1
|
Loiola RA, Hachani J, Duban-Deweer S, Sevin E, Bugno P, Kowalska A, Rizzi E, Shimizu F, Kanda T, Mysiorek C, Mazurek M, Gosselet F. Secretome of brain microvascular endothelial cells promotes endothelial barrier tightness and protects against hypoxia-induced vascular leakage. Mol Med 2024; 30:132. [PMID: 39187765 PMCID: PMC11348522 DOI: 10.1186/s10020-024-00897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cell-based therapeutic strategies have been proposed as an alternative for brain and blood vessels repair after stroke, but their clinical application is hampered by potential adverse effects. We therefore tested the hypothesis that secretome of these cells might be used instead to still focus on cell-based therapeutic strategies. We therefore characterized the composition and the effect of the secretome of brain microvascular endothelial cells (BMECs) on primary in vitro human models of angiogenesis and vascular barrier. Two different secretome batches produced in high scale (scHSP) were analysed by mass spectrometry. Human primary CD34+-derived endothelial cells (CD34+-ECs) were used as well as in vitro models of EC monolayer (CMECs) and blood-brain barrier (BBB). Cells were also exposed to oxygen-glucose deprivation (OGD) conditions and treated with scHSP during reoxygenation. Protein yield and composition of scHSP batches showed good reproducibility. scHSP increased CD34+-EC proliferation, tubulogenesis, and migration. Proteomic analysis of scHSP revealed the presence of growth factors and proteins modulating cell metabolism and inflammatory pathways. scHSP improved the integrity of CMECs, and upregulated the expression of junctional proteins. Such effects were mediated through the activation of the interferon pathway and downregulation of Wnt signalling. Furthermore, OGD altered the permeability of both CMECs and BBB, while scHSP prevented the OGD-induced vascular leakage in both models. These effects were mediated through upregulation of junctional proteins and regulation of MAPK/VEGFR2. Finally, our results highlight the possibility of using secretome from BMECs as a therapeutic alternative to promote brain angiogenesis and to protect from ischemia-induced vascular leakage.
Collapse
Affiliation(s)
- Rodrigo Azevedo Loiola
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Johan Hachani
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Sophie Duban-Deweer
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Emmanuel Sevin
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Paulina Bugno
- Pure Biologics S.A., Duńska 11, 54-427, Wroclaw, Poland
| | | | - Eleonora Rizzi
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Caroline Mysiorek
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | | | - Fabien Gosselet
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France.
| |
Collapse
|
2
|
Xavier A, Campagna MP, Maltby VE, Kilpatrick T, Taylor BV, Butzkueven H, Ponsonby AL, Scott RJ, Jokubaitis VG, Lea RA, Lechner-Scott J. Interferon beta treatment is a potent and targeted epigenetic modifier in multiple sclerosis. Front Immunol 2023; 14:1162796. [PMID: 37325639 PMCID: PMC10266220 DOI: 10.3389/fimmu.2023.1162796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Multiple Sclerosis (MS) has a complex pathophysiology that involves genetic and environmental factors. DNA methylation (DNAm) is one epigenetic mechanism that can reversibly modulate gene expression. Cell specific DNAm changes have been associated with MS, and some MS therapies such as dimethyl fumarate can influence DNAm. Interferon Beta (IFNβ), was one of the first disease modifying therapies in multiple sclerosis (MS). However, how IFNβ reduces disease burden in MS is not fully understood and little is known about the precise effect of IFNβ treatment on methylation. Methods The objective of this study was to determine the changes in DNAm associated with INFβ use, using methylation arrays and statistical deconvolutions on two separate datasets (total ntreated = 64, nuntreated = 285). Results We show that IFNβ treatment in people with MS modifies the methylation profile of interferon response genes in a strong, targeted, and reproducible manner. Using these identified methylation differences, we constructed a methylation treatment score (MTS) that is an accurate discriminator between untreated and treated patients (Area under the curve = 0.83). This MTS is time-sensitive and in consistent with previously identified IFNβ treatment therapeutic lag. This suggests that methylation changes are required for treatment efficacy. Overrepresentation analysis found that IFNβ treatment recruits the endogenous anti-viral molecular machinery. Finally, statistical deconvolution revealed that dendritic cells and regulatory CD4+ T cells were most affected by IFNβ induced methylation changes. Discussion In conclusion, our study shows that IFNβ treatment is a potent and targeted epigenetic modifier in multiple sclerosis.
Collapse
Affiliation(s)
- Alexandre Xavier
- School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Maria Pia Campagna
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Vicki E. Maltby
- Hunter Medical Research Institute, Immune Health research program, Newcastle, NSW, Australia
- Department of Neurology, John Hunter Hospital, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Trevor Kilpatrick
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Bruce V. Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Neuro-Immunology Registry, MSBase Foundation, Melbourne, VIC, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Rodney J. Scott
- School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- New South Wales (NSW) Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| | - Vilija G. Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rodney A. Lea
- School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Centre of Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, Immune Health research program, Newcastle, NSW, Australia
- Department of Neurology, John Hunter Hospital, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
3
|
Experimental Models of In Vitro Blood-Brain Barrier for CNS Drug Delivery: An Evolutionary Perspective. Int J Mol Sci 2023; 24:ijms24032710. [PMID: 36769032 PMCID: PMC9916529 DOI: 10.3390/ijms24032710] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Central nervous system (CNS) disorders represent one of the leading causes of global health burden. Nonetheless, new therapies approved against these disorders are among the lowest compared to their counterparts. The absence of reliable and efficient in vitro blood-brain barrier (BBB) models resembling in vivo barrier properties stands out as a significant roadblock in developing successful therapy for CNS disorders. Therefore, advancement in the creation of robust and sensitive in vitro BBB models for drug screening might allow us to expedite neurological drug development. This review discusses the major in vitro BBB models developed as of now for exploring the barrier properties of the cerebral vasculature. Our main focus is describing existing in vitro models, including the 2D transwell models covering both single-layer and co-culture models, 3D organoid models, and microfluidic models with their construction, permeability measurement, applications, and limitations. Although microfluidic models are better at recapitulating the in vivo properties of BBB than other models, significant gaps still exist for their use in predicting the performance of neurotherapeutics. However, this comprehensive account of in vitro BBB models can be useful for researchers to create improved models in the future.
Collapse
|
4
|
Jana A, Wang X, Leasure JW, Magana L, Wang L, Kim YM, Dodiya H, Toth PT, Sisodia SS, Rehman J. Increased Type I interferon signaling and brain endothelial barrier dysfunction in an experimental model of Alzheimer's disease. Sci Rep 2022; 12:16488. [PMID: 36182964 PMCID: PMC9526723 DOI: 10.1038/s41598-022-20889-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Blood-brain barrier (BBB) dysfunction is emerging as a key pathogenic factor in the progression of Alzheimer's disease (AD), where increased microvascular endothelial permeability has been proposed to play an important role. However, the molecular mechanisms leading to increased brain microvascular permeability in AD are not fully understood. We studied brain endothelial permeability in female APPswe/PS1∆E9 (APP/PS1) mice which constitute a transgenic mouse model of amyloid-beta (Aβ) amyloidosis and found that permeability increases with aging in the areas showing the greatest amyloid plaque deposition. We performed an unbiased bulk RNA-sequencing analysis of brain endothelial cells (BECs) in female APP/PS1 transgenic mice. We observed that upregulation of interferon signaling gene expression pathways in BECs was among the most prominent transcriptomic signatures in the brain endothelium. Immunofluorescence analysis of isolated BECs from female APP/PS1 mice demonstrated higher levels of the Type I interferon-stimulated gene IFIT2. Immunoblotting of APP/PS1 BECs showed downregulation of the adherens junction protein VE-cadherin. Stimulation of human brain endothelial cells with interferon-β decreased the levels of the adherens junction protein VE-cadherin as well as tight junction proteins Occludin and Claudin-5 and increased barrier leakiness. Depletion of the Type I interferon receptor in human brain endothelial cells prevented interferon-β-induced VE-cadherin downregulation and restored endothelial barrier integrity. Our study suggests that Type I interferon signaling contributes to brain endothelial dysfunction in AD.
