1
|
Wen J, Zhao Y, Huang C, Li S, Li P, Zhou Y, Yan Z, Zhang G. Estrogen inhibits colonic smooth muscle contractions by regulating BKβ1 signaling. PLoS One 2023; 18:e0294249. [PMID: 37948436 PMCID: PMC10637685 DOI: 10.1371/journal.pone.0294249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The estrogen inhibits colonic smooth muscle contractions, which may lead to constipation. However, the mechanisms of inhibition are poorly understood. Therefore, the present study examined the effect of estrogen on rat colonic smooth muscle contractions and its potential association with the large-conductance Ca2+-activated K+ channels β1 (BKβ1) subunit. Twenty-four female Sprague Dawley rats were randomly assigned to 4 groups. After 2 weeks of intervention, the contraction activity of isolated colonic smooth muscle and the expression of BKβ1 in colonic smooth muscle of rats were detected. Additionally, in order to investigate the effects of estrogen on BKβ1 expression and calcium mobilization, in vitro experiments were conducted using rat and human colonic smooth muscle cells (SMCs). BKβ1 shRNA was used to investigate whether calcium mobilization is affected by BKβ1 in colonic SMCs. To explore the relationship between ERβ and BKβ1, serial deletions, site-directed mutagenesis, a dual-luciferase reporter assay, and chromatin immunoprecipitation assays were employed. In response to E2, colonic smooth muscle strips showed a decrease in tension, while IBTX exposure transiently increased tension. Furthermore, in these muscle tissues, BKβ1 and α-SMA were found to be co-expressed. The E2 group showed significantly higher BKβ1 expression. In cultured colonic SMCs, the expression of BKβ1 was found to increase in the presence of E2 or DPN. E2 treatment reduced Ca2+ concentrations, while BKβ1 shRNA treatment increased Ca2+ concentrations relative to the control. ERβ-initiated BKβ1 expression appears to occur via binding to the BKβ1 promoter. These results indicated that E2 may upregulate BKβ1 expression via ERβ and inhibit colonic smooth muscle contraction through ERβ by directly targeting BKβ1.
Collapse
Affiliation(s)
- Jing Wen
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yu Zhao
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Cheng Huang
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shengjie Li
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Peidong Li
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yu Zhou
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zaihua Yan
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guangjun Zhang
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
2
|
Rosenfeld CS, Cooke PS. Endocrine disruption through membrane estrogen receptors and novel pathways leading to rapid toxicological and epigenetic effects. J Steroid Biochem Mol Biol 2019; 187:106-117. [PMID: 30465854 PMCID: PMC6370520 DOI: 10.1016/j.jsbmb.2018.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Accepted: 11/18/2018] [Indexed: 01/08/2023]
Abstract
Estrogen binding to estrogen receptors (ESR) triggers signaling cascades within cells. Historically, a major emphasis has been characterizing estrogen-induced genomic actions resulting from binding to nuclear estrogen receptor 1 (nESR1). However, recent evidence indicates the first receptors estrogens encounter as they enter a cell, membrane ESR1 (mESR1), also play crucial roles. Membrane and nuclear ESR are derived from the same transcripts but the former are directed to the membrane via palmitoylation. Binding and activation of mESR1 leads to rapid fluctuations in cAMP and Ca+2 and stimulation of protein kinase pathways. Endocrine disrupting chemicals (EDC) that mimic 17β-estradiol can signal through mESR1 and elicit non-genomic effects. Most current EDC studies have focused on genomic actions via nESR1. However, increasing number of studies have begun to examine potential EDC effects mediated through mESR1, and some EDC might have higher potency for signaling through mESR1 than nESR1. The notion that such chemicals might also affect mESR1 signaling via palmitoylation and depalmitoylation pathways has also begun to gain currency. Recent development of transgenic mice that lack either mESR1 or nESR1, while retaining functional ESR1 in the other compartment, will allow more precise in vivo approaches to determine EDC effects through nESR1 and/or mESR1. It is increasingly becoming apparent in this quickly evolving field that EDC directly affect mESR and estrogen signaling, but such chemicals can also affect proportion of ESR reaching the membrane. Future EDC studies should be designed to consider the full range of effects through mESR alone and in combination with nESR.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, Columbia, MO, 65211, USA.
