1
|
Jasiczek J, Doroszko A, Trocha T, Trocha M. Role of the RAAS in mediating the pathophysiology of COVID-19. Pharmacol Rep 2024; 76:475-486. [PMID: 38652364 PMCID: PMC11126499 DOI: 10.1007/s43440-024-00596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
The renin-angiotensin-aldosterone system (RAAS) holds a position of paramount importance as enzymatic and endocrine homeostatic regulator concerning the water-electrolyte and acid-base balance. Nevertheless, its intricacy is influenced by the presence of various complementary angiotensins and their specific receptors, thereby modifying the primary RAAS actions. Angiotensin-converting enzyme 2 (ACE2) acts as a surface receptor for SARS-CoV-2, establishing an essential connection between RAAS and COVID-19 infection. Despite the recurring exploration of the RAAS impact on the trajectory of COVID-19 along with the successful resolution of many inquiries, its complete role in the genesis of delayed consequences encompassing long COVID and cardiovascular thrombotic outcomes during the post-COVID phase as well as post-vaccination, remains not fully comprehended. Particularly noteworthy is the involvement of the RAAS in the molecular mechanisms underpinning procoagulant processes throughout COVID-19. These processes significantly contribute to the pathogenesis of organ complications as well as determine clinical outcomes and are discussed in this manuscript.
Collapse
Affiliation(s)
- Jakub Jasiczek
- Department of Cardiology, Regional Specialist Hospital in Wrocław, Kamieńskiego 73a, Wrocław, 51-124, Poland
| | - Adrian Doroszko
- Department of Cardiology, 4th Military Hospital, Faculty of Medicine, Wroclaw University of Science and Technology, Weigla 5, Wrocław, 50-981, Poland
| | - Tymoteusz Trocha
- Faculty of Medicine, Wroclaw Medical University, Borowska 213, Wrocław, 50-556, Poland.
| | - Małgorzata Trocha
- Clinical Department of Diabetology and Internal Disease, Wroclaw Medical University, Borowska 213, Wrocław, 50-556, Poland
| |
Collapse
|
2
|
Devaux CA, Lagier JC. Unraveling the Underlying Molecular Mechanism of 'Silent Hypoxia' in COVID-19 Patients Suggests a Central Role for Angiotensin II Modulation of the AT1R-Hypoxia-Inducible Factor Signaling Pathway. J Clin Med 2023; 12:jcm12062445. [PMID: 36983445 PMCID: PMC10056466 DOI: 10.3390/jcm12062445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
A few days after being infected with SARS-CoV-2, a fraction of people remain asymptomatic but suffer from a decrease in arterial oxygen saturation in the absence of apparent dyspnea. In light of our clinical investigation on the modulation of molecules belonging to the renin angiotensin system (RAS) in COVID-19 patients, we propose a model that explains 'silent hypoxia'. The RAS imbalance caused by SARS-CoV-2 results in an accumulation of angiotensin 2 (Ang II), which activates the angiotensin 2 type 1 receptor (AT1R) and triggers a harmful cascade of intracellular signals leading to the nuclear translocation of the hypoxia-inducible factor (HIF)-1α. HIF-1α transactivates many genes including the angiotensin-converting enzyme 1 (ACE1), while at the same time, ACE2 is downregulated. A growing number of cells is maintained in a hypoxic condition that is self-sustained by the presence of the virus and the ACE1/ACE2 ratio imbalance. This is associated with a progressive worsening of the patient's biological parameters including decreased oxygen saturation, without further clinical manifestations. When too many cells activate the Ang II-AT1R-HIF-1α axis, there is a 'hypoxic spillover', which marks the tipping point between 'silent' and symptomatic hypoxia in the patient. Immediate ventilation is required to prevent the 'hypoxic spillover'.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Institut de Recherche pour le Développement, Assistance Publique Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infection Laboratory, Aix-Marseille University, 13000 Marseille, France
- Institut Hospitalo-Universitaire-Méditerranée Infection, 13000 Marseille, France
- Centre National de la Recherche Scientifique, 13000 Marseille, France
| | - Jean-Christophe Lagier
- Institut de Recherche pour le Développement, Assistance Publique Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infection Laboratory, Aix-Marseille University, 13000 Marseille, France
- Institut Hospitalo-Universitaire-Méditerranée Infection, 13000 Marseille, France
| |
Collapse
|
3
|
Sohaei D, Hollenberg M, Janket SJ, Diamandis EP, Poda G, Prassas I. The therapeutic relevance of the Kallikrein-Kinin axis in SARS-cov-2-induced vascular pathology. Crit Rev Clin Lab Sci 2023; 60:25-40. [PMID: 35930434 DOI: 10.1080/10408363.2022.2102578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
While coronavirus disease 2019 (COVID-19) begins as a respiratory infection, it progresses as a systemic disease involving multiorgan microthromboses that underly the pathology. SARS-CoV-2 enters host cells via attachment to the angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is widely expressed in a multitude of tissues, including the lung (alveolar cells), heart, intestine, kidney, testis, gallbladder, vasculature (endothelial cells), and immune cells. Interference in ACE2 signaling could drive the aforementioned systemic pathologies, such as endothelial dysfunction, microthromboses, and systemic inflammation, that are typically seen in patients with severe COVID-19. ACE2 is a component of the renin-angiotensin system (RAS) and is intimately associated with the plasma kallikrein-kinin system (KKS). As many papers are published on the role of ACE and ACE2 in COVID-19, we will review the role of bradykinin, and more broadly the KSS, in SARS-CoV-2-induced vascular dysfunction. Furthermore, we will discuss the possible therapeutic interventions that are approved and in development for the following targets: coagulation factor XII (FXII), tissue kallikrein (KLK1), plasma kallikrein (KLKB1), bradykinin (BK), plasminogen activator inhibitor (PAI-1), bradykinin B1 receptor (BKB1R), bradykinin B2 receptor (BKB2R), ACE, furin, and the NLRP3 inflammasome. Understanding these targets may prove of value in the treatment of COVID-19 as well as in other virus-induced coagulopathies in the future.
