthermore, kinetic studies revealed that these compounds are competitive. Molecular docking studies enhanced the understanding of the in silico component, unveiling critical interactions, specifically the hydrogen bonding interaction, π-π, π-alkyl, π-amid and π-sulfur interactions between the ligand and enzymes. These findings suggest that compounds a5, a6, a11, a12, a15, and a18 may be potent multifunctional candidates for AD treatment.
Collapse
Affiliation(s)
- Saquib Jalil
- Department of Pharmacy COMSATS University Islamabad, Centre for Advanced Drug Research Abbottabad Campus Abbottabad-22060 Pakistan
- Department of Pharmacy, COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
| | - Zahid Hussain
- Department of Pharmacy COMSATS University Islamabad, Centre for Advanced Drug Research Abbottabad Campus Abbottabad-22060 Pakistan
| | - Syed Mobashir Ali Abid
- Department of Pharmacy COMSATS University Islamabad, Centre for Advanced Drug Research Abbottabad Campus Abbottabad-22060 Pakistan
- Department of Pharmacy, COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
| | - Abdul Hameed
- Department of Chemistry, University of Sahiwal Sahiwal 57000 Pakistan
| | - Jamshed Iqbal
- Department of Pharmacy COMSATS University Islamabad, Centre for Advanced Drug Research Abbottabad Campus Abbottabad-22060 Pakistan
- Department of Pharmacy, COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
| |
Collapse
|
30
|
Soni A, Kumar A, Kumar V, Rawat R, Eyupoglu V. Design, synthesis and evaluation of aminothiazole derivatives as potential anti-Alzheimer's candidates. Future Med Chem 2024; 16:513-529. [PMID: 38375588 DOI: 10.4155/fmc-2023-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Aim: The objective of the present study was to design, synthesize and evaluate diverse Schiff bases and thiazolidin-4-one derivatives of aminothiazole as key pharmacophores possessing acetylcholinesterase inhibitory activity. Materials & methods: Two series of compounds (13 each) were synthesized and evaluated for their acetylcholinesterase inhibition and antioxidant activity. Molecular docking of all compounds was performed to provide an insight into their binding interactions. Results: Compounds 2j (IC50 = 0.03 μM) and 3e (IC50 = 1.58 μM) were found to be the best acetylcholinesterase inhibitors among compounds of their respective series. Molecular docking analysis supported the results of in vitro activity by displaying good docking scores with the binding pocket of human acetylcholinesterase (Protein Data Bank ID: 4EY7). Conclusion: Compound 2j emerged as a potential lead compound with excellent acetylcholinesterase inhibition, antioxidant and chelation activity.
Collapse
Affiliation(s)
- Arti Soni
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Vivek Kumar
- Janta College of Pharmacy, Butana, (Sonipat), 131001, Haryana, India
| | - Ravi Rawat
- School of Health Sciences & Technology, UPES University, Dehradun, 248007, India
| | - Volkan Eyupoglu
- Department of Chemistry, Cankırı Karatekin University, Cankırı, 18100, Turkey
| |
Collapse
|
31
|
Verma A, Waiker DK, Singh N, Roy A, Singh N, Saraf P, Bhardwaj B, Krishnamurthy S, Trigun SK, Shrivastava SK. Design, Synthesis, and Biological Investigation of Quinazoline Derivatives as Multitargeting Therapeutics in Alzheimer's Disease Therapy. ACS Chem Neurosci 2024; 15:745-771. [PMID: 38327209 DOI: 10.1021/acschemneuro.3c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
An efficient and promising method of treating complex neurodegenerative diseases like Alzheimer's disease (AD) is the multitarget-directed approach. Here in this work, a series of quinazoline derivatives (AV-1 to AV-21) were rationally designed, synthesized, and biologically evaluated as multitargeted directed ligands against human cholinesterase (hChE) and human β-secretase (hBACE-1) that exhibit moderate to good inhibitory effects. Compounds AV-1, AV-2, and AV-3 from the series demonstrated balanced and significant inhibition against these targets. These compounds also displayed excellent blood-brain barrier permeability via the PAMPA-BBB assay. Compound AV-2 significantly displaced propidium iodide (PI) from the acetylcholinesterase-peripheral anionic site (AChE-PAS) and was found to be non-neurotoxic at the maximum tested concentration (80 μM) against differentiated SH-SY5Y cell lines. Compound AV-2 also prevented AChE- and self-induced Aβ aggregation in the thioflavin T assay. Additionally, compound AV-2 significantly ameliorated scopolamine and Aβ-induced cognitive impairments in the in vivo behavioral Y-maze and Morris water maze studies, respectively. The ex vivo and biochemical analysis further revealed good hippocampal AChE inhibition and the antioxidant potential of the compound AV-2. Western blot and immunohistochemical (IHC) analysis of hippocampal brain revealed reduced Aβ, BACE-1, APP/Aβ, and Tau molecular protein expressions levels. The pharmacokinetic analysis of compound AV-2 demonstrated significant oral absorption with good bioavailability. The in silico molecular modeling studies of lead compound AV-2 moreover demonstrated a reasonable binding profile with AChE and BACE-1 enzymes and stable ligand-protein complexes throughout the 100 ns run. Compound AV-2 can be regarded as the lead candidate and could be explored more for AD therapy.
