1
|
Corbett J, Young JS, Tipton MJ, Costello JT, Williams TB, Walker EF, Lee BJ, Stevens CE. Molecular biomarkers for assessing the heat-adapted phenotype: a narrative scoping review. J Physiol Sci 2023; 73:26. [PMID: 37848829 DOI: 10.1186/s12576-023-00882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Heat acclimation/acclimatisation (HA) mitigates heat-related decrements in physical capacity and heat-illness risk and is a widely advocated countermeasure for individuals operating in hot environments. The efficacy of HA is typically quantified by assessing the thermo-physiological responses to a standard heat acclimation state test (i.e. physiological biomarkers), but this can be logistically challenging, time consuming, and expensive. A valid molecular biomarker of HA would enable evaluation of the heat-adapted state through the sampling and assessment of a biological medium. This narrative review examines candidate molecular biomarkers of HA, highlighting the poor sensitivity and specificity of these candidates and identifying the current lack of a single 'standout' biomarker. It concludes by considering the potential of multivariable approaches that provide information about a range of physiological systems, identifying a number of challenges that must be overcome to develop a valid molecular biomarker of the heat-adapted state, and highlighting future research opportunities.
Collapse
Affiliation(s)
- J Corbett
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK.
| | - J S Young
- National Horizons Centre, Teesside University, Darlington, UK
| | - M J Tipton
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - J T Costello
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - T B Williams
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - E F Walker
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - B J Lee
- Occupational and Environmental Physiology Group, Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - C E Stevens
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
2
|
Sun Y, Tisdale RK, Yamashita A, Kilduff TS. Peripheral vs. core body temperature as hypocretin/orexin neurons degenerate: Exercise mitigates increased heat loss. Peptides 2023; 164:171002. [PMID: 36963505 PMCID: PMC10337601 DOI: 10.1016/j.peptides.2023.171002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
Hypocretins/Orexins (Hcrt/Ox) are hypothalamic neuropeptides implicated in diverse functions, including body temperature regulation through modulation of sympathetic vasoconstrictor tone. In the current study, we measured subcutaneous (Tsc) and core (Tb) body temperature as well as activity in a conditional transgenic mouse strain that allows the inducible ablation of Hcrt/Ox-containing neurons by removal of doxycycline (DOX) from their diet (orexin-DTA mice). Measurements were made during a baseline, when mice were being maintained on food containing DOX, and over 42 days while the mice were fed normal chow which resulted in Hcrt/Ox neuron degeneration. The home cages of the orexin-DTA mice were equipped with running wheels that were either locked or unlocked. In the presence of a locked running wheel, Tsc progressively decreased on days 28 and 42 in the DOX(-) condition, primarily during the dark phase (the major active period for rodents). This nocturnal reduction in Tsc was mitigated when mice had access to unlocked running wheels. In contrast to Tsc, Tb was largely maintained until day 42 in the DOX(-) condition even when the running wheel was locked. Acute changes in both Tsc and Tb were observed preceding, during, and following cataplexy. Our results suggest that ablation of Hcrt/Ox-containing neurons results in elevated heat loss, likely through reduced sympathetic vasoconstrictor tone, and that exercise may have some therapeutic benefit to patients with narcolepsy, a disorder caused by Hcrt/Ox deficiency. Acute changes in body temperature may facilitate prediction of cataplexy onset and lead to interventions to mitigate its occurrence.
Collapse
Affiliation(s)
- Yu Sun
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA.
| | - Ryan K Tisdale
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Akira Yamashita
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA; Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Thomas S Kilduff
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| |
Collapse
|
3
|
Dual Cannabinoid and Orexin Regulation of Anhedonic Behaviour Caused by Prolonged Restraint Stress. Brain Sci 2023; 13:brainsci13020314. [PMID: 36831860 PMCID: PMC9954020 DOI: 10.3390/brainsci13020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The endocannabinoid and orexin systems share many biological functions, including wakefulness, stress response, reward processing, and mood. While these systems work against one another with respect to arousal, chronic stress-induced downregulation of both systems often leads to anhedonia or the inability to experience pleasure from natural rewards. In the current study, a 24 h restraint stress test (24 h RST) reduced sucrose preference in adult male and female C57BL/6 mice. Prior to the stressor, subsets of mice were intraperitoneally administered cannabinoid and orexin receptor agonists, antagonists, and combinations of these drugs. Restraint mice that received the cannabinoid receptor type 1 (CB1R) antagonist SR141716A, orexin receptor type 2 (OX2R) agonist YNT-185, and the combination of SR141716A and YNT-185, exhibited less anhedonia compared to vehicle/control mice. Thus, the 24 h RST likely decreased orexin signaling, which was then restored by YNT-185. Receptor colocalization analysis throughout mesocorticolimbic brain regions revealed increased CB1R-OX1R colocalization from SR141716A and YNT-185 treatments. Although a previous study from our group showed additive cataleptic effects between CP55,940 and the dual orexin receptor antagonist (TCS-1102), the opposite combination of pharmacological agents proved additive for sucrose preference. Taken together, these results reveal more of the complex interactions between the endocannabinoid and orexin systems.
Collapse
|
4
|
Muacevic A, Adler JR. Physiological Role of Orexin/Hypocretin in the Human Body in Motivated Behavior: A Comprehensive Review. Cureus 2023; 15:e34009. [PMID: 36814741 PMCID: PMC9939734 DOI: 10.7759/cureus.34009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Neurohormones are neurosecretory materials released by neurosecretory cells that serve both as neuromodulators in the brain and spinal cord and as circulating regulatory hormones. They serve a wide range of functions, including homeostasis, development, and modulation of neuronal and muscle activity. In the hypothalamus, neurohormones called hypocretins are created that were discovered in the late nineties. Orexin receptors (OXRs) have been shown to enhance synaptic signaling in the central nervous system at the cellular level. The orexins improve stimulated neural activity in the hippocampus, which, in turn, aids with spatial memory, learning, and mood. They present themselves as mediators for the hypothalamic functions. They have been shown to regulate sleep-wake cycles, arousal mechanisms, addiction, sympathetic nerve activity (SNA), blood pressure, and thermogenesis. Its role in storing brown adipose tissue has implications for thermal homeostasis. The significant role of orexins is seen in tumorigenesis when orexin A (OrxA) and orexin B (OrxB) induce apoptosis in fast-growing tumor cells. Orexin-null subjects show clinical narcolepsy, indicating that orexins were responsible for keeping them awake. Orexin microinjections in mice brains stimulated increased physical activity, thus possibly countering diet-induced obesity. Physical activity significantly increased plasma orexin-A levels, which facilitated the process of energy homeostasis. The amount of adrenocorticotropic hormone (ACTH) increases in stress conditions, which further facilitates the release of the stress hormone cortisol. No increase in the ACTH hormone is seen in stressed mice administered with orexin receptor 2 (OX2R) antagonists thus showing orexin's role in stress reaction. As a result of linking hypocretin/orexin to various physiological procedures, increased research into the medicinal potential of drugs targeting these receptors is emerging. We summed up in this review the recent advances in our understanding of how orexin and its receptor system play an essential role in clinical and pathological functions. This research summarizes a new area for research in human medicine, providing the possibility of controlling a vast array of physiological functions through intra-cerebroventricular injections of a single neuropeptide.
Collapse
|
5
|
Rahman SA, Nathan MD, Wiley A, Crawford S, Cohn AY, Harder JA, Grant LK, Erickson A, Srivastava A, McCormick K, Bertisch SM, Winkelman JW, Joffe H. A double-blind, randomized, placebo-controlled trial of suvorexant for the treatment of vasomotor symptom-associated insomnia disorder in midlife women. Sleep 2022; 45:6503732. [DOI: 10.1093/sleep/zsac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/01/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Study Objectives
The neuropeptide orexin promotes wakefulness, modulates thermoregulation, increases after menopause, and is normalized in women receiving estrogen therapy, suggesting a role for orexin antagonism as a treatment for the vasomotor symptom (VMS)-associated insomnia disorder. We tested the efficacy of the dual orexin receptor antagonist suvorexant for chronic insomnia related to nighttime VMS.
Methods
In a double-blind, placebo-controlled trial, 56 women with chronic insomnia associated with nighttime VMS, Insomnia Severity Index (ISI) scores ≥15, and >30 min of diary-rated wake after sleep-onset (WASO) were randomized to receive oral suvorexant 10–20 mg (n = 27) or placebo (n = 29) nightly for 4 weeks. Analysis of within-person change in ISI was adjusted for baseline ISI and race.
Results
Mean baseline ISI scores were 18.1 (95% CI, 16.8 to 19.4) and 18.3 (95% CI, 17.2 to 19.5) in the suvorexant and placebo groups, respectively (p = .81). The average 4-week ISI within-person decrease from baseline was greater on suvorexant (−8.1 [95% CI, −10.2 to −6.0]) compared to placebo (−5.6 [95% CI, −7.4 to −3.9], p = .04). Compared to placebo, nighttime diary-rated VMS frequency was significantly reduced with suvorexant (p < .01). While diary-rated WASO and total sleep time trended toward improvement on suvorexant, findings were not significant after adjustment for multiple comparisons. Daytime VMS and other sleep-related outcomes did not differ between groups. Suvorexant was well tolerated.
Conclusion
These results suggest that suvorexant is likely a well-tolerated and efficacious treatment for VMS-associated insomnia disorder and reduces nighttime VMS. Antagonism of orexin receptors could provide a novel therapeutic option for midlife women with VMS-associated chronic insomnia.
Clinical Trial Information
Efficacy of Suvorexant in the Treatment of Hot Flash-associated Insomnia, https://clinicaltrials.gov/ct2/show/NCT03034018, ClinicalTrials.gov Identifier: NCT03034018.
Collapse
Affiliation(s)
- Shadab A Rahman
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Connors Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Margo D Nathan
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Aleta Wiley
- Connors Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sybil Crawford
- Tan Chingfen Graduate School of Nursing, UMASS Chan Medical School, Worcester, MA, USA
| | - Aviva Y Cohn
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica A Harder
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Leilah K Grant
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Connors Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Athena Erickson
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Akanksha Srivastava
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathleen McCormick
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Suzanne M Bertisch
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - John W Winkelman
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hadine Joffe
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Connors Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Kim HJJ, Zagzoog A, Smolyakova AM, Ezeaka UC, Benko MJ, Holt T, Laprairie RB. In vivo Evidence for Brain Region-Specific Molecular Interactions Between Cannabinoid and Orexin Receptors. Front Neurosci 2021; 15:790546. [PMID: 34992518 PMCID: PMC8724524 DOI: 10.3389/fnins.2021.790546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Abstract
The endocannabinoid and orexin neuromodulatory systems serve key roles in many of the same biological functions such as sleep, appetite, pain processing, and emotional behaviors related to reward. The type 1 cannabinoid receptor (CB1R) and both subtypes of the orexin receptor, orexin receptor type 1 (OX1R) and orexin receptor type 2 (OX2R) are not only expressed in the same brain regions modulating these functions, but physically interact as heterodimers in recombinant and neuronal cell cultures. In the current study, male and female C57BL/6 mice were co-treated with the cannabinoid receptor agonist CP55,940 and either the OX2R antagonist TCS-OX2-29 or the dual orexin receptor antagonist (DORA) TCS-1102. Mice were then evaluated for catalepsy, body temperature, thermal anti-nociception, and locomotion, after which their brains were collected for receptor colocalization analysis. Combined treatment with the DORA TCS-1102 and CP55,940 potentiated catalepsy more than CP55,940 alone, but this effect was not observed for changes in body temperature, nociception, locomotion, or via selective OX2R antagonism. Co-treatment with CP55,940 and TCS-1102 also led to increased CB1R-OX1R colocalization in the ventral striatum. This was not seen following co-treatment with TCS-OX2-29, nor in CB1R-OX2R colocalization. The magnitude of effects following co-treatment with CP55,940 and either the DORA or OX2R-selective antagonist was greater in males than females. These data show that CB1R-OX1R colocalization in the ventral striatum underlies cataleptic additivity between CP55,940 and the DORA TCS-1102. Moreover, cannabinoid-orexin receptor interactions are sex-specific with regards to brain region and functionality. Physical or molecular interactions between these two systems may provide valuable insight into drug-drug interactions between cannabinoid and orexin drugs for the treatment of insomnia, pain, and other disorders.