Collapse
Affiliation(s)
- Dorsa Sohaei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Morley Hollenberg
- Department of Medicine, Faculty of Medicine, University of Calgary, Alberta, Canada
| | - Sok-Ja Janket
- Translational Oral Medicine Section, Forsyth Institute, Cambridge, MA, USA
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
4
|
Maranduca MA, Tanase DM, Cozma CT, Dima N, Clim A, Pinzariu AC, Serban DN, Serban IL. The Impact of Angiotensin-Converting Enzyme-2/Angiotensin 1-7 Axis in Establishing Severe COVID-19 Consequences. Pharmaceutics 2022; 14:pharmaceutics14091906. [PMID: 36145655 PMCID: PMC9505151 DOI: 10.3390/pharmaceutics14091906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has put a tremendous stress on the medical community over the last two years. Managing the infection proved a lot more difficult after several research communities started to recognize the long-term effects of this disease. The cellular receptor for the virus was identified as angiotensin-converting enzyme-2 (ACE2), a molecule responsible for a wide array of processes, broadly variable amongst different organs. Angiotensin (Ang) 1-7 is the product of Ang II, a decaying reaction catalysed by ACE2. The effects observed after altering the level of ACE2 are essentially related to the variation of Ang 1-7. The renin-angiotensin-aldosterone system (RAAS) is comprised of two main branches, with ACE2 representing a crucial component of the protective part of the complex. The ACE2/Ang (1-7) axis is well represented in the testis, heart, brain, kidney, and intestine. Infection with the novel SARS-CoV-2 virus determines downregulation of ACE2 and interrupts the equilibrium between ACE and ACE2 in these organs. In this review, we highlight the link between the local effects of RAAS and the consequences of COVID-19 infection as they arise from observational studies.
Collapse
Affiliation(s)
- Minela Aida Maranduca
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniela Maria Tanase
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Tudor Cozma
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence:
| | - Nicoleta Dima
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragomir Nicolae Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
5
|
Bahraini M, Dorgalaleh A. The Impact of SARS-CoV-2 Infection on Blood Coagulation and Fibrinolytic Pathways: A Review of Prothrombotic Changes Caused by COVID-19. Semin Thromb Hemost 2021; 48:19-30. [PMID: 34695858 DOI: 10.1055/s-0041-1736166] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cardinal pathology of coronavirus disease 2019 (COVID-19) is a primary infection of pulmonary tract cells by severe acute respiratory syndrome coronavirus 2, provoking a local inflammatory response, often accompanied by cytokine storm and acute respiratory distress syndrome, especially in patients with severe disease. Systemic propagation of the disease may associate with thrombotic events, including deep vein thrombosis, pulmonary embolism, and thrombotic microangiopathy, which are important causes of morbidity and mortality in patients with COVID-19. This narrative review describes current knowledge of the pathophysiological mechanisms of COVID-19-associated coagulopathy, with focus on prothrombotic changes in hemostatic mediators, including plasma levels of clotting factors, natural anticoagulants, components of fibrinolytic system, and platelets. It will also highlight the central role of endothelial cells in COVID-19-associated coagulopathy. This narrative review discusses also potential therapeutic strategies for managing thrombotic complications. Awareness by medical experts of contributors to the pathogenesis of thrombotic events in COVID-19 is imperative to develop therapeutics not limited to regular anticoagulants. Instituting cooperation among medical personnel and researchers may lessen this novel virus' impact now, and in the event of recurrence.