Collapse
Affiliation(s)
- Arundhati Jana
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois, Chicago, IL, 60612, USA
| | - Xinge Wang
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60612, USA.,Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL, 60607, USA
| | - Joseph W Leasure
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL, 60607, USA
| | - Lissette Magana
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL, 60607, USA
| | - Li Wang
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois, Chicago, IL, 60612, USA.,Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL, 60607, USA
| | - Young-Mee Kim
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois, Chicago, IL, 60612, USA.,Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL, 60607, USA
| | - Hemraj Dodiya
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA.,The Microbiome Center, University of Chicago, Chicago, IL, 60637, USA
| | - Peter T Toth
- Research Resources Center, University of Chicago, Chicago, IL, 60612, USA.,Department of Pharmacology and Regenerative Medicine, University of Chicago, Chicago, IL, 60612, USA
| | - Sangram S Sisodia
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA.,The Microbiome Center, University of Chicago, Chicago, IL, 60637, USA
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois, Chicago, IL, 60612, USA. .,Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60612, USA. .,Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL, 60607, USA. .,Department of Pharmacology and Regenerative Medicine, University of Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Bühler M, Runft S, Li D, Götting J, Detje CN, Nippold V, Stoff M, Beineke A, Schulz T, Kalinke U, Baumgärtner W, Gerhauser I. IFN-β Deficiency Results in Fatal or Demyelinating Disease in C57BL/6 Mice Infected With Theiler's Murine Encephalomyelitis Viruses. Front Immunol 2022; 13:786940. [PMID: 35222374 PMCID: PMC8864290 DOI: 10.3389/fimmu.2022.786940] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Type I Interferons (IFN-I) are important inducers of the antiviral immune response and immune modulators. IFN-β is the most highly expressed IFN-I in the central nervous system (CNS). The infection of SJL mice with the BeAn or the DA strain of Theiler's murine encephalomyelitis virus (TMEV) results in a progressive demyelinating disease. C57BL/6 mice are usually resistant to TMEV-induced demyelination and eliminate these strains from the CNS within several weeks. Using C57BL/6 IFN-β knockout (IFN-β-/-) mice infected with TMEV, we evaluated the role of IFN-β in neuroinfection. Despite the resistance of C57BL/6 wild type (WT) mice to TMEV infection, DA-infected IFN-β-/- mice had to be killed at 7 to 8 days post infection (dpi) due to severe clinical disease. In contrast, BeAn-infected IFN-β-/- mice survived until 98 dpi. Nevertheless at 14 dpi, BeAn-infected IFN-β-/- mice showed a stronger encephalitis and astrogliosis, higher viral load as well as higher mRNA levels of Isg15, Eif2ak2 (PKR), Tnfa, Il1b, Il10, Il12 and Ifng in the cerebrum than BeAn-infected WT mice. Moreover, the majority of IFN-β-/- mice did not clear the virus from the CNS and developed mild demyelination in the spinal cord at 98 dpi, whereas virus and lesions were absent in the spinal cord of WT mice. Persistently infected IFN-β-/- mice also had higher Isg15, Eif2ak1, Tnfa, Il1a, Il1b and Ifng mRNA levels in the spinal cord at 98 dpi than their virus-negative counterparts indicating an activation of IFN-I signaling and ongoing inflammation. Most importantly, BeAn-infected NesCre+/- IFN-βfl/fl mice, which do not express IFN-β in neurons, astrocytes and oligodendrocytes, only developed mild brain lesions similar to WT mice. Consequently, IFN-β produced by neuroectodermal cells does not seem to play a critical role in the resistance of C57BL/6 mice against fatal and demyelinating disease induced by TMEV strains.
Collapse
Affiliation(s)
- Melanie Bühler
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sandra Runft
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Dandan Li
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jasper Götting
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Claudia N Detje
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Vanessa Nippold
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Melanie Stoff
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Andreas Beineke
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | | | - Ingo Gerhauser
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
6
|
Mapunda JA, Tibar H, Regragui W, Engelhardt B. How Does the Immune System Enter the Brain? Front Immunol 2022; 13:805657. [PMID: 35273596 PMCID: PMC8902072 DOI: 10.3389/fimmu.2022.805657] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple Sclerosis (MS) is considered the most frequent inflammatory demyelinating disease of the central nervous system (CNS). It occurs with a variable prevalence across the world. A rich armamentarium of disease modifying therapies selectively targeting specific actions of the immune system is available for the treatment of MS. Understanding how and where immune cells are primed, how they access the CNS in MS and how immunomodulatory treatments affect neuroinflammation requires a proper knowledge on the mechanisms regulating immune cell trafficking and the special anatomy of the CNS. The brain barriers divide the CNS into different compartments that differ with respect to their accessibility to cells of the innate and adaptive immune system. In steady state, the blood-brain barrier (BBB) limits immune cell trafficking to activated T cells, which can reach the cerebrospinal fluid (CSF) filled compartments to ensure CNS immune surveillance. In MS immune cells breach a second barrier, the glia limitans to reach the CNS parenchyma. Here we will summarize the role of the endothelial, epithelial and glial brain barriers in regulating immune cell entry into the CNS and which immunomodulatory treatments for MS target the brain barriers. Finally, we will explore current knowledge on genetic and environmental factors that may influence immune cell entry into the CNS during neuroinflammation in Africa.
Collapse
Affiliation(s)
| | - Houyam Tibar
- Medical School of Rabat, Mohamed 5 University, Rabat, Morocco.,Hôpital des spécialités de Rabat, Ibn Sina University Hospital of Rabat, Rabat, Morocco
| | - Wafa Regragui
- Medical School of Rabat, Mohamed 5 University, Rabat, Morocco.,Hôpital des spécialités de Rabat, Ibn Sina University Hospital of Rabat, Rabat, Morocco
| | | |
Collapse
|
7
|
Nishihara H, Engelhardt B. Brain Barriers and Multiple Sclerosis: Novel Treatment Approaches from a Brain Barriers Perspective. Handb Exp Pharmacol 2022; 273:295-329. [PMID: 33237504 DOI: 10.1007/164_2020_407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiple sclerosis (MS) is considered a prototypic organ specific autoimmune disease targeting the central nervous system (CNS). Blood-brain barrier (BBB) breakdown and enhanced immune cell infiltration into the CNS parenchyma are early hallmarks of CNS lesion formation. Therapeutic targeting of immune cell trafficking across the BBB has proven a successful therapy for the treatment of MS, but comes with side effects and is no longer effective once patients have entered the progressive phase of the disease. Beyond the endothelial BBB, epithelial and glial brain barriers establish compartments in the CNS that differ in their accessibility to the immune system. There is increasing evidence that brain barrier abnormalities persist during the progressive stages of MS. Here, we summarize the role of endothelial, epithelial, and glial brain barriers in maintaining CNS immune privilege and our current knowledge on how impairment of these barriers contributes to MS pathogenesis. We discuss how therapeutic stabilization of brain barriers integrity may improve the safety of current therapeutic regimes for treating MS. This may also allow for the development of entirely novel therapeutic approaches aiming to restore brain barriers integrity and thus CNS homeostasis, which may be specifically beneficial for the treatment of progressive MS.