Collapse
Affiliation(s)
- Hye Ji J. Kim
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anna Maria Smolyakova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Udoka C. Ezeaka
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael J. Benko
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Teagan Holt
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Robert B. Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Couvineau A, Voisin T, Nicole P, Gratio V, Blais A. Orexins: A promising target to digestive cancers, inflammation, obesity and metabolism dysfunctions. World J Gastroenterol 2021; 27:7582-7596. [PMID: 34908800 PMCID: PMC8641057 DOI: 10.3748/wjg.v27.i44.7582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/22/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
Hypothalamic neuropeptides named hypocretin/orexins which were identified in 1998 regulate critical functions such as wakefulness in the central nervous system. These past 20 years had revealed that orexins/receptors system was also present in the peripheral nervous system where they participated to the regulation of multiple functions including blood pressure regulation, intestinal motility, hormone secretion, lipolyze and reproduction functions. Associated to these peripheral functions, it was found that orexins and their receptors were involved in various diseases such as acute/chronic inflammation, metabolic syndrome and cancers. The present review suggests that orexins or the orexin neural circuitry represent potential therapeutic targets for the treatment of multiple pathologies related to inflammation including intestinal bowel disease, multiple sclerosis and septic shock, obesity and digestive cancers.
Collapse
Affiliation(s)
- Alain Couvineau
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Thierry Voisin
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Pascal Nicole
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Valerie Gratio
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Anne Blais
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris 75005, France
| |
Collapse
|
8
|
Rivas M, Serantes D, Peña F, González J, Ferreira A, Torterolo P, Benedetto L. Role of Hypocretin in the Medial Preoptic Area in the Regulation of Sleep, Maternal Behavior and Body Temperature of Lactating Rats. Neuroscience 2021; 475:148-162. [PMID: 34500018 DOI: 10.1016/j.neuroscience.2021.08.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/11/2022]
Abstract
Hypocretins (HCRT), also known as orexins, includes two neuroexcitatory peptides, HCRT-1 and HCRT-2 (orexin A y B, respectively), synthesized by neurons located in the postero-lateral hypothalamus, whose projections and receptors are widely distributed throughout the brain, including the medial preoptic area (mPOA). HCRT have been associated with a wide range of physiological functions including sleep-wake cycle, maternal behavior and body temperature, all regulated by the mPOA. Previously, we showed that HCRT in the mPOA facilitates certain active maternal behaviors, while the blockade of HCRT-R1 increases the time spent in nursing. As mother rats mainly sleep while they nurse, we hypothesize that HCRT in the mPOA of lactating rats reduce sleep and nursing, while intra-mPOA administration of a dual orexin receptor antagonist (DORA) would cause the opposite effect. Therefore, the aim of this study was to determine the role of HCRT within the mPOA, in the regulation and integration of the sleep-wake cycle, maternal behavior and body temperature of lactating rats. For that purpose, we assessed the sleep-wake states, maternal behavior and body temperature of lactating rats following microinjections of HCRT-1 (100 and 200 µM) and DORA (5 mM) into the mPOA. As expected, our data show that HCRT-1 in mPOA promote wakefulness and a slightly increase in body temperature, whereas DORA increases both NREM and REM sleep together with an increment of nursing and milk ejection. Taken together, our results strongly suggest that the endogenous reduction of HCRT within the mPOA contribute to the promotion of sleep, milk ejection and nursing behavior in lactating rats.
Collapse
Affiliation(s)
- Mayda Rivas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Serantes
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Florencia Peña
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Joaquín González
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Annabel Ferreira
- Sección de Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
9
|
Zhang D, Liu J, Zhu T, Zhou C. Identifying c-fos Expression as a Strategy to Investigate the Actions of General Anesthetics on the Central Nervous System. Curr Neuropharmacol 2021; 20:55-71. [PMID: 34503426 PMCID: PMC9199548 DOI: 10.2174/1570159x19666210909150200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Although general anesthetics have been used in the clinic for more than 170 years, the ways in which they induce amnesia, unconsciousness, analgesia, and immobility remain elusive. Modulations of various neural nuclei and circuits are involved in the actions of general anesthetics. The expression of the immediate-early gene c-fos and its nuclear product, c-fos protein, can be induced by neuronal depolarization; therefore, c-fos staining is commonly used to identify the activated neurons during sleep and/or wakefulness, as well as in various physiological conditions in the central nervous system. Identifying c-fos expression is also a direct and convenient method to explore the effects of general anesthetics on the activity of neural nuclei and circuits. Using c-fos staining, general anesthetics have been found to interact with sleep- and wakefulness-promoting systems throughout the brain, which may explain their ability to induce unconsciousness and emergence from general anesthesia. This review summarizes the actions of general anesthetics on neural nuclei and circuits based on a c-fos expression.
Collapse
Affiliation(s)
- Donghang Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| |
Collapse
|
10
|
Cano G, Hernan SL, Sved AF. Centrally Projecting Edinger-Westphal Nucleus in the Control of Sympathetic Outflow and Energy Homeostasis. Brain Sci 2021; 11:1005. [PMID: 34439626 PMCID: PMC8392615 DOI: 10.3390/brainsci11081005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The centrally projecting Edinger-Westphal nucleus (EWcp) is a midbrain neuronal group, adjacent but segregated from the preganglionic Edinger-Westphal nucleus that projects to the ciliary ganglion. The EWcp plays a crucial role in stress responses and in maintaining energy homeostasis under conditions that require an adjustment of energy expenditure, by virtue of modulating heart rate and blood pressure, thermogenesis, food intake, and fat and glucose metabolism. This modulation is ultimately mediated by changes in the sympathetic outflow to several effector organs, including the adrenal gland, heart, kidneys, brown and white adipose tissues and pancreas, in response to environmental conditions and the animal's energy state, providing for appropriate energy utilization. Classic neuroanatomical studies have shown that the EWcp receives inputs from forebrain regions involved in these functions and projects to presympathetic neuronal populations in the brainstem. Transneuronal tracing with pseudorabies virus has demonstrated that the EWcp is connected polysynaptically with central circuits that provide sympathetic innervation to all these effector organs that are critical for stress responses and energy homeostasis. We propose that EWcp integrates multimodal signals (stress, thermal, metabolic, endocrine, etc.) and modulates the sympathetic output simultaneously to multiple effector organs to maintain energy homeostasis under different conditions that require adjustments of energy demands.
Collapse
Affiliation(s)
- Georgina Cano
- Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA; (S.L.H.); (A.F.S.)
| | | | | |
Collapse
|
11
|
Ferver A, Dridi S. Regulation of avian uncoupling protein (av-UCP) expression by cytokines and hormonal signals in quail myoblast cells. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110747. [PMID: 32565233 DOI: 10.1016/j.cbpa.2020.110747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 06/16/2020] [Indexed: 01/20/2023]
Abstract
Uncoupling proteins (UCPs), members of the mitochondrial anion carrier family, play a pivotal role in thermogenesis, redox balance, reactive oxygen species and many other cellular processes. They were extensively studied in mammalian species and have been shown to be tightly regulated at transcriptional and translational levels by various environmental and hormonal factors. Such studies are very limited in avian species which represent a unique model because they lack brown adipose tissue and they contain only one UCP (av-UCP) predominantly expressed in the muscle. The present study aimed, therefore, to determine the effects of pro-inflammatory cytokines (IL-6 and TNFα) and energy homeostasis-related hormones (leptin and T3) on the expression of av-UCP and its related transcription factors in quail myoblast (QM7) cells. Leptin treatment for 24 h significantly down-regulated av-UCP, and up-regulated PGC-1α, PPARα, and PPARγ expression in QM7 cells. IL-6 and TNFα administration significantly up-regulated the expression of av-UCP, however T3 had a biphasic effects (up-regulation with low dose and down-regulation with high dose) on av-UCP mRNA levels (P < .05). TNFα significantly induced PPARα and PPARγ mRNA abundances, however T3 and IL-6 down-regulated PPARα expression (P < .05). Together, these data are the first to report cytokine and hormonal regulation of av-UCP in avian muscle cells, suggesting that these effects are mediated through PPARs and PGC-1α, and opening a new vista for future functional and mechanistic studies.
Collapse
Affiliation(s)
- Alison Ferver
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States of America
| | - Sami Dridi
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States of America.
| |
Collapse
|
12
|
Shahsavari F, Abbasnejad M, Raoof M, Esmaeili-Mahani S. The rostral ventromedial medulla orexin 1 receptors and extracellular signal-regulated kinase in hippocampus are involved in modulation of anxiety behavior induced by dental pulp nociception in adult male rats. Arch Oral Biol 2020; 116:104778. [PMID: 32474210 DOI: 10.1016/j.archoralbio.2020.104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To explore the role of rostral ventromedial medulla (RVM) orexin 1 receptors (OX1R) on orofacial nociception -induced anxiety and locomotion in rats. DESIGN Forty two adult male Wistar rats (220-270 gr) were randomly divided into 7 groups (n = 6) as follows: untreated control, capsaicin, capsaicin vehicle-treated group (sham operation), capsaicin groups pretreated by intra-RVM administration orexin 1 receptor (OX1R) agonist (orexin A) or antagonist (SB-334867) and the capsaicin groups treated by drugs vehicles (DMSO or aCSF). Orofacial nociception was induced by intradental application of capsaicin (100 μg) into the incisors of rats. Anxiety level and locomotor activity were measured by the elevated plus maze (EPM) and open field (OF) tests, respectively. Hippocampal levels of phosphorylated extracellular signal regulated Kinase (p-ERK) was also assessed by western blotting. RESULTS Intradental application of capsaicin significantly increased anxiety and decreased locomotion behaviors. Intra-RVM microinjection of orexin-A significantly prevented capsaicin-induced anxiety-like behavior and increased locomotor activity in the EPM and OF tests. These effects were inhibited by SB-334867. Furthermore, orexin-A significantly increased p-ERK levels in capsaicin-treated rats. This effect was inhibited by pretreatment of the rats with SB-334867. CONCLUSIONS The results suggest that both OX1R signaling in the RVM and hippocampal p-ERK signaling are involved in orofacial nociception-induced anxiety as well as locomotor activity.