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
3
|
Watson CS, Koong L, Jeng YJ, Vinas R. Xenoestrogen interference with nongenomic signaling actions of physiological estrogens in endocrine cancer cells. Steroids 2019; 142:84-93. [PMID: 30012504 PMCID: PMC6339598 DOI: 10.1016/j.steroids.2018.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/15/2018] [Accepted: 06/27/2018] [Indexed: 11/20/2022]
Abstract
Rapid nongenomic signaling by estrogens (Es), initiated near the cell membrane, provides new explanations for the potent actions of environmental chemicals that imperfectly mimic physiological Es. These pathways can affect tumor growth, stabilization, or shrinkage via a number of signaling streams such as activation/inactivation of mitogen-activated protein kinases and caspases, generation of second messengers, and phospho-triggering of cyclin instability. Though prostate cancers are better known for their responsiveness to androgen deprivation, ∼17% of late stage tumors regress in response to high dose natural or pharmaceutical Es; however, the mechanisms at the cellular level are not understood. More accurate recent measurements show that estradiol (E2) levels decline in aging men, leading to the hypothesis that maintaining young male levels of E2 may prevent the growth of prostate cancers. Major contributions to reducing prostate cancer cell numbers included low E2 concentrations producing sustained ERK phospho-activation correlated with generation of reactive oxygen species causing cancer cell death, and phospho-activation of cyclin D1 triggering its rapid degradation by interrupting cell cycle progression. These therapeutic actions were stronger in early stage tumor cells (with higher membrane estrogen receptor levels), and E2 was far more effective compared to diethylstilbestrol (the most frequently prescribed E treatment). Xenoestrogens (XEs) exacerbated the growth of prostate cancer cells, and as we know from previous studies in pituitary cancer cells, can interfere with the nongenomic signaling actions of endogenous Es. Therefore, nongenomic actions of physiological levels of E2 may be important deterrents to the growth of prostate cancers, which could be undermined by the actions of XEs.
Collapse
Affiliation(s)
- Cheryl S Watson
- Biochemistry & Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX 77555, United States.
| | - Luke Koong
- Biochemistry & Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Yow-Jiun Jeng
- Biochemistry & Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Rene Vinas
- Biochemistry & Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
4
|
Jin X, Sun J, Yu B, Wang Y, Sun WJ, Yang J, Huang SH, Xie WL. Daidzein stimulates osteogenesis facilitating proliferation, differentiation, and antiapoptosis in human osteoblast-like MG-63 cells via estrogen receptor–dependent MEK/ERK and PI3K/Akt activation. Nutr Res 2017. [DOI: 10.1016/j.nutres.2017.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Zhang Y, Yuan C, Gao J, Liu Y, Wang Z. Testicular transcript responses in rare minnow Gobiocypris rarus following different concentrations bisphenol A exposure. CHEMOSPHERE 2016; 156:357-366. [PMID: 27183338 DOI: 10.1016/j.chemosphere.2016.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/30/2016] [Accepted: 05/04/2016] [Indexed: 06/05/2023]
Abstract
Bisphenol A (BPA) is widely spread in the environment. It can cause various reproductive disrupting effects on different organisms, including fish. To investigate the effect of BPA at different concentrations comprehensively, RNA-seq was performed on the testicular mRNA libraries of adult male rare minnow Gobiocypris rarus that exposed to 0, 1, 15 and 225 μg/L BPA for 7 days. Meanwhile, biological indicators and sex steroid hormone levels were investigated. Result showed that (1) BPA at all three concentrations affected the expression of genes related to testicular steroid hormone biosynthesis, blood-testis barrier, proteolysis, and lipid transport and metabolism. (2) BPA at 1 μg/L induced gene expression in renin-angiotensin system pathway and possibly initiate membrane form of estrogen receptor (mER); 1 and 15 μg/L BPA inhibited tRNA processing-related genes expression; 15 and 225 μg/L BPA decreased hemostasis and blood coagulation-related gene expression. The present study indicated that BPA did influence rare minnow testicular gene expressing, and the effect BPA effects varied with concentration.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Cong Yuan
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Yan Liu
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Dogan S, Simsek T. Possible relationship between endocrine disrupting chemicals and hormone dependent gynecologic cancers. Med Hypotheses 2016; 92:84-7. [PMID: 27241264 DOI: 10.1016/j.mehy.2016.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/24/2016] [Indexed: 01/29/2023]
Abstract
The effects of the natural and synthetic estrogens have been studied for a long time but the data regarding estrogen related chemicals (endocrine disrupting chemicals, EDCs) and their effects on reproductive system are scarce. EDCs are hormone like agents that are readily present in the environment, which may alter the endocrine system of humans and animals. Approximately 800 chemicals are known or suspected to have the potential to function as EDC. Potential role of EDCs on reproductive disease has gained attention in medical literature in recent years. We hypothesize that exposure to low doses of EDCs in a chronic manner could cause hormone dependent genital cancers including ovarian and endometrial cancer. Long term exposure to low concentrations of EDCs may exert potentiation effect with each other and even with endogenous estrogens and could inhibit enzymes responsible for estrogen metabolism. Exposure time to these EDCs is essential as we have seen from Diethylstilbestrol experience. Dose-response curves of EDCs are also unpredictable. Hence mode of action of EDCs are more complex than previously thought. In the light of these controversies lower doses of EDCs in long term exposure is not harmless. Possibility of this relationship and this hypothesis merit further investigation especially through in vivo studies that could better show the realistic environmental exposure. With the confirmation of our hypothesis, possible EDCs could be identified and eliminated from general use as a public health measure.