Collapse
|
8
|
Loiola RA, García-Gabilondo M, Grayston A, Bugno P, Kowalska A, Duban-Deweer S, Rizzi E, Hachani J, Sano Y, Shimizu F, Kanda T, Mysiorek C, Mazurek MP, Rosell A, Gosselet F. Secretome of endothelial progenitor cells from stroke patients promotes endothelial barrier tightness and protects against hypoxia-induced vascular leakage. Stem Cell Res Ther 2021; 12:552. [PMID: 34702368 PMCID: PMC8549346 DOI: 10.1186/s13287-021-02608-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/25/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cell-based therapeutic strategies have been proposed as an alternative for brain repair after stroke, but their clinical application has been hampered by potential adverse effects in the long term. The present study was designed to test the effect of the secretome of endothelial progenitor cells (EPCs) from stroke patients (scCM) on in vitro human models of angiogenesis and vascular barrier. METHODS Two different scCM batches were analysed by mass spectrometry and a proteome profiler. Human primary CD34+-derived endothelial cells (CD34+-ECs) were used for designing angiogenesis studies (proliferation, migration, and tubulogenesis) or in vitro models of EC monolayer (confluent monolayer ECs-CMECs) and blood-brain barrier (BBB; brain-like ECs-BLECs). Cells were treated with scCM (5 μg/mL) or protein-free endothelial basal medium (scEBM-control). CMECs or BLECs were exposed (6 h) to oxygen-glucose deprivation (OGD) conditions (1% oxygen and glucose-free medium) or normoxia (control-5% oxygen, 1 g/L of glucose) and treated with scCM or scEBM during reoxygenation (24 h). RESULTS The analysis of different scCM batches showed a good reproducibility in terms of protein yield and composition. scCM increased CD34+-EC proliferation, tubulogenesis, and migration compared to the control (scEBM). The proteomic analysis of scCM revealed the presence of growth factors and molecules modulating cell metabolism and inflammatory pathways. Further, scCM decreased the permeability of CMECs and upregulated the expression of the junctional proteins such as occludin, VE-cadherin, and ZO-1. Such effects were possibly mediated through the activation of the interferon pathway and a moderate downregulation of Wnt signalling. Furthermore, OGD increased the permeability of both CMECs and BLECs, while scCM prevented the OGD-induced vascular leakage in both models. These effects were possibly mediated through the upregulation of junctional proteins and the regulation of MAPK/VEGFR2 activity. CONCLUSION Our results suggest that scCM promotes angiogenesis and the maturation of newly formed vessels while restoring the BBB function in ischemic conditions. In conclusion, our results highlight the possibility of using EPC-secretome as a therapeutic alternative to promote brain angiogenesis and protect from ischemia-induced vascular leakage.
Collapse
Affiliation(s)
| | - Miguel García-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain
| | - Alba Grayston
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain
| | - Paulina Bugno
- Pure Biologics S.A., Duńska 11, 54-427, Wroclaw, Poland
| | | | - Sophie Duban-Deweer
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | - Eleonora Rizzi
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | - Johan Hachani
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Caroline Mysiorek
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | | | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain
| | - Fabien Gosselet
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France.
- Laboratory of the Blood-Brain Barrier, Sciences Faculty Jean Perrin, Artois University, Lens, France.
| |
Collapse
|
9
|
Influenza A Virus (H1N1) Infection Induces Microglial Activation and Temporal Dysbalance in Glutamatergic Synaptic Transmission. mBio 2021; 12:e0177621. [PMID: 34700379 PMCID: PMC8546584 DOI: 10.1128/mbio.01776-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus (IAV) causes respiratory tract disease and is responsible for seasonal and reoccurring epidemics affecting all age groups. Next to typical disease symptoms, such as fever and fatigue, IAV infection has been associated with behavioral alterations presumably contributing to the development of major depression. Previous experiments using IAV/H1N1 infection models have shown impaired hippocampal neuronal morphology and cognitive abilities, but the underlying pathways have not been fully described. In this study, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes ample peripheral immune response followed by a temporary blood-brain barrier disturbance. Although histological examination did not reveal obvious pathological processes in the brains of IAV-infected mice, detailed multidimensional flow cytometric characterization of immune cells uncovered subtle alterations in the activation status of microglial cells. More specifically, we detected an altered expression pattern of major histocompatibility complex classes I and II, CD80, and F4/80 accompanied by elevated mRNA levels of CD36, CD68, C1QA, and C3, suggesting evolved synaptic pruning. To closer evaluate how these profound changes affect synaptic balance, we established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry. The introduction of this novel technique enabled us to simultaneously quantify the abundance of pre- and postsynapses from distinct brain regions. Our data reveal a significant reduction of VGLUT1 in excitatory presynaptic terminals in the cortex and hippocampus, identifying a subtle dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations. IMPORTANCE Influenza A virus (IAV) causes mainly respiratory tract disease with fever and fatigue but is also associated with behavioral alterations in humans. Here, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes peripheral immune response followed by a temporary blood-brain barrier disturbance. Characterization of immune cells uncovered subtle alterations in the activation status of microglia cells that might reshape neuronal synapses. We established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry to more closely study the synapses. Thus, we detected a specific dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations.
Collapse
|
10
|
Yoshimura S, Nakagawa S, Takahashi T, Tanaka K, Tsujino A. FTY720 Exacerbates Blood-Brain Barrier Dysfunction Induced by IgG Derived from Patients with NMO and MOG Disease. Neurotox Res 2021; 39:1300-1309. [PMID: 33999356 DOI: 10.1007/s12640-021-00373-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Neuromyelitis optica (NMO) and myelin oligodendrocyte glycoprotein (MOG) antibody-related disease (MOG disease) are inflammatory demyelinating diseases of the central nervous system (CNS). The disruption of the blood-brain barrier (BBB) is considered a key step in the pathogenesis of NMO and MOG disease. Although a previous report indicated that circulating immunoglobulin G (IgG) from NMO patients disrupts the BBB, the effect of IgG from patients with MOG disease has not been elucidated. In addition, it has been reported that some disease-modifying drugs for multiple sclerosis are harmful to NMO by an unknown mechanism. This study aimed to examine the effects of IgG from patients with NMO or MOG disease on BBB integrity. We also examined the effects of disease-modifying drugs (fingolimod [FTY720] and dimethyl fumarate [DMF]) on IgG-treated brain capillary endothelial cells. We used in vitro BBB models constructed with rat brain capillary endothelial cells (RBECs) to examine the effects on BBB function. The integrity of the RBECs was assessed by measuring transendothelial resistance (TEER) and cell viability. NMO or MOG-IgG treatment decreased TEER and cell viability in the endothelial monolayer model. Although FTY720 and DMF did not affect barrier function or cell viability under normal conditions, disease IgG-induced barrier dysfunctions were worsened by the presence of FTY720. These data indicate that circulating IgG in patients with NMO or MOG disease worsens BBB function. Furthermore, in patients with NMO or MOG disease treated with FTY720, changes in the integrity of the BBB were found to exacerbate the disease.