Collapse
Affiliation(s)
- Fatemeh Shahsavari
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran.
| | - Maryam Raoof
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran; Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Kim JS, Martin-Fardon R. Possible Role of CRF-Hcrt Interaction in the Infralimbic Cortex in the Emergence and Maintenance of Compulsive Alcohol-Seeking Behavior. Alcohol Clin Exp Res 2020; 44:354-367. [PMID: 31840823 PMCID: PMC7018591 DOI: 10.1111/acer.14264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing disorder that is characterized by the compulsive use of alcohol despite numerous health, social, and economic consequences. Initially, the use of alcohol is driven by positive reinforcement. Over time, however, alcohol use can take on a compulsive quality that is driven by the desire to avoid the negative consequences of abstinence, including negative affect and heightened stress/anxiety. This transition from positive reinforcement- to negative reinforcement-driven consumption involves the corticotropin-releasing factor (CRF) system, although mounting evidence now suggests that the CRF system interacts with other neural systems to ultimately produce behaviors that are symptomatic of compulsive alcohol use, such as the hypocretin (Hcrt) system. Hypocretins are produced exclusively in the hypothalamus, but Hcrt neurons project widely throughout the brain and reach regions that perform regulatory functions for numerous behavioral and physiological responses-including the infralimbic cortex (IL) of the medial prefrontal cortex (mPFC). Although the entire mPFC undergoes neuroadaptive changes following prolonged alcohol exposure, the IL appears to undergo more robust changes compared with other mPFC substructures. Evidence to date suggests that the IL is likely involved in EtOH-seeking behavior, but ambiguities with respect to the specific role of the IL in this regard make it difficult to draw definitive conclusions. Furthermore, the manner in which CRF interacts with Hcrt in this region as it pertains to alcohol-seeking behavior is largely unknown, although immunohistochemical and electrophysiological experiments have shown that CRF and Hcrt directly interact in the mPFC, suggesting that the interaction between CRF and Hcrt in the IL may be critically important for the development and subsequent maintenance of compulsive alcohol seeking. This review aims to consolidate recent literature regarding the role of the IL in alcohol-seeking behavior and to discuss evidence that supports a functional interaction between Hcrt and CRF in the IL.
Collapse
Affiliation(s)
- Jung S. Kim
- Department of Molecular Medicine, Scripps Research, La Jolla, USA
| | | |
Collapse
|
14
|
Liu L, Wang Q, Liu A, Lan X, Huang Y, Zhao Z, Jie H, Chen J, Zhao Y. Physiological Implications of Orexins/Hypocretins on Energy Metabolism and Adipose Tissue Development. ACS OMEGA 2020; 5:547-555. [PMID: 31956801 PMCID: PMC6964296 DOI: 10.1021/acsomega.9b03106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/27/2019] [Indexed: 05/09/2023]
Abstract
Orexins/hypocretins and their receptors (OXRs) are ubiquitously distributed throughout the nervous system and peripheral tissues. Recently, various reports have indicated that orexins play regulatory roles in numerous physiological processes involved in obesity, energy homeostasis, sleep-wake cycle, analgesia, alcoholism, learning, and memory. This review aims to outline recent progress in the research and development of orexins used in biochemical signaling pathways, secretion pathways, and the regulation of energy metabolism/adipose tissue development. Orexins regulate a variety of physiological functions in the body by activating phospholipase C/protein kinase C and AC/cAMP/PKA pathways, through receptors coupled to Gq and Gi/Gs, respectively. The secretion of orexins is modulated by blood glucose, blood lipids, hormones, and neuropeptides. Orexins have critical functions in energy metabolism, regulating both feeding behavior and energy expenditure. Increasing the sensitivity of orexin-coupled hypothalamic neurons concurrently enhances spontaneous physical activity, non-exercise activity thermogenesis, white adipose tissue lipolysis, and brown adipose tissue thermogenesis. With this comprehensive review of the current literature on the subject, we hope to provide an integrated perspective for the prevention/treatment of obesity.
Collapse
Affiliation(s)
- Lingbin Liu
- College of Animal
Science and Technology, Chongqing Key Laboratory of Forage & Herbivore,
Chongqing Engineering Research Center for Herbivores Resource Protection
and Utilization, Southwest University, Beibei, 400715 Chongqing, P. R. China
- E-mail: (L.L.)
| | - Qigui Wang
- ChongQing Academy
of Animal Sciences, Rongchang, 402460 Chongqing, P. R. China
| | - Anfang Liu
- College of Animal Science, Southwest University, Rongchang Campus, Rongchang, 402460 Chongqing, P.R. China
| | - Xi Lan
- College of Animal
Science and Technology, Chongqing Key Laboratory of Forage & Herbivore,
Chongqing Engineering Research Center for Herbivores Resource Protection
and Utilization, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Yongfu Huang
- College of Animal
Science and Technology, Chongqing Key Laboratory of Forage & Herbivore,
Chongqing Engineering Research Center for Herbivores Resource Protection
and Utilization, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Zhongquan Zhao
- College of Animal
Science and Technology, Chongqing Key Laboratory of Forage & Herbivore,
Chongqing Engineering Research Center for Herbivores Resource Protection
and Utilization, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Hang Jie
- Chongqing Institute of Medicinal Plant
Cultivation, Nanchuan, 408435 Chongqing, P.R. China
| | - Juncai Chen
- College of Animal
Science and Technology, Chongqing Key Laboratory of Forage & Herbivore,
Chongqing Engineering Research Center for Herbivores Resource Protection
and Utilization, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Yongju Zhao
- College of Animal
Science and Technology, Chongqing Key Laboratory of Forage & Herbivore,
Chongqing Engineering Research Center for Herbivores Resource Protection
and Utilization, Southwest University, Beibei, 400715 Chongqing, P. R. China
- E-mail: (Y.Z.)
| |
Collapse
|
15
|
Straat ME, Schinkelshoek MS, Fronczek R, Lammers GJ, Rensen PCN, Boon MR. Role of Brown Adipose Tissue in Adiposity Associated With Narcolepsy Type 1. Front Endocrinol (Lausanne) 2020; 11:145. [PMID: 32373062 PMCID: PMC7176868 DOI: 10.3389/fendo.2020.00145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/02/2020] [Indexed: 11/23/2022] Open
Abstract
Narcolepsy type 1 is a neurological sleep-wake disorder caused by the destruction of orexin (hypocretin)-producing neurons. These neurons are particularly located in the lateral hypothalamus and have widespread projections throughout the brain, where they are involved, e.g., in the regulation of the sleep-wake cycle and appetite. Interestingly, a higher prevalence of obesity has been reported in patients with narcolepsy type 1 compared to healthy controls, despite a normal to decreased food intake and comparable physical activity. This suggests the involvement of tissues implicated in total energy expenditure, including skeletal muscle, liver, white adipose tissue (WAT), and brown adipose tissue (BAT). Recent evidence from pre-clinical studies with orexin knock-out mice demonstrates a crucial role for the orexin system in the functionality of brown adipose tissue (BAT), probably through multiple pathways. Since BAT is a highly metabolically active organ that combusts fatty acids and glucose toward heat, thereby contributing to energy metabolism, this raises the question of whether BAT plays a role in the development of obesity and related metabolic diseases in narcolepsy type 1. BAT is densely innervated by the sympathetic nervous system that activates BAT, for instance, following cold exposure. The sympathetic outflow toward BAT is mainly mediated by the dorsomedial, ventromedial, arcuate, and paraventricular nuclei in the hypothalamus. This review focuses on the current knowledge on the role of the orexin system in the control of energy balance, with specific focus on BAT metabolism and adiposity in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Maaike E. Straat
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Maaike E. Straat
| | - Mink S. Schinkelshoek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Gerrit Jan Lammers
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Patrick C. N. Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëtte R. Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
16
|
Martin T, Dauvilliers Y, Koumar OC, Bouet V, Freret T, Besnard S, Dauphin F, Bessot N. Dual orexin receptor antagonist induces changes in core body temperature in rats after exercise. Sci Rep 2019; 9:18432. [PMID: 31804545 PMCID: PMC6895233 DOI: 10.1038/s41598-019-54826-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/14/2019] [Indexed: 02/02/2023] Open
Abstract
Hypothalamic orexin neurons are involved in various physiological functions, including thermoregulation. The orexinergic system has been considered as a potent mediator of the exercise response. The present study describes how the antagonization of the orexinergic system by a dual orexin receptor antagonist (DORA) modifies the thermoregulatory process during exercise. Core Body Temperature (CBT) and Spontaneous Locomotor Activity (SLA) of 12 male Wistar rats were recorded after either oral administration of DORA (30 mg/kg or 60 mg/kg) or placebo solution, both at rest and in exercise conditions with treadmill running. DORA ingestion decreased SLA for 8 hours (p < 0.001) and CBT for 4 hours (p < 0.01). CBT (°C) response was independent of SLA. The CBT level decreased from the beginning to the end of exercise when orexin receptors were antagonized, with a dose-dependent response (39.09 ± 0.36 and 38.88 ± 0.28 for 30 and 60 mg/kg; p < 0.001) compared to placebo (39.29 ± 0.31; p < 0.001). CBT increased during exercise was also blunted after DORA administration, but without dose effects of DORA. In conclusion, our results favor the role of orexin in the thermoregulation under stress related to exercise conditions.
Collapse
Affiliation(s)
- Tristan Martin
- Normandie Univ, Unicaen, INSERM, COMETE, 14000, Caen, France
| | - Yves Dauvilliers
- Reference National Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, University of Montpellier, Montpellier, INSERM U1061, France
| | | | - Valentine Bouet
- Normandie Univ, Unicaen, INSERM, COMETE, 14000, Caen, France
| | - Thomas Freret
- Normandie Univ, Unicaen, INSERM, COMETE, 14000, Caen, France
| | | | | | - Nicolas Bessot
- Normandie Univ, Unicaen, INSERM, COMETE, 14000, Caen, France.
| |
Collapse
|
17
|
Milbank E, López M. Orexins/Hypocretins: Key Regulators of Energy Homeostasis. Front Endocrinol (Lausanne) 2019; 10:830. [PMID: 31920958 PMCID: PMC6918865 DOI: 10.3389/fendo.2019.00830] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Originally described to be involved in feeding regulation, orexins/hypocretins are now also considered as major regulatory actors of numerous biological processes, such as pain, sleep, cardiovascular function, neuroendocrine regulation, and energy expenditure. Therefore, they constitute one of the most pleiotropic families of hypothalamic neuropeptides. Although their orexigenic effect is well documented, orexins/hypocretins also exert central effects on energy expenditure, notably on the brown adipose tissue (BAT) thermogenesis. A better comprehension of the underlying mechanisms and potential interactions with other hypothalamic molecular pathways involved in the modulation of food intake and thermogenesis, such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress, is essential to determine the exact implication and pathophysiological relevance of orexins/hypocretins on the control of energy balance. Here, we will review the actions of orexins on energy balance, with special focus on feeding and brown fat function.
Collapse
Affiliation(s)
- Edward Milbank
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- *Correspondence: Edward Milbank
| | - Miguel López
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Miguel López
| |
Collapse
|
18
|
Balkan B, Pogun S. Nicotinic Cholinergic System in the Hypothalamus Modulates the Activity of the Hypothalamic Neuropeptides During the Stress Response. Curr Neuropharmacol 2018; 16:371-387. [PMID: 28730966 PMCID: PMC6018196 DOI: 10.2174/1570159x15666170720092442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The hypothalamus harbors high levels of cholinergic neurons and axon terminals. Nicotinic acetylcholine receptors, which play an important role in cholinergic neurotransmission, are expressed abundantly in the hypothalamus. Accumulating evidence reveals a regulatory role for nicotine in the regulation of the stress responses. The present review will discuss the hypothalamic neuropeptides and their interaction with the nicotinic cholinergic system. The anatomical distribution of the cholinergic neurons, axon terminals and nicotinic receptors in discrete hypothalamic nuclei will be described. The effect of nicotinic cholinergic neurotransmission and nicotine exposure on hypothalamic-pituitaryadrenal (HPA) axis regulation at the hypothalamic level will be analyzed in view of the different neuropeptides involved. METHODS Published research related to nicotinic cholinergic regulation of the HPA axis activity at the hypothalamic level is reviewed. RESULTS The nicotinic cholinergic system is one of the major modulators of the HPA axis activity. There is substantial evidence supporting the regulation of hypothalamic neuropeptides by nicotinic acetylcholine receptors. However, most of the studies showing the nicotinic regulation of hypothalamic neuropeptides have employed systemic administration of nicotine. Additionally, we know little about the nicotinic receptor distribution on neuropeptide-synthesizing neurons in the hypothalamus and the physiological responses they trigger in these neurons. CONCLUSION Disturbed functioning of the HPA axis and hypothalamic neuropeptides results in pathologies such as depression, anxiety disorders and obesity, which are common and significant health problems. A better understanding of the nicotinic regulation of hypothalamic neuropeptides will aid in drug development and provide means to cope with these diseases. Considering that nicotine is also an abused substance, a better understanding of the role of the nicotinic cholinergic system on the HPA axis will aid in developing improved therapeutic strategies for smoking cessation.