Collapse
Affiliation(s)
- Selen Dogan
- Department of Obstetrics and Gynecology, Gynecologic Oncologic Unit, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Tayup Simsek
- Department of Obstetrics and Gynecology, Gynecologic Oncologic Unit, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
7
|
Deng Q, Riquelme D, Trinh L, Low MJ, Tomić M, Stojilkovic S, Aguilera G. Rapid Glucocorticoid Feedback Inhibition of ACTH Secretion Involves Ligand-Dependent Membrane Association of Glucocorticoid Receptors. Endocrinology 2015; 156:3215-27. [PMID: 26121342 PMCID: PMC4541620 DOI: 10.1210/en.2015-1265] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypothesis that rapid glucocorticoid inhibition of pituitary ACTH secretion mediates a feedforward/feedback mechanism responsible for the hourly glucocorticoid pulsatility was tested in cultured pituitary cells. Perifusion with 30 pM CRH caused sustained the elevation of ACTH secretion. Superimposed corticosterone pulses inhibited CRH-stimulated ACTH release, depending on prior glucocorticoid clearance. When CRH perifusion started after 2 hours of glucocorticoid-free medium, corticosterone levels in the stress range (1 μM) caused a delayed (25 min) and prolonged inhibition of CRH-stimulated ACTH secretion, up to 60 minutes after corticosterone withdrawal. In contrast, after 6 hours of glucocorticoid-free medium, basal corticosterone levels inhibited CRH-stimulated ACTH within 5 minutes, after rapid recovery 5 minutes after corticosterone withdrawal. The latter effect was insensitive to actinomycin D but was prevented by the glucocorticoid receptor antagonist, RU486, suggesting nongenomic effects of the classical glucocorticoid receptor. In hypothalamic-derived 4B cells, 10 nM corticosterone increased immunoreactive glucocorticoid receptor content in membrane fractions, with association and clearance rates paralleling the effects on ACTH secretion from corticotrophs. Corticosterone did not affect CRH-stimulated calcium influx, but in AtT-20 cells, it had biphasic effects on CRH-stimulated Src phosphorylation, with early inhibition and late stimulation, suggesting a role for Src phosphorylation on the rapid glucocorticoid feedback. The data suggest that the nongenomic/membrane effects of classical GR mediate rapid and reversible glucocorticoid feedback inhibition at the pituitary corticotrophs downstream of calcium influx. The sensitivity and kinetics of these effects is consistent with the hypothesis that pituitary glucocorticoid feedback is part of the mechanism for adrenocortical ultradian pulse generation.
Collapse
Affiliation(s)
- Qiong Deng
- Sections on Endocrine Physiology (Q.D., D.R., L.T., G.A.) and Cellular Signaling (M.T., S.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; College of Animal Sciences (Q.D.), Jilin University, Chang Chun 130021, China; and Department of Molecular and Integrative Physiology (M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Denise Riquelme
- Sections on Endocrine Physiology (Q.D., D.R., L.T., G.A.) and Cellular Signaling (M.T., S.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; College of Animal Sciences (Q.D.), Jilin University, Chang Chun 130021, China; and Department of Molecular and Integrative Physiology (M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Loc Trinh
- Sections on Endocrine Physiology (Q.D., D.R., L.T., G.A.) and Cellular Signaling (M.T., S.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; College of Animal Sciences (Q.D.), Jilin University, Chang Chun 130021, China; and Department of Molecular and Integrative Physiology (M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Malcolm J Low
- Sections on Endocrine Physiology (Q.D., D.R., L.T., G.A.) and Cellular Signaling (M.T., S.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; College of Animal Sciences (Q.D.), Jilin University, Chang Chun 130021, China; and Department of Molecular and Integrative Physiology (M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Melanija Tomić
- Sections on Endocrine Physiology (Q.D., D.R., L.T., G.A.) and Cellular Signaling (M.T., S.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; College of Animal Sciences (Q.D.), Jilin University, Chang Chun 130021, China; and Department of Molecular and Integrative Physiology (M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Stanko Stojilkovic
- Sections on Endocrine Physiology (Q.D., D.R., L.T., G.A.) and Cellular Signaling (M.T., S.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; College of Animal Sciences (Q.D.), Jilin University, Chang Chun 130021, China; and Department of Molecular and Integrative Physiology (M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Greti Aguilera
- Sections on Endocrine Physiology (Q.D., D.R., L.T., G.A.) and Cellular Signaling (M.T., S.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; College of Animal Sciences (Q.D.), Jilin University, Chang Chun 130021, China; and Department of Molecular and Integrative Physiology (M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
8
|
Reuquén P, Oróstica ML, Rojas I, Díaz P, Parada-Bustamante A, Orihuela PA. Estradiol increases IP3 by a nongenomic mechanism in the smooth muscle cells from the rat oviduct. Reproduction 2015; 150:331-41. [PMID: 26159830 DOI: 10.1530/rep-15-0137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/09/2015] [Indexed: 12/20/2022]
Abstract
Estradiol (E2) accelerates egg transport by a nongenomic action, requiring activation of estrogen receptor (ER) and successive cAMP and IP3 production in the rat oviduct. Furthermore, E2 increases IP3 production in primary cultures of oviductal smooth muscle cells. As smooth muscle cells are the mechanical effectors for the accelerated oocyte transport induced by E2 in the oviduct, herein we determined the mechanism by which E2 increases IP3 in these cells. Inhibition of protein synthesis by Actinomycin D did not affect the E2-induced IP3 increase, although this was blocked by the ER antagonist ICI182780 and the inhibitor of phospholipase C (PLC) ET-18-OCH3. Immunoelectron microscopy for ESR1 or ESR2 showed that these receptors were associated with the plasma membrane, indicating compatible localization with E2 nongenomic actions in the smooth muscle cells. Furthermore, ESR1 but not ESR2 agonist mimicked the effect of E2 on the IP3 level. Finally, E2 stimulated the activity of a protein associated with the contractile tone, calcium/calmodulin-dependent protein kinase II (CaMKII), in the smooth muscle cells. We conclude that E2 increases IP3 by a nongenomic action operated by ESR1 and that involves the activation of PLC in the smooth muscle cells of the rat oviduct. This E2 effect is associated with CaMKII activation in the smooth muscle cells, suggesting that IP3 and CaMKII are involved in the contractile activity necessary to accelerate oviductal egg transport.