Collapse
Affiliation(s)
- Shunsuke Yoshimura
- Department of Neurology and Strokology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai, Miyagi, 980-0872, Japan.,Department of Neurology, National Hospital Organization Yonezawa Hospital, 992-1202, Misawa, Yonezawa, Yamagata, 26100-1, Japan
| | - Keiko Tanaka
- Department of Animal Model Development, Brain Research Institute, Niigata University, 757 Asahimachidori, Niigata Chuo-ku, Niigata, 951-8122, Japan
| | - Akira Tsujino
- Department of Neurology and Strokology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
11
|
Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the Blood-Brain Barrier. Int J Mol Sci 2021; 22:2681. [PMID: 33800954 PMCID: PMC7961671 DOI: 10.3390/ijms22052681] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Emerging data indicate that neurological complications occur as a consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The blood-brain barrier (BBB) is a critical interface that regulates entry of circulating molecules into the CNS, and is regulated by signals that arise from the brain and blood compartments. In this review, we discuss mechanisms by which SARS-CoV-2 interactions with the BBB may contribute to neurological dysfunction associated with coronavirus disease of 2019 (COVID-19), which is caused by SARS-CoV-2. We consider aspects of peripheral disease, such as hypoxia and systemic inflammatory response syndrome/cytokine storm, as well as CNS infection and mechanisms of viral entry into the brain. We also discuss the contribution of risk factors for developing severe COVID-19 to BBB dysfunction that could increase viral entry or otherwise damage the brain.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Elizabeth M. Rhea
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Rachel C. Knopp
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - William A. Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
12
|
Hayden L, Semenoff T, Schultz V, Merz SF, Chapple KJ, Rodriguez M, Warrington AE, Shi X, McKimmie CS, Edgar JM, Thümmler K, Linington C, Pingen M. Lipid-specific IgMs induce antiviral responses in the CNS: implications for progressive multifocal leukoencephalopathy in multiple sclerosis. Acta Neuropathol Commun 2020; 8:135. [PMID: 32792006 PMCID: PMC7427287 DOI: 10.1186/s40478-020-01011-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/01/2020] [Indexed: 01/07/2023] Open
Abstract
Progressive multi-focal leukoencephalopathy (PML) is a potentially fatal encephalitis caused by JC polyomavirus (JCV). PML principally affects people with a compromised immune system, such as patients with multiple sclerosis (MS) receiving treatment with natalizumab. However, intrathecal synthesis of lipid-reactive IgM in MS patients is associated with a markedly lower incidence of natalizumab-associated PML compared to those without this antibody repertoire. Here we demonstrate that a subset of lipid-reactive human and murine IgMs induce a functional anti-viral response that inhibits replication of encephalitic Alpha and Orthobunyaviruses in multi-cellular central nervous system cultures. These lipid-specific IgMs trigger microglia to produce IFN-β in a cGAS-STING-dependent manner, which induces an IFN-α/β-receptor 1-dependent antiviral response in glia and neurons. These data identify lipid-reactive IgM as a mediator of anti-viral activity in the nervous system and provide a rational explanation why intrathecal synthesis of lipid-reactive IgM correlates with a reduced incidence of iatrogenic PML in MS.
Collapse
|
13
|
The Innate Immune Response to Herpes Simplex Virus 1 Infection Is Dampened in the Newborn Brain and Can Be Modulated by Exogenous Interferon Beta To Improve Survival. mBio 2020; 11:mBio.00921-20. [PMID: 32457247 PMCID: PMC7251210 DOI: 10.1128/mbio.00921-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus (HSV) is a ubiquitous human pathogen affecting 50 to 80% of the population in North America and Europe. HSV infection is commonly asymptomatic in the adult population but can result in fatal encephalitis in the newborn. Current treatment with acyclovir has improved mortality in the newborn; however, severe neurologic sequelae are still a major concern following HSV encephalitis. For this reason, there is a critical need to better understand the underlying differences in the immune response between the two age groups that could be used to develop more effective treatments. In this study, we investigated differences in the innate immune response to viral infection in the brains of newborn and adult mice. We found that, similar to humans, newborn mice are more susceptible to HSV infection than the adult. Increased susceptibility was associated with dampened innate immune responses in the newborn brain that could be rescued by administering interferon beta. Newborns are particularly susceptible to severe forms of herpes simplex virus 1 (HSV-1) infection, including encephalitis and multisystemic disseminated disease. The underlying age-dependent differences in the immune response that explain this increased susceptibility relative to the adult population remain largely understudied. Using a murine model of HSV-1 infection, we found that newborn mice are largely susceptible to intracranial and intraperitoneal challenge while adult mice are highly resistant. This age-dependent difference correlated with differential basal-level expression of components of innate immune signaling pathways, which resulted in dampened interferon (IFN) signaling in the newborn brain. To explore the possibility of modulating the IFN response in the newborn brain to recapitulate the adult phenotype, we administered exogenous IFN-β in the context of disseminated HSV-1 infection. IFN-β treatment resulted in significantly increased survival and delayed viral neuroinvasion in the newborn. These effects were associated with changes in the type I IFN response in the brain, reduced viral replication in the periphery, and the stabilization of the blood-brain barrier (BBB). Our study reveals important age-dependent differences in the innate immune response to HSV-1 infection and suggests a contribution of the BBB and the brain parenchyma in mediating the increased susceptibility to HSV-1 infection observed in the newborn. These results could provide the basis for potential new therapeutic strategies for life-threatening HSV-1 infection in newborns.
Collapse
|
14
|
Makinde HM, Winter DR, Procissi D, Mike EV, Stock AD, Kando MJ, Gadhvi GT, Droho S, Bloomfield CL, Dominguez ST, Mayr MG, Lavine JA, Putterman C, Cuda CM. A Novel Microglia-Specific Transcriptional Signature Correlates With Behavioral Deficits in Neuropsychiatric Lupus. Front Immunol 2020; 11:230. [PMID: 32174913 PMCID: PMC7055359 DOI: 10.3389/fimmu.2020.00230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Neuropsychiatric symptoms of systemic lupus erythematosus (NP-SLE) affect over one-half of SLE patients, yet underlying mechanisms remain largely unknown. We demonstrate that SLE-prone mice (CReCOM) develop NP-SLE, including behavioral deficits prior to systemic autoimmunity, reduced brain volumes, decreased vascular integrity, and brain-infiltrating leukocytes. NP-SLE microglia exhibit numerical expansion, increased synaptic uptake, and a more metabolically active phenotype. Microglia from multiple SLE-prone models express a "NP-SLE signature" unrelated to type I interferon. Rather, the signature is associated with lipid metabolism, scavenger receptor activity and downregulation of inflammatory and chemotaxis processes, suggesting a more regulatory, anti-inflammatory profile. NP-SLE microglia also express genes associated with disease-associated microglia (DAM), a subset of microglia thought to be instrumental in neurodegenerative diseases. Further, expression of "NP-SLE" and "DAM" signatures correlate with the severity of behavioral deficits in young SLE-prone mice prior to overt systemic disease. Our data are the first to demonstrate the predictive value of our newly identified microglia-specific "NP-SLE" and "DAM" signatures as a surrogate for NP-SLE clinical outcomes and suggests that microglia-intrinsic defects precede contributions from systemic SLE for neuropsychiatric manifestations.
