1
|
Zheng Y, Yan F, He S, Luo L. Targeting ferroptosis in autoimmune diseases: Mechanisms and therapeutic prospects. Autoimmun Rev 2024; 23:103640. [PMID: 39278299 DOI: 10.1016/j.autrev.2024.103640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Ferroptosis is a form of regulated cell death that relies on iron and exhibits unique characteristics, including disrupted iron balance, reduced antioxidant defenses, and abnormal lipid peroxidation. Recent research suggests that ferroptosis is associated with the onset and progression of autoimmune disorders such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and multiple sclerosis (MS). However, the precise effects and molecular mechanisms remain incompletely understood. This article presents an overview of how ferroptosis mechanisms contribute to the development and advancement of autoimmune diseases, as well as the involvement of various immune cells in linking ferroptosis to autoimmune conditions. It also explores potential drug targets within the ferroptosis pathway and recent advancements in therapeutic approaches aimed at preventing and treating autoimmune diseases by targeting ferroptosis. Lastly, the article discusses the challenges and opportunities in utilizing ferroptosis as a potential therapeutic avenue for autoimmune disorders.
Collapse
Affiliation(s)
- Yingzi Zheng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Fangfang Yan
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
2
|
Adler GL, Le K, Fu Y, Kim WS. Human Endogenous Retroviruses in Neurodegenerative Diseases. Genes (Basel) 2024; 15:745. [PMID: 38927681 PMCID: PMC11202925 DOI: 10.3390/genes15060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are DNA transposable elements that have integrated into the human genome via an ancestral germline infection. The potential importance of HERVs is underscored by the fact that they comprise approximately 8% of the human genome. HERVs have been implicated in the pathogenesis of neurodegenerative diseases, a group of CNS diseases characterized by a progressive loss of structure and function of neurons, resulting in cell death and multiple physiological dysfunctions. Much evidence indicates that HERVs are initiators or drivers of neurodegenerative processes in multiple sclerosis and amyotrophic lateral sclerosis, and clinical trials have been designed to target HERVs. In recent years, the role of HERVs has been explored in other major neurodegenerative diseases, including frontotemporal dementia, Alzheimer's disease and Parkinson's disease, with some interesting discoveries. This review summarizes and evaluates the past and current research on HERVs in neurodegenerative diseases. It discusses the potential role of HERVs in disease manifestation and neurodegeneration. It critically reviews antiretroviral strategies used in the therapeutic intervention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gabrielle L. Adler
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kelvin Le
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - YuHong Fu
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Huang N, Winans T, Wyman B, Oaks Z, Faludi T, Choudhary G, Lai ZW, Lewis J, Beckford M, Duarte M, Krakko D, Patel A, Park J, Caza T, Sadeghzadeh M, Morel L, Haas M, Middleton F, Banki K, Perl A. Rab4A-directed endosome traffic shapes pro-inflammatory mitochondrial metabolism in T cells via mitophagy, CD98 expression, and kynurenine-sensitive mTOR activation. Nat Commun 2024; 15:2598. [PMID: 38519468 PMCID: PMC10960037 DOI: 10.1038/s41467-024-46441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
Activation of the mechanistic target of rapamycin (mTOR) is a key metabolic checkpoint of pro-inflammatory T-cell development that contributes to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), however, the underlying mechanisms remain poorly understood. Here, we identify a functional role for Rab4A-directed endosome traffic in CD98 receptor recycling, mTOR activation, and accumulation of mitochondria that connect metabolic pathways with immune cell lineage development and lupus pathogenesis. Based on integrated analyses of gene expression, receptor traffic, and stable isotope tracing of metabolic pathways, constitutively active Rab4AQ72L exerts cell type-specific control over metabolic networks, dominantly impacting CD98-dependent kynurenine production, mTOR activation, mitochondrial electron transport and flux through the tricarboxylic acid cycle and thus expands CD4+ and CD3+CD4-CD8- double-negative T cells over CD8+ T cells, enhancing B cell activation, plasma cell development, antinuclear and antiphospholipid autoantibody production, and glomerulonephritis in lupus-prone mice. Rab4A deletion in T cells and pharmacological mTOR blockade restrain CD98 expression, mitochondrial metabolism and lineage skewing and attenuate glomerulonephritis. This study identifies Rab4A-directed endosome traffic as a multilevel regulator of T cell lineage specification during lupus pathogenesis.
Collapse
Affiliation(s)
- Nick Huang
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Thomas Winans
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Brandon Wyman
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Zachary Oaks
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Tamas Faludi
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Gourav Choudhary
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Zhi-Wei Lai
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Joshua Lewis
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Miguel Beckford
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Manuel Duarte
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Daniel Krakko
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Akshay Patel
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Joy Park
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Tiffany Caza
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Mahsa Sadeghzadeh
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Frank Middleton
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Katalin Banki
- Department of Pathology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Andras Perl
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA.
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA.
| |
Collapse
|
4
|
Dubowsky M, Theunissen F, Carr JM, Rogers ML. The Molecular Link Between TDP-43, Endogenous Retroviruses and Inflammatory Neurodegeneration in Amyotrophic Lateral Sclerosis: a Potential Target for Triumeq, an Antiretroviral Therapy. Mol Neurobiol 2023; 60:6330-6345. [PMID: 37450244 PMCID: PMC10533598 DOI: 10.1007/s12035-023-03472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurological disorder, characterised by the death of upper and lower motor neurons. The aetiology of ALS remains unknown, and treatment options are limited. Endogenous retroviruses (ERVs), specifically human endogenous retrovirus type K (HERV-K), have been proposed to be involved in the propagation of neurodegeneration in ALS. ERVs are genomic remnants of ancient viral infection events, with most being inactive and not retaining the capacity to encode a fully infectious virus. However, some ERVs retain the ability to be activated and transcribed, and ERV transcripts have been found to be elevated within the brain tissue of MND patients. A hallmark of ALS pathology is altered localisation of the transactive response (TAR) DNA binding protein 43 kDa (TDP-43), which is normally found within the nucleus of neuronal and glial cells and is involved in RNA regulation. In ALS, TDP-43 aggregates within the cytoplasm and facilitates neurodegeneration. The involvement of ERVs in ALS pathology is thought to occur through TDP-43 and neuroinflammatory mediators. In this review, the proposed involvement of TDP-43, HERV-K and immune regulators on the onset and progression of ALS will be discussed. Furthermore, the evidence supporting a therapy based on targeting ERVs in ALS will be reviewed.