Collapse
Affiliation(s)
- Mehran Bahraini
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Akbar Dorgalaleh
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Which ones, when and why should renin-angiotensin system inhibitors work against COVID-19? Adv Biol Regul 2021; 81:100820. [PMID: 34419773 PMCID: PMC8359569 DOI: 10.1016/j.jbior.2021.100820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022]
Abstract
The article describes the possible pathophysiological origin of COVID-19 and the crucial role of renin-angiotensin system (RAS), providing several “converging” evidence in support of this hypothesis. SARS-CoV-2 has been shown to initially upregulate ACE2 systemic activity (early phase), which can subsequently induce compensatory responses leading to upregulation of both arms of the RAS (late phase) and consequently to critical, advanced and untreatable stages of COVID-19 disease. The main and initial actors of the process are ACE2 and ADAM17 zinc-metalloproteases, which, initially triggered by SARS-CoV-2 spike proteins, work together in increasing circulating Ang 1–7 and Ang 1–9 peptides and downstream (Mas and Angiotensin type 2 receptors) pathways with anti-inflammatory, hypotensive and antithrombotic activities. During the late phase of severe COVID-19, compensatory secretion of renin and ACE enzymes are subsequently upregulated, leading to inflammation, hypertension and thrombosis, which further sustain ACE2 and ADAM17 upregulation. Based on this hypothesis, COVID-19-phase-specific inhibition of different RAS enzymes is proposed as a pharmacological strategy against COVID-19 and vaccine-induced adverse effects. The aim is to prevent the establishment of positive feedback-loops, which can sustain hyperactivity of both arms of the RAS independently of viral trigger and, in some cases, may lead to Long-COVID syndrome.
Collapse
|
7
|
Zanza C, Tassi MF, Romenskaya T, Piccolella F, Abenavoli L, Franceschi F, Piccioni A, Ojetti V, Saviano A, Canonico B, Montanari M, Zamai L, Artico M, Robba C, Racca F, Longhitano Y. Lock, Stock and Barrel: Role of Renin-Angiotensin-Aldosterone System in Coronavirus Disease 2019. Cells 2021; 10:1752. [PMID: 34359922 PMCID: PMC8306543 DOI: 10.3390/cells10071752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Since the end of 2019, the medical-scientific community has been facing a terrible pandemic caused by a new airborne viral agent known as SARS-CoV2. Already in the early stages of the pandemic, following the discovery that the virus uses the ACE2 cell receptor as a molecular target to infect the cells of our body, it was hypothesized that the renin-angiotensin-aldosterone system was involved in the pathogenesis of the disease. Since then, numerous studies have been published on the subject, but the exact role of the renin-angiotensin-aldosterone system in the pathogenesis of COVID-19 is still a matter of debate. RAAS represents an important protagonist in the pathogenesis of COVID-19, providing the virus with the receptor of entry into host cells and determining its organotropism. Furthermore, following infection, the virus is able to cause an increase in plasma ACE2 activity, compromising the normal function of the RAAS. This dysfunction could contribute to the establishment of the thrombo-inflammatory state characteristic of severe forms of COVID-19. Drugs targeting RAAS represent promising therapeutic options for COVID-19 sufferers.
Collapse
Affiliation(s)
- Christian Zanza
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
- Foundation Ospedale Alba-Bra and Department of Anesthesia, Critical Care and Emergency Medicine, Pietro and Michele Ferrero Hospital, 12051 Verduno, Italy
| | - Michele Fidel Tassi
- Department of Emergency Medicine, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
| | - Tatsiana Romenskaya
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Fabio Piccolella
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy;
| | - Francesco Franceschi
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Andrea Piccioni
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Veronica Ojetti
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Angela Saviano
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
| | - Loris Zamai
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
- National Institute for Nuclear Physics (INFN)-Gran Sasso National Laboratory (LNGS), 67100 Assergi L’Aquila, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy;
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy;
| | - Fabrizio Racca
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Yaroslava Longhitano
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
- Foundation Ospedale Alba-Bra and Department of Anesthesia, Critical Care and Emergency Medicine, Pietro and Michele Ferrero Hospital, 12051 Verduno, Italy
| |
Collapse
|
8
|
Ramos SG, Rattis BADC, Ottaviani G, Celes MRN, Dias EP. ACE2 Down-Regulation May Act as a Transient Molecular Disease Causing RAAS Dysregulation and Tissue Damage in the Microcirculatory Environment Among COVID-19 Patients. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1154-1164. [PMID: 33964216 PMCID: PMC8099789 DOI: 10.1016/j.ajpath.2021.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/05/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2, the etiologic agent of coronavirus disease 2019 (COVID-19) and the cause of the current pandemic, produces multiform manifestations throughout the body, causing indiscriminate damage to multiple organ systems, particularly the lungs, heart, brain, kidney, and vasculature. The aim of this review is to provide a new assessment of the data already available for COVID-19, exploring it as a transient molecular disease that causes negative regulation of angiotensin-converting enzyme 2, and consequently, deregulates the renin-angiotensin-aldosterone system, promoting important changes in the microcirculatory environment. Another goal of the article is to show how these microcirculatory changes may be responsible for the wide variety of injury mechanisms observed in different organs in this disease. The new concept of COVID-19 provides a unifying pathophysiological picture of this infection and offers fresh insights for a rational treatment strategy to combat this ongoing pandemic.