Collapse
Affiliation(s)
- Burcu Balkan
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey.,Department of Physiology, School of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Sakire Pogun
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
19
|
Skrzypski M, Billert M, Nowak KW, Strowski MZ. The role of orexin in controlling the activity of the adipo-pancreatic axis. J Endocrinol 2018; 238:R95-R108. [PMID: 29848609 DOI: 10.1530/joe-18-0122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/30/2018] [Indexed: 12/29/2022]
Abstract
Orexin A and B are two neuropeptides, which regulate a variety of physiological functions by interacting with central nervous system and peripheral tissues. Biological effects of orexins are mediated through two G-protein-coupled receptors (OXR1 and OXR2). In addition to their strong influence on the sleep-wake cycle, there is growing evidence that orexins regulate body weight, glucose homeostasis and insulin sensitivity. Furthermore, orexins promote energy expenditure and protect against obesity by interacting with brown adipocytes. Fat tissue and the endocrine pancreas play pivotal roles in maintaining energy homeostasis. Since both organs are crucially important in the context of pathophysiology of obesity and diabetes, we summarize the current knowledge regarding the role of orexins and their receptors in controlling adipocytes as well as the endocrine pancreatic functions. Particularly, we discuss studies evaluating the effects of orexins in controlling brown and white adipocytes as well as pancreatic alpha and beta cell functions.
Collapse
Affiliation(s)
- M Skrzypski
- Department of Animal Physiology and BiochemistryPoznań University of Life Sciences, Poznań, Poland
| | - M Billert
- Department of Animal Physiology and BiochemistryPoznań University of Life Sciences, Poznań, Poland
| | - K W Nowak
- Department of Animal Physiology and BiochemistryPoznań University of Life Sciences, Poznań, Poland
| | - M Z Strowski
- Department of Hepatology and Gastroenterology & The Interdisciplinary Centre of Metabolism: EndocrinologyDiabetes and Metabolism, Charité-University Medicine Berlin, Berlin, Germany
- Park-Klinik WeissenseeInternal Medicine - Gastroenterology, Berlin, Germany
| |
Collapse
|
20
|
Goforth PB, Myers MG. Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism. Curr Top Behav Neurosci 2017; 33:137-156. [PMID: 27909992 DOI: 10.1007/7854_2016_51] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The neuropeptide hypocretin is also commonly referred to as orexin, since its orexigenic action was recognized early. Orexin/hypocretin (OX) neurons project widely throughout the brain and the physiologic and behavioral functions of OX are much more complex than initially conceived based upon the stimulation of feeding. OX most notably controls functions relevant to attention, alertness, and motivation. OX also plays multiple crucial roles in the control of food intake, metabolism, and overall energy balance in mammals. OX signaling not only promotes food-seeking behavior upon short-term fasting to increase food intake and defend body weight, but, conversely, OX signaling also supports energy expenditure to protect against obesity. Furthermore, OX modulates the autonomic nervous system to control glucose metabolism, including during the response to hypoglycemia. Consistently, a variety of nutritional cues (including the hormones leptin and ghrelin) and metabolites (e.g., glucose, amino acids) control OX neurons. In this chapter, we review the control of OX neurons by nutritional/metabolic cues, along with our current understanding of the mechanisms by which OX and OX neurons contribute to the control of energy balance and metabolism.
Collapse
Affiliation(s)
- Paulette B Goforth
- Department of Pharmacology, University of Michigan, 1000 Wall St, 5131 Brehm Tower, Ann Arbor, MI, 48105, USA
| | - Martin G Myers
- Departments of Internal Medicine, and Molecular and Integrative Physiology, University of Michigan, 1000 Wall St, 6317 Brehm Tower, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
21
|
Contreras C, Nogueiras R, Diéguez C, Rahmouni K, López M. Traveling from the hypothalamus to the adipose tissue: The thermogenic pathway. Redox Biol 2017; 12:854-863. [PMID: 28448947 PMCID: PMC5406580 DOI: 10.1016/j.redox.2017.04.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 01/13/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized tissue critical for non-shivering thermogenesis producing heat through mitochondrial uncoupling; whereas white adipose tissue (WAT) is responsible of energy storage in the form of triglycerides. Another type of fat has been described, the beige adipose tissue; this tissue emerges in existing WAT depots but with thermogenic ability, a phenomenon known as browning. Several peripheral signals relaying information about energy status act in the brain, particularly the hypothalamus, to regulate thermogenesis in BAT and browning of WAT. Different hypothalamic areas have the capacity to regulate the thermogenic process in brown and beige adipocytes through the sympathetic nervous system (SNS). This review discusses important concepts and discoveries about the central control of thermogenesis as a trip that starts in the hypothalamus, and taking the sympathetic roads to reach brown and beige fat to modulate thermogenic functions.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain.
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain.
| |
Collapse
|
22
|
Coborn JE, DePorter DP, Mavanji V, Sinton CM, Kotz CM, Billington CJ, Teske JA. Role of orexin-A in the ventrolateral preoptic area on components of total energy expenditure. Int J Obes (Lond) 2017; 41:1256-1262. [PMID: 28392556 DOI: 10.1038/ijo.2017.92] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/20/2017] [Accepted: 03/26/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Identifying whether components of total energy expenditure (EE) are affected by orexin receptor (OXR1 and OXR2) stimulation or antagonism with dual orexin receptor antagonists (DORAs) has relevance for obesity treatment. Orexin receptor stimulation reduces weight gain by increasing total EE and EE during spontaneous physical activity (SPA). OBJECTIVE The purpose of this study was to determine if a DORA (TCS-1102) in the ventrolateral preoptic area (VLPO) reduced orexin-A-induced arousal, SPA, total EE and EE during sleep, rest, wake and SPA and whether the DORA alone reduced total EE and its components. We hypothesized that: (1) a DORA would reduce orexin-A induced increases in arousal, SPA, components of total EE, reductions in sleep and the EE during sleep and (2) the DORA alone would reduce baseline (non-stimulated) SPA and total EE. SUBJECTS/METHODS Sleep, wakefulness, SPA and EE were determined after microinjection of the DORA (TCS-1102) and orexin-A in the VLPO of male Sprague-Dawley rats with a unilateral cannula targeted towards the VLPO. Individual components of total EE were determined based on time-stamped data. RESULTS The DORA reduced orexin-A-induced increases in arousal, SPA, total EE and EE during SPA, wake, rest and sleep 1 h post injection (P<0.05). Orexin-A significantly reduced sleep and significantly increased EE during sleep 1 h post injection (P<0.05). Furthermore, the DORA alone significantly reduced total EE, EE during sleep (NREM and REM) and resting EE 2 h post injection (P<0.05). CONCLUSIONS These data suggest that orexin-A reduces weight gain by stimulating total EE through increases in EE during SPA, rest and sleep. Residual effects of the DORA alone include decreases in total EE and EE during sleep and rest, which may promote weight gain.
Collapse
Affiliation(s)
- J E Coborn
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - D P DePorter
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - V Mavanji
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - C M Sinton
- Arizona Respiratory Center, University of Arizona, Tucson, AZ, USA
| | - C M Kotz
- Minneapolis VA Health Care System, Minneapolis, MN, USA.,Geriatric Research Education and Clinical Center, Minneapolis, MN, USA.,Minnesota Obesity Center, Saint Paul, MN, USA.,Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| | - C J Billington
- Minneapolis VA Health Care System, Minneapolis, MN, USA.,Minnesota Obesity Center, Saint Paul, MN, USA.,Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA.,Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - J A Teske
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.,Minneapolis VA Health Care System, Minneapolis, MN, USA.,Minnesota Obesity Center, Saint Paul, MN, USA.,Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
23
|
Contreras C, Nogueiras R, Diéguez C, Medina-Gómez G, López M. Hypothalamus and thermogenesis: Heating the BAT, browning the WAT. Mol Cell Endocrinol 2016; 438:107-115. [PMID: 27498420 DOI: 10.1016/j.mce.2016.08.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/20/2022]
Abstract
Brown adipose tissue (BAT) has been also considered as the main thermogenic organ responsible of maintenance body temperature through heat production. However, a new type of thermogenic fat has been characterized during the last years, the beige or brite fat, that is developed from white adipose tissue (WAT) in response to different stimuli by a process known as browning. The activities of brown and beige adipocytes ameliorate metabolic disease, including obesity in mice and correlate with leanness in humans. Many genes and pathways that regulate brown and beige adipocyte biology have now been identified, providing a variety of promising therapeutic targets for metabolic disease. The hypothalamus is the main central place orchestrating the outflow signals that drive the sympathetic nerve activity to BAT and WAT, controlling heat production and energy homeostasis. Recent data have revealed new hypothalamic molecular mechanisms, such as hypothalamic AMP-activated protein kinase (AMPK), that control both thermogenesis and browning. This review provides an overview of the factors influencing BAT and WAT thermogenesis, with special focus on the integration of peripheral information on hypothalamic circuits controlling thermoregulation.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain.
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Gema Medina-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain.
| |
Collapse
|
24
|
Contribution of adaptive thermogenesis to the hypothalamic regulation of energy balance. Biochem J 2016; 473:4063-4082. [DOI: 10.1042/bcj20160012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/13/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
Obesity and its related disorders are among the most pervasive diseases in contemporary societies, and there is an urgent need for new therapies and preventive approaches. Given (i) our poor social capacity to correct unhealthy habits, and (ii) our evolutionarily genetic predisposition to store excess energy as fat, the current environment of caloric surplus makes the treatment of obesity extremely difficult. During the last few decades, an increasing number of methodological approaches have increased our knowledge of the neuroanatomical basis of the control of energy balance. Compelling evidence underlines the role of the hypothalamus as a homeostatic integrator of metabolic information and its ability to adjust energy balance. A greater understanding of the neural basis of the hypothalamic regulation of energy balance might indeed pave the way for new therapeutic targets. In this regard, it has been shown that several important peripheral signals, such as leptin, thyroid hormones, oestrogens and bone morphogenetic protein 8B, converge on common energy sensors, such as AMP-activated protein kinase to modulate sympathetic tone on brown adipose tissue. This knowledge may open new ways to counteract the chronic imbalance underlying obesity. Here, we review the current state of the art on the role of hypothalamus in the regulation of energy balance with particular focus on thermogenesis.