Collapse
Affiliation(s)
- Hadijat M Makinde
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Deborah R Winter
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniele Procissi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Elise V Mike
- Division of Rheumatology, Department of Medicine, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Ariel D Stock
- Division of Rheumatology, Department of Medicine, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Mary J Kando
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gaurav T Gadhvi
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Christina L Bloomfield
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Salina T Dominguez
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Maximilian G Mayr
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Chaim Putterman
- Division of Rheumatology, Department of Medicine, Albert Einstein College of Medicine, The Bronx, NY, United States.,Research Division, Azrieli Faculty of Medicine and Galilee Medical Center, Nahariya, Israel
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
15
|
Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol 2018; 316:C135-C153. [PMID: 30379577 DOI: 10.1152/ajpcell.00136.2018] [Citation(s) in RCA: 481] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As part of the neurovascular unit, the blood-brain barrier (BBB) is a unique, dynamic regulatory boundary that limits and regulates the exchange of molecules, ions, and cells between the blood and the central nervous system. Disruption of the BBB plays an important role in the development of neurological dysfunction in ischemic stroke. Blood-borne substances and cells have restricted access to the brain due to the presence of tight junctions between the endothelial cells of the BBB. Following stroke, there is loss of BBB tight junction integrity, leading to increased paracellular permeability, which results in vasogenic edema, hemorrhagic transformation, and increased mortality. Thus, understanding principal mediators and molecular mechanisms involved in BBB disruption is critical for the development of novel therapeutics to treat ischemic stroke. This review discusses the current knowledge of how neuroinflammation contributes to BBB damage in ischemic stroke. Specifically, we provide an updated overview of the role of cytokines, chemokines, oxidative and nitrosative stress, adhesion molecules, matrix metalloproteinases, and vascular endothelial growth factor as well as the role of different cell types in the regulation of BBB permeability in ischemic stroke.
Collapse
Affiliation(s)
- Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Kimberly E Hawkins
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Sylvain Doré
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida.,Departments of Anesthesiology, Neurology, Psychiatry, Psychology, and Pharmaceutics, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
16
|
Fu BM. Transport Across the Blood-Brain Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:235-259. [PMID: 30315549 DOI: 10.1007/978-3-319-96445-4_13] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the microenvironment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-borne neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This chapter summarized the unique structures of the BBB; described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB and the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents, and drug carriers; and presented recently developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Recent findings for modulation of the BBB permeability by chemical and physical stimuli were described. Finally, drug delivery strategies through specific trans-BBB routes were discussed.
Collapse
Affiliation(s)
- Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA.
| |
Collapse
|
17
|
Immortalized endothelial cell lines for in vitro blood–brain barrier models: A systematic review. Brain Res 2016; 1642:532-545. [DOI: 10.1016/j.brainres.2016.04.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/05/2016] [Accepted: 04/12/2016] [Indexed: 12/18/2022]
|
18
|
Abstract
In autoimmune neurologic disorders, the blood-brain barrier (BBB) plays a central role in immunopathogenesis, since this vascular interface is an entry path for cells and effector molecules of the peripheral immune system to reach the target organ, the central nervous system (CNS). The BBB's unique anatomic structure and the tightly regulated interplay of its cellular and acellular components allow for maintenance of brain homeostasis, regulation of influx and efflux, and protection from harm; these ensure an optimal environment for the neuronal network to function properly. In both health and disease, the BBB acts as mediator between the periphery and the CNS. For example, immune cell trafficking through the cerebral vasculature is essential to clear microbes or cell debris from neural tissues, while poorly regulated cellular transmigration can underlie or worsen CNS pathology. In this chapter, we focus on the specialized multicellular structure and function of the BBB/neurovascular unit and discuss how BBB breakdown can precede or be a consequence of neuroinflammation. We introduce the blood-cerebrospinal fluid barrier and include a brief aside about evolutionary aspects of barrier formation and refinements. Lastly, since restoration of barrier function is considered key to ameliorate neurologic disease, we speculate about new therapeutic avenues to repair a damaged BBB.
Collapse
Affiliation(s)
| | - Ajay Verma
- Biomarkers and Experimental Medicine, Biogen, Cambridge, MA, USA
| | | |
Collapse
|
19
|
Disruption in the Blood-Brain Barrier: The Missing Link between Brain and Body Inflammation in Bipolar Disorder? Neural Plast 2015; 2015:708306. [PMID: 26075104 PMCID: PMC4444594 DOI: 10.1155/2015/708306] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 01/01/2023] Open
Abstract
The blood-brain barrier (BBB) regulates the transport of micro- and macromolecules between the peripheral blood and the central nervous system (CNS) in order to maintain optimal levels of essential nutrients and neurotransmitters in the brain. In addition, the BBB plays a critical role protecting the CNS against neurotoxins. There has been growing evidence that BBB disruption is associated with brain inflammatory conditions such as Alzheimer's disease and multiple sclerosis. Considering the increasing role of inflammation and oxidative stress in the pathophysiology of bipolar disorder (BD), here we propose a novel model wherein transient or persistent disruption of BBB integrity is associated with decreased CNS protection and increased permeability of proinflammatory (e.g., cytokines, reactive oxygen species) substances from the peripheral blood into the brain. These events would trigger the activation of microglial cells and promote localized damage to oligodendrocytes and the myelin sheath, ultimately compromising myelination and the integrity of neural circuits. The potential implications for research in this area and directions for future studies are discussed.
Collapse
|
20
|
Lazear HM, Daniels BP, Pinto AK, Huang AC, Vick SC, Doyle SE, Gale M, Klein RS, Diamond MS. Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Sci Transl Med 2015; 7:284ra59. [PMID: 25904743 PMCID: PMC4435724 DOI: 10.1126/scitranslmed.aaa4304] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although interferon-λ [also known as type III interferon or interleukin-28 (IL-28)/IL-29] restricts infection by several viruses, its inhibitory mechanism has remained uncertain. We used recombinant interferon-λ and mice lacking the interferon-λ receptor (IFNLR1) to evaluate the effect of interferon-λ on infection with West Nile virus, an encephalitic flavivirus. Cell culture studies in mouse keratinocytes and dendritic cells showed no direct antiviral effect of exogenous interferon-λ, even though expression of interferon-stimulated genes was induced. We observed no differences in West Nile virus burden between wild-type and Ifnlr1(-/-) mice in the draining lymph nodes, spleen, or blood. We detected increased West Nile virus infection in the brain and spinal cord of Ifnlr1(-/-) mice, yet this was not associated with a direct antiviral effect in mouse neurons. Instead, we observed an increase in blood-brain barrier permeability in Ifnlr1(-/-) mice. Treatment of mice with pegylated interferon-λ2 resulted in decreased blood-brain barrier permeability, reduced West Nile virus infection in the brain without affecting viremia, and improved survival against lethal virus challenge. An in vitro model of the blood-brain barrier showed that interferon-λ signaling in mouse brain microvascular endothelial cells increased transendothelial electrical resistance, decreased virus movement across the barrier, and modulated tight junction protein localization in a protein synthesis- and signal transducer and activator of transcription 1 (STAT1)-independent manner. Our data establish an indirect antiviral function of interferon-λ in which noncanonical signaling through IFNLR1 tightens the blood-brain barrier and restricts viral neuroinvasion and pathogenesis.