Collapse
Affiliation(s)
- Megan Dubowsky
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| | - Frances Theunissen
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Jillian M Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Mary-Louise Rogers
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
5
|
Frau J, Coghe G, Lorefice L, Fenu G, Cocco E. The Role of Microorganisms in the Etiopathogenesis of Demyelinating Diseases. Life (Basel) 2023; 13:1309. [PMID: 37374092 DOI: 10.3390/life13061309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS), neuromyelitis optica (NMO) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD) are inflammatory diseases of the central nervous system (CNS) with a multifactorial aetiology. Environmental factors are important for their development and microorganisms could play a determining role. They can directly damage the CNS, but their interaction with the immune system is even more important. The possible mechanisms involved include molecular mimicry, epitope spreading, bystander activation and the dual cell receptor theory. The role of Epstein-Barr virus (EBV) in MS has been definitely established, since being seropositive is a necessary condition for the onset of MS. EBV interacts with genetic and environmental factors, such as low levels of vitamin D and human endogenous retrovirus (HERV), another microorganism implicated in the disease. Many cases of onset or exacerbation of neuromyelitis optica spectrum disorder (NMOSD) have been described after infection with Mycobacterium tuberculosis, EBV and human immunodeficiency virus; however, no definite association with a virus has been found. A possible role has been suggested for Helicobacter pylori, in particular in individuals with aquaporin 4 antibodies. The onset of MOGAD could occur after an infection, mainly in the monophasic course of the disease. A role for the HERV in MOGAD has been hypothesized. In this review, we examined the current understanding of the involvement of infectious factors in MS, NMO and MOGAD. Our objective was to elucidate the roles of each microorganism in initiating the diseases and influencing their clinical progression. We aimed to discuss both the infectious factors that have a well-established role and those that have yielded conflicting results across various studies.
Collapse
Affiliation(s)
- Jessica Frau
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Giancarlo Coghe
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Lorena Lorefice
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | | | - Eleonora Cocco
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
6
|
Rangel SC, da Silva MD, da Silva AL, dos Santos JDMB, Neves LM, Pedrosa A, Rodrigues FM, Trettel CDS, Furtado GE, de Barros MP, Bachi ALL, Romano CM, Nali LHDS. Human endogenous retroviruses and the inflammatory response: A vicious circle associated with health and illness. Front Immunol 2022; 13:1057791. [PMID: 36518758 PMCID: PMC9744114 DOI: 10.3389/fimmu.2022.1057791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Human Endogenous Retroviruses (HERVs) are derived from ancient exogenous retroviral infections that have infected our ancestors' germline cells, underwent endogenization process, and were passed throughout the generations by retrotransposition and hereditary transmission. HERVs comprise 8% of the human genome and are critical for several physiological activities. Yet, HERVs reactivation is involved in pathological process as cancer and autoimmune diseases. In this review, we summarize the multiple aspects of HERVs' role within the human genome, as well as virological and molecular aspects, and their fusogenic property. We also discuss possibilities of how the HERVs are possibly transactivated and participate in modulating the inflammatory response in health conditions. An update on their role in several autoimmune, inflammatory, and aging-related diseases is also presented.
Collapse
Affiliation(s)
- Sara Coelho Rangel
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Amanda Lopes da Silva
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | | | - Lucas Melo Neves
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Ana Pedrosa
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, (3004-504), Coimbra, Portugal
| | | | - Caio dos Santos Trettel
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | - Guilherme Eustáquio Furtado
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços – S. Martinho do Bispo, Coimbra, Portugal
| | - Marcelo Paes de Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | - André Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clínicas HCFMUSP (LIM52), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
7
|
Wieland L, Schwarz T, Engel K, Volkmer I, Krüger A, Tarabuko A, Junghans J, Kornhuber ME, Hoffmann F, Staege MS, Emmer A. Epstein-Barr Virus-Induced Genes and Endogenous Retroviruses in Immortalized B Cells from Patients with Multiple Sclerosis. Cells 2022; 11:cells11223619. [PMID: 36429047 PMCID: PMC9688211 DOI: 10.3390/cells11223619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022] Open
Abstract
The immune pathogenesis of multiple sclerosis (MS) is thought to be triggered by environmental factors in individuals with an unfavorable genetic predisposition. Epstein-Barr virus (EBV) infection is a major risk factor for subsequent development of MS. Human endogenous retroviruses (HERVs) can be activated by EBV, and might be a missing link between an initial EBV infection and the later onset of MS. In this study, we investigated differential gene expression patterns in EBV-immortalized lymphoblastoid B cell lines (LCL) from MS-affected individuals (MSLCL) and controls by using RNAseq and qRT-PCR. RNAseq data from LCL mapped to the human genome and a virtual virus metagenome were used to identify possible biomarkers for MS or disease-relevant risk factors, e.g., the relapse rate. We observed that lytic EBNA-1 transcripts seemed to be negatively correlated with age leading to an increased expression in LCL from younger PBMC donors. Further, HERV-K (HML-2) GAG was increased upon EBV-triggered immortalization. Besides the well-known transactivation of HERV-K18, our results suggest that another six HERV loci are up-regulated upon stimulation with EBV. We identified differentially expressed genes in MSLCL, e.g., several HERV-K loci, ERVMER61-1 and ERV3-1, as well as genes associated with relapses. In summary, EBV induces genes and HERV in LCL that might be suitable as biomarkers for MS or the relapse risk.