Collapse
|
25
|
Belanger-Willoughby N, Linehan V, Hirasawa M. Thermosensing mechanisms and their impairment by high-fat diet in orexin neurons. Neuroscience 2016; 324:82-91. [PMID: 26964685 DOI: 10.1016/j.neuroscience.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/12/2023]
Abstract
In homeotherms, the hypothalamus controls thermoregulatory and adaptive mechanisms in energy balance, sleep-wake and locomotor activity to maintain optimal body temperature. Orexin neurons may be involved in these functions as they promote thermogenesis, food intake and behavioral arousal, and are sensitive to temperature and metabolic status. How thermal and energy balance signals are integrated in these neurons is unknown. Thus, we investigated the cellular mechanisms of thermosensing in orexin neurons and their response to a change in energy status using whole-cell patch clamp on rat brain slices. We found that warming induced an increase in miniature excitatory postsynaptic current (EPSC) frequency, which was blocked by the transient receptor potential vanilloid-1 (TRPV1) receptor antagonist AMG9810 and mimicked by its agonist capsaicin, suggesting that the synaptic effect is mediated by heat-sensitive TRPV1 channels. Furthermore, warming inhibits orexin neurons by activating ATP-sensitive potassium (KATP) channels, an effect regulated by uncoupling protein 2 (UCP2), as the UCP2 inhibitor genipin abolished this response. These properties are unique to orexin neurons in the lateral hypothalamus, as neighboring melanin-concentrating hormone neurons showed no response to warming within the physiological temperature range. Interestingly, in rats fed with western diet for 1 or 11weeks, orexin neurons had impaired synaptic and KATP response to warming. In summary, this study reveals several mechanisms underlying thermosensing in orexin neurons and their attenuation by western diet. Overeating induced by western diet may in part be due to impaired orexin thermosensing, as post-prandial thermogenesis may promote satiety and lethargy by inhibiting orexin neurons.
Collapse
Affiliation(s)
- N Belanger-Willoughby
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland A1B 3V6, Canada
| | - V Linehan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland A1B 3V6, Canada
| | - M Hirasawa
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland A1B 3V6, Canada.
| |
Collapse
|
26
|
Federici LM, Caliman IF, Molosh AI, Fitz SD, Truitt WA, Bonaventure P, Carpenter JS, Shekhar A, Johnson PL. Hypothalamic orexin's role in exacerbated cutaneous vasodilation responses to an anxiogenic stimulus in a surgical menopause model. Psychoneuroendocrinology 2016; 65:127-37. [PMID: 26765933 PMCID: PMC4752911 DOI: 10.1016/j.psyneuen.2015.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022]
Abstract
Distressing symptoms such as hot flashes and sleep disturbances affect over 70% of women approaching menopause for an average of 4-7 years, and recent large cohort studies have shown that anxiety and stress are strongly associated with more severe and persistent hot flashes and can induce hot flashes. Although high estrogen doses alleviate symptoms, extended use increases health risks, and current non-hormonal therapies are marginally better than placebo. The lack of effective non-hormonal treatments is largely due to the limited understanding of the mechanisms that underlie menopausal symptoms. One mechanistic pathway that has not been explored is the wake-promoting orexin neuropeptide system. Orexin is exclusively synthesized in the estrogen receptor rich perifornical hypothalamic region, and has an emerging role in anxiety and thermoregulation. In female rodents, estrogens tonically inhibit expression of orexin, and estrogen replacement normalizes severely elevated central orexin levels in postmenopausal women. Using an ovariectomy menopause model, we demonstrated that an anxiogenic compound elicited exacerbated hot flash-associated increases in tail skin temperature (TST, that is blocked with estrogen), and cellular responses in orexin neurons and efferent targets. Furthermore, systemic administration of centrally active, selective orexin 1 or 2 and dual receptor antagonists attenuated or blocked TST responses, respectively. This included the reformulated Suvorexant, which was recently FDA-approved for treating insomnia. Collectively, our data support the hypothesis that dramatic loss of estrogen tone during menopausal states leads to a hyperactive orexin system that contributes to symptoms such as anxiety, insomnia, and more severe hot flashes. Additionally, orexin receptor antagonists may represent a novel non-hormonal therapy for treating menopausal symptoms, with minimal side effects.
Collapse
Affiliation(s)
- Lauren M. Federici
- Department of Anatomy & Cell Biology, USA,Paul and Carole Stark Neurosciences Research Institute, USA,Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, USA
| | - Izabela Facco Caliman
- Department of Anatomy & Cell Biology, USA,Paul and Carole Stark Neurosciences Research Institute, USA
| | - Andrei I. Molosh
- Paul and Carole Stark Neurosciences Research Institute, USA,Department of Psychiatry; Indiana University School of Medicine, USA
| | | | - William A. Truitt
- Department of Anatomy & Cell Biology, USA,Paul and Carole Stark Neurosciences Research Institute, USA
| | | | - Janet S. Carpenter
- Science of Nursing Care Department, Indiana University School of Nursing, Indianapolis, IN 46202, USA
| | - Anantha Shekhar
- Paul and Carole Stark Neurosciences Research Institute, USA,Department of Psychiatry; Indiana University School of Medicine, USA
| | - Philip L. Johnson
- Department of Anatomy & Cell Biology, USA,Paul and Carole Stark Neurosciences Research Institute, USA,Corresponding author at: Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. (P.L. Johnson)
| |
Collapse
|
27
|
Abstract
UNLABELLED In mammals, daily changes in body temperature (Tb) depend on the integrity of the suprachiasmatic nucleus (SCN). Fasting influences the Tb in the resting period and the presence of the SCN is essential for this process. However, the origin of this circadian/metabolic influence is unknown. We hypothesized that, not only the SCN but also the arcuate nucleus (ARC), are involved in the Tb setting through afferents to the thermoregulatory median preoptic nucleus (MnPO). Therefore, we investigated by neuronal tracing and microdialysis experiments the possible targeting of the MnPO by the SCN and the ARC in male Wistar rats. We observed that vasopressin release from the SCN decreases the temperature just before light onset, whereas α-melanocyte stimulating hormone release, especially at the end of the dark period, maintains high temperature. Both peptides have opposite effects on the brown adipose tissue activity through thermoregulatory nuclei such as the dorsomedial nucleus of the hypothalamus and the dorsal raphe nucleus. The present study indicates that the coordination between circadian and metabolic signaling within the hypothalamus is essential for an adequate temperature control. SIGNIFICANCE STATEMENT When circadian and metabolic systems are not well synchronized, individuals may develop metabolic diseases. The underlying mechanisms are unknown. Here, we demonstrate that the balance between the releases of neuropeptides derived from the biological clock and from a metabolic sensory organ as the arcuate nucleus, are essential for an adequate temperature control. These observations show that brain areas involved in circadian and metabolic functions of the body need to interact to produce a coherent arrangement of physiological processes associated with temperature control.
Collapse
|
28
|
Abstract
Initially implicated in the regulation of feeding, orexins/hypocretins are now acknowledged to play a major role in the control of a wide variety of biological processes, such as sleep, energy expenditure, pain, cardiovascular function and neuroendocrine regulation, a feature that makes them one of the most pleiotropic families of hypothalamic neuropeptides. While the orexigenic effect of orexins is well described, their central effects on energy expenditure and particularly on brown adipose tissue (BAT) thermogenesis are not totally unraveled. Better understanding of these actions and their possible interrelationship with other hypothalamic systems controlling thermogenesis, such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress, will help to clarify the exact role and pathophysiological relevance of these neuropeptides have on energy balance.
Collapse
Affiliation(s)
- Johan Fernø
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, N-5021 Bergen, Norway.
| | - Rosa Señarís
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, Spain.
| |
Collapse
|
29
|
Graebner AK, Iyer M, Carter ME. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015; 9:111. [PMID: 26300745 PMCID: PMC4523943 DOI: 10.3389/fnsys.2015.00111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/16/2015] [Indexed: 01/01/2023] Open
Abstract
A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt) neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP) can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT) can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools has greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.
Collapse
Affiliation(s)
- Allison K Graebner
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Manasi Iyer
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Matthew E Carter
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| |
Collapse
|
30
|
Tohma Y, Akturk M, Altinova A, Yassibas E, Cerit ET, Gulbahar O, Arslan M, Sanlier N, Toruner F. Circulating Levels of Orexin-A, Nesfatin-1, Agouti-Related Peptide, and Neuropeptide Y in Patients with Hyperthyroidism. Thyroid 2015; 25:776-83. [PMID: 25915725 DOI: 10.1089/thy.2014.0515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND There is insufficient information about the appetite-related hormones orexin-A, nesfatin-1, agouti-related peptide (AgRP), and neuropeptide Y (NPY) in hyperthyroidism. The aim of the present study was to investigate the effects of hyperthyroidism on the basal metabolic rate (BMR) and energy intake, orexin-A, nesfatin-1, AgRP, NPY, and leptin levels in the circulation, and their relationship with each other and on appetite. METHODS In this prospective study, patients were evaluated in hyperthyroid and euthyroid states in comparison with healthy subjects. Twenty-one patients with overt hyperthyroidism and 33 healthy controls were included in the study. RESULTS Daily energy intake in the hyperthyroid state was found to be higher than that in the euthyroid state patient group (p=0.039). BMR was higher in hyperthyroid patients than the control group (p=0.018). Orexin-A was lower and nesfatin-1 was higher in hyperthyroid patients compared to the controls (p<0.001), whereas orexin-A increased and nesfatin-1 decreased after euthyroidism (p=0.003, p<0.001). No differences were found in the AgRP, NPY, and leptin levels between the hyperthyroid and euthyroid states and controls (p>0.05). Orexin-A correlated negatively with nesfatin-1 (p=0.042), BMR (p=0.013), free triiodothyronine (fT3; p<0.001), and free thyroxine (fT4; p<0.001) and positively with thyrotropin (TSH; p<0.001). Nesfatin-1 correlated negatively with orexin-A (p=0.042) and TSH (p<0.001) and positively with fT3 (p=0.005) and fT4 (p=0.001). In the regression analysis, "diagnosis of hyperthyroidism" was the main factor affecting orexin-A (p<0.001). CONCLUSIONS Although it seems that no relationship exists among orexin-A, nesfatin-1, and increased appetite in hyperthyroidism, the orexin-A and nesfatin-1 levels are markedly affected by hyperthyroidism.
Collapse
Affiliation(s)
- Yusuf Tohma
- 1 Department of Endocrinology and Metabolism, Gazi University , Ankara, Turkey
| | - Mujde Akturk
- 1 Department of Endocrinology and Metabolism, Gazi University , Ankara, Turkey
| | - Alev Altinova
- 1 Department of Endocrinology and Metabolism, Gazi University , Ankara, Turkey
| | - Emine Yassibas
- 2 Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University , Ankara, Turkey
| | - Ethem Turgay Cerit
- 1 Department of Endocrinology and Metabolism, Gazi University , Ankara, Turkey
| | - Ozlem Gulbahar
- 3 Department of Biochemistry, Faculty of Medicine, Gazi University , Ankara, Turkey
| | - Metin Arslan
- 1 Department of Endocrinology and Metabolism, Gazi University , Ankara, Turkey
| | - Nevin Sanlier
- 2 Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University , Ankara, Turkey
| | - Fusun Toruner
- 1 Department of Endocrinology and Metabolism, Gazi University , Ankara, Turkey
| |
Collapse
|
31
|
Behrouzvaziri A, Fu D, Tan P, Yoo Y, Zaretskaia MV, Rusyniak DE, Molkov YI, Zaretsky DV. Orexinergic neurotransmission in temperature responses to methamphetamine and stress: mathematical modeling as a data assimilation approach. PLoS One 2015; 10:e0126719. [PMID: 25993564 PMCID: PMC4439171 DOI: 10.1371/journal.pone.0126719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/07/2015] [Indexed: 02/04/2023] Open
Abstract
Experimental Data Orexinergic neurotransmission is involved in mediating temperature responses to methamphetamine (Meth). In experiments in rats, SB-334867 (SB), an antagonist of orexin receptors (OX1R), at a dose of 10 mg/kg decreases late temperature responses (t>60 min) to an intermediate dose of Meth (5 mg/kg). A higher dose of SB (30 mg/kg) attenuates temperature responses to low dose (1 mg/kg) of Meth and to stress. In contrast, it significantly exaggerates early responses (t<60 min) to intermediate and high doses (5 and 10 mg/kg) of Meth. As pretreatment with SB also inhibits temperature response to the stress of injection, traditional statistical analysis of temperature responses is difficult. Mathematical Modeling We have developed a mathematical model that explains the complexity of temperature responses to Meth as the interplay between excitatory and inhibitory nodes. We have extended the developed model to include the stress of manipulations and the effects of SB. Stress is synergistic with Meth on the action on excitatory node. Orexin receptors mediate an activation of on both excitatory and inhibitory nodes by low doses of Meth, but not on the node activated by high doses (HD). Exaggeration of early responses to high doses of Meth involves disinhibition: low dose of SB decreases tonic inhibition of HD and lowers the activation threshold, while the higher dose suppresses the inhibitory component. Using a modeling approach to data assimilation appears efficient in separating individual components of complex response with statistical analysis unachievable by traditional data processing methods.