Collapse
Affiliation(s)
- Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Neha Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Anima Roy
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Namrata Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Bhagwati Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
32
|
Nilofar N, Zengin G, Acar M, Bouyayha A, Youssra A, Eldahshan O, Fayez S, Fahmy N. Assessing the Chemical Composition, Antioxidant and enzyme Inhibitory Effects of Pentapleura subulifera and Cyclotrichium glabrescens Extracts. Chem Biodivers 2024; 21:e202301651. [PMID: 38016080 DOI: 10.1002/cbdv.202301651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
The Lamiaceae family, encompassing diverse plant species, holds significant value in food, medicine, and cosmetics. Within this family, Pentapleura subulifera and Cyclotrichium glabrescens, relatively unexplored species, were investigated for their chemical composition, antioxidant capacity, and enzyme-inhibiting effects. The chemical composition of hexane, methanolic, and aqueous extracts from P. subulifera and C. glabrescens were analyzed using LC-ESI-MS/MS and the non-polar hexane fraction was investigated via GC-MS. The antioxidant potential of the extracts was determined through radical scavenging, reducing power and metal chelating assays. Additionally, inhibitory activity against six enzymes - acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, amylase, and glucosidase - was examined. The aqueous extract of P. subulifera and the methanolic extract of C. glabrescens exhibited elevated phenolic content at 129.47 mg gallic acid equivalent (GAE)/g and 55.97 mg GAE/g, respectively. Chemical profiling of the constituents of the two plant species resulted in the identification of a total of twenty compounds. The majority of which belonged to flavonoids and quinic acid derivatives, primarily concentrated in the methanol and aqueous extracts. Among all antioxidant assays, the aqueous extracts of P. subulifera demonstrated superior antioxidant activity, with the highest recorded activity of 404.93 mg trolox equivalent (TE)/g in the cupric reducing antioxidant capacity (CUPRAC) test. Meanwhile, the hexane extract of C. glabrescens exhibited the highest AChE inhibitory activity at 2.71 mg galanthamine equivalent (GALAE)/g, followed by the methanol extract of P. subulifera at 2.41 mg GALAE/g. These findings unequivocally establish the notable antioxidant and enzyme inhibitory activity of P. subulifera and C. glabrescens extracts, underscoring their potential as a source of valuable natural antioxidants.
Collapse
Affiliation(s)
- Nilofar Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mikail Acar
- Munzur University, Department of Plant and Animal Production, Tunceli Vocational School of Higher Education, Tunceli, 62000, Turkey
| | - Abdelhakim Bouyayha
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Aalilou Youssra
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Nouran Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| |
Collapse
|
33
|
Narasimhamurthy RK, Venkidesh BS, Nayak S, Reghunathan D, Mallya S, Sharan K, Rao BSS, Mumbrekar KD. Low-dose exposure to malathion and radiation results in the dysregulation of multiple neuronal processes, inducing neurotoxicity and neurodegeneration in mouse. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1403-1418. [PMID: 38038914 PMCID: PMC10789675 DOI: 10.1007/s11356-023-31085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Neurodegenerative disorders are a debilitating and persistent threat to the global elderly population, carrying grim outcomes. Their genesis is often multifactorial, with a history of prior exposure to xenobiotics such as pesticides, heavy metals, enviornmental pollutants, ionizing radiation etc,. A holistic molecular insight into their mechanistic induction upon single or combinatorial exposure to different toxicants is still unclear. In the present study, one-month-old C57BL/6 male mice were administered orally with malathion (50 mg/kg body wt. for 14 days) and single whole-body radiation (0.5 Gy) on the 8th day. Post-treatment, behavioural assays for exploratory behaviour, memory, and learning were performed. After sacrifice, brains were collected for histology, biochemical assays, and transcriptomic analysis. Transcriptomic analysis revealed several altered processes like synaptic transmission and plasticity, neuronal survival, proliferation, and death. Signalling pathways like MAPK, PI3K-Akt, Apelin, NF-κB, cAMP, Notch etc., and pathways related to neurodegenerative diseases were altered. Increased astrogliosis was observed in the radiation and coexposure groups, with significant neuronal cell death and a reduction in the expression of NeuN. Sholl analysis, dendritic arborization and spine density studies revealed decreased total apical neuronal path length and dendritic spine density. Reduced levels of the antioxidants GST and GSH and acetylcholinesterase enzyme activity were also detected. However, no changes were seen in exploratory behaviour or learning and memory post-treatment. Thus, explicating the molecular mechanisms behind malathion and radiation can provide novel insights into external factor-driven neurotoxicity and neurodegenerative pathogenesis.
Collapse
Affiliation(s)
- Rekha Koravadi Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Babu Santhi Venkidesh
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sangeetha Nayak
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dinesh Reghunathan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishna Sharan
- Department of Radiotherapy, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bola Sadashiva Satish Rao
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Directorate of Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
34
|
Manoharan A, Jayan J, Rangarajan TM, Bose K, Benny F, Ipe RS, Kumar S, Kukreti N, Abdelgawad MA, Ghoneim MM, Kim H, Mathew B. "Click Chemistry": An Emerging Tool for Developing a New Class of Structural Motifs against Various Neurodegenerative Disorders. ACS OMEGA 2023; 8:44437-44457. [PMID: 38046293 PMCID: PMC10688180 DOI: 10.1021/acsomega.3c04960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Click chemistry is a set of easy, atom-economical reactions that are often utilized to combine two desired chemical entities. Click chemistry accelerates lead identification and optimization, reduces the complexity of chemical synthesis, and delivers extremely high yields without undesirable byproducts. The most well-known click chemistry reaction is the 1,3-dipolar cycloaddition of azides and alkynes to form 1,2,3-triazoles. The resulting 1,2,3-triazoles can serve as both bioisosteres and linkers, leading to an increase in their use in the field of drug discovery. The current Review focuses on the use of click chemistry to identify new molecules for treating neurodegenerative diseases and in other areas such as peptide targeting and the quantification of biomolecules.