Collapse
Affiliation(s)
- Lisa Wieland
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Tommy Schwarz
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Kristina Engel
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ines Volkmer
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Anna Krüger
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Alexander Tarabuko
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jutta Junghans
- Department of Neurology, Martha-Maria Hospital Halle-Dölau, 06120 Halle (Saale), Germany
| | - Malte E. Kornhuber
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Frank Hoffmann
- Department of Neurology, Martha-Maria Hospital Halle-Dölau, 06120 Halle (Saale), Germany
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-34-5557-7280
| | - Alexander Emmer
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
8
|
Kular L, Ewing E, Needhamsen M, Pahlevan Kakhki M, Covacu R, Gomez-Cabrero D, Brundin L, Jagodic M. DNA methylation changes in glial cells of the normal-appearing white matter in Multiple Sclerosis patients. Epigenetics 2022; 17:1311-1330. [PMID: 35094644 PMCID: PMC9586622 DOI: 10.1080/15592294.2021.2020436] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Multiple Sclerosis (MS), the leading cause of non-traumatic neurological disability in young adults, is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). Due to the poor accessibility to the target organ, CNS-confined processes underpinning the later progressive form of MS remain elusive thereby limiting treatment options. We aimed to examine DNA methylation, a stable epigenetic mark of genome activity, in glial cells to capture relevant molecular changes underlying MS neuropathology. We profiled DNA methylation in nuclei of non-neuronal cells, isolated from 38 post-mortem normal-appearing white matter (NAWM) specimens of MS patients (n = 8) in comparison to white matter of control individuals (n = 14), using Infinium MethylationEPIC BeadChip. We identified 1,226 significant (genome-wide adjusted P-value < 0.05) differentially methylated positions (DMPs) between MS patients and controls. Functional annotation of the altered DMP-genes uncovered alterations of processes related to cellular motility, cytoskeleton dynamics, metabolic processes, synaptic support, neuroinflammation and signaling, such as Wnt and TGF-β pathways. A fraction of the affected genes displayed transcriptional differences in the brain of MS patients, as reported by publically available transcriptomic data. Cell type-restricted annotation of DMP-genes attributed alterations of cytoskeleton rearrangement and extracellular matrix remodelling to all glial cell types, while some processes, including ion transport, Wnt/TGF-β signaling and immune processes were more specifically linked to oligodendrocytes, astrocytes and microglial cells, respectively. Our findings strongly suggest that NAWM glial cells are highly altered, even in the absence of lesional insult, collectively exhibiting a multicellular reaction in response to diffuse inflammation.
Collapse
Affiliation(s)
- Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ewoud Ewing
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Majid Pahlevan Kakhki
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ruxandra Covacu
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - David Gomez-Cabrero
- Department of Medicine, Unit of Computational Medicine, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
- Mucosal and Salivary Biology Division, King’s College London Dental Institute, London, UK
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (Chn), Universidad Pública de Navarra (Upna), IdiSNA, Pamplona, Spain
- Biological & Environmental Sciences & Engineering Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
| | - Lou Brundin
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Nali LH, Olival GS, Montenegro H, da Silva IT, Dias-Neto E, Naya H, Spangenberg L, Penalva-de-Oliveira AC, Romano CM. Human endogenous retrovirus and multiple sclerosis: A review and transcriptome findings. Mult Scler Relat Disord 2021; 57:103383. [PMID: 34922254 DOI: 10.1016/j.msard.2021.103383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
Multiple Sclerosis is an autoimmune disease with an unknown etiology. Both genetic and environmental factors are believed to trigger MS autoimmunity. Among the environmental factors, infectious agents have been extensively investigated, and the Human Endogenous Retroviruses (HERVs), especially HERV-W, are believed to be associated with MS pathogenesis. HERVs are derived from ancestral infections and comprise around 8% of the human genome. Although most HERVs are silenced, retroviral genes may be expressed with virion formation. There is extensive evidence of the relationship between HERV-W and MS, including higher levels of HERV-W expression in MS patients, HERV-W protein detection in MS plaques, and the HERV-W env protein inducing an inflammatory response in in vitro and in vivo models. Here we discuss possible links of HERVs and the pathogenesis of MS and present new data regarding the diversity of HERVs expression in samples derived from MS patients.
Collapse
Affiliation(s)
- Luiz H Nali
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo 05403-000, Brazil; Post-graduation Program in Health Sciences, Santo Amaro University, Rua Prof. Enéas de Siqueira Neto, 340, São Paulo 04829-300, Brazil
| | - Guilherme S Olival
- Departamento de Neurologia Santa Casa de Misericórdia de São Paulo, R. Dr. Cesário Mota Júnior, 112, São Paulo 01221-020 Brazil
| | | | - Israel T da Silva
- Laboratory of Medical Genomics, A.C. Camargo Cancer Center, São Paulo 01525-001, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C. Camargo Cancer Center, São Paulo 01525-001, Brazil; Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Hugo Naya
- Unidad de Bioinformática Institut Pasteur de Montevideo, Mataojo 2020, CP11400 Montevideo, Uruguay; Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Av. Gral. Eugenio Garzón 780, CP12900 Montevideo, Uruguay
| | - Lucia Spangenberg
- Unidad de Bioinformática Institut Pasteur de Montevideo, Mataojo 2020, CP11400 Montevideo, Uruguay
| | - Augusto C Penalva-de-Oliveira
- Departamento de Neurologia Santa Casa de Misericórdia de São Paulo, R. Dr. Cesário Mota Júnior, 112, São Paulo 01221-020 Brazil; Departamento de Neurologia, Instituto de Infectologia Emilio Ribas, Avenida Doutor Arnaldo, 165, São Paulo 01246-900, Brazil
| | - Camila M Romano
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo 05403-000, Brazil; Hospital das Clinicas HCFMUSP (LIM52), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Godavarthy A, Kelly R, Jimah J, Beckford M, Caza T, Fernandez D, Huang N, Duarte M, Lewis J, Fadel HJ, Poeschla EM, Banki K, Perl A. Lupus-associated endogenous retroviral LTR polymorphism and epigenetic imprinting promote HRES-1/RAB4 expression and mTOR activation. JCI Insight 2020; 5:134010. [PMID: 31805010 PMCID: PMC7030820 DOI: 10.1172/jci.insight.134010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Overexpression and long terminal repeat (LTR) polymorphism of the HRES‑1/Rab4 human endogenous retrovirus locus have been associated with T cell activation and disease manifestations in systemic lupus erythematosus (SLE). Although genomic DNA methylation is diminished overall in SLE, its role in HRES-1/Rab4 expression is unknown. Therefore, we determined how lupus-associated polymorphic rs451401 alleles of the LTR regulate transcription from the HRES-1/Rab4 promoter and thus affect T cell activation. The results showed that cytosine-119 is hypermethylated while cytosine-51 of the promoter and the LTR enhancer are hypomethylated in SLE. Pharmacologic or genetic inactivation of DNA methyltransferase 1 augmented the expression of HRES-1/Rab4. The minimal promoter was selectively recognized by metabolic stress sensor NRF1 when cytosine-119 but not cytosine-51 was methylated, and NRF1 stimulated HRES-1/Rab4 expression in human T cells. In turn, IRF2 and PSIP1 bound to the LTR enhancer and exerted control over HRES-1/Rab4 expression in rs451401 genotype- and methylation-dependent manners. The LTR enhancer conferred markedly greater expression of HRES-1/Rab4 in subjects with rs451401CC over rs451401GG alleles that in turn promoted mechanistic target of rapamycin (mTOR) activation upon T cell receptor stimulation. HRES-1/Rab4 alone robustly activated mTOR in human T cells. These findings identify HRES-1/Rab4 as a methylation- and rs451401 allele-dependent transducer of environmental stress and controller of T cell activation.