Collapse
Affiliation(s)
- Patricia Reuquén
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - María L Oróstica
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Israel Rojas
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Patricia Díaz
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Alexis Parada-Bustamante
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| |
Collapse
|
9
|
Deng Q, Waxse B, Riquelme D, Zhang J, Aguilera G. Helix 8 of the ligand binding domain of the glucocorticoid receptor (GR) is essential for ligand binding. Mol Cell Endocrinol 2015; 408:23-32. [PMID: 25676569 PMCID: PMC4417367 DOI: 10.1016/j.mce.2015.01.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/16/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
Membrane association of estrogen receptors (ER) depends on cysteine palmitoylation and two leucines in the ligand binding domain (LBD), conserved in most steroid receptors. The role of this region, corresponding to helix 8 of the glucocorticoid receptor (GR) LBD, on membrane association of GR was studied in 4B cells, expressing endogenous GR, and Cos-7 cells transfected EGFP-GR constructs. 4B cells preloaded with radiolabeled palmitic acid showed no radioactivity incorporation into immunoprecipitated GR. Moreover, mutation C683A (corresponding to ER palmitoylation site) did not affect corticosterone-induced membrane association of GR. Mutations L687-690A, L682A, E680G and K685G prevented membrane and also nuclear localization through reduced ligand binding. L687-690A mutation decreased association of GR with heat shock protein 90 and transcriptional activity, without overt effects on receptor protein stability. The data demonstrate that palmitoylation does not mediate membrane association of GR, but that the region 680-690 (helix 8) is critical for ligand binding and receptor function.
Collapse
Affiliation(s)
- Qiong Deng
- Section on Endocrine Physiology, PDEGEN, NICHD, NIH, Bethesda, Maryland, USA; College of Animal Sciences, Jilin University, China
| | - Bennett Waxse
- Section on Organelle Biology, CBMP, NICHD, NIH, Bethesda, Maryland, USA
| | - Denise Riquelme
- Section on Endocrine Physiology, PDEGEN, NICHD, NIH, Bethesda, Maryland, USA
| | - Jiabao Zhang
- College of Animal Sciences, Jilin University, China
| | - Greti Aguilera
- Section on Endocrine Physiology, PDEGEN, NICHD, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
10
|
Li XT, Qiu XY. 17β-Estradiol Upregulated Expression of α and β Subunits of Larger-Conductance Calcium-Activated K(+) Channels (BK) via Estrogen Receptor β. J Mol Neurosci 2015; 56:799-807. [PMID: 25676031 DOI: 10.1007/s12031-015-0502-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/26/2015] [Indexed: 11/28/2022]
Abstract
Large-conductance Ca(2+)-activated K(+) channels, which were known as BK channels, were widely distributed in brain tissues and played a crucial role in neuroprotection. Previous studies found that estrogen, a steroid hormone, was able to interact with distinct K(+) channels such as Kv (voltage-gated K(+) channels) in various tissues. However, current knowledge about possible effects of estrogen on BK channels is rather poor. In the present study here, the investigation for the interaction of estrogen with BK channels was performed in mouse N2A cells and human SK-N-SH cells. At first, the different expression patterns of α and β subunits of BK channels in these cells were explored by conducting RT-PCR. After exposure to varying dose of 17β-estradiol (E2) for 24 h, the messenger RNA (mRNA) levels of these BK channel subunits in both N2A and SK-N-SH cells were significantly increased in a concentration-dependent way. A prolonged incubation for 48 h also potentiated the effects of E2 on β1 and β4 subunits in N2A cells as well as α and β3 subunits in SK-N-SH cells. The small interfering RNAs (siRNAs) against the ERα (siERα) or ERβ (siERβ) was induced into N2A and SK-N-SH cells by transfection and resulted in a decrease in the level of corresponding ER transcript. Furthermore, treatment with siERβ but not siERα attenuated the action of E2 on BK channel subunits, suggesting that estradiol exerted its action by binding to ERβ. Our data indicated that 17β-estradiol was able to regulate the expression of BK channel subunits via ERβ.