Collapse
Affiliation(s)
- Amritha Manoharan
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Jayalakshmi Jayan
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - T. M. Rangarajan
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Kuntal Bose
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Feba Benny
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Reshma Susan Ipe
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Sunil Kumar
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Neelima Kukreti
- School
of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand 248007, India
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohammed M. Ghoneim
- Department
of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Hoon Kim
- Department
of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| |
Collapse
|
35
|
Fernandes RMN, Cardoso CAL, Alves DR, Morais SM, Scapin E. Parkia from Cerrado: phytochemical bioprospection, toxicity and in vitro bioactivities of bark and flower extracts. BRAZ J BIOL 2023; 83:e275733. [PMID: 38055580 DOI: 10.1590/1519-6984.275733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/11/2023] [Indexed: 12/08/2023] Open
Abstract
Parkia platycephala is the only species of the genus Parkia that is endemic to the brazilian Cerrado and the tree symbol of the state of Tocantins, but there are still few studies regarding its bioprospecting. In this study, we aimed to investigate the phytochemical composition, toxicity and bioactivities of the bark and flower of Parkia platycephala. Hot sequential extractions (Soxhlet) were performed using methanol and hydroethanolic solution (70%), after degreasing the sample (hexane). The presence of flavonoids, tannins, steroids and alkaloids was detected in the preliminary screening. Trilinolein, (Z)-9-octadecenamide, 3-O-methyl-d-glucose were detected by Gas Chromatography coupled to Mass Spectrometry (GC-MS). In the Liquid Chromatography with Diode Array Detector (LC-PDA) analysis, it was detected exclusively ferulic acid (bark) and ellagic acid (flower). The ethanolic extract of the bark (IC50=10.69 ± 0.35 µgmL-1) has an antioxidant potential (DPPH• radical) higher than that of the rutin standard (IC50=15.85 ± 0.08 µgmL-1). All extracts showed excellent anticholinesterase potential (Ellman), with emphasis on the ethanol extract of the flower (IC50 =5.34 ± 0.12 µgmL-1). Regarding toxicity (Artemia salina), the methanolic extract of the bark and the ethanolic extract of the flower presented high and moderate levels, respectively. Such results limit the concentrations of biological activities in this study, however, the antioxidant and anticholinesterase indices fall short of toxicity. The results demonstrated promising antioxidant and anticholinesterase activities of both the bark and the flower of Parkia platycephala.
Collapse
Affiliation(s)
- R M N Fernandes
- Universidade Federal do Tocantins - UFT, Programa de Pós-Graduação em Biodiversidade e Biotecnologia - BIONORTE, Palmas,TO, Brasil
- Universidade Federal do Tocantins - UFT, Curso de Engenharia Ambiental, Laboratório de Química, Palmas, TO, Brasil
| | - C A L Cardoso
- Universidade Estadual de Mato Grosso do Sul - UEMS, Centro de Estudos em Recursos Naturais, Dourados, MS, Brasil
| | - D R Alves
- Universidade Estadual do Ceará - UEC, Centro de Ciência e Tecnologia, Laboratório de Química de Produtos Naturais, Fortaleza, CE, Brasil
| | - S M Morais
- Universidade Estadual do Ceará - UEC, Centro de Ciência e Tecnologia, Laboratório de Química de Produtos Naturais, Fortaleza, CE, Brasil
| | - E Scapin
- Universidade Federal do Tocantins - UFT, Programa de Pós-Graduação em Biodiversidade e Biotecnologia - BIONORTE, Palmas,TO, Brasil
- Universidade Federal do Tocantins - UFT, Curso de Engenharia Ambiental, Laboratório de Química, Palmas, TO, Brasil
- Universidade Federal do Tocantins - UFT, Programa de Pós-Graduação em Ciências do Ambiente - CIAMB, Palmas, TO, Brasil
| |
Collapse
|
36
|
Sharma P, Singh V, Singh M. N-methylpiperazinyl and piperdinylalkyl-O-chalcone derivatives as potential polyfunctional agents against Alzheimer's disease: Design, synthesis and biological evaluation. Chem Biol Drug Des 2023; 102:1155-1175. [PMID: 37599098 DOI: 10.1111/cbdd.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
The series of N-methylpiperazinyl and piperdinylalkyl-O-chalcone derivatives as potential polyfuctional agents against Alzheimer's disease that have been designed, synthesized and then evaluated biologically using in vitro assays for the inhibition of acetylcholinesterase (AChE) activity, AGEs, and free radical formation. The majority of synthesized compounds inhibited AChE & AGEs with additional free radical scavenging activities at nanomolar concentrations. Among these, compound 5k was found to have potent AChE inhibitory activity (IC50 = 11.6 nM), superior than the reference compound donepezil (15.68 nM) along with the good anti-AGEs and free radical formation effect. Its potency was justified by docking studies that revealed its dual binding characteristic with both catalytic active site and peripheral anionic site of AChE, simultaneously. Furthermore, the in vivo evaluation of 5k against streptozotocin (STZ)-induced dementia in rats also showed improvement of memory functions (Morris water maze test) in animals. Also, 5k inhibited STZ-inudced brain AChE activity and oxidative stress which further strengthen the observed in vitro effects. The stability of the ligand-protein complex was then analyzed using a simulation-based interaction protocol. The results revealed that these N-methylpiperazinyl and piperdinylalkyl-O-chalcone derivatives could be considered for potential polyfunctional anti-Alzheimer's molecules.