Collapse
Affiliation(s)
| | - Ryan Kelly
- Division of Rheumatology, Department of Medicine
| | - John Jimah
- Division of Rheumatology, Department of Medicine
| | | | - Tiffany Caza
- Division of Rheumatology, Department of Medicine
- Department of Microbiology and Immunology, and
| | - David Fernandez
- Division of Rheumatology, Department of Medicine
- Department of Microbiology and Immunology, and
| | - Nick Huang
- Division of Rheumatology, Department of Medicine
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | | | - Joshua Lewis
- Division of Rheumatology, Department of Medicine
| | - Hind J. Fadel
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, New York, USA
| | - Eric M. Poeschla
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, New York, USA
| | - Katalin Banki
- Department of Pathology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | - Andras Perl
- Division of Rheumatology, Department of Medicine
- Department of Microbiology and Immunology, and
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| |
Collapse
|
11
|
Bahrami S, Gryz EA, Graversen JH, Troldborg A, Stengaard Pedersen K, Laska MJ. Immunomodulating peptides derived from different human endogenous retroviruses (HERVs) show dissimilar impact on pathogenesis of a multiple sclerosis animal disease model. Clin Immunol 2018; 191:37-43. [PMID: 29567431 DOI: 10.1016/j.clim.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 02/07/2023]
Abstract
Retroviruses including Human Endogenous Retroviruses (HERVs), contain a conserved region with highly immunomodulatory functions in the transmembrane proteins in envelope gene (env) named immunosuppressive domain (ISU). In this report, we demonstrate that Env59-GP3 peptide holds therapeutic potential in a mouse model of myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). The results show that this specific HERV-H derived ISU peptide, but not peptide derived from another env gene HERV-K, decreased the development of EAE in C57BL/6 mice, accompanied by reduced demyelination and inhibition of inflammatory cells. Moreover, here we tested the effect of peptides on macrophages differentiation. The treatment with Env59-GPS peptide modulate the pro-inflammatory M1 profile and anti-inflammatory M2 macrophages, being shown by inhibiting inflammatory M1 hallmark genes/cytokines expression and enhancing expression of M2 associated markers. These results demonstrate that Env59-GP3 ISU peptide has therapeutic potential in EAE possibly through inducing the polarization of M2 macrophages and inhibiting inflammatory responses.
Collapse
Affiliation(s)
- Shervin Bahrami
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | | | | | - Anne Troldborg
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Rheumatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Kristian Stengaard Pedersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Rheumatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Magdalena Janina Laska
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Rheumatology, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| |
Collapse
|
12
|
Bustamante Rivera YY, Brütting C, Schmidt C, Volkmer I, Staege MS. Endogenous Retrovirus 3 - History, Physiology, and Pathology. Front Microbiol 2018; 8:2691. [PMID: 29379485 PMCID: PMC5775217 DOI: 10.3389/fmicb.2017.02691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/26/2017] [Indexed: 01/05/2023] Open
Abstract
Endogenous viral elements (EVE) seem to be present in all eukaryotic genomes. The composition of EVE varies between different species. The endogenous retrovirus 3 (ERV3) is one of these elements that is present only in humans and other Catarrhini. Conservation of ERV3 in most of the investigated Catarrhini and the expression pattern in normal tissues suggest a putative physiological role of ERV3. On the other hand, ERV3 has been implicated in the pathogenesis of auto-immunity and cancer. In the present review we summarize knowledge about this interesting EVE. We propose the model that expression of ERV3 (and probably other EVE loci) under pathological conditions might be part of a metazoan SOS response.
Collapse
Affiliation(s)
| | - Christine Brütting
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Caroline Schmidt
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ines Volkmer
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin S Staege
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
13
|
Lazaros L, Kitsou C, Kostoulas C, Bellou S, Hatzi E, Ladias P, Stefos T, Markoula S, Galani V, Vartholomatos G, Tzavaras T, Georgiou I. Retrotransposon expression and incorporation of cloned human and mouse retroelements in human spermatozoa. Fertil Steril 2017; 107:821-830. [PMID: 28139237 DOI: 10.1016/j.fertnstert.2016.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate the expression of long interspersed element (LINE) 1, human endogenous retrovirus (HERV) K10, and short interspersed element-VNTR-Alu element (SVA) retrotransposons in ejaculated human spermatozoa by means of reverse-transcription (RT) polymerase chain reaction (PCR) analysis as well as the potential incorporation of cloned human and mouse active retroelements in human sperm cell genome. DESIGN Laboratory study. SETTING University research laboratories and academic hospital. PATIENT(S) Normozoospermic and oligozoospermic white men. INTERVENTION(S) RT-PCR analysis was performed to confirm the retrotransposon expression in human spermatozoa. Exogenous retroelements were tagged with a plasmid containing a green fluorescence (EGFP) retrotransposition cassette, and the de novo retrotransposition events were tested with the use of PCR, fluorescence-activated cell sorting analysis, and confocal microscopy. MAIN OUTCOME MEASURE(S) Retroelement expression in human spermatozoa, incorporation of cloned human and mouse active retroelements in human sperm genome, and de novo retrotransposition events in human spermatozoa. RESULT(S) RT-PCR products of expressed human LINE-1, HERV-K10, and SVA retrotransposons were observed in ejaculated human sperm samples. The incubation of human spermatozoa with either retrotransposition-active human LINE-1 and HERV-K10 or mouse reverse transcriptase-deficient VL30 retrotransposons tagged with an EGFP-based retrotransposition cassette led to EGFP-positive spermatozo; 16.67% of the samples were positive for retrotransposition. The respective retrotransposition frequencies for the LINE-1, HERV-K10, and VL30 retrotransposons in the positive samples were 0.34 ± 0.13%, 0.37 ± 0.17%, and 0.30 ± 0.14% per sample of 10,000 spermatozoa. CONCLUSION(S) Our results show that: 1) LINE-1, HERV-K10, and SVA retrotransposons are transcriptionally expressed in human spermatozoa; 2) cloned active retroelements of human and mammalian origin can be incorporated in human sperm genome; 3) active reverse transcriptases exist in human spermatozoa; and 4) de novo retrotransposition events occur in human spermatozoa.