Collapse
Affiliation(s)
- Helen M. Lazear
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian P. Daniels
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amelia K. Pinto
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albert C. Huang
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sarah C. Vick
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean E. Doyle
- ZymoGenetics, a Bristol-Myers Squibb Company, Seattle, WA 98102, USA
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Robyn S. Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
21
|
Abnormal blood-brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. NEUROIMAGE-CLINICAL 2013; 4:182-9. [PMID: 24371801 PMCID: PMC3872721 DOI: 10.1016/j.nicl.2013.12.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 12/28/2022]
Abstract
Objectives To investigate whether blood–brain barrier (BBB) permeability is disrupted in normal appearing white matter in MS patients, when compared to healthy controls and whether it is correlated with MS clinical characteristics. Methods Dynamic contrast-enhanced MRI was used to measure BBB permeability in 27 patients with MS and compared to 24 matched healthy controls. Results Permeability measured as Ktrans was significantly higher in periventricular normal appearing white matter (NAWM) and thalamic gray matter in MS patients when compared to healthy controls, with periventricular NAWM showing the most pronounced difference. Recent relapse coincided with significantly higher permeability in periventricular NAWM, thalamic gray matter, and MS lesions. Immunomodulatory treatment and recent relapse were significant predictors of permeability in MS lesions and periventricular NAWM. Our results suggest that after an MS relapse permeability gradually decreases, possibly an effect of immunomodulatory treatment. Conclusions Our results emphasize the importance of BBB pathology in MS, which we find to be most prominent in the periventricular NAWM, an area prone to development of MS lesions. Both the facts that recent relapse appears to cause widespread BBB disruption and that immunomodulatory treatment seems to attenuate this effect indicate that BBB permeability is intricately linked to the presence of MS relapse activity. This may reveal further insights into the pathophysiology of MS. BBB permeability is higher in MS Normal Appearing White matter compared to controls. BBB permeability is correlated with the number of days since clinical MS relapse. BBB permeability seems to be affected by treatment. We propose a more central role of BBB defects in the etiology of MS.
Collapse
|
22
|
Mehling M, Fritz S, Hafner P, Eichin D, Yonekawa T, Klimkait T, Lindberg RLP, Kappos L, Hess C. Preserved antigen-specific immune response in patients with multiple sclerosis responding to IFNβ-therapy. PLoS One 2013; 8:e78532. [PMID: 24223820 PMCID: PMC3818403 DOI: 10.1371/journal.pone.0078532] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/16/2013] [Indexed: 01/24/2023] Open
Abstract
Background Interferon-beta (IFNβ) regulates the expression of a complex set of pro- as well as anti-inflammatory genes. In cohorts of MS patients unstratified for therapeutic response to IFNβ, normal vaccine-specific immune responses have been observed. Data capturing antigen-specific immune responses in cohorts of subjects defined by response to IFNβ-therapy are not available. Objective To assess antigen-specific immune responses in a cohort of MS patients responding clinically and radiologically to IFNβ. Methods In 26 MS patients, clinical and MRI disease activity were assessed before and under treatment with IFNβ. Humoral and cellular immune response to influenza vaccine was prospectively characterized in these individuals, and 33 healthy controls by influenza-specific Enzyme-Linked Immunosorbent Assay (ELISA) and Enzyme Linked Immuno Spot Technique (ELISPOT). Results Related to pre-treatment disease activity, IFNβ reduced clinical and radiological MS disease-activity. Following influenza vaccination, frequencies of influenza-specific T cells and concentrations of anti-influenza A and B IgM and IgG increased comparably in MS-patients and in healthy controls. Conclusions By showing in a cohort of MS-patients responding to IFNβ vaccine-specific immune responses comparable to controls, this study indicates that antigen-specific immune responses can be preserved under successful IFNβ-therapy.
Collapse
Affiliation(s)
- Matthias Mehling
- Immunobiology Laboratory, Department of Biomedicine and Medical Outpatient Department, University Hospital Basel, Basel, Switzerland
- Department of Neurology and Clinical Neuroimmunology Laboratory/Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Stefanie Fritz
- Immunobiology Laboratory, Department of Biomedicine and Medical Outpatient Department, University Hospital Basel, Basel, Switzerland
| | - Patricia Hafner
- Department of Neurology and Clinical Neuroimmunology Laboratory/Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Dominik Eichin
- Immunobiology Laboratory, Department of Biomedicine and Medical Outpatient Department, University Hospital Basel, Basel, Switzerland
| | - Tomomi Yonekawa
- Medical Image Analysis Center, University Hospital Basel, Basel, Switzerland
| | - Thomas Klimkait
- Institute of Medical Microbiology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Raija L. P. Lindberg
- Department of Neurology and Clinical Neuroimmunology Laboratory/Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Ludwig Kappos
- Department of Neurology and Clinical Neuroimmunology Laboratory/Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- * E-mail: (CH); (LK)
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine and Medical Outpatient Department, University Hospital Basel, Basel, Switzerland
- * E-mail: (CH); (LK)
| |
Collapse
|
23
|
Lin CH, Kadakia S, Frieri M. New insights into an autoimmune mechanism, pharmacological treatment and relationship between multiple sclerosis and inflammatory bowel disease. Autoimmun Rev 2013; 13:114-6. [PMID: 24129036 DOI: 10.1016/j.autrev.2013.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 09/22/2013] [Indexed: 01/26/2023]
Abstract
Inflammatory bowel disease (IBD) and multiple sclerosis (MS) are autoimmune diseases with a close relationship to their disease pattern and immunologic cascade with considerable morbidity and mortality. This article provides insight of why tumor necrosis factor blockers couldn't work in multiple sclerosis and why interferon-beta doesn't work in inflammatory bowel disease. In this article, we provide a detailed review of the linkage and potential interchangeable medication between IBD and MS in addition to Natalizumab, Trichuris suis egg therapy and vitamin D. Different treatment strategies may have potential in treating both diseases in the future.
Collapse
Affiliation(s)
- Chen Hsing Lin
- Department of Medicine, Department of Neurology and Division of Allergy Immunology, Nassau University Medical Center, East Meadow, NY, USA.
| | | | | |
Collapse
|
24
|
Gene therapy of multiple sclerosis using interferon β-secreting human bone marrow mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:696738. [PMID: 23710456 PMCID: PMC3654641 DOI: 10.1155/2013/696738] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/03/2013] [Indexed: 01/01/2023]
Abstract
Interferon-beta (IFN-β), a well-established standard treatment for multiple sclerosis (MS), has proved to exhibit clinical efficacy. In this study, we first evaluated the therapeutic effects for MS using human bone marrow-derived mesenchymal stem cells (hBM-MSCs) as delivery vehicles with lesion-targeting capability and IFN-β as therapeutic gene. We also engineered hBM-MSCs to secret IFN-β (MSCs-IFNβ) via adenoviral transduction and confirmed the secretory capacity of MSCs-IFNβ by an ELISA assay. MSCs-IFNβ-treated mice showed inhibition of experimental autoimmune encephalomyelitis (EAE) onset, and the maximum and average score for all animals in each group was significantly lower in the MSCs-IFNβ-treated EAE mice when compared with the MSCs-GFP-treated EAE mice. Inflammatory infiltration and demyelination in the lumbar spinal cord also significantly decreased in the MSCs-IFNβ-treated EAE mice compared to PBS- or MSCs-GFP-treated EAE mice. Moreover, MSCs-IFNβ treatment enhanced the immunomodulatory effects, which suppressed proinflammatory cytokines (IFN-γ and TNF-α) and conversely increased anti-inflammatory cytokines (IL-4 and IL-10). Importantly, injected MSCs-IFNβ migrated into inflamed CNS and significantly reduced further injury of blood-brain barrier (BBB) permeability in EAE mice. Thus, our results provide the rationale for designing novel experimental protocols to enhance the therapeutic effects for MS using hBM-MSCs as an effective gene vehicle to deliver the therapeutic cytokines.