Collapse
Affiliation(s)
- Xian-Tao Li
- Department of Neuroscience, College of Life Sciences, South-Central University for Nationalities, 182 Minyuan Road, Wuhan, 430074, China.
| | - Xiao-Yue Qiu
- South-Central University for Nationalities, Wuhan, 430074, China
| |
Collapse
|
11
|
Acute blockage of voltage-gated K⁺ currents by 17β-estradiol in mouse neuroblastoma N2A cells. Neuroreport 2014; 25:574-9. [PMID: 24784585 DOI: 10.1097/wnr.0000000000000137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, whole-cell recording was carried out to explore the effects of 17β-estradiol on voltage-gated K⁺ (Kv) currents in N2A cells. The acute exposure to 17β-estradiol, in a concentration-dependent manner, significantly inhibited the peak and steady-state currents through Kv channels, showing IC50 values of 3.6 and 3.8 μM, respectively. The reduction in both the amplitude and the decay rate of Kv currents, with an increase in depolarization, suggested that it was a voltage-dependent block. The activation and inactivation experiments were conducted to determine the exact causes of the inhibitory effects. The half-maximum activation potential (V₁/₂) was +8.1 mV in control and remained stable after exposure to 10 μM 17β-estradiol. For steady-state inactivation, the half-maximum inactivation potential (V₁/₂) was -45.0 mV and shifted right to -39.7 mV without a statistical difference, and the time constants of recovery from inactivation were not altered by 17β-estradiol, suggesting that the depression was not correlated with the inactivation gate.
Collapse
|
12
|
Hao X, Li X, Li X. 17β-estradiol downregulated the expression of TASK-1 channels in mouse neuroblastoma N2A cells. J Membr Biol 2014; 247:273-9. [PMID: 24435466 DOI: 10.1007/s00232-014-9632-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/06/2014] [Indexed: 01/23/2023]
Abstract
TASK channels, an acid-sensitive subgroup of two pore domain K⁺ (K2P) channels family, were widely expressed in a variety of neural tissues, and exhibited potent functions such as the regulation of membrane potential. The steroid hormone estrogen was able to interact with K⁺ channels, including voltage-gated K⁺ (Kv) and large conductance Ca²⁺-activated (BK) K⁺ channels, in different types of cells like cardiac myocytes and neurons. However, it is unclear about the effects of estrogen on TASK channels. In the present study, the expressions of two members of acid-sensitive TASK channels, TASK-1 and TASK-2, were detected in mouse neuroblastoma N2A cells by RT-PCR. Extracellular acidification (pH 6.4) weakly but statistically significantly inhibited the outward background current by 22.9 % at a holding potential of 0 mV, which inactive voltage-gated K⁺ currents, suggesting that there existed the functional TASK channels in the membrane of N2A cells. Although these currents were not altered by the acute application of 100 nM 17β-estradiol, incubation with 10 nM 17β-estradiol for 48 h reduced the mRNA level of TASK-1 channels by 40.4 % without any effect on TASK-2 channels. The proliferation rates of N2A cells were also increased by treatment with 10 nM 17β-estradiol for 48 h. These data implied that N2A cells expressed functional TASK channels and chronic exposure to 17β-estradiol downregulated the expression of TASK-1 channels and improved cell proliferation. The effect of 17β-estradiol on TASK-1 channels might be an alternative mechanism for the neuroprotective action of 17β-estradiol.
Collapse
Affiliation(s)
- Xuran Hao
- Department of Biomedical Engineering, South-Central University for Nationalities, 182 Minyuan Road, Wuhan, 430074, China
| | | | | |
Collapse
|
13
|
Morrill GA, Kostellow AB, Gupta RK. A computational analysis of non-genomic plasma membrane progestin binding proteins: signaling through ion channel-linked cell surface receptors. Steroids 2013; 78:1233-44. [PMID: 24012561 DOI: 10.1016/j.steroids.2013.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/13/2013] [Accepted: 08/20/2013] [Indexed: 12/18/2022]
Abstract
A number of plasma membrane progestin receptors linked to non-genomic events have been identified. These include: (1) α1-subunit of the Na(+)/K(+)-ATPase (ATP1A1), (2) progestin binding PAQR proteins, (3) membrane progestin receptor alpha (mPRα), (4) progesterone receptor MAPR proteins and (5) the association of nuclear receptor (PRB) with the plasma membrane. This study compares: the pore-lining regions (ion channels), transmembrane (TM) helices, caveolin binding (CB) motifs and leucine-rich repeats (LRRs) of putative progesterone receptors. ATP1A1 contains 10 TM helices (TM-2, 4, 5, 6 and 8 are pores) and 4 CB motifs; whereas PAQR5, PAQR6, PAQR7, PAQRB8 and fish mPRα each contain 8 TM helices (TM-3 is a pore) and 2-4 CB motifs. MAPR proteins contain a single TM helix but lack pore-lining regions and CB motifs. PRB contains one or more TM helices in the steroid binding region, one of which is a pore. ATP1A1, PAQR5/7/8, mPRα, and MAPR-1 contain highly conserved leucine-rich repeats (LRR, common to plant membrane proteins) that are ligand binding sites for ouabain-like steroids associated with LRR kinases. LRR domains are within or overlap TM helices predicted to be ion channels (pore-lining regions), with the variable LRR sequence either at the C-terminus (PAQR and MAPR-1) or within an external loop (ATP1A1). Since ouabain-like steroids are produced by animal cells, our findings suggest that ATP1A1, PAQR5/7/8 and mPRα represent ion channel-linked receptors that respond physiologically to ouabain-like steroids (not progestin) similar to those known to regulate developmental and defense-related processes in plants.