Collapse
Affiliation(s)
- Leandros Lazaros
- Laboratory of Medical Genetics of Human Reproduction, Medical School, Ioannina University, Ioannina, Greece; Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Ioannina University Hospital, Ioannina, Greece; Genesis-Genoma Lab, Chalandri-Athens, Greece
| | - Chrysoula Kitsou
- Laboratory of Medical Genetics of Human Reproduction, Medical School, Ioannina University, Ioannina, Greece
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics of Human Reproduction, Medical School, Ioannina University, Ioannina, Greece
| | - Sofia Bellou
- Foundation for Research & Technology-Hellas Institute of Molecular Biology and Biotechnology, Department of Biomedical Research, Ioannina, Greece
| | - Elissavet Hatzi
- Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Ioannina University Hospital, Ioannina, Greece
| | - Paris Ladias
- Laboratory of Medical Genetics of Human Reproduction, Medical School, Ioannina University, Ioannina, Greece
| | - Theodoros Stefos
- Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Ioannina University Hospital, Ioannina, Greece
| | - Sofia Markoula
- Laboratory of Medical Genetics of Human Reproduction, Medical School, Ioannina University, Ioannina, Greece
| | - Vasiliki Galani
- Department of Anatomy-Histology-Embryology, Medical School, Ioannina University, Ioannina, Greece
| | - Georgios Vartholomatos
- Hematology Laboratory, Molecular Biology Unit, Ioannina University Hospital, Ioannina, Greece
| | - Theodore Tzavaras
- Department of General Biology, Medical School, Ioannina University, Ioannina, Greece
| | - Ioannis Georgiou
- Laboratory of Medical Genetics of Human Reproduction, Medical School, Ioannina University, Ioannina, Greece; Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Ioannina University Hospital, Ioannina, Greece.
| |
Collapse
|
14
|
Transcriptional activity of human endogenous retroviruses in human peripheral blood mononuclear cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:164529. [PMID: 25734056 PMCID: PMC4334862 DOI: 10.1155/2015/164529] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/30/2014] [Accepted: 01/10/2015] [Indexed: 01/09/2023]
Abstract
Human endogenous retroviruses (HERVs) have been implicated in human physiology and in human pathology. A better knowledge of the retroviral transcriptional activity in the general population and during the life span would greatly help the debate on its pathologic potential. The transcriptional activity of four HERV families (H, K, W, and E) was assessed, by qualitative and quantitative PCR, in PBMCs from 261 individuals aged from 1 to 80 years. Our results show that HERV-H, HERV-K, and HERV-W, but not HERV-E, are transcriptionally active in the test population already in the early childhood. In addition, the transcriptional levels of HERV-H, HERV-K, and HERV-W change significantly during the life span, albeit with distinct patterns. Our results, reinforce the hypothesis of a physiological correlation between HERVs activity and the different stages of life in humans. Studies aiming at identifying the factors, which are responsible for these changes during the individual's life, are still needed. Although the observed phenomena are presumably subjected to great variability, the basal transcriptional activity of each individual, also depending on the different ages of life, must be carefully considered in all the studies involving HERVs as causative agents of disease.
Collapse
|
15
|
Kewitz S, Staege MS. Expression and Regulation of the Endogenous Retrovirus 3 in Hodgkin's Lymphoma Cells. Front Oncol 2013; 3:179. [PMID: 23847767 PMCID: PMC3706881 DOI: 10.3389/fonc.2013.00179] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/25/2013] [Indexed: 11/13/2022] Open
Abstract
Human endogenous retroviruses (ERV) are an integral part of our genome. Expression of ERV is usually switched off but reactivation of ERV has been observed in varying human diseases including cancer. Recently, reactivation of ERV associated promoters in Hodgkin's lymphoma (HL) cells has been described. Despite relatively good prognosis, not all patients with HL can be cured with the established therapy and this therapy is associated with severe late side effects. Therefore, new targets are required for the development of future treatment strategies. Reactivated ERV might represent such target structures. Therefore, we asked which ERV loci are expressed in HL cells. Using DNA microarray analysis, we found no evidence for a general activation of ERV transcription in HL cells. In contrast, we observed down-regulation of ERV3, an ERV with potential tumor suppressor function, in HL cells in comparison to normal blood cells. Interestingly, ERV3 was also differentially expressed in published DNA microarray data from resting versus cycling B cells. Treatment of HL cells with the histone deacetylase inhibitor vorinostat strongly up-regulated ERV3 expression. In addition, we observed up-regulation in HL cells after treatment with hypoxia-mimetic cobalt(II) chloride. Like vorinostat, cobalt(II) chloride inhibited cell growth of HL cells. Our results suggest that cell cycle inhibition of HL cells is accompanied by up-regulation of ERV3.