Collapse
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
37
|
Mir SA, Nayak B, Khan A, Khan MI, Eldakhakhny BM, Arif DO. An exploration of binding of Hesperidin, Rutin, and Thymoquinone to acetylcholinesterase enzyme using multi-level computational approaches. J Biomol Struct Dyn 2023; 42:11901-11915. [PMID: 37811769 DOI: 10.1080/07391102.2023.2265492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Alzheimer's disease, an intricate neurological disorder, is impacting an ever-increasing number of individuals globally, particularly among the aging population. For several decades phytochemicals were used as Ayurveda to treat both communicable and non-communicable diseases. Acetylcholinesterase (AChE) is a widely chosen therapeutic target for the development of early prevention and effective management of neurodegenerative diseases. The primary objective of the present study was to investigate the binding potential between Rutin Thymoquinone, Hesperidin and the FDA-approved drug Donepezil with AChE. Additionally, a comparative analysis was conducted. These phytochemicals were docked with the binding site of the AChE experimental complex. The molecular dockings demonstrated that the Hesperidinh showed a better binding affinity of -22.0631 kcal/mol. The ADME/T investigations revealed that the selected phytochemicals are non-toxic and drug-like candidates. Molecular dynamics simulations were implemented to determine the conformational changes of Rutin, hesperidin, Thymoquinone, and Donepezil complexed with AChE. Hesperidin and Donepezil were more stable than Rutin, Thymoquinone complexed with AChE. Next, essential dynamics and defining the secondary structure of protein were to determine the conformational changes in AChE complexed with selected phytochemicals during simulations. Overall, the MD Simulations demonstrated that all complexes in this study achieved stability until 100 ns of the simulation period was performed thrice. The structural analysis of AChE was done using multiple search engines to explore the molecular functions, biological processes, and pathways in which AChE proteins are involved and to identify potential drug targets for various diseases. This present study concludes that Hesperidin was found to be a more potent AChE inhibitors than Rutin, and further experiments are required to determine the effectivity of Hesperidin against neurodegenerative diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Odisha, India
| | - Binata Nayak
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Odisha, India
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basmah M Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Deema O Arif
- Faculty of Medicine, Ibn Sina National College, Jeddah, Saudi Arabia
| |
Collapse
|
38
|
Drozdowska D, Maliszewski D, Wróbel A, Ratkiewicz A, Sienkiewicz M. New Benzamides as Multi-Targeted Compounds: A Study on Synthesis, AChE and BACE1 Inhibitory Activity and Molecular Docking. Int J Mol Sci 2023; 24:14901. [PMID: 37834347 PMCID: PMC10573752 DOI: 10.3390/ijms241914901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The synthesis of eleven new and previously undescribed benzamides was designed. These compounds were specifically projected as potential inhibitors of the enzymes acetylcholinesterase (AChE) and β-secretase (BACE1). N,N'-(1,4-phenylene)bis(3-methoxybenzamide) was most active against AChE, with an inhibitory concentration of AChE IC50 = 0.056 µM, while the IC50 for donepezil was 0.046 µM. This compound was also the most active against the BACE1 enzyme. The IC50 value was 9.01 µM compared to that for quercetin, with IC50 = 4.89 µM. Quantitative results identified this derivative to be the most promising. Molecular modeling was performed to elucidate the potential mechanism of action of this compound. Dynamic simulations showed that new ligands only had a limited stabilizing effect on AChE, but all clearly reduced the flexibility of the enzyme. It can, therefore, be concluded that a possible mechanism of inhibition increases the stiffness and decreases the flexibility of the enzyme, which obviously impedes its proper function. An analysis of the H-bonding patterns suggests a different mechanism (from other ligands) when interacting the most active derivative with the enzyme.
Collapse
Affiliation(s)
- Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Białystok, Mickiewicza Street 2A, 15-222 Białystok, Poland; (D.M.); (A.W.)
| | - Dawid Maliszewski
- Department of Organic Chemistry, Medical University of Białystok, Mickiewicza Street 2A, 15-222 Białystok, Poland; (D.M.); (A.W.)
| | - Agnieszka Wróbel
- Department of Organic Chemistry, Medical University of Białystok, Mickiewicza Street 2A, 15-222 Białystok, Poland; (D.M.); (A.W.)
| | - Artur Ratkiewicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K Street, 15-245 Białystok, Poland; (A.R.); (M.S.)
| | - Michał Sienkiewicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K Street, 15-245 Białystok, Poland; (A.R.); (M.S.)
| |
Collapse
|
39
|
Reza-Zaldívar E, Jacobo-Velázquez DA. Comprehensive Review of Nutraceuticals against Cognitive Decline Associated with Alzheimer's Disease. ACS OMEGA 2023; 8:35499-35522. [PMID: 37810693 PMCID: PMC10552500 DOI: 10.1021/acsomega.3c04855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Nowadays, nutraceuticals are being incorporated into functional foods or used as supplements with nonpharmacological approaches in the prevention and management of several illnesses, including age-related conditions and chronic neurodegenerative diseases. Nutraceuticals are apt for preventing and treating such disorders because of their nontoxic, non-habit-forming, and efficient bioactivities for promoting neurological well-being due to their ability to influence cellular processes such as neurogenesis, synaptogenesis, synaptic transmission, neuro-inflammation, oxidative stress, cell death modulation, and neuronal survival. The capacity of nutraceuticals to modify all of these processes reveals the potential to develop food-based strategies to aid brain development and enhance brain function, prevent and ameliorate neurodegeneration, and possibly reverse the cognitive impairment observed in Alzheimer's disease, the most predominant form of dementia in the elderly. The current review summarizes the experimental evidence of the neuroprotective capacity of nutraceuticals against Alzheimer's disease, describing their mechanisms of action and the in vitro and in vivo models applied to evaluate their neuroprotective potential.