Collapse
Affiliation(s)
- Gene A Morrill
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
14
|
Li X, Xu M, Wang F, Kohan AB, Haas MK, Yang Q, Lou D, Obici S, Davidson WS, Tso P. Apolipoprotein A-IV reduces hepatic gluconeogenesis through nuclear receptor NR1D1. J Biol Chem 2013; 289:2396-404. [PMID: 24311788 DOI: 10.1074/jbc.m113.511766] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We showed recently that apoA-IV improves glucose homeostasis by enhancing pancreatic insulin secretion in the presence of elevated levels of glucose. Therefore, examined whether apolipoprotein A-IV (apoA-IV) also regulates glucose metabolism through the suppression of hepatic gluconeogenesis. The ability of apoA-IV to lower gluconeogenic gene expression and glucose production was measured in apoA-IV(-/-) and wild-type mice and primary mouse hepatocytes. The transcriptional regulation of Glc-6-Pase and phosphoenolpyruvate carboxykinase (PEPCK) by apoA-IV was determined by luciferase activity assay. Using bacterial two-hybrid library screening, NR1D1 was identified as a putative apoA-IV-binding protein. The colocalization and interaction between apoA-IV and NR1D1 were confirmed by immunofluorescence, in situ proximity ligation assay, and coimmunoprecipitation. Enhanced recruitment of NR1D1 and activity by apoA-IV to Glc-6-Pase promoter was verified with ChIP and a luciferase assay. Down-regulation of apoA-IV on gluconeogenic genes is mediated through NR1D1, as illustrated in cells with NR1D1 knockdown by siRNA. We found that apoA-IV suppresses the expression of PEPCK and Glc-6-Pase in hepatocytes; decreases hepatic glucose production; binds and activates nuclear receptor NR1D1 and stimulates NR1D1 expression; in cells lacking NR1D1, fails to inhibit PEPCK and Glc-6-Pase gene expression; and stimulates higher hepatic glucose production and higher gluconeogenic gene expression in apoA-IV(-/-) mice. We conclude that apoA-IV inhibits hepatic gluconeogenesis by decreasing Glc-6-Pase and PEPCK gene expression through NR1D1. This novel regulatory pathway connects an influx of energy as fat from the gut (and subsequent apoA-IV secretion) with inhibition of hepatic glucose production.
Collapse
Affiliation(s)
- Xiaoming Li
- From the Cincinnati Obesity Research Center, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio 45237 and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bujarborua D, Borooah S, Dhillon B. The stress response as a target for treatment of central serous chorioretinopathy. EXPERT REVIEW OF OPHTHALMOLOGY 2013. [DOI: 10.1586/17469899.2013.837298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Zierau O, Zenclussen AC, Jensen F. Role of female sex hormones, estradiol and progesterone, in mast cell behavior. Front Immunol 2012; 3:169. [PMID: 22723800 PMCID: PMC3377947 DOI: 10.3389/fimmu.2012.00169] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/04/2012] [Indexed: 12/14/2022] Open
Abstract
Female sex hormones have long been suspected to have an effect on mast cell (MC) behavior. This assumption is based on the expression of hormone receptors in MCs as well as on the fact that many MC-related pathophysiological alterations have a different prevalence in females than in males. Further, serum IgE levels are much higher in allergic female mice compared to male mice. Ovariectomized rats developed less airway inflammation compared to sham controls. Following estrogen replacement ovariectomized rats re-established airway inflammation levels’ found in intact females. In humans, a much higher asthma prevalence was found in women at reproductive age as compared to men. Serum levels of estradiol and progesterone have been directly correlated with the clinical and functional features of asthma. Around 30–40% of women who have asthma experienced worsening of their symptoms during the perimenstrual phase, the so-called perimenstrual asthma. Postmenopausal women receiving hormone replacement therapy have an increased risk of new onset of asthma. Beside, estrus cycle dependent changes on female sex hormones are related to changes on MC number in mouse uterine tissue and estradiol and progesterone were shown to induce uterine MC maturation and degranulation. We will discuss here the currently available information concerning the role of these female sex hormones on MC behavior.