Collapse
Affiliation(s)
- Stefanie Kewitz
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg , Halle , Germany
| | | |
Collapse
|
16
|
Tropism, cytotoxicity, and inflammatory properties of two envelope genes of murine leukemia virus type-endogenous retroviruses of C57BL/6J mice. Mediators Inflamm 2011; 2011:509604. [PMID: 21772664 PMCID: PMC3134291 DOI: 10.1155/2011/509604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 03/09/2011] [Indexed: 12/16/2022] Open
Abstract
Envelope (env) proteins of certain endogenous retroviruses (ERVs) participate in various pathophysiological processes. In this study, we characterized pathophysiologic properties of two murine leukemia virus-type ERV (MuLV-ERV) env genes cloned from the ovary of C57BL/6J mice. The two env genes (named ENVOV1 and ENVOV2), with 1,926 bp coding region, originated from two MuLV-ERV loci on chromosomes 8 and 18, respectively. ENVOV1 and ENVOV2 were ~75 kDa and predominantly expressed on the cell membrane. They were capable of producing pseudotype murine leukemia virus virions. Tropism trait and infectivity of ENVOV2 were similar to the polytropic env; however, ENVOV1 had very low level of infectivity. Overexpression of ENVOV2, but not ENVOV1, exerted cytotoxic effects and induced expression of COX-2, IL-1β, IL-6, and iNOS. These findings suggest that the ENVOV1 and ENVOV2 are capable of serving as an env protein for virion assembly, and they exert differential cytotoxicity and modulation of inflammatory mediators.
Collapse
|
17
|
Kim BH, Meeker HC, Shin HY, Kim JI, Jeong BH, Choi EK, Carp RI, Kim YS. Physiological properties of astroglial cell lines derived from mice with high (SAMP8) and low (SAMR1, ICR) levels of endogenous retrovirus. Retrovirology 2008; 5:104. [PMID: 19032740 PMCID: PMC2607306 DOI: 10.1186/1742-4690-5-104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Accepted: 11/25/2008] [Indexed: 11/10/2022] Open
Abstract
Previous studies have reported that various inbred SAM mouse strains differ markedly with regard to a variety of parameters, such as capacity for learning and memory, life spans and brain histopathology. A potential cause of differences seen in these strains may be based on the fact that some strains have a high concentration of infectious murine leukemia virus (MuLV) in the brain, whereas other strains have little or no virus. To elucidate the effect of a higher titer of endogenous retrovirus in astroglial cells of the brain, we established astroglial cell lines from SAMR1 and SAMP8 mice, which are, respectively, resistant and prone to deficit in learning and memory and shortened life span. MuLV-negative astroglial cell lines established from ICR mice served as controls. Comparison of these cell lines showed differences in: 1) levels of the capsid antigen CAgag in both cell lysates and culture media, 2) expression of genomic retroelements, 3) the number of virus particles, 4) titer of infectious virus, 5) morphology, 6) replication rate of cells in culture and final cell concentrations, 7) expression pattern of proinflammatory cytokine genes. The results show that the expression of MuLV is much higher in SAMP8 than SAMR1 astrocyte cultures and that there are physiological differences in astroglia from the 2 strains. These results raise the possibility that the distinct physiological differences between SAMP8 and SAMR1 are a function of activation of endogenous retrovirus.
Collapse
Affiliation(s)
- Boe-Hyun Kim
- Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong Dongan-gu, Anyang, Gyeonggi-do 431-060, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Rakoff-Nahoum S, Kuebler PJ, Heymann JJ, E Sheehy M, Ortiz GM, S Ogg G, Barbour JD, Lenz J, Steinfeld AD, Nixon DF. Detection of T lymphocytes specific for human endogenous retrovirus K (HERV-K) in patients with seminoma. AIDS Res Hum Retroviruses 2006; 22:52-6. [PMID: 16438646 DOI: 10.1089/aid.2006.22.52] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human endogenous retrovirus K (HERV-K) is distinctive among the retroviruses that comprise about 8% of the human genome in that multiple HERV-K proviruses encode full-length viral proteins, and many HERV-K proviruses formed during recent human evolution. HERV-K gag proteins are found in the cytoplasm of primary tumor cells of patients with seminoma. We identified HERV-K-specific T cells in patients with a past history of seminoma using the interferon-gamma ELISPOT assay and an MHC-HERV-K peptide-specific tetramer. A minority of apparently healthy subjects without evident germ cell tumors also made HERV-K-specific T cell responses. In summary, we detected T cell reactivity to HERV-K peptides in both past seminoma patients and a minority of apparently healthy controls.
Collapse
Affiliation(s)
- Seth Rakoff-Nahoum
- J.D. Gladstone Institutes, Gladstone Institute of Virology and Immunology, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Muir A, Lever A, Moffett A. Expression and functions of human endogenous retroviruses in the placenta: an update. Placenta 2004; 25 Suppl A:S16-25. [PMID: 15033302 DOI: 10.1016/j.placenta.2004.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 01/05/2004] [Accepted: 01/05/2004] [Indexed: 12/01/2022]
Abstract
The placenta is unique amongst normal tissues in transcribing many different human endogenous retrovirus (HERV) families at high levels and this has led to the suggestion that HERVs may fulfil important functions in reproduction. This review discusses our current knowledge of the placental expression of HERVs, in particular the envelope proteins of ERV3 and HERV-W which may have critical roles in placental function.