Collapse
Affiliation(s)
- Edwin
E. Reza-Zaldívar
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C. 64849 Monterrey, NL, Mexico
| | - Daniel A. Jacobo-Velázquez
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C. 64849 Monterrey, NL, Mexico
- Tecnologico
de Monterrey, Escuela de Ingeniería
y Ciencias, Campus Guadalajara, Av. General Ramon Corona 2514, C. 45201 Zapopan, Jalisco, Mexico
| |
Collapse
|
40
|
Shoukat S, Zia MA, Uzair M, Alsubki RA, Sajid K, Shoukat S, Attia KA, Fiaz S, Ali S, Kimiko I, Ali GM. Synergistic neuroprotection by phytocompounds of Bacopa monnieri in scopolamine-induced Alzheimer's disease mice model. Mol Biol Rep 2023; 50:7967-7979. [PMID: 37535247 DOI: 10.1007/s11033-023-08674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Millions of people around the globe are affected by Alzheimer's disease (AD). This crippling condition has no treatment despite intensive studies. Some phytocompounds have been shown to protect against Alzheimer's in recent studies. METHODS Thus, this work aimed to examine Bacopa monnieri phytocompounds' synergistic effects on neurodegeneration, antioxidant activity, and cognition in the scopolamine-induced AD mice model. The toxicity study of two phytocompounds: quercetin and bacopaside X revealed an LD50 of more than 2000 mg/kg since no deaths occurred. RESULTS The neuroprotection experiment consists of 6 groups i.e., control (saline), scopolamine (1 mg/kg), donepezil (5 mg/kg), Q (25 mg/kg), BX (20 mg/kg), and Q + BX (25 mg/kg + 20 mg/kg). Visual behavioral assessment using the Morris water maze showed that animals in the diseased model group (scopolamine) moved more slowly toward the platform and exhibited greater thigmotaxis behavior than the treatment and control groups. Likewise, the concentration of biochemical NO, GSH, and MDA improved in treatment groups concerning the diseased group. mRNA levels of different marker genes including ChAT, IL-1α, IL-1 β, TNF α, tau, and β secretase (BACE1) improved in treatment groups with respect to the disease group. CONCLUSION Both bacopaside X and quercetin synergistically have shown promising results in neuroprotection. Therefore, it is suggested that Q and BX may work synergistically due to their antioxidant and neuroprotective property.
Collapse
Affiliation(s)
- Shehla Shoukat
- Department of Plant Genomics and Biotechnology, PARC Institute of Advanced Studies in Agriculture, Affiliated with Quaid-e-Azam University, National Agriculture Research Centre, Islamabad, Pakistan.
| | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Roua A Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kaynat Sajid
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Sana Shoukat
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan
| | - Shaukat Ali
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan.
| | - Itoh Kimiko
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | | |
Collapse
|
41
|
Moussa N, Dayoub N. Exploring the role of COX-2 in Alzheimer's disease: Potential therapeutic implications of COX-2 inhibitors. Saudi Pharm J 2023; 31:101729. [PMID: 37638222 PMCID: PMC10448476 DOI: 10.1016/j.jsps.2023.101729] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
This review highlights the potential role of cyclooxygenase-2 enzyme (COX-2) in the pathogenesis of Alzheimer's disease (AD) and the potential therapeutic use of non-steroidal anti-inflammatory drugs (NSAIDs) in the management of AD. In addition to COX-2 enzymes role in inflammation, the formation of amyloid plaques and neurofibrillary tangles in the brain, the review emphasizes that COXs-2 have a crucial role in normal synaptic activity and plasticity, and have a relationship with acetylcholine, tau protein, and beta-amyloid (Aβ) which are the main causes of Alzheimer's disease. Furthermore, the review points out that COX-2 enzymes have a relationship with kinase enzymes, including Cyclin Dependent Kinase 5 (CDK5) and Glycogen Synthase Kinase 3β (GSK3β), which are known to play a role in tau phosphorylation and are strongly associated with Alzheimer's disease. Therefore, the use of drugs like NSAIDs may be a hopeful approach for managing AD. However, results from studies examining the effectiveness of NSAIDs in treating AD have been mixed and further research is needed to fully understand the mechanisms by which COX-2 and NSAIDs may be involved in the development and progression of AD and to identify new therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Moussa
- Department of Pharmaceutical Chemistry and Drug Control, University of Manara, Latakia, Syria
| | - Ninar Dayoub
- Faculty of Pharmacy, University of AL Andalus for Medical Science, Tartus, Syria
| |
Collapse
|
42
|
Ribeiro J, Lopes I, Gomes AC. A New Perspective for the Treatment of Alzheimer's Disease: Exosome-like Liposomes to Deliver Natural Compounds and RNA Therapies. Molecules 2023; 28:6015. [PMID: 37630268 PMCID: PMC10458935 DOI: 10.3390/molecules28166015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
With the increment of the aging population in recent years, neurodegenerative diseases exert a major global disease burden, essentially as a result of the lack of treatments that stop the disease progression. Alzheimer's Disease (AD) is an example of a neurodegenerative disease that affects millions of people globally, with no effective treatment. Natural compounds have emerged as a viable therapy to fill a huge gap in AD management, and in recent years, mostly fueled by the COVID-19 pandemic, RNA-based therapeutics have become a hot topic in the treatment of several diseases. Treatments of AD face significant limitations due to the complex and interconnected pathways that lead to their hallmarks and also due to the necessity to cross the blood-brain barrier. Nanotechnology has contributed to surpassing this bottleneck in the treatment of AD by promoting safe and enhanced drug delivery to the brain. In particular, exosome-like nanoparticles, a hybrid delivery system combining exosomes and liposomes' advantageous features, are demonstrating great potential in the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Joana Ribeiro
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.R.); (I.L.)