Collapse
Affiliation(s)
- Simone Gusmão Ramos
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Bruna Amanda da Cruz Rattis
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Giulia Ottaviani
- Centro di Ricerca Lino Rossi, Anatomic Pathology MED-08, Università degli Studi di Milano, Milan, Italy
| | - Mara Rubia Nunes Celes
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil,Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Goias, Brazil
| | - Eliane Pedra Dias
- Department of Pathology, Faculty of Medicine, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
10
|
Mansour E, Palma AC, Ulaf RG, Ribeiro LC, Bernardes AF, Nunes TA, Agrela MV, Bombassaro B, Monfort-Pires M, Camargo RL, Araujo EP, Brunetti NS, Farias AS, Falcão ALE, Santos TM, Trabasso P, Dertkigil RP, Dertkigil SS, Moretti ML, Velloso LA. Safety and Outcomes Associated with the Pharmacological Inhibition of the Kinin-Kallikrein System in Severe COVID-19. Viruses 2021; 13:v13020309. [PMID: 33669276 PMCID: PMC7920028 DOI: 10.3390/v13020309] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Coronavirus disease 19 (COVID-19) can develop into a severe respiratory syndrome that results in up to 40% mortality. Acute lung inflammatory edema is a major pathological finding in autopsies explaining O2 diffusion failure and hypoxemia. Only dexamethasone has been shown to reduce mortality in severe cases, further supporting a role for inflammation in disease severity. SARS-CoV-2 enters cells employing angiotensin-converting enzyme 2 (ACE2) as a receptor, which is highly expressed in lung alveolar cells. ACE2 is one of the components of the cellular machinery that inactivates the potent inflammatory agent bradykinin, and SARS-CoV-2 infection could interfere with the catalytic activity of ACE2, leading to the accumulation of bradykinin. Methods: In this case control study, we tested two pharmacological inhibitors of the kinin–kallikrein system that are currently approved for the treatment of hereditary angioedema, icatibant, and inhibitor of C1 esterase/kallikrein, in a group of 30 patients with severe COVID-19. Results: Neither icatibant nor inhibitor of C1 esterase/kallikrein resulted in changes in time to clinical improvement. However, both compounds were safe and promoted the significant improvement of lung computed tomography scores and increased blood eosinophils, which are indicators of disease recovery. Conclusions: In this small cohort, we found evidence for safety and a beneficial role of pharmacological inhibition of the kinin–kallikrein system in two markers that indicate improved disease recovery.
Collapse
Affiliation(s)
- Eli Mansour
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Andre C. Palma
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Raisa G. Ulaf
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Luciana C. Ribeiro
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Ana Flavia Bernardes
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Thyago A. Nunes
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Marcus V. Agrela
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Bruna Bombassaro
- Obesity and Comorbidities Research Center, University of Campinas, 13083-864 Campinas, São Paulo, Brazil; (B.B.); (M.M.-P.); (R.L.C.); (E.P.A.)
| | - Milena Monfort-Pires
- Obesity and Comorbidities Research Center, University of Campinas, 13083-864 Campinas, São Paulo, Brazil; (B.B.); (M.M.-P.); (R.L.C.); (E.P.A.)
| | - Rafael L. Camargo
- Obesity and Comorbidities Research Center, University of Campinas, 13083-864 Campinas, São Paulo, Brazil; (B.B.); (M.M.-P.); (R.L.C.); (E.P.A.)
| | - Eliana P. Araujo
- Obesity and Comorbidities Research Center, University of Campinas, 13083-864 Campinas, São Paulo, Brazil; (B.B.); (M.M.-P.); (R.L.C.); (E.P.A.)
- School of Nursing, University of Campinas, 13083-887 Campinas, São Paulo, Brazil
| | - Natalia S. Brunetti
- Autoimmune Research Lab, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, 13083-862 Campinas, São Paulo, Brazil; (N.S.B.); (A.S.F.)
| | - Alessandro S. Farias
- Autoimmune Research Lab, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, 13083-862 Campinas, São Paulo, Brazil; (N.S.B.); (A.S.F.)
| | - Antônio Luís E. Falcão
- Department of Surgery, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil;
| | - Thiago Martins Santos
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Plinio Trabasso
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Rachel P. Dertkigil
- Department of Radiology, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (R.P.D.); (S.S.D.)
| | - Sergio S. Dertkigil
- Department of Radiology, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (R.P.D.); (S.S.D.)
| | - Maria Luiza Moretti
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Licio A. Velloso
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
- Obesity and Comorbidities Research Center, University of Campinas, 13083-864 Campinas, São Paulo, Brazil; (B.B.); (M.M.-P.); (R.L.C.); (E.P.A.)