Collapse
Affiliation(s)
- Abolhassan Behrouzvaziri
- Department of Mathematical Sciences, Indiana University—Purdue University Indianapolis, Indianapolis, IN 46202, United States of America
| | - Daniel Fu
- Park Tudor School, Indianapolis, IN 46240, United States of America
| | - Patrick Tan
- Carmel High School, Carmel, IN 46032, United States of America
| | - Yeonjoo Yoo
- Department of Mathematical Sciences, Indiana University—Purdue University Indianapolis, Indianapolis, IN 46202, United States of America
| | - Maria V. Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
| | - Daniel E. Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
| | - Yaroslav I. Molkov
- Department of Mathematical Sciences, Indiana University—Purdue University Indianapolis, Indianapolis, IN 46202, United States of America
| | - Dmitry V. Zaretsky
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
- * E-mail:
| |
Collapse
|
32
|
Hypothalamic orexin-A (hypocretin-1) neuronal projections to the vestibular complex and cerebellum in the rat. Brain Res 2014; 1579:20-34. [PMID: 25017945 DOI: 10.1016/j.brainres.2014.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/24/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022]
Abstract
Immunohistochemistry combined with retrograde tract-tracing techniques were used to investigate the distribution of orexin-A (OX-A)- and OX-A receptor-like (OX1) immunoreactivity within the vestibular complex and cerebellum, and the location of hypothalamic OX-A neurons sending axonal projections to these regions in the Wistar rat. OX-A immunoreactive fibers and presumptive terminals were found throughout the medial (MVe) and lateral (LVe) vestibular nuclei. Light fiber labeling was also observed in the spinal and superior vestibular nuclei. Within the cerebellum, dense fiber and presumptive terminal labeling was observed in the medial cerebellar nucleus (Med; fastigial nucleus), with less dense labeling in the interposed (Int) and lateral cerebellar nuclei (Lat; dentate nucleus). A few scattered OX-A immunoreactive fibers were also observed throughout the cortex of the paraflocculus. OX1-like immunoreactivity was found densely concentrated within LVe, moderate in MVe, and scattered within the spinal and superior vestibular nuclei. Within the cerebellum, OX1-like immunoreactivity was also observed densely within Med and in the dorsolateral aspects of Int. Additionally, OX1 like-labeling was found in Lat, and within the granular layer of the caudal paraflocculus cerebellar cortex. Fluorogold (FG) microinjected into these vestibular and cerebellar regions resulted in retrogradely labeled neurons throughout the ipsilateral hypothalamus. Retrogradely labeled neurons containing OX-A like immunoreactivity were observed dorsal and caudal to the anterior hypothalamic nucleus and extending laterally into the lateral hypothalamic area, with the largest number clustered around the dorsal aspects of the fornix in the perifornical area. A few FG OX-A like-immunoreactive neurons were also observed scattered throughout the dorsomedial, and posterior hypothalamic nuclei. These data indicate that axons from OX-A neurons terminate within the vestibular complex and deep cerebellar nuclei of the cerebellum and although the function of these pathways is unknown, they likely represent pathways by which hypothalamic OX-A containing neurons co-ordinate vestibulo-cerebellar motor and autonomic functions associated with ingestive behaviors.
Collapse
|
33
|
Rainero I, Martino PD, Pinessi L. Hypocretins and primary headaches: neurobiology and clinical implications. Expert Rev Neurother 2014; 8:409-16. [DOI: 10.1586/14737175.8.3.409] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Effects of hypocretin and norepinephrine interaction in bed nucleus of the stria terminalis on arterial pressure. Neuroscience 2013; 255:278-91. [PMID: 24070630 DOI: 10.1016/j.neuroscience.2013.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 11/20/2022]
Abstract
Forebrain neuronal circuits containing hypocretin-1 (hcrt-1) and norepinephrine (NE) are important components of central arousal-related processes. Recently, these two systems have been shown to have an overlapping distribution within the bed nucleus of the stria terminalis (BST), a limbic structure activated by stressful challenges, and which functions to adjust arterial pressure (AP) and heart rate (HR) to the stressor. However, whether hcrt-1 and NE interact in BST to alter cardiovascular function is unknown. Experiments were done in urethane-α-chloralose anesthetized, paralyzed, and artificially ventilated male Wistar rats to investigate the effect of hcrt-1 and NE on the cardiovascular responses elicited by l-glutamate (Glu) stimulation of BST neurons. Microinjections of hcrt-1, NE or tyramine into BST attenuated the decrease in AP and HR to Glu stimulation of BST. Additionally, combined injections of hcrt-1 with NE or tyramine did not elicit a greater attenuation than either compound alone. Furthermore, injections into BST of the α2-adrenergic receptor (α2-AR) antagonist yohimbine, but not the α1-AR antagonist 2-{[β-(4-hydroxyphenyl)ethyl]aminomethyl}-1-tetralone hydrochloride, blocked both the hcrt-1 and NE-induced inhibition of the BST cardiovascular depressors responses. Finally, injections into BST of the GABAA receptor antagonist bicuculline, but not the GABAB receptor antagonist phaclofen, blocked the hcrt-1 and NE attenuation of the BST Glu-induced depressor and bradycardia responses. These data suggest that hcrt-1 effects in BST are mediated by NE neurons, and hcrt-1 likely acts to facilitate the synaptic release of NE. NE neurons, acting through α2-AR may activate Gabaergic neurons in BST, which in turn through the activation of GABAA receptors inhibit a BST sympathoinhibitory pathway. Taken together, these data suggest that hcrt-1 pathways to BST through their interaction with NE and Gabaergic neurons may function in the coordination of cardiovascular responses associated with different behavioral states.
Collapse
|
35
|
Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure. Neuroscience 2013; 250:599-613. [PMID: 23912034 DOI: 10.1016/j.neuroscience.2013.07.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 01/03/2023]
Abstract
Experiments were done to investigate whether hypothalamic hypocretin-1 (hcrt-1; orexin-A) neurons that sent axonal projections to cardiovascular responsive sites in the nucleus of the solitary tract (NTS) co-expressed leucine-enkephalin (L-Enk), and to determine the effects of co-administration of hcrt-1 and D-Ala2,D-Leu5-Enkephalin (DADL) into NTS on mean arterial pressure (MAP) and heart rate. In the first series, in the Wistar rat the retrograde tract-tracer fluorogold (FG) was microinjected (50nl) into caudal NTS sites at which L-glutamate (0.25 M; 10 nl) elicited decreases in MAP and where fibers hcrt-1 immunoreactive fibers were observed that also contained L-Enk immunoreactivity. Of the number of hypothalamic hcrt-1 immunoreactive neurons identified ipsilateral to the NTS injection site (1207 ± 78), 32.3 ± 2.3% co-expressed L-Enk immunoreactivity and of these, 2.6 ± 1.1% were retrogradely labeled with FG. Hcrt-1/L-Enk neurons projecting to NTS were found mainly within the perifornical region. In the second series, the region of caudal NTS found to contain axons that co-expressed hcrt-1 and L-Enk immunoreactivity was microinjected with a combination of hcrt-1 and DADL in α-chloralose anesthetized Wistar rats. Microinjection of DADL into NTS elicited depressor and bradycardia responses similar to those elicited by microinjection of hcrt-1. An hcrt-1 injection immediately after the DADL injection elicited an almost twofold increase in the magnitude of the depressor and bradycardia responses compared to those elicited by hcrt-1 alone. Prior injections of the non-specific opioid receptor antagonist naloxone or the specific opioid δ-receptor antagonist ICI 154,129 significantly attenuated the cardiovascular responses to the combined hcrt-1-DADL injections. Taken together, these data suggest that activation of hypothalamic-opioidergic neuronal systems contribute to the NTS hcrt-1 induced cardiovascular responses, and that this descending hypothalamo-medullary pathway may represent the anatomical substrate by which hcrt-1/L-Enk neurons function in the coordination of autonomic-cardiovascular responses during different behavioral states.
Collapse
|
36
|
Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 2013; 7:28. [PMID: 23616752 PMCID: PMC3629303 DOI: 10.3389/fnbeh.2013.00028] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/25/2013] [Indexed: 01/15/2023] Open
Abstract
Orexin deficiency results in narcolepsy in humans, dogs, and rodents, suggesting that the orexin system is particularly important for maintenance of wakefulness. However, orexin neurons are “multi-tasking” neurons that regulate sleep/wake states as well as feeding behavior, emotion, and reward processes. Orexin deficiency causes abnormalities in energy homeostasis, stress-related behavior, and reward systems. Orexin excites waking-active monoaminergic and cholinergic neurons in the hypothalamus and brain stem regions to maintain a long, consolidated waking period. Orexin neurons also have reciprocal links with the hypothalamic nuclei, which regulates feeding. Moreover, the responsiveness of orexin neurons to peripheral metabolic cues suggests that these neurons have an important role as a link between energy homeostasis and vigilance states. The link between orexin and the ventral tegmental nucleus serves to motivate an animal to engage in goal-directed behavior. This review focuses on the interaction of orexin neurons with emotion, reward, and energy homeostasis systems. These connectivities are likely to be highly important to maintain proper vigilance states.
Collapse
Affiliation(s)
- Natsuko Tsujino
- Department of Molecular Neuroscience and Integrative Physiology, Graduate School of Medical Science, Kanazawa University Kanazawa, Japan
| | | |
Collapse
|
37
|
Shin YO, Lee JB, Min YK, Yang HM. Heat acclimation affects circulating levels of prostaglandin E2, COX-2 and orexin in humans. Neurosci Lett 2013; 542:17-20. [PMID: 23523649 DOI: 10.1016/j.neulet.2013.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 02/07/2013] [Accepted: 03/04/2013] [Indexed: 12/28/2022]
Abstract
We examined serum levels of prostaglandin E2 (PGE2), cyclooxygenase (COX)-2 and orexin before and after heat acclimation (HA) to test the hypothesis that decreased basal body temperature due to HA correlate with circulating levels of these key thermoregulatory molecules. Nine healthy human male volunteers were recruited (age, 21.9±2.7 years). The subjects were exposed to half-body immersion in hot water (42±0.5°C) at the same time of day (2-5p.m.) on alternate days for 3 weeks. The HA protocol included 10 bouts of 30min immersion. All experiments were performed in an automated climate chamber (temperature, 26.0±0.5°C; relative humidity, 60±3.0%; air velocity, <1m/s). Tympanic and skin temperatures were measured, and mean body temperature was calculated. The difference in body weight was used to estimate total sweat loss. Serum levels of PGE2, COX-2 and orexin were analyzed before and after HA. Body temperature decreased significantly (P<0.05) after HA, whereas sweat volume increased significantly (P<0.01). Serum PGE2, COX-2 and orexin concentrations decreased significantly compared to those at pre-acclimation (P<0.001, P<0.01, P<0.01, respectively). Our data suggest that decreased basal body temperature after HA is associated with decreases in thermoregulatory molecules, such as PGE2, COX-2 and orexin.