Collapse
Affiliation(s)
- Oliver Zierau
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| | | | | |
Collapse
|
17
|
Zachariades E, Mparmpakas D, Pang Y, Rand-Weaver M, Thomas P, Karteris E. Changes in placental progesterone receptors in term and preterm labour. Placenta 2012; 33:367-72. [DOI: 10.1016/j.placenta.2012.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/18/2011] [Accepted: 01/03/2012] [Indexed: 10/28/2022]
|
18
|
Watson CS, Jeng YJ, Hu G, Wozniak A, Bulayeva N, Guptarak J. Estrogen- and xenoestrogen-induced ERK signaling in pituitary tumor cells involves estrogen receptor-α interactions with G protein-αi and caveolin I. Steroids 2012; 77:424-32. [PMID: 22230296 PMCID: PMC3304022 DOI: 10.1016/j.steroids.2011.12.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/16/2022]
Abstract
UNLABELLED Multiple physiologic estrogens (estradiol, estriol, and estrone), as well as xenoestrogenic compounds (including alkylphenols and bisphenol A), can act via nongenomic signaling initiated by liganding of the plasma membrane estrogen receptor-α (mERα). We examined heterotrimeric G protein involvement leading to extracellular-regulated kinase (ERK) activation in GH3/B6/F10 rat anterior pituitary tumor cells that express abundant mERα, and smaller amounts of mERβ and GPR30. A combination of microarrays, immunoblots, and quantitative immunoassays demonstrated the expression of members of all α, β, and γ G protein classes in these cells. Use of selective inhibitors showed that the G(αi) subtype was the primary initiator of downstream ERK signaling. Using antibodies against the GTP-bound form of G(α) protein subtypes i and s, we showed that xenoestrogens (bisphenol A, nonylphenol) activated G(αi) at 15-30s; all alkylphenols examined subsequently suppressed activation by 5min. GTP-activation of G(αi) for all estrogens was enhanced by irreversible cumulative binding to GTPγS. In contrast, G(αs) was neither activated nor deactivated by these treatments with estrogens. ERα and G(αi) co-localized outside nuclei and could be immuno-captured together. Interactions of ERα with G(αi) and caveolin I were demonstrated by epitope proximity ligation assays. An ERα/β antagonist (ICI182780) and a selective disruptor of caveolar structures (nystatin) blocked estrogen-induced ERK activation. CONCLUSIONS Xenoestrogens, like physiologic estrogens, can evoke downstream kinase signaling involving selective interactions of ERα with G(αi) and caveolin I, but with some different characteristics, which could explain their disruptive actions.
Collapse
Affiliation(s)
- Cheryl S Watson
- Dept. of Biochemistry & Molecular Biology, Univ. of Texas Medical Branch, Galveston, TX 77555-0645, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Watson CS, Jeng YJ, Guptarak J. Endocrine disruption via estrogen receptors that participate in nongenomic signaling pathways. J Steroid Biochem Mol Biol 2011; 127:44-50. [PMID: 21300151 PMCID: PMC3106143 DOI: 10.1016/j.jsbmb.2011.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/27/2011] [Accepted: 01/30/2011] [Indexed: 12/21/2022]
Abstract
When inappropriate (non-physiologic) estrogens affect organisms at critical times of estrogen sensitivity, disruption of normal endocrine functions can result. Non-physiologic estrogen mimetics (environmental, dietary, and pharmaceutical) can signal rapidly and potently via the membrane versions of estrogen receptors, as can physiologic estrogens. Both physiologic and non-physiologic estrogens activate multiple signaling pathways, leading to altered cellular functions (e.g. peptide release, cell proliferation or death, transport). Xenoestrogens' mimicry of physiologic estrogens is imperfect. When superimposed, xenoestrogens can alter endogenous estrogens' signaling and thereby disrupt normal signaling pathways, leading to malfunctions in many tissue types. Though these xenoestrogen actions occur rapidly via nongenomic signaling pathways, they can be sustained with continuing ligand stimulation, combinations of ligands, and signaling that perpetuates downstream, eventually also impinging on genomic regulation by controlling the activation state of transcription factors. Because via these pathways estrogens and xenoestrogens cause nonmonotonic stimulation patterns, they must be carefully tested for activity and toxicity over wide dose ranges. Nongenomic actions of xenoestrogens in combination with each other, and with physiologic estrogens, are still largely unexplored from these mechanistic perspectives.
Collapse
Affiliation(s)
- Cheryl S. Watson
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX 77555-0645, USA
| | - Yow-Juin Jeng
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX 77555-0645, USA
| | - Jutatip Guptarak
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX 77555-0645, USA
| |
Collapse
|
20
|
Wang Y, Li LZ, Zhang YL, Sun WJ, Zhu YQ, Cui Y, Qi L. LC, a novel estrone-rhein hybrid compound, promotes proliferation and differentiation and protects against cell death in human osteoblastic MG-63 cells. Mol Cell Endocrinol 2011; 344:59-68. [PMID: 21767602 DOI: 10.1016/j.mce.2011.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 05/29/2011] [Accepted: 06/24/2011] [Indexed: 01/26/2023]
Abstract
Estrogen analogs are promising drugs for postmenopausal osteoporosis, but because of their possible side effects, estrogens which exert their estrogenic effects selectively on bone are desired. Based on our previous studies that rhein had high affinity for the bone mineral, we synthesized estrone-rhein hybrid compounds and confirmed that one of these hybrid compounds, LC, exhibited a selective profile in the bone and prevented bone loss but had no effect on endometrium growth in ovariectomized rats. However, the mechanisms underlying its actions on human bone cells have remained largely unknown. Here we show that LC increases proliferation and differentiation and opposes cisplatin-induced apoptosis in human osteoblastic MG-63 cells containing two estrogen receptor (ER) isoforms. LC promotes proliferation by altering cell cycle distribution whereas LC-mediated survival may be associated with up-regulation of X-linked inhibitor of apoptosis (XIAP) expression. Treatment with the ER antagonist ICI 182,780 abolishes the above actions of LC on osteoblast-derived cells. Using small interfering double-stranded RNAs technology, we further demonstrate that the effects of LC on proliferation and survival are mediated by both ERα and ERβ but those on differentiation primarily by ERα. Moreover, we demonstrate that LC may promote activation of the classic estrogen response element (ERE) pathway through increasing steroid receptor coactivator (SRC)-3 expression. Meanwhile, we find that regulation of osteoblastic proliferation and survival by LC involves Ras/MEK/ERK and PI3K/Akt signaling. Therefore, using rhein for conjugating compounds is a promising method of effectively targeting estrogens to the bone.