- Correspondence:
| |
Collapse
|
11
|
Kwaan HC, Lindholm PF. The Central Role of Fibrinolytic Response in COVID-19-A Hematologist's Perspective. Int J Mol Sci 2021; 22:1283. [PMID: 33525440 PMCID: PMC7919196 DOI: 10.3390/ijms22031283] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus disease (COVID-19) has many characteristics common to those in two other coronavirus acute respiratory diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). They are all highly contagious and have severe pulmonary complications. Clinically, patients with COVID-19 run a rapidly progressive course of an acute respiratory tract infection with fever, sore throat, cough, headache and fatigue, complicated by severe pneumonia often leading to acute respiratory distress syndrome (ARDS). The infection also involves other organs throughout the body. In all three viral illnesses, the fibrinolytic system plays an active role in each phase of the pathogenesis. During transmission, the renin-aldosterone-angiotensin-system (RAAS) is involved with the spike protein of SARS-CoV-2, attaching to its natural receptor angiotensin-converting enzyme 2 (ACE 2) in host cells. Both tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1) are closely linked to the RAAS. In lesions in the lung, kidney and other organs, the two plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA), along with their inhibitor, plasminogen activator 1 (PAI-1), are involved. The altered fibrinolytic balance enables the development of a hypercoagulable state. In this article, evidence for the central role of fibrinolysis is reviewed, and the possible drug targets at multiple sites in the fibrinolytic pathways are discussed.
Collapse
Affiliation(s)
- Hau C. Kwaan
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Paul F. Lindholm
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
12
|
Sidarta-Oliveira D, Jara CP, Ferruzzi AJ, Skaf MS, Velander WH, Araujo EP, Velloso LA. SARS-CoV-2 receptor is co-expressed with elements of the kinin-kallikrein, renin-angiotensin and coagulation systems in alveolar cells. Sci Rep 2020; 10:19522. [PMID: 33177594 PMCID: PMC7658217 DOI: 10.1038/s41598-020-76488-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2, the pathogenic agent of COVID-19, employs angiotensin converting enzyme-2 (ACE2) as its cell entry receptor. Clinical data reveal that in severe COVID-19, SARS-CoV-2 infects the lung, leading to a frequently lethal triad of respiratory insufficiency, acute cardiovascular failure, and coagulopathy. Physiologically, ACE2 plays a role in the regulation of three systems that could potentially be involved in the pathogenesis of severe COVID-19: the kinin-kallikrein system, resulting in acute lung inflammatory edema; the renin-angiotensin system, promoting cardiovascular instability; and the coagulation system, leading to thromboembolism. Here we assembled a healthy human lung cell atlas meta-analysis with ~ 130,000 public single-cell transcriptomes and show that key elements of the bradykinin, angiotensin and coagulation systems are co-expressed with ACE2 in alveolar cells and associated with their differentiation dynamics, which could explain how changes in ACE2 promoted by SARS-CoV-2 cell entry result in the development of the three most severe clinical components of COVID-19.
Collapse
Affiliation(s)
- Davi Sidarta-Oliveira
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, Instituto de Biologia - Bloco Z. Campus Universitário Zeferino Vaz, University of Campinas, Rua Carl Von Lineaus s/n, Barão Geraldo, Campinas, SP, 13083-864, Brazil
- Physician-Scientist Graduate Program, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Carlos Poblete Jara
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, Instituto de Biologia - Bloco Z. Campus Universitário Zeferino Vaz, University of Campinas, Rua Carl Von Lineaus s/n, Barão Geraldo, Campinas, SP, 13083-864, Brazil
- Nursing School, University of Campinas, Campinas, Brazil
| | - Adriano J Ferruzzi
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, Brazil
| | - Munir S Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, Brazil
| | - William H Velander
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, USA
| | - Eliana P Araujo
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, Instituto de Biologia - Bloco Z. Campus Universitário Zeferino Vaz, University of Campinas, Rua Carl Von Lineaus s/n, Barão Geraldo, Campinas, SP, 13083-864, Brazil
- Nursing School, University of Campinas, Campinas, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, Instituto de Biologia - Bloco Z. Campus Universitário Zeferino Vaz, University of Campinas, Rua Carl Von Lineaus s/n, Barão Geraldo, Campinas, SP, 13083-864, Brazil.