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ivo Lopes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.R.); (I.L.)
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.R.); (I.L.)
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
43
|
Saeed S, Zahoor AF, Kamal S, Raza Z, Bhat MA. Unfolding the Antibacterial Activity and Acetylcholinesterase Inhibition Potential of Benzofuran-Triazole Hybrids: Synthesis, Antibacterial, Acetylcholinesterase Inhibition, and Molecular Docking Studies. Molecules 2023; 28:6007. [PMID: 37630258 PMCID: PMC10459521 DOI: 10.3390/molecules28166007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, a series of novel benzofuran-based 1,2,4-triazole derivatives (10a-e) were synthesized and evaluated for their inhibitory potential against acetylcholinesterase (AChE) and bacterial strains (E. coli and B. subtilis). Preliminary results revealed that almost all assayed compounds displayed promising efficacy against AChE, while compound 10d was found to be a highly potent inhibitor of AChE. Similarly, these 5-bromobenzofuran-triazoles 10a-e were screened against B. subtilis QB-928 and E. coli AB-274 to evaluate their antibacterial potential in comparison to the standard antibacterial drug penicillin. Compound 10b was found to be the most active among all screened scaffolds, with an MIC value of 1.25 ± 0.60 µg/mL against B. subtilis, having comparable therapeutic efficacy to the standard drug penicillin (1 ± 1.50 µg/mL). Compound 10a displayed excellent antibacterial therapeutic efficacy against the E. coli strain with comparable MIC of 1.80 ± 0.25 µg/mL to that of the commercial drug penicillin (2.4 ± 1.00 µg/mL). Both the benzofuran-triazole molecules 10a and 10b showed a larger zone of inhibition. Moreover, IFD simulation highlighted compound 10d as a novel lead anticholinesterase scaffold conforming to block entrance, limiting the swinging gate, and disrupting the catalytic triad of AChE, and further supported its significant AChE inhibition with an IC50 value of 0.55 ± 1.00 µM. Therefore, compound 10d might be a promising candidate for further development in Alzheimer's disease treatment, and compounds 10a and 10b may be lead antibacterial agents.
Collapse
Affiliation(s)
- Sadaf Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Shagufta Kamal
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Zohaib Raza
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
44
|
Sánchez Y, Castillo C, Fuentealba J, Sáez-Orellana F, Burgos CF, López JJ, F de la Torre A, Jiménez CA. New Benzodihydrofuran Derivatives Alter the Amyloid β Peptide Aggregation: Strategies To Develop New Anti-Alzheimer Drugs. ACS Chem Neurosci 2023; 14:2590-2602. [PMID: 37480555 DOI: 10.1021/acschemneuro.2c00778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder that is the leading cause of dementia in elderly patients. Amyloid-β peptide (1-42 oligomers) has been identified as a neurotoxic factor, triggering many neuropathologic events. In this study, 15 chalcones were synthesized employing the Claisen-Schmidt condensation reaction, starting from a compound derived from fomannoxine, a natural benzodihydrofuran whose neuroprotective activity has been proven and reported, and methyl aromatic ketones with diverse patterns of halogenated substitution. As a result, chalcones were obtained, with good to excellent reaction yields from 50 to 98%. Cytotoxicity of the compounds was assessed, and their cytoprotective effect against the toxicity associated with Aβ was evaluated on PC-12 cells. Out of the 15 chalcones obtained, only the 4-bromo substituted was cytotoxic at most tested concentrations. Three synthesized chalcones showed a cytoprotective effect against Aβ toxicity (over 37%). The 2,4,5-trifluoro substituted chalcone was the most promising series since it showed a cytoprotective impact with more than 60 ± 5% of recovery of cellular viability; however, 3-fluoro substituted compound also exhibited important values of recovery (50 ± 6%). The fluorine substitution pattern was shown to be more effective for cytoprotective activity. Specifically, substitution with fluorine in the 3,5-positions turned out to be particularly effective for cytoprotection. Furthermore, fluorinated compounds inhibited the aggregation rate of Aβ, suggesting a dual effect that can be the starting point of new molecules with therapeutic potential.