Collapse
|
25
|
Costa VV, Fagundes CT, Souza DG, Teixeira MM. Inflammatory and innate immune responses in dengue infection: protection versus disease induction. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1950-61. [PMID: 23567637 DOI: 10.1016/j.ajpath.2013.02.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 01/28/2023]
Abstract
Dengue disease is a mosquito-borne viral disease of expanding geographical range and incidence. Infection by one of the four serotypes of dengue virus induces a spectrum of disease manifestations, ranging from asymptomatic to life-threatening Dengue hemorrhagic fever/dengue shock syndrome. Many efforts have been made to elucidate several aspects of dengue virus-induced disease, but the pathogenesis of disease is complex and remains unclear. Understanding the mechanisms involved in the early stages of infection is crucial to determine and develop safe therapeutics to prevent the severe outcomes of disease without interfering with control of infection. In this review, we discuss the dual role of the innate and inflammatory pathways activated during dengue disease in mediating both protection and exacerbation of disease. We show that some mediators involved in each of these responses differ substantially, suggesting that interfering in disease-associated immune pathways may represent a potential therapeutic opportunity for the treatment of severe dengue.
Collapse
Affiliation(s)
- Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
26
|
|
27
|
Daneman R. The blood-brain barrier in health and disease. Ann Neurol 2012; 72:648-72. [DOI: 10.1002/ana.23648] [Citation(s) in RCA: 482] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 12/12/2022]
|
28
|
Gesuete R, Packard AEB, Vartanian KB, Conrad VK, Stevens SL, Bahjat FR, Yang T, Stenzel-Poore MP. Poly-ICLC preconditioning protects the blood-brain barrier against ischemic injury in vitro through type I interferon signaling. J Neurochem 2012; 123 Suppl 2:75-85. [PMID: 23050645 DOI: 10.1111/j.1471-4159.2012.07946.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Preconditioning with a low dose of harmful stimulus prior to injury induces tolerance to a subsequent ischemic challenge resulting in neuroprotection against stroke. Experimental models of preconditioning primarily focus on neurons as the cellular target of cerebral protection, while less attention has been paid to the cerebrovascular compartment, whose role in the pathogenesis of ischemic brain injury is crucial. We have shown that preconditioning with polyinosinic polycytidylic acid (poly-ICLC) protects against cerebral ischemic damage. To delineate the mechanism of poly-ICLC protection, we investigated whether poly-ICLC preconditioning preserves the function of the blood-brain barrier (BBB) in response to ischemic injury. Using an in vitro BBB model, we found that poly-ICLC treatment prior to exposure to oxygen-glucose deprivation maintained the paracellular and transcellular transport across the endothelium and attenuated the drop in transendothelial electric resistance. We found that poly-ICLC treatment induced interferon (IFN) β mRNA expression in astrocytes and microglia and that type I IFN signaling in brain microvascular endothelial cells was required for protection. Importantly, this implicates a potential mechanism underlying neuroprotection in our in vivo experimental stroke model, where type I IFN signaling is required for poly-ICLC-induced neuroprotection against ischemic injury. In conclusion, we are the first to show that preconditioning with poly-ICLC attenuates ischemia-induced BBB dysfunction. This mechanism is likely an important feature of poly-ICLC-mediated neuroprotection and highlights the therapeutic potential of targeting BBB signaling pathways to protect the brain against stroke.
Collapse
Affiliation(s)
- Raffaella Gesuete
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Huge emphasis has been placed on the role of the adaptive immune system in dengue pathogenesis. Yet there is increasing evidence for the importance of the innate immune system in regulating dengue infection and possibly influencing the disease. This review focuses on the interplay between the innate immune system and dengue and highlights the role of soluble immunological mediators. Type I and type II interferons of the innate immune system demonstrate non-overlapping roles in dengue infection. Furthermore, while some IFN responses to dengue are protective, others may exert disease-related effects on the host. But aside from interferons, a number of cytokines have also been implicated in dengue pathogenesis. Our expanding knowledge of cytokines indicates that these soluble mediators act upon a complicated network of events to provoke the disease. This cytokine storm is generally attributed to massive T cell activation as an outcome of secondary infection. However, there is reason to believe that innate immune response-derived cytokines also have contributory effects, especially in the context of severe cases of primary dengue infection. Another less popular but interesting perspective on dengue pathogenesis is the effect of mosquito feeding on host immune responses and viral infection. Various studies have shown that soluble factors from vector saliva have the capacity to alter immune reactions and thereby influence pathogen transmission and establishment. Hence, modulation of the innate immune system at various levels of infection is a critical component of dengue disease. In the absence of an approved drug or vaccine for dengue, soluble mediators of the innate immune system could be a strategic foothold for developing anti-viral therapeutics and improving clinical management.
Collapse
Affiliation(s)
- Lyre Anni Espada-Murao
- Department of Virology, Institute of Tropical Medicine, GCOE Programme, Nagasaki University, Sakamoto machi 1-12-4, Nagasaki 852-8523, Japan
| | | |
Collapse
|
30
|
Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury. J Neurosci 2011; 31:8456-63. [PMID: 21653850 DOI: 10.1523/jneurosci.0821-11.2011] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ischemic tolerance can be induced by numerous preconditioning stimuli, including various Toll-like receptor (TLR) ligands. We have shown previously that systemic administration of the TLR4 ligand LPS or the TLR9 ligand unmethylated CpG oligodeoxynucleotide before transient brain ischemia in mice confers substantial protection against ischemic damage. To elucidate the molecular mechanisms of preconditioning, we compared brain genomic profiles in response to preconditioning with these TLR ligands and with preconditioning via exposure to brief ischemia. We found that exposure to the TLR ligands and brief ischemia induced genomic changes in the brain characteristic of a TLR pathway-mediated response. Interestingly, all three preconditioning stimuli resulted in a reprogrammed response to stroke injury that converged on a shared subset of 13 genes not evident in the genomic profile from brains that were subjected to stroke without prior preconditioning. Analysis of the promoter region of these shared genes showed sequences required for interferon regulatory factor (IRF)-mediated transcription. The importance of this IRF gene network was tested using mice deficient in IRF3 or IRF7. Our data show that both transcription factors are required for TLR-mediated preconditioning and neuroprotection. These studies are the first to discover a convergent mechanism of neuroprotection induced by preconditioning--one that potentially results in reprogramming of the TLR-mediated response to stroke and requires the presence of IRF3 and IRF7.
Collapse
|
31
|
Müller M, Frese A, Nassenstein I, Hoppen M, Marziniak M, Ringelstein EB, Kim KS, Schäbitz WR, Kraus J. Serum from interferon-β-1b-treated patients with early multiple sclerosis stabilizes the blood-brain barrier in vitro. Mult Scler 2011; 18:236-9. [PMID: 21844066 DOI: 10.1177/1352458511416837] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Interferon-β (IFN-β) stabilizes the blood-brain barrier (BBB) in vitro. Here we investigated the effect of serum from 15 IFN-β-1b-treated multiple sclerosis (MS) patients on the permeability read-outs of small solutes in an in vitro BBB model consisting of human brain microvascular endothelial cells in co-culture with rat astrocytes. The addition of sera from IFN-β-treated patients resulted in a significantly (p < 0.05) reduced permeability as compared with untreated patients. Our findings show that sera from IFN-β-1b-treated MS patients have a stabilizing effect on the in vitro BBB. We suggest an unknown potentially pro-inflammatory factor in the serum of MS patients that may lead to a BBB dysfunction and can be modulated by IFN-β.