| |
Collapse
|
13
|
Haimei MA. Pathogenesis and Treatment Strategies of COVID-19-Related Hypercoagulant and Thrombotic Complications. Clin Appl Thromb Hemost 2020; 26:1076029620944497. [PMID: 32722927 PMCID: PMC7391437 DOI: 10.1177/1076029620944497] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The new type of pneumonia caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is endemic worldwide, and many countries cannot be spared, becoming a global health concern. The disease was named COVID-19 by the World Health Organization (WHO) on January 30, 2020, when the WHO declared the Chinese outbreak of COVID-19 to be a public health emergency of international concern. The clinical features of COVID-19 include dry cough, fever, diarrhea, vomiting, and myalgia. Similar to SARS-CoV and MERS-CoV, nearly 20% of patients experienced various fatal complications, including acute kidney injury and acute respiratory distress syndrome caused by cytokine storm. Furthermore, systemic cytokine storm induced vascular endothelial injury, which extensively mediates hypercoagulability in blood vessels and disseminated intravascular coagulation. The autopsy pathology of COVID-19 confirmed the above. This article briefly summarizes the mechanism of hypercoagulability and thrombotic complications of severe COVID-19 and proposes that blood hypercoagulability and intravascular microthrombosis are the development nodes of severe COVID-19. Therefore, anticoagulation and anti-inflammatory therapy can be used as important treatment strategies for severe COVID-19.
Collapse
Affiliation(s)
- MA Haimei
- Department of Blood Transfusion Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China,Haimei MA, Department of Blood Transfusion Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing 102218, China.
| |
Collapse
|
14
|
Zamai L. The Yin and Yang of ACE/ACE2 Pathways: The Rationale for the Use of Renin-Angiotensin System Inhibitors in COVID-19 Patients. Cells 2020; 9:E1704. [PMID: 32708755 PMCID: PMC7408073 DOI: 10.3390/cells9071704] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
The article describes the rationale for inhibition of the renin-angiotensin system (RAS) pathways as specific targets in patients infected by SARS-CoV-2 in order to prevent positive feedback-loop mechanisms. Based purely on experimental studies in which RAS pathway inhibitors were administered in vivo to humans/rodents, a reasonable hypothesis of using inhibitors that block both ACE and ACE2 zinc metalloproteases and their downstream pathways in COVID-19 patients will be proposed. In particular, metal (zinc) chelators and renin inhibitors may work alone or in combination to inhibit the positive feedback loops (initially triggered by SARS-CoV-2 and subsequently sustained by hypoxia independently on viral trigger) as both arms of renin-angiotensin system are upregulated, leading to critical, advanced and untreatable stages of the disease.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy; ; Tel.: +39-0722-304319
- INFN-Gran Sasso National Laboratory, Assergi, 67100 L’Aquila, Italy
| |
Collapse
|
15
|
Garvin MR, Alvarez C, Miller JI, Prates ET, Walker AM, Amos BK, Mast AE, Justice A, Aronow B, Jacobson D. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. eLife 2020; 9:e59177. [PMID: 32633718 PMCID: PMC7410499 DOI: 10.7554/elife.59177] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Neither the disease mechanism nor treatments for COVID-19 are currently known. Here, we present a novel molecular mechanism for COVID-19 that provides therapeutic intervention points that can be addressed with existing FDA-approved pharmaceuticals. The entry point for the virus is ACE2, which is a component of the counteracting hypotensive axis of RAS. Bradykinin is a potent part of the vasopressor system that induces hypotension and vasodilation and is degraded by ACE and enhanced by the angiotensin1-9 produced by ACE2. Here, we perform a new analysis on gene expression data from cells in bronchoalveolar lavage fluid (BALF) from COVID-19 patients that were used to sequence the virus. Comparison with BALF from controls identifies a critical imbalance in RAS represented by decreased expression of ACE in combination with increases in ACE2, renin, angiotensin, key RAS receptors, kinogen and many kallikrein enzymes that activate it, and both bradykinin receptors. This very atypical pattern of the RAS is predicted to elevate bradykinin levels in multiple tissues and systems that will likely cause increases in vascular dilation, vascular permeability and hypotension. These bradykinin-driven outcomes explain many of the symptoms being observed in COVID-19.