Collapse
Affiliation(s)
- A Muir
- Research Group in Human Reproductive Immunobiology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | | | |
Collapse
|
20
|
Johnston JB, Silva C, Holden J, Warren KG, Clark AW, Power C. Monocyte activation and differentiation augment human endogenous retrovirus expression: implications for inflammatory brain diseases. Ann Neurol 2001; 50:434-42. [PMID: 11601494 DOI: 10.1002/ana.1131] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human endogenous retroviruses (HERVs) have been implicated as causative agents in diseases characterized by inflammation and macrophage activation, such as multiple sclerosis. Because monocyte activation and differentiation influence retroviral transcription and replication, we investigated the contribution of these processes to the expression of four HERV families (HERV-W, HERV-K, HERV-E, and HERV-H) in human monocytes, and autopsied brain tissue from patients with brain diseases associated with increased macrophage activity. Reverse transcriptase-polymerase chain reaction analysis of primary macrophages and U937 monocytoid cells stimulated with phorbol-12-myristate-13-acetate or lipopolysaccharide revealed three- to ninefold increases in HERV-W, HERV-K, and HERV-H RNA levels. In addition, elevated reverse transcriptase activity and HERV RNA were detectable in supernatants from PMA-stimulated U937 cultures, properties that could be attenuated with the inhibitor of monocyte differentiation threonine-lysine-proline. In contrast, stimulation of monocytes decreased or had no effect on HERV-E expression. Compared with controls, HERV-W and HERV-K expression was increased in brain tissue from patients with multiple sclerosis or human immunodeficiency virus infection or AIDS, with concomitant elevated tumor necrosis factor-alpha levels. Similarly, elevated HERV-W levels were detected in patients with Alzheimer's dementia only when tumor necrosis factor-alpha expression was also evident (2 of 6 cases). The detection of several HERVs in inflammatory brain diseases and the capacity to augment HERV expression in monocytes with compounds that influence cellular activity suggest that increased expression of these viruses is a consequence of increased immune activity rather than causative of distinct diseases.
Collapse
Affiliation(s)
- J B Johnston
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Multiple sclerosis (MS) is the most prevalent demyelinating disease of young adults, affecting an estimated 300,000 individuals in the United States alone. The majority of affected individuals have a relapsing–remitting course while a smaller subset has a more chronic–progressive presentation. Women are affected more often than men, a phenomenon associated with a number of auto-immune diseases. Although the etiology of MS is unknown, it is generally believed that genetic, immunologic, and environmental factors are involved. This chapter discusses these issues as they suggest that exogenous factors are associated with the pathogenesis of this disorder. Recently, the human herpes virus 6 (HHV-6) has received considerable attention as an infectious agent candidate that might be associated with the pathogenesis of MS. The chapter focuses on this agent and the data that support the role of this virus in MS disease pathogenesis. A model is proposed, whereby in genetically susceptible individuals, multiple viruses may trigger either a virus-specific or a cross-reactive auto-immune response that results in clinical MS. Epidemiologic evidence suggests that it is a multifactorial disease that develops as a result of host genetics, immune response, and environment.
Collapse
Affiliation(s)
- S S Soldan
- Viral Immunology Section, NIH/NINDS, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
22
|
Lawoko A, Johansson B, Rabinayaran D, Pipkorn R, Blomberg J. Increased immunoglobulin G, but not M, binding to endogenous retroviral antigens in HIV-1 infected persons. J Med Virol 2000; 62:435-44. [PMID: 11074471 DOI: 10.1002/1096-9071(200012)62:4<435::aid-jmv7>3.0.co;2-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The modes of interaction between products of human endogenous retroviral (HERV) sequences and the immune system are largely unknown. In HIV infected persons, an exogenous retrovirus adds further complexity to the situation. Therefore, 14 synthetic peptides with sequences derived from conserved regions of various endogenous retroviruses (ERVs) and from related exogenous retroviruses were used to search for IgG and IgM antibodies that bind to such antigens in 15 HIV-1 seropositive and 17 seronegative immunosuppressed patients. IgG binding to three peptides, namely, the C-terminal half of murine leukemia virus (MLV) capsid protein, the conserved portion of HERV-H transmembrane protein, and the Pol region of human mouse mammary tumor virus (MMTV)-like (HML3) sequence, was observed in both groups. Binding was, however, more frequent and more firm in HIV-1 positive samples (P<0.0001, Wilcoxon rank sum test). IgM binding to the same peptides showed no significant differentiation between the two groups of patients. Binding to both immunoglobulin isotypes was sometimes variable over time in both groups. No correlation of either IgG or IgM peptide binding with progression to AIDS in HIV-1 infected individuals was observed. Inhibition studies using analogous endogenous and exogenous retroviral peptides, including HIV-1, demonstrated specificity of the IgG antibodies for a narrow range of MLV- and MMTV-like retroviral antigens, and excluded cross-reactivity of antibodies to HIV-1 as a cause of these observations. Thus, unlike IgG, IgM binding to retroviral antigens was ubiquitous. It is suggested that anti-HERV IgM belong to a class of natural antibodies and might serve as primers in the mediation of humoral immune responses to more or less related exogenous retroviruses. Increased IgG binding in HIV-1 infected individuals could result from such priming, or reflect higher HERV antigen expression.
Collapse
Affiliation(s)
- A Lawoko
- Department of Medical Sciences, Section of Virology, Uppsala Academic Hospital, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
23
|
Casau AE, Vaughan JE, Lozano G, Levine AJ. Germ cell expression of an isolated human endogenous retroviral long terminal repeat of the HERV-K/HTDV family in transgenic mice. J Virol 1999; 73:9976-83. [PMID: 10559311 PMCID: PMC113048 DOI: 10.1128/jvi.73.12.9976-9983.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1999] [Accepted: 09/08/1999] [Indexed: 11/20/2022] Open
Abstract
In contrast to most other human endogenous retroviral families, various HERV-K members have open reading frames that code for functional viral proteins which can form noninfectious particles in some germ cell tumors. The HERV-K viral genes are highly transcribed in germ cell tumors but are transcribed to lower or undetectable levels in most other tissue and tumor types. To further analyze the expression patterns of these proviruses, long terminal repeats (LTRs) were isolated from the human genome and used in reporter gene assays. Expression of some HERV-K LTRs was found to be high in human and murine germ cell tumors (testicular teratocarcinomas) and low in non-germ-cell tumors. Furthermore, upon differentiation of a teratocarcinoma cell line, the expression of an active LTR dropped dramatically, suggesting developmental regulation of these proviral LTRs. Transgenic mice harboring an active LTR driving lacZ expression were generated and analyzed. Adult mouse testes showed the highest levels of expression, and the transgene staining appeared to be restricted primarily to the more undifferentiated spermatocytes. Most other tissues analyzed revealed very low or undetectable levels of expression both by reverse transcription-PCR and by Northern blot analysis. Whether the restricted expression of HERV-K in germ cells and in germ cell-derived tumors is of significant importance during development or tumorigenesis remains to be elucidated. Germ line expression of these viruses would allow for their expansion and movement, while somatic repression would ensure limited insertional mutagenesis and misexpression in an individual.