Collapse
Affiliation(s)
- Yaíma Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepcion 4130000, Chile
| | - Carolina Castillo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion 4130000, Chile
| | - Jorge Fuentealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion 4130000, Chile
| | - Francisco Sáez-Orellana
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion 4130000, Chile
| | - Carlos Felipe Burgos
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion 4130000, Chile
| | - Jhon J López
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepcion 4130000, Chile
| | - Alexander F de la Torre
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepcion 4130000, Chile
| | - Claudio A Jiménez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepcion 4130000, Chile
| |
Collapse
|
45
|
Wang T, Jia H. The Sigma Receptors in Alzheimer's Disease: New Potential Targets for Diagnosis and Therapy. Int J Mol Sci 2023; 24:12025. [PMID: 37569401 PMCID: PMC10418732 DOI: 10.3390/ijms241512025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Sigma (σ) receptors are a class of unique proteins with two subtypes: the sigma-1 (σ1) receptor which is situated at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), and the sigma-2 (σ2) receptor, located in the ER-resident membrane. Increasing evidence indicates the involvement of both σ1 and σ2 receptors in the pathogenesis of Alzheimer's disease (AD), and thus these receptors represent two potentially effective biomarkers for emerging AD therapies. The availability of optimal radioligands for positron emission tomography (PET) neuroimaging of the σ1 and σ2 receptors in humans will provide tools to monitor AD progression and treatment outcomes. In this review, we first summarize the significance of both receptors in the pathophysiology of AD and highlight AD therapeutic strategies related to the σ1 and σ2 receptors. We then survey the potential PET radioligands, with an emphasis on the requirements of optimal radioligands for imaging the σ1 or σ2 receptors in humans. Finally, we discuss current challenges in the development of PET radioligands for the σ1 or σ2 receptors, and the opportunities for neuroimaging to elucidate the σ1 and σ2 receptors as novel biomarkers for early AD diagnosis, and for monitoring of disease progression and AD drug efficacy.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
- Department of Nuclear Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
46
|
Abolhasani F, Pourshojaei Y, Mohammadi F, Esmaeilpour K, Asadipour A, Ilaghi M, Shabani M. Exploring the potential of a novel phenoxyethyl piperidine derivative with cholinesterase inhibitory properties as a treatment for dementia: Insights from STZ animal model of dementia. Neurosci Lett 2023; 810:137332. [PMID: 37302565 DOI: 10.1016/j.neulet.2023.137332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, often characterized by progressive deficits in memory and cognitive functions. Cholinesterase inhibitors have been introduced as promising agents to enhance cognition and memory in both human patients and animal models of AD. In the current study, we assessed the effects of a synthetic phenoxyethyl piperidine derivative, compound 7c, as a novel dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), on learning and memory, as well as serum and hippocampal AChE levels in an animal model of AD. The model of dementia was induced by intracerebroventricular injection of streptozotocin (STZ, 2 mg/kg) to male Wistar rats. STZ-treated rats received compound 7c (3, 30, and 300 µg/kg) for five consecutive days. Passive avoidance (PA) learning and memory, as well as spatial learning and memory using Morris water maze, were evaluated. The level of AChE was measured in the serum and the left and right hippocampus. Findings demonstrated that compound 7c (300 µg/kg) was able to reverse STZ-induced impairments in PA memory, while also reduced the increased AChE level in the left hippocampus. Taken together, compound 7c appeared to act as a central AChE inhibitor, and its role in alleviating cognitive deficits in the AD animal model suggests that it may have therapeutic potential in AD dementia. Further research is required to assess the effectiveness of compound 7c in more reliable models of AD in light of these preliminary findings.
Collapse
Affiliation(s)
- Fatemeh Abolhasani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Khadijeh Esmaeilpour
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada; Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Shabani
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
47
|
Tsianou CC, Kvetina J, Radochova V, Kohoutova D, Rejchrt S, Valis M, Zdarova Karasova J, Tacheci I, Knoblochova V, Soukup O, Bures J. The effect of single and repeated doses of rivastigmine on gastric myoelectric activity in experimental pigs. PLoS One 2023; 18:e0286386. [PMID: 37262057 PMCID: PMC10234519 DOI: 10.1371/journal.pone.0286386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Rivastigmine is a pseudo-irreversible cholinesterase inhibitor used for therapy of Alzheimer's disease and non-Alzheimer dementia syndromes. In humans, rivastigmine can cause significant gastrointestinal side effects that can limit its clinical use. The aim of this study was to assess the impact of rivastigmine on gastric motor function by means of electrogastrography (EGG) in experimental pigs. METHODS Six experimental adult female pigs (Sus scrofa f. domestica, hybrids of Czech White and Landrace breeds; 3-month-old; mean weight 30.7 ± 1.2 kg) were enrolled into the study twice and created two experimental groups. In group A, a single intragastric dose of 6 mg rivastigmine hydrogen tartate was administered in the morning to fasting pigs before EGG recording. In group B, rivastigmine was administered to overnight fasting animals in a dietary bolus in the morning for 7 days (6 mg per day). On day 8, an intragastric dose of 12 mg rivastigmine was given in the morning to fasting pigs before EGG. EGG recording was accomplished by means of an EGG standalone system. Recordings from both groups were evaluated in dominant frequency and EGG power (areas of amplitudes). RESULTS In total, 1,980 one-minute EGG intervals were evaluated. In group A, basal EGG power (median 1290.5; interquartile range 736.5-2330 μV2) was significantly higher in comparison with the power of intervals T6 (882; 577-1375; p = 0.001) and T10 (992.5; 385-2859; p = 0.032). In group B, the dominant frequency increased significantly from basal values (1.97 ± 1.57 cycles per minute) to intervals T9 (3.26 ± 2.16; p < 0.001) and T10 (2.14 ± 1.16; p = 0.012), respectively. In group B, basal EGG power (median 1030.5; interquartile range 549-5093) was significantly higher in comparison with the power of intervals T7 (692.5; 434-1476; p = 0.002) and T8 (799; 435-1463 μV2; p = 0.004). CONCLUSIONS Both single as well as repeated intragastric administration of rivastigmine hydrogen tartrate caused a significant decrease of EGG power (areas of amplitudes) in experimental pigs. EGG power may serve as an indirect indicator of gastric motor competence. These findings might provide a possible explanation of rivastigmine-associated dyspepsia in humans.