Collapse
Affiliation(s)
- Michael R Garvin
- Oak Ridge National Laboratory, Biosciences DivisionOak RidgeUnited States
| | - Christiane Alvarez
- Oak Ridge National Laboratory, Biosciences DivisionOak RidgeUnited States
| | - J Izaak Miller
- Oak Ridge National Laboratory, Biosciences DivisionOak RidgeUnited States
| | - Erica T Prates
- Oak Ridge National Laboratory, Biosciences DivisionOak RidgeUnited States
| | - Angelica M Walker
- Oak Ridge National Laboratory, Biosciences DivisionOak RidgeUnited States
- University of Tennessee Knoxville, The Bredesen Center for Interdisciplinary Research and Graduate EducationKnoxvilleUnited States
| | - B Kirtley Amos
- University of Kentucky, Department of HorticultureLexingtonUnited States
| | - Alan E Mast
- Versiti Blood Research Institute, Medical College of WisconsinMilwaukeeUnited States
| | - Amy Justice
- VA Connecticut Healthcare/General Internal Medicine, Yale University School of MedicineWest HavenUnited States
| | - Bruce Aronow
- University of CincinnatiCincinnatiUnited States
- Biomedical Informatics, Cincinnati Children’s Hospital Research FoundationCincinnatiUnited States
| | - Daniel Jacobson
- Oak Ridge National Laboratory, Biosciences DivisionOak RidgeUnited States
- University of Tennessee Knoxville, The Bredesen Center for Interdisciplinary Research and Graduate EducationKnoxvilleUnited States
- University of Tennessee Knoxville, Department of Psychology, Austin Peay BuildingKnoxvilleUnited States
| |
Collapse
|
16
|
Heavner MS, McCurdy MT, Mazzeffi MA, Galvagno SM, Tanaka KA, Chow JH. Angiotensin II and Vasopressin for Vasodilatory Shock: A Critical Appraisal of Catecholamine-Sparing Strategies. J Intensive Care Med 2020; 36:635-645. [DOI: 10.1177/0885066620911601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vasodilatory shock is a serious medical condition that increases the morbidity and mortality of perioperative and critically ill patients. Norepinephrine is an established first-line therapy for this condition, but at high doses, it may lead to diminishing returns. Oftentimes, secondary noncatecholamine agents are required in those whose hypotension persists. Angiotensin II and vasopressin are both noncatecholamine agents available for the treatment of hypotension in vasodilatory shock. They have distinct modes of action and unique pharmacologic properties when compared to norepinephrine. Angiotensin II and vasopressin have shown promise in certain subsets of the population, such as those with acute kidney injury, high Acute Physiology and Chronic Health Evaluation II scores, or those receiving cardiac surgery. Any benefit from these drugs must be weighed against the risks, as overall mortality has not been shown to decrease mortality in the general population. The aims of this narrative review are to provide insight into the historical use of noncatecholamine vasopressors and to compare and contrast their unique modes of action, physiologic rationale for administration, efficacy, and safety profiles.
Collapse
Affiliation(s)
| | - Michael T. McCurdy
- University of Maryland School of Medicine, Department of Medicine, Baltimore, MD, USA
| | - Michael A. Mazzeffi
- University of Maryland School of Medicine, Department of Anesthesiology, Baltimore, MD, USA
| | - Samuel M. Galvagno
- University of Maryland School of Medicine, Department of Anesthesiology, Baltimore, MD, USA
| | - Kenichi A. Tanaka
- University of Maryland School of Medicine, Department of Anesthesiology, Baltimore, MD, USA
| | - Jonathan H. Chow
- University of Maryland School of Medicine, Department of Anesthesiology, Baltimore, MD, USA
| |
Collapse
|
17
|
Nehme A, Zouein FA, Zayeri ZD, Zibara K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J Cardiovasc Dev Dis 2019. [PMID: 30934934 DOI: 10.3390/jcdd6020014.pmid:30934934;pmcid:pmc6617132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In its classical view, the renin angiotensin system (RAS) was defined as an endocrinesystem involved in blood pressure regulation and body electrolyte balance. However, the emergingconcept of tissue RAS, along with the discovery of new RAS components, increased thephysiological and clinical relevance of the system. Indeed, RAS has been shown to be expressed invarious tissues where alterations in its expression were shown to be involved in multiple diseasesincluding atherosclerosis, cardiac hypertrophy, type 2 diabetes (T2D) and renal fibrosis. In thischapter, we describe the new components of RAS, their tissue-specific expression, and theiralterations under pathological conditions, which will help achieve more tissue- and conditionspecifictreatments.
Collapse
Affiliation(s)
- Ali Nehme
- EA4173, Functional genomics of arterial hypertension, Univeristy Claude Bernard Lyon-1 (UCBL-1),69008 Lyon, France.
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Heart Repair Division, Faculty of Medicine,American University of Beirut, Beirut 11-0236, Lebanon.
| | - Zeinab Deris Zayeri
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz JundishapurUniversity of Medical Sciences, Ahvaz, Iran.
| | - Kazem Zibara
- PRASE, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
18
|
Nehme A, Zouein FA, Zayeri ZD, Zibara K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J Cardiovasc Dev Dis 2019; 6:jcdd6020014. [PMID: 30934934 PMCID: PMC6617132 DOI: 10.3390/jcdd6020014] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
In its classical view, the renin angiotensin system (RAS) was defined as an endocrine system involved in blood pressure regulation and body electrolyte balance. However, the emerging concept of tissue RAS, along with the discovery of new RAS components, increased the physiological and clinical relevance of the system. Indeed, RAS has been shown to be expressed in various tissues where alterations in its expression were shown to be involved in multiple diseases including atherosclerosis, cardiac hypertrophy, type 2 diabetes (T2D) and renal fibrosis. In this chapter, we describe the new components of RAS, their tissue-specific expression, and their alterations under pathological conditions, which will help achieve more tissue- and condition-specific treatments.