Collapse
Affiliation(s)
- Marcus Müller
- Department of Neurology, University Hospital of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Downer EJ, Clifford E, Gran B, Nel HJ, Fallon PG, Moynagh PN. Identification of the synthetic cannabinoid R(+)WIN55,212-2 as a novel regulator of IFN regulatory factor 3 activation and IFN-beta expression: relevance to therapeutic effects in models of multiple sclerosis. J Biol Chem 2011; 286:10316-28. [PMID: 21245146 DOI: 10.1074/jbc.m110.188599] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
β-Interferons (IFN-βs) represent one of the first line treatments for relapsing-remitting multiple sclerosis, slowing disease progression while reducing the frequency of relapses. Despite this, more effective, well tolerated therapeutic strategies are needed. Cannabinoids palliate experimental autoimmune encephalomyelitis (EAE) symptoms and have therapeutic potential in MS patients although the precise molecular mechanism for these effects is not understood. Toll-like receptor (TLR) signaling controls innate immune responses and TLRs are implicated in MS. Here we demonstrate that the synthetic cannabinoid R(+)WIN55,212-2 is a novel regulator of TLR3 and TLR4 signaling by inhibiting the pro-inflammatory signaling axis triggered by TLR3 and TLR4, whereas selectively augmenting TLR3-induced activation of IFN regulatory factor 3 (IRF3) and expression of IFN-β. We present evidence that R(+)WIN55,212-2 strongly promotes the nuclear localization of IRF3. The potentiation of IFN-β expression by R(+)WIN55,212-2 is critical for manifesting its protective effects in the murine MS model EAE as evidenced by its reduced therapeutic efficacy in the presence of an anti-IFN-β antibody. R(+)WIN55,212-2 also induces IFN-β expression in MS patient peripheral blood mononuclear cells, whereas down-regulating inflammatory signaling in these cells. These findings identify R(+)WIN55,212-2 as a novel regulator of TLR3 signaling to IRF3 activation and IFN-β expression and highlights a new mechanism that may be open to exploitation in the development of new therapeutics for the treatment of MS.
Collapse
Affiliation(s)
- Eric J Downer
- Institute of Immunology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
It has been discovered recently that toll-like receptors (TLRs) are key mediators of tissue injury in response to stroke. This revelation has identified a new target critical to understanding the underlying mechanisms of stroke injury and potential therapies. Much of the interest in TLRs centers around their ability to self regulate - a process commonly referred to as "tolerance," wherein prior exposure to low level TLR activation induces protection against a subsequent challenge that would otherwise cause damage. This endogenous process has been exploited in the setting of stroke. Recent studies show that TLR pathways can be reprogrammed via prior exposure to TLR ligands leading to decreased infarct size and improved neurological outcomes in response to ischemic injury. Efforts to understand the molecular mechanisms of TLR reprogramming have led to the identification of multiple routes of TLR regulation including inhibitors that target signaling mediators, microRNAs that suppress genes post-transcriptionally, and epigenetic changes in chromatin remodeling that affect global gene regulation. In this review, we discuss the role of TLRs in mediating injury due to stroke, evidence for TLR preconditioning-induced TLR reprogramming in response to stroke, and possible mechanisms of TLR-induced neuroprotection.
Collapse
|
34
|
Alvarez JI, Cayrol R, Prat A. Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta Mol Basis Dis 2010; 1812:252-64. [PMID: 20619340 DOI: 10.1016/j.bbadis.2010.06.017] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/10/2010] [Accepted: 06/28/2010] [Indexed: 12/30/2022]
Abstract
The delicate microenvironment of the central nervous system (CNS) is protected by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCB). These barriers function in distinct CNS compartments and their anatomical basis lay on the junctional proteins present in endothelial cells for the BBB and in the choroidal epithelium for the BCB. During neuroinflammatory conditions like multiple sclerosis (MS) and its murine model experimental autoimmune encephalomyelitis (EAE), activation or damage of the various cellular components of these barriers facilitate leukocyte infiltration leading to oligodendrocyte death, axonal damage, demyelination and lesion development. This manuscript will review in detail the features of these barriers under physiological and pathological conditions, particularly when focal immune activation promotes the loss of the BBB and BCB phenotype, the upregulation of cell adhesion molecules (CAMs) and the recruitment of immune cells.
Collapse
Affiliation(s)
- Jorge Ivan Alvarez
- Neuroimmunology Research Laboratory, Center of Excellence in Neuromics, CHUM-Notre-Dame Hospital, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
35
|
Li G, Simon MJ, Cancel LM, Shi ZD, Ji X, Tarbell JM, Morrison B, Fu BM. Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies. Ann Biomed Eng 2010; 38:2499-511. [PMID: 20361260 DOI: 10.1007/s10439-010-0023-5] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 03/19/2010] [Indexed: 11/28/2022]
Abstract
The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain. To seek for in vitro BBB models that are more accessible than animals for investigating drug transport across the BBB, we compared four in vitro cultured cell models: endothelial monoculture (bEnd3 cell line), coculture of bEnd3 and primary rat astrocytes (coculture), coculture with collagen type I and IV mixture, and coculture with Matrigel. The expression of the BBB tight junction proteins in these in vitro models was assessed using RT-PCR and immunofluorescence. We also quantified the hydraulic conductivity (L (p)), transendothelial electrical resistance (TER) and diffusive solute permeability (P) of these models to three solutes: TAMRA, Dextran 10K and Dextran 70K. Our results show that L (p) and P of the endothelial monoculture and coculture models are not different from each other. Compared with in vivo permeability data from rat pial microvessels, P of the endothelial monoculture and coculture models are not significantly different from in vivo data for Dextran 70K, but they are 2-4 times higher for TAMRA and Dextran 10K. This suggests that the endothelial monoculture and all of the coculture models are fairly good models for studying the transport of relatively large solutes across the BBB.
Collapse
Affiliation(s)
- Guanglei Li
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Diamond B, Huerta PT, Mina-Osorio P, Kowal C, Volpe BT. Losing your nerves? Maybe it's the antibodies. Nat Rev Immunol 2009; 9:449-56. [PMID: 19424277 DOI: 10.1038/nri2529] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We propose that the normal immunocompetent B cell repertoire is replete with B cells making antibodies that recognize brain antigens. Although B cells that are reactive with self antigen are normally silenced during B cell maturation, the blood-brain barrier (BBB) prevents many brain antigens from participating in this process. This enables the generation of a B cell repertoire that is sufficiently diverse to cope with numerous environmental challenges. It requires, however, that the integrity of the BBBs is uninterrupted throughout life to protect the brain from antibodies that crossreact with microorganisms and brain antigens. Under conditions of BBB compromise, and during fetal development, we think that these antibodies can alter brain function in otherwise healthy individuals.
Collapse
Affiliation(s)
- Betty Diamond
- The Feinstein Institute for Medical Research, Center of Autoimmune and Musculoskeletal Diseases, 350 Community Drive, Manhasset, New York 110301, USA.
| | | | | | | | | |
Collapse
|