Collapse
Affiliation(s)
| | - Jaroslav Kvetina
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Vera Radochova
- Animal Laboratory, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Darina Kohoutova
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Stanislav Rejchrt
- 2nd Department of Internal Medicine—Gastroenterology, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Martin Valis
- Department of Neurology, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Ilja Tacheci
- 2nd Department of Internal Medicine—Gastroenterology, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | | | - Ondrej Soukup
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Jan Bures
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
- Institute of Gastrointestinal Oncology, Military University Hospital Praha, Praha, Czech Republic
- Department of Medicine, First Faculty of Medicine, Charles University, Nové Město, Czech Republic
- Military University Hospital Praha, Praha, Czech Republic
| |
Collapse
|
48
|
Zheng L, Wu S, Jin H, Wu J, Wang X, Cao Y, Zhou Z, Jiang Y, Li L, Yang X, Shen Q, Guo S, Shen Y, Li C, Ji L. Molecular mechanisms and therapeutic potential of icariin in the treatment of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154890. [PMID: 37229892 DOI: 10.1016/j.phymed.2023.154890] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Icariin (ICA) is the main active component of Epimedium, a traditional Chinese medicine (TCM), known to enhance cognitive function in Alzheimer's disease (AD). This study aims to investigate and summarize the mechanisms through which ICA treats AD. METHODS The PubMed and CNKI databases were utilized to review the advancements in ICA's role in AD prevention and treatment by analyzing literature published between January 2005 and April 2023. To further illustrate ICA's impact on AD development, tables, and images are included to summarize the relationships between various mechanisms. RESULTS The study reveals that ICA ameliorates cognitive deficits in AD model mice by modulating Aβ via multiple pathways, including BACE-1, NO/cGMP, Wnt/Ca2+, and PI3K/Akt signaling. ICA exhibits neuroprotective properties by inhibiting neuronal apoptosis through the suppression of ER stress in AD mice, potentially linked to NF-κB, MAPK, ERK, and PERK/Eif2α signaling pathways. Moreover, ICA may safeguard neurons by attenuating mitochondrial oxidative stress injury. ICA can also enhance learning, memory, and cognition by improving synaptic structure via regulation of the PSD-95 protein. Furthermore, ICA can mitigate neuroinflammation by inactivating microglial activity through the upregulation of PPARγ, TAK1/IKK/NF-κB, and JNK/p38 MAPK signaling pathways. CONCLUSION This study indicates that ICA possesses multiple beneficial effects in AD treatment. Through the integration of pharmacological and molecular biological research, ICA may emerge as a promising candidate to expedite the advancement of TCM in the clinical management of AD.
Collapse
Affiliation(s)
- Lingyan Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Sichen Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Haichao Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jiaqi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xiaole Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yuxiao Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zhihao Zhou
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yaona Jiang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Linhong Li
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xinyue Yang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Shunyuan Guo
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical, Hangzhou 310014, Zhejiang, China.
| | - Yuejian Shen
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, Hangzhou 311106, China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China.
| |
Collapse
|
49
|
Zampieri D, Calabretti A, Romano M, Fortuna S, Collina S, Amata E, Dichiara M, Marrazzo A, Mamolo MG. Cytotoxicity Profiles and Neuroprotective Properties of the Novel Ifenprodil Analogues as Sigma Ligands. Molecules 2023; 28:molecules28083431. [PMID: 37110664 PMCID: PMC10146949 DOI: 10.3390/molecules28083431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegeneration is a slow and progressive loss of neuronal cells or their function in specific regions of the brain or in the peripheral system. Among several causes responsible for the most common neurodegenerative diseases (NDDs), cholinergic/dopaminergic pathways, but also some endogenous receptors, are often involved. In this context, sigma 1 receptor (S1R) modulators can be used as neuroprotective and antiamnesic agents. Herein, we describe the identification of novel S1R ligands endowed with antioxidant properties, potentially useful as neuroprotective agents. We also computationally assessed how the most promising compounds might interact with the S1R protein's binding sites. The in silico predicted ADME properties suggested that they could be able to cross the brain-blood-barrier (BBB), and to reach the targets. Finally, the observation that at least two novel ifenprodil analogues (5d and 5i) induce an increase of the mRNA levels of the antioxidant NRF2 and SOD1 genes in SH-SY5Y cells suggests that they might be effective agents for protecting neurons against oxidative damage.
Collapse
Affiliation(s)
- Daniele Zampieri
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Antonella Calabretti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via Valerio 28, 34127 Trieste, Italy
| | - Sara Fortuna
- Italian Institute of Technology (IIT), Via E. Melen 83, 16152 Genova, Italy
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 6 and 12, 27100 Pavia, Italy
| | - Emanuele Amata
- Department of Drug and Health Sciences, University of Catania, Viale Doria 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department of Drug and Health Sciences, University of Catania, Viale Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, Viale Doria 6, 95125 Catania, Italy
| | - Maria Grazia Mamolo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
50
|
Sharma P, Singh M. An ongoing journey of chalcone analogues as single and multi-target ligands in the field of Alzheimer's disease: A review with structural aspects. Life Sci 2023; 320:121568. [PMID: 36925061 DOI: 10.1016/j.lfs.2023.121568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disorder with progressive dementia and cognitive impairment. AD poses severe health challenge in elderly people and become one of the leading causes of death worldwide. It possesses complex pathophysiology with several hypotheses (cholinergic hypothesis, amyloid hypothesis, tau hypothesis, oxidative stress, mitochondrial dysfunction etc.). Several attempts have been made for the management of multifactorial AD. Acetylcholinesterase is the only target has been widely explored in the management of AD to the date. The current review set forth the chalcone based natural, semi-synthetic and synthetic compounds in the search of potential anti-Alzheimer's agents. The main highlights of current review emphasizes on chalcone target different enzymes and pathways like Acetylcholinesterase, β-secretase (BACE1), tau proteins, MAO, free radicals, Advanced glycation end Products (AGEs) etc. and their structure activity relationships contributing in the inhibition of above mentioned various targets of AD.
Collapse
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|