Collapse
Affiliation(s)
- Young Oh Shin
- Department of Healthcare, Global Graduate School, Soonchunhyang University, 646 Asan, Republic of Korea
| | | | | | | |
Collapse
|
38
|
Hunt NJ, Waters KA, Machaalani R. Orexin receptors in the developing piglet hypothalamus, and effects of nicotine and intermittent hypercapnic hypoxia exposures. Brain Res 2013; 1508:73-82. [PMID: 23500635 DOI: 10.1016/j.brainres.2013.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/04/2013] [Accepted: 03/03/2013] [Indexed: 11/26/2022]
Abstract
Orexin and its receptors (OxR1 and OxR2) play a significant role in arousal and sleep regulation. Using developing piglets, we aimed to determine the effects of nicotine and Intermittent Hypercapnic Hypoxia (IHH), alone or in combination, on orexin receptor expression in the hypothalamus. Four piglet groups were studied: control (n=14), nicotine (n=14), IHH (n=10) and nic+IHH (n=14). Applying immunohistochemistry for OxR1 and OxR2 expression, eight nuclei/areas of the hypothalamus: dorsal medial nucleus (DMN), arcuate nucleus (ARC), perifornical area (PFA), paraventricular nucleus (PVN), lateral hypothalamic area (LHA), ventral medial nucleus (VMN), supraoptic nucleus, retrochiasmatic part (SONr) and tuberal mammillary nucleus (TMN), were studied. Compared to controls, OxR1 and OxR2 were increased due to exposures, however this was region dependent. Nicotine increased OxR1 in the DMN (P<0.001) and SONr (P=0.036), and OxR2 in the DMN (P<0.001), VMN (P=0.014) and the TMN (P=0.026). IHH increased OxR1 in the DMN, PVN, VMN and SONr (P<0.01 for all), and OxR2 in DMN (P<0.001), PFA (P=0.001), PVN (P=0.004), VMN (P=0.041) and the TMN (P<0.001). The nic+IHH exposure increased OxR1 expression in all nuclei (TMN excluded) however, the changes were not significantly different from IHH alone. For OxR2, the increased expression after nic+IHH was significant compared to IHH in the DMN, ARC and SONr. These results show that nicotine increases orexin receptor expression in a region dependent manner. IHH induced increases were specific to arousal and stress related regions and nic+IHH results suggest that for OxR1, nicotine has no additive effect whereas for OxR2 it does, and is region dependent.
Collapse
Affiliation(s)
- Nicholas J Hunt
- Department of Pathology, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
39
|
Bartfai T, Conti B. Molecules affecting hypothalamic control of core body temperature in response to calorie intake. Front Genet 2012; 3:184. [PMID: 23097647 PMCID: PMC3466567 DOI: 10.3389/fgene.2012.00184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/31/2012] [Indexed: 01/07/2023] Open
Abstract
Core body temperature (CBT) and calorie intake are main components of energy homeostasis and two important regulators of health, longevity, and aging. In homeotherms, CBT can be influenced by calorie intake as food deprivation or calorie restriction (CR) lowers CBT whereas feeding has hyperthermic effects. The finding that in mice CBT prolonged lifespan independently of CR, suggested that the mechanisms modulating CBT may represent important regulators of aging. Here we summarize the current knowledge on the signaling molecules and their receptors that participate in the regulation of CBT responses to calorie intake. These include hypothalamic neuropeptides regulating feeding but also energy expenditure via modulation of thermogenesis. We also report studies indicating that nutrient signals can contribute to regulation of CBT by direct action on hypothalamic preoptic warm-sensitive neurons that in turn regulate adaptive thermogenesis and hence CBT. Finally, we show the role played by two orphans G protein-coupled receptor: GPR50 and GPR83, that were recently demonstrated to regulate temperature-dependent energy expenditure.
Collapse
Affiliation(s)
- Tamas Bartfai
- Department of Chemical Physiology, The Scripps Research Institute La Jolla, CA, USA
| | | |
Collapse
|
40
|
Heidari-Oranjaghi N, Azhdari-Zarmehri H, Erami E, Haghparast A. Antagonism of orexin-1 receptors attenuates swim- and restraint stress-induced antinociceptive behaviors in formalin test. Pharmacol Biochem Behav 2012; 103:299-307. [PMID: 22922083 DOI: 10.1016/j.pbb.2012.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/12/2012] [Accepted: 08/13/2012] [Indexed: 01/09/2023]
Abstract
Orexin (ORX) plays an important role in pain modulation. ORX receptors have been found in many brain structures and are known to be involved in pain processing. It is well-established that the acute and chronic forms of stress could induce hormonal and neuronal changes that affect both pain threshold and nociceptive behaviors. The role of OX1R receptors in stress-induced analgesia (SIA) has not been fully elucidated. In the present study, using the formalin test, attempts were made to evaluate the effects of acute immobilization restraint stress and swimming stress on pain behavioral responses following OX1R antagonist administration in rats. Animals received OX1R antagonist (SB-334867), vehicle, or naloxone before exposure to acute restraint stress (30min) or swimming stress test (6min, 20±1°C), and immediately submitted to hind paw formalin injection (50μl, 2%). Acute 30-min exposure to restraint stress as well as 6-min exposure to swim stress could significantly reduce the formalin-induced nociceptive behaviors in rats. This antinociceptive effect with either restraint stress or swim stress was fully prevented by OX1R antagonist (SB-334867), while the SB-334867 alone had no effect. However, the opioid receptor antagonist naloxone could not totally reverse the antinociception effect with either form of stress. It is suggested that OX1R might be involved in antinociception behaviors induced by these two forms of stress. These data highlight the significant role of OX1R as a novel target for treatment of stress-related disorders.
Collapse
Affiliation(s)
- Nima Heidari-Oranjaghi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | | | |
Collapse
|
41
|
Hollander JA, Pham D, Fowler CD, Kenny PJ. Hypocretin-1 receptors regulate the reinforcing and reward-enhancing effects of cocaine: pharmacological and behavioral genetics evidence. Front Behav Neurosci 2012; 6:47. [PMID: 22837742 PMCID: PMC3402880 DOI: 10.3389/fnbeh.2012.00047] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 07/05/2012] [Indexed: 11/13/2022] Open
Abstract
Considerable evidence suggests that transmission at hypocretin-1 (orexin-1) receptors (Hcrt-R1) plays an important role in the reinstatement of extinguished cocaine-seeking behaviors in rodents. However, far less is known about the role for hypocretin transmission in regulating ongoing cocaine-taking behavior. Here, we investigated the effects of the selective Hcrt-R1 antagonist SB-334867 on cocaine intake, as measured by intravenous (IV) cocaine self-administration in rats. The stimulatory effects of cocaine on brain reward systems contribute to the establishment and maintenance of cocaine-taking behaviors. Therefore, we also assessed the effects of SB-334867 on the reward-enhancing properties of cocaine, as measured by cocaine-induced lowering of intracranial self-stimulation (ICSS) thresholds. Finally, to definitively establish a role for Hcrt-R1 in regulating cocaine intake, we assessed IV cocaine self-administration in Hcrt-R1 knockout mice. We found that SB-334867 (1-4 mg/kg) dose-dependently decreased cocaine (0.5 mg/kg/infusion) self-administration in rats but did not alter responding for food rewards under the same schedule of reinforcement. This suggests that SB-334867 decreased cocaine reinforcement without negatively impacting operant performance. SB-334867 (1-4 mg/kg) also dose-dependently attenuated the stimulatory effects of cocaine (10 mg/kg) on brain reward systems, as measured by reversal of cocaine-induced lowering of ICSS thresholds in rats. Finally, we found that Hcrt-R1 knockout mice self-administered far less cocaine than wildtype mice across the entire dose-response function. These data demonstrate that Hcrt-R1 play an important role in regulating the reinforcing and reward-enhancing properties of cocaine and suggest that hypocretin transmission is likely essential for establishing and maintaining the cocaine habit in human addicts.
Collapse
Affiliation(s)
- Jonathan A Hollander
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter FL, USA
| | | | | | | |
Collapse
|
42
|
Parsons MP, Belanger-Willoughby N, Linehan V, Hirasawa M. ATP-sensitive potassium channels mediate the thermosensory response of orexin neurons. J Physiol 2012; 590:4707-15. [PMID: 22802589 DOI: 10.1113/jphysiol.2012.236497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
High body temperatures are generally associated with somnolence, lethargy, hypophagia and anhedonia. Orexin neurons have been suggested to play a role in such sickness behaviours due to their known functions in appetite, behavioural and autonomic activation. Furthermore, the activity of orexin neurons is inhibited by lipopolysaccharide that induces fever. However, the cellular mechanism(s) underlying this suppression of orexin neurons was unknown. We used patch-clamp recordings in acute rat brain slices to demonstrate that orexin neurons, including those projecting to the wake-promoting locus coeruleus, are inhibited by increasing the ambient temperature by a 2-4°C increment between 26 and 40°C. This effect was not mediated by conventional thermosensing mechanisms but instead involved the activation of ATP-sensitive potassium (KATP) channels. Since KATP channels can also sense energy substrate levels and cellular metabolism, our results suggest that orexin neurons can integrate the state of energy balance and body temperature, and adjust their output accordingly. Thus, the thermosensitivity of orexin neurons may be an important part of maintaining energy homeostasis during hyperthermia and fever.
Collapse
Affiliation(s)
- Matthew P Parsons
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St John's, NL, A1B 3V6, Canada
| | | | | | | |
Collapse
|
43
|
Zhang LN, Li ZJ, Tong L, Guo C, Niu JY, Hou WG, Dong HL. Orexin-A facilitates emergence from propofol anesthesia in the rat. Anesth Analg 2012; 115:789-96. [PMID: 22798527 DOI: 10.1213/ane.0b013e3182645ea3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hypothalamic orexinergic neurons play a critical role in the promotion and maintenance of wakefulness in mammals. Previous studies have demonstrated that activities of orexinergic neurons were inhibited by isoflurane and sevoflurane, and microinjection of orexin facilitated the emergence from volatile anesthesia. In this study we first examined the hypothesis that the activity of orexin neurons is inhibited by propofol anesthesia. Moreover, the role of the orexinergic signals in basal forebrain in regulating the anesthesia-arousal cycle of propofol anesthesia is also elucidated. METHODS Rats were killed at 0, 30, 60, and 120 minutes of propofol infusion as well as at the time the righting reflex returned after the termination of anesthesia. Activated orexinergic neurons were detected by c-Fos expression. The plasma concentrations of orexin-A were measured by radioimmunoassay. Orexin-A (30 or 100 pmol) or the orexin-1 receptor antagonist, SB-334867A (5 or 20 μg), was microinjected into the basal forebrain 15 minutes before propofol infusion, or 15 minutes before the termination of propofol infusion. The loss and the return of the righting reflex time were recorded as the induction and the emergence time. RESULTS Propofol anesthesia resulted in an inhibition of orexinergic neuron activity as demonstrated by the reduced numbers of c-Fos-immunoreactive orexinergic neurons. The activities of orexinergic neurons were restored when rats emerged from anesthesia. Propofol anesthesia decreased plasma orexin-A concentrations. Intrabasalis microinjection of orexin-A had no effect on the induction time but facilitated the emergence from propofol anesthesia. Inversely, intrabasalis microinjection of the orexin-1 receptor antagonist SB-334867A delayed the emergence from propofol anesthesia. CONCLUSIONS Our findings indicate that activity of orexinergic neurons is inhibited by propofol anesthesia, and the orexin signals in basal forebrain are involved in anesthesia-arousal regulation from propofol anesthesia.