Collapse
Affiliation(s)
- A E Casau
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
24
|
Clerici M, Fusi ML, Caputo D, Guerini FR, Trabattoni D, Salvaggio A, Cazzullo CL, Arienti D, Villa ML, Urnovitz HB, Ferrante P. Immune responses to antigens of human endogenous retroviruses in patients with acute or stable multiple sclerosis. J Neuroimmunol 1999; 99:173-82. [PMID: 10505972 DOI: 10.1016/s0165-5728(99)00123-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A possible role for human endogenous retroviruses (HERV) in the pathogenesis of MS was investigated by analyzing HERV peptides-stimulated proliferation and cytokine production in MS patients with acute (AMS) or stable (SMS) disease. HERV peptides specific-proliferation and type 1 cytokine production by peripheral blood mononuclear cells was observed in AMS but not in SMS individuals, in whom a type 2 cytokine profile dominates. HERV peptides-stimulated immune responses were modified by changes in disease expression; mediated by CD4+ T lymphocytes; and not related to HLA class II molecules. These data suggest the possibility of a pathogenic role for HERV and HERV-specific immune responses in MS.
Collapse
Affiliation(s)
- M Clerici
- Cattedra di Immunologia, Università degli Studi di Milano, Padiglione LITA, Ospedale L. Sacco, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rasmussen HB, Heitberg A, Christensen K, Clausen J. A possible association between multiple sclerosis and HRES-1 an endogenous retroviral element related to the human T-cell leukemia viruses. Acta Neurol Scand 1997. [DOI: 10.1111/j.1600-0404.1997.tb08149.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Rasmussen HB, Clausen J. Possible involvement of endogenous retroviruses in the development of autoimmune disorders, especially multiple sclerosis. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 1997; 169:32-7. [PMID: 9174638 DOI: 10.1111/j.1600-0404.1997.tb08147.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endogenous retroviruses are normal elements in vertebrate genomes. Many aspects concerning these genomic elements are still uncertain. In mice some endogenous retroviral sequences seem to be involved in the regulation of immune responses and there is even evidence that a retroviral element is responsible for the development of an autoimmune disease in a mouse strain. Whether endogenous retroviruses also contribute to the development of autoimmune diseases in humans is not known, but it is an interesting possibility. Below we briefly review endogenous retroviruses as potential etiological factors in autoimmunity and we discuss a possible association between MS and endogenous retroviruses on the basis of results from our laboratory.
Collapse
Affiliation(s)
- H B Rasmussen
- Department of Life Sciences and Chemistry, Roskilde University, Denmark
| | | |
Collapse
|
27
|
Abstract
Retroviruses are distinguished from other viruses by several features. Notably, some retroviruses are present as normal elements in the genomes of virtually all vertebrates (endogenous proviruses). Others are exogenous, i.e. horizontally transmitted agents, many of which cause fatal diseases. The endogenous retroviruses are genetically transmitted and to a large extent their significance is uncertain. However, there is evidence suggesting that they contribute to the development of diseases in several animal species. Most importantly, some endogenous retroviruses are capable of interacting with exogenous counterparts through a variety of different mechanisms with serious consequences to the host. Conversely, others are advantageous in that they protect against exogenous retroviruses. In this review various types of interactions between endogenous and exogenous retroviruses are discussed, including receptor interference, recombination, phenotypic mixing, immunological interactions and heterologous trans-activation. Copyright 1997 S. Karger AG, Basel
Collapse
Affiliation(s)
- H.B. Rasmussen
- Department of Life Sciences and Chemistry, Roskilde University, Roskilde, Denmark
| |
Collapse
|
28
|
Rasmussen HB, Heltberg A, Christensen K, Clausen J. Possible association between multiple sclerosis and the human T cell leukemia virus (HTLV)-related endogenous element, HRES-1. Mult Scler 1996; 2:133-6. [PMID: 9345377 DOI: 10.1177/135245859600200303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the present study we searched for an association between the human endogenous retroviral element HRES-1 and multiple sclerosis (MS). Fragments of this endogenous retrovirus were amplified for subsequent examination by single strand conformational analysis. We did not find HRES-1 markers exclusively linked with MS and only the two already known polymorphisms, which define three alleles of HRES-1, were detected. However, we found a significant difference in the distribution of these alleles between a group of 87 MS patients and a control group of 158 healthy individuals (P = 0.014). There were no differences in the distribution of the HRES-1 allelic forms between MS patients with a relapsing-remitting course and patients with chronic progressive MS. Our results provide evidence of an association between HRES-1 and MS. Possible explanations for this are discussed.
Collapse
Affiliation(s)
- H B Rasmussen
- Institute of Life Sciences and Chemistry, Roskilde University, Denmark
| | | | | | | |
Collapse
|
29
|
Rasmussen HB, Heltberg A, Lisby G, Clausen J. Three allelic forms of the human endogenous retrovirus, ERV3, and their frequencies in multiple sclerosis patients and healthy individuals. Autoimmunity 1996; 23:111-7. [PMID: 8871766 DOI: 10.3109/08916939608995334] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A possible association between the endogenous retrovirus, ERV3, and multiple sclerosis (MS) was examined. Samples of DNA from 74 MS patients and 159 healthy blood donors were subjected to enzymatic amplification followed by single strand conformational analysis to detect polymorphisms in the long terminal repeats of ERV3. Using this approach we detected six single base pair variations and a drop-out of a nucleotide. The linkage pattern of these base pair variations enabled us to define three allelic forms of ERV3. Polymorphisms exclusively present in the group of patients were not found and the distribution of the three allelic forms did not differ significantly between the group of controls and the MS group. Neither was there a significant difference in the distribution of the three alleles between MS patients with the progressive form and patients with relapsing/remitting MS. Our results are not in support of an association between ERV3 and MS.
Collapse
Affiliation(s)
- H B Rasmussen
- Institute of Chemistry and Life Sciences, Roskilde University, Denmark
| | | | | | | |
Collapse
|