Collapse
Affiliation(s)
- Ali Nehme
- EA4173, Functional genomics of arterial hypertension, Univeristy Claude Bernard Lyon-1 (UCBL-1),69008 Lyon, France.
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Heart Repair Division, Faculty of Medicine,American University of Beirut, Beirut 11-0236, Lebanon.
| | - Zeinab Deris Zayeri
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz JundishapurUniversity of Medical Sciences, Ahvaz, Iran.
| | - Kazem Zibara
- PRASE, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
19
|
Nehme A, Zibara K. Efficiency and specificity of RAAS inhibitors in cardiovascular diseases: how to achieve better end-organ protection? Hypertens Res 2017; 40:903-909. [DOI: 10.1038/hr.2017.65] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/26/2017] [Accepted: 03/28/2017] [Indexed: 11/09/2022]
|
20
|
Simões E Silva AC, Teixeira MM. ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol Res 2016; 107:154-162. [PMID: 26995300 DOI: 10.1016/j.phrs.2016.03.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
The Renin Angiotensin System (RAS) is a pivotal physiological regulator of heart and kidney homeostasis, but also plays an important role in the pathophysiology of heart and kidney diseases. Recently, new components of the RAS have been discovered, including angiotensin converting enzyme 2 (ACE2), Angiotensin(Ang)-(1-7), Mas receptor, Ang-(1-9) and Alamandine. These new components of RAS are formed by the hydrolysis of Ang I and Ang II and, in general, counteract the effects of Ang II. In experimental models of heart and renal diseases, Ang-(1-7), Ang-(1-9) and Alamandine produced vasodilation, inhibition of cell growth, anti-thrombotic, anti-inflammatory and anti-fibrotic effects. Recent pharmacological strategies have been proposed to potentiate the effects or to enhance the formation of Ang-(1-7) and Ang-(1-9), including ACE2 activators, Ang-(1-7) in hydroxypropyl β-cyclodextrin, cyclized form of Ang-(1-7) and nonpeptide synthetic Mas receptor agonists. Here, we review the role and effects of ACE2, ACE2 activators, Ang-(1-7) and synthetic Mas receptor agonists in the control of inflammation and fibrosis in cardiovascular and renal diseases and as counter-regulators of the ACE-Ang II-AT1 axis. We briefly comment on the therapeutic potential of the novel members of RAS, Ang-(1-9) and alamandine, and the interactions between classical RAS inhibitors and new players in heart and kidney diseases.
Collapse
Affiliation(s)
- Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica, Unidade de Nefrologia Pediátrica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil.
| | - Mauro Martins Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, UFMG, Brazil
| |
Collapse
|
21
|
Zheng H, Pu SY, Fan XF, Li XS, Zhang Y, Yuan J, Zhang YF, Yang JL. Treatment with angiotensin-(1-9) alleviates the cardiomyopathy in streptozotocin-induced diabetic rats. Biochem Pharmacol 2015; 95:38-45. [DOI: 10.1016/j.bcp.2015.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
|
22
|
Recent insights and therapeutic perspectives of angiotensin-(1-9) in the cardiovascular system. Clin Sci (Lond) 2014; 127:549-57. [PMID: 25029123 DOI: 10.1042/cs20130449] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic RAS (renin-angiotensin system) activation by both AngII (angiotensin II) and aldosterone leads to hypertension and perpetuates a cascade of pro-hypertrophic, pro-inflammatory, pro-thrombotic and atherogenic effects associated with cardiovascular damage. In 2000, a new pathway consisting of ACE2 (angiotensin-converting enzyme2), Ang-(1-9) [angiotensin-(1-9)], Ang-(1-7) [angiotensin-(1-7)] and the Mas receptor was discovered. Activation of this novel pathway stimulates vasodilation, anti-hypertrophy and anti-hyperplasia. For some time, studies have focused mainly on ACE2, Ang-(1-7) and the Mas receptor, and their biological properties that counterbalance the ACE/AngII/AT1R (angiotensin type 1 receptor) axis. No previous information about Ang-(1-9) suggested that this peptide had biological properties. However, recent data suggest that Ang-(1-9) protects the heart and blood vessels (and possibly the kidney) from adverse cardiovascular remodelling in patients with hypertension and/or heart failure. These beneficial effects are not modified by the Mas receptor antagonist A779 [an Ang-(1-7) receptor blocker], but they are abolished by the AT2R (angiotensin type 2 receptor) antagonist PD123319. Current information suggests that the beneficial effects of Ang-(1-9) are mediated via the AT2R. In the present review, we summarize the biological effects of the novel vasoactive peptide Ang-(1-9), providing new evidence of its cardiovascular-protective activity. We also discuss the potential mechanism by which this peptide prevents and ameliorates the cardiovascular damage induced by RAS activation.
Collapse
|