Collapse
Affiliation(s)
- Li-Na Zhang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Rusyniak DE, Zaretsky DV, Zaretskaia MV, Durant PJ, DiMicco JA. The orexin-1 receptor antagonist SB-334867 decreases sympathetic responses to a moderate dose of methamphetamine and stress. Physiol Behav 2012; 107:743-50. [PMID: 22361264 DOI: 10.1016/j.physbeh.2012.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/01/2012] [Accepted: 02/07/2012] [Indexed: 11/29/2022]
Abstract
We recently discovered that inhibiting neurons in the dorsomedial hypothalamus (DMH) attenuated hyperthermia, tachycardia, hypertension, and hyperactivity evoked by the substituted amphetamine 3, 4-methylenedioxymethamphetamine (MDMA). Neurons that synthesize orexin are also found in the region of the DMH. As orexin and its receptors are involved in the regulation of heart rate and temperature, they would seem to be logical candidates as mediators of the effects evoked by amphetamines. The goal of this study was to determine if blockade of orexin-1 receptors in conscious rats would suppress cardiovascular and thermogenic responses evoked by a range of methamphetamine (METH) doses. Male Sprague-Dawley rats (n=6 per group) were implanted with telemetric transmitters measuring body temperature, heart rate, and mean arterial pressure. Animals were randomized to receive pretreatment with either the orexin-1 receptor antagonist SB-334867 (10mg/kg) or an equal volume of vehicle. Thirty minutes later animals were given intraperitoneal (i.p.) injections of either saline, a low (1mg/kg), moderate (5mg/kg) or high (10mg/kg) dose of METH. Pretreatment with SB-334867 significantly attenuated increases in body temperature and mean arterial pressure evoked by the moderate but not the low or high dose of METH. Furthermore, animals treated with SB-334867, compared to vehicle, had lower temperature and heart rate increases after the stress of an i.p. injection. In conclusion, temperature and cardiovascular responses to a moderate dose of METH and to stress appear to involve orexin-1 receptors. The failure to affect a low and a high dose of METH suggests a complex pharmacology dependent on dose. A better understanding of this may lead to the knowledge of how monoamines influence the orexin system and vice versa.
Collapse
Affiliation(s)
- Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | | | | | | | | |
Collapse
|
45
|
Abstract
In this chapter, we give an overview of the current status of the role of orexins in feeding and energy homeostasis. Orexins, also known as hypocretins, initially were discovered in 1998 as hypothalamic regulators of food intake. A little later, their far more important function as regulators of sleep and arousal came to light. Despite their restricted distribution, orexin neurons have projections throughout the entire brain, with dense projections especially to the paraventricular nucleus of the thalamus, the arcuate nucleus of the hypothalamus, and the locus coeruleus and tuberomammillary nucleus. Its two receptors are orexin receptor 1 and orexin receptor 2. These receptors show a specific and localized distribution in a number of brain regions, and a variety of different actions has been demonstrated upon their binding. Our group showed that through the autonomic nervous system, the orexin system plays a key role in the control of glucose metabolism, but it has also been shown to stimulate sympathetic outflow, to increase body temperature, heart rate, blood pressure, and renal sympathetic nerve activity. The well-known effects of orexin on the control of food intake, arousal, and wakefulness appear to be more extensive than originally thought, with additional effects on the autonomic nervous system, that is, to increase body temperature and energy metabolism.
Collapse
|
46
|
Nixon JP, Kotz CM, Novak CM, Billington CJ, Teske JA. Neuropeptides controlling energy balance: orexins and neuromedins. Handb Exp Pharmacol 2012:77-109. [PMID: 22249811 DOI: 10.1007/978-3-642-24716-3_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this chapter, we review the feeding and energy expenditure effects of orexin (also known as hypocretin) and neuromedin. Orexins are multifunctional neuropeptides that affect energy balance by participating in regulation of appetite, arousal, and spontaneous physical activity. Central orexin signaling for all functions originates in the lateral hypothalamus-perifornical area and is likely functionally differentiated based on site of action and on interacting neural influences. The effect of orexin on feeding is likely related to arousal in some ways but is nonetheless a separate neural process that depends on interactions with other feeding-related neuropeptides. In a pattern distinct from other neuropeptides, orexin stimulates both feeding and energy expenditure. Orexin increases in energy expenditure are mainly by increasing spontaneous physical activity, and this energy expenditure effect is more potent than the effect on feeding. Global orexin manipulations, such as in transgenic models, produce energy balance changes consistent with a dominant energy expenditure effect of orexin. Neuromedins are gut-brain peptides that reduce appetite. There are gut sources of neuromedin, but likely the key appetite-related neuromedin-producing neurons are in the hypothalamus and parallel other key anorectic neuropeptide expression in the arcuate to paraventricular hypothalamic projection. As with other hypothalamic feeding-related peptides, hindbrain sites are likely also important sources and targets of neuromedin anorectic action. Neuromedin increases physical activity in addition to reducing appetite, thus producing a consistent negative energy balance effect. Together with the other various neuropeptides, neurotransmitters, neuromodulators, and neurohormones, neuromedin and orexin act in the appetite network to produce changes in food intake and energy expenditure, which ultimately influences the regulation of body weight.
Collapse
Affiliation(s)
- Joshua P Nixon
- Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
47
|
Tupone D, Madden CJ, Cano G, Morrison SF. An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. J Neurosci 2011; 31:15944-55. [PMID: 22049437 PMCID: PMC3224674 DOI: 10.1523/jneurosci.3909-11.2011] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/07/2011] [Accepted: 09/20/2011] [Indexed: 01/12/2023] Open
Abstract
Orexin (hypocretin) neurons, located exclusively in the PeF-LH, which includes the perifornical area (PeF), the lateral hypothalamus (LH), and lateral portions of the medial hypothalamus, have widespread projections and influence many physiological functions, including the autonomic regulation of body temperature and energy metabolism. Narcolepsy is characterized by the loss of orexin neurons and by disrupted sleep, but also by dysregulation of body temperature and by a strong tendency for obesity. Heat production (thermogenesis) in brown adipose tissue (BAT) contributes to the maintenance of body temperature and, through energy consumption, to body weight regulation. We identified a neural substrate for the influence of orexin neurons on BAT thermogenesis in rat. Nanoinjection of orexin-A (12 pmol) into the rostral raphe pallidus (rRPa), the site of BAT sympathetic premotor neurons, produced large, sustained increases in BAT sympathetic outflow and in BAT thermogenesis. Activation of neurons in the PeF-LH also enhanced BAT thermogenesis over a long time course. Combining viral retrograde tracing from BAT, or cholera toxin subunit b tracing from rRPa, with orexin immunohistochemistry revealed synaptic connections to BAT from orexin neurons in PeF-LH and from rRPa neurons with closely apposed, varicose orexin fibers, as well as a direct, orexinergic projection from PeF-LH to rRPa. These results indicate a potent modulation of BAT thermogenesis by orexin released from the terminals of orexin neurons in PeF-LH directly into the rRPa and provide a potential mechanism contributing to the disrupted regulation of body temperature and energy metabolism in the absence of orexin.
Collapse
Affiliation(s)
- Domenico Tupone
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon 97239-3098, USA.
| | | | | | | |
Collapse
|
48
|
Sellayah D, Bharaj P, Sikder D. Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab 2011; 14:478-90. [PMID: 21982708 DOI: 10.1016/j.cmet.2011.08.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/29/2011] [Accepted: 08/24/2011] [Indexed: 11/19/2022]
Abstract
Orexin (OX) neuropeptides stimulate feeding and arousal. Deficiency of orexin is implicated in narcolepsy, a disease associated with obesity, paradoxically in the face of reduced food intake. Here, we show that obesity in orexin-null mice is associated with impaired brown adipose tissue (BAT) thermogenesis. Failure of thermogenesis in OX-null mice is due to inability of brown preadipocytes to differentiate. The differentiation defect in OX-null neonates is circumvented by OX injections to OX-null dams. In vitro, OX, triggers the full differentiation program in mesenchymal progenitor stem cells, embryonic fibroblasts and brown preadipocytes via p38 mitogen activated protein (MAP) kinase and bone morphogenetic protein receptor-1a (BMPR1A)-dependent Smad1/5 signaling. Our study suggests that obesity associated with OX depletion is linked to brown-fat hypoactivity, which leads to dampening of energy expenditure. Thus, orexin plays an integral role in adaptive thermogenesis and body weight regulation via effects on BAT differentiation and function.
Collapse
Affiliation(s)
- Dyan Sellayah
- Metabolic Signaling and Disease Program, Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | | | | |
Collapse
|
49
|
Burt J, Alberto CO, Parsons MP, Hirasawa M. Local network regulation of orexin neurons in the lateral hypothalamus. Am J Physiol Regul Integr Comp Physiol 2011; 301:R572-80. [PMID: 21697524 DOI: 10.1152/ajpregu.00674.2010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Obesity and inadequate sleep are among the most common causes of health problems in modern society. Thus, the discovery that orexin (hypocretin) neurons play a pivotal role in sleep/wake regulation, energy balance, and consummatory behaviors has sparked immense interest in understanding the regulatory mechanisms of these neurons. The local network consisting of neurons and astrocytes within the lateral hypothalamus and perifornical area (LH/PFA), where orexin neurons reside, shapes the output of orexin neurons and the LH/PFA. Orexin neurons not only send projections to remote brain areas but also contribute to the local network where they release multiple neurotransmitters to modulate its activity. These neurotransmitters have opposing actions, whose balance is determined by the amount released and postsynaptic receptor desensitization. Modulation and negative feedback regulation of excitatory glutamatergic inputs as well as release of astrocyte-derived factors, such as lactate and ATP, can also affect the excitability of orexin neurons. Furthermore, distinct populations of LH/PFA neurons express neurotransmitters with known electrophysiological actions on orexin neurons, such as melanin-concentrating hormone, corticotropin-releasing factor, thyrotropin-releasing hormone, neurotensin, and GABA. These LH/PFA-specific mechanisms may be important for fine tuning the firing activity of orexin neurons to maintain optimal levels of prolonged output to sustain wakefulness and stimulate consummatory behaviors. Building on these exciting findings should shed further light onto the cellular mechanisms of energy balance and sleep-wake regulation.
Collapse
Affiliation(s)
- Julia Burt
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| | | | | | | |
Collapse
|
50
|
Plazzi G, Moghadam KK, Maggi LS, Donadio V, Vetrugno R, Liguori R, Zoccoli G, Poli F, Pizza F, Pagotto U, Ferri R. Autonomic disturbances in narcolepsy. Sleep Med Rev 2011; 15:187-96. [PMID: 20634114 DOI: 10.1016/j.smrv.2010.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 05/14/2010] [Accepted: 05/21/2010] [Indexed: 11/24/2022]
|