Collapse
Affiliation(s)
- Yue Wang
- Department of Immunology, Medical College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Tamoxifen promotes superoxide production in platelets by activation of PI3-kinase and NADPH oxidase pathways. Thromb Res 2011; 129:36-42. [PMID: 21875743 DOI: 10.1016/j.thromres.2011.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 07/06/2011] [Accepted: 08/03/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Tamoxifen is a selective estrogen receptor antagonist that is widely used for treatment and prevention of breast cancer. However, tamoxifen use can lead to an increased incidence of thrombotic events. The reason for this adverse event remains unknown. Previous studies showed that tamoxifen and its active metabolite Z-4-hydroxytamoxifen rapidly increased intracellular free calcium ([Ca(2+)](i)) in human platelets by a non-genomic mechanism that involved the activation of phospholipase C. Platelets play a pivotal role in thrombosis and Ca(2+) elevation is a central event in platelet activation. Therefore the mechanism by which tamoxifen activated Ca(2+) entry into platelets was investigated. METHODS [Ca(2+)](i) was measured using the fluorescent indicator fura-2 and reactive oxygen species were measured using lucigenin in isolated human platelets. RESULTS Tamoxifen analogs E-4-hydroxytamoxifen, with weak activity at the nuclear estrogen receptor and Z-4-hydroxytamoxifen, with strong activity at nuclear estrogen receptor, were equally active at increasing [Ca(2+)](i) and synergizing with ADP and thrombin to increase [Ca(2+)](i) in platelets. This result suggests that the effects of tamoxifen and E- and Z-4-hydroxytamoxifen to increase [Ca(2+)](i) are not mediated by the classical genomic estrogen receptor. The effects of tamoxifen to increase [Ca(2+)](i) were strongly inhibited by apocynin and apocynin dimer. This suggests that tamoxifen activates NADPH oxidase which leads to superoxide generation and in turn caused an increase in [Ca(2+)](i). Free radical scavengers TEMPO and TEMPOL also inhibited tamoxifen-induced [Ca(2+)](i) elevation. Inhibition of phosphoinositide-3-kinase (PI3-kinase), an upstream effector of NADPH oxidase with wortmannin and LY-294,002 also caused substantial inhibition of tamoxifen-induced elevation of [Ca(2+)](i). CONCLUSION Tamoxifen increases [Ca(2+)](i) in human platelets by a non-genomic mechanism. Tamoxifen activates phospholipase Cγ as well as PI3-kinase and NADPH oxidase pathway to generate superoxide which causes the release of Ca(2+) from the endoplasmic reticulum, and promotes Ca(2+) influx into the platelets.
Collapse
|
22
|
Furukawa T, Kurokawa J, Clancy CE. A Combined Approach Using Patch-Clamp Study and Computer Simulation Study for Understanding Long QT Syndrome and TdP in Women. Curr Cardiol Rev 2011; 4:244-50. [PMID: 20066131 PMCID: PMC2801855 DOI: 10.2174/157340308786349507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/31/2008] [Accepted: 05/31/2008] [Indexed: 11/22/2022] Open
Abstract
Female sex is an independent risk factor for development of torsade de pointes (TdP)-type arrhythmias in both congenital and acquired long QT syndrome (LQTS). In females, QTc interval and TdP risk vary during the menstrual cycle and around delivery. Biological experiments including single-cell current recordings with the patch-clamp technique and biochemical experiments show that progesterone modulates cardiac K+ current and Ca2+ current via the non-genomic pathway of the progesterone receptor, and thus the cardiac repolarization duration, in a concentration-dependent manner. Incorporation of these biological findings into a computer model of single-cell and coupled-cell cardiomyocytes simulates fluctuations in QTc interval during the menstrual cycle with reasonable accuracy. Based on this model, progesterone is predicted to have protective effects against sympathetic nervous system-induced arrhythmias in congenital LQTS and drug-induced TdP in acquired LQTS. A combined biological and computational approach may provide a powerful means to risk stratify TdP risk in women.
Collapse
Affiliation(s)
- Tetsushi Furukawa
- Department of Bio-Informational Pharmacology, Madical Research Institute, Tokyo Medical and Dental University
| | | | | |
Collapse
|
23
|
Wang Y, Li LZ, Zhang YL, Zhu YQ, Wu J, Sun WJ. LC, a novel estrone-rhein hybrid compound, concurrently stimulates osteoprotegerin and inhibits receptor activator of NF-κB ligand (RANKL) and interleukin-6 production by human osteoblastic cells. Mol Cell Endocrinol 2011; 337:43-51. [PMID: 21291955 DOI: 10.1016/j.mce.2011.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/31/2010] [Accepted: 01/25/2011] [Indexed: 01/28/2023]
Abstract
Estrogen analogues are promising drugs for postmenopausal osteoporosis, but because of their possible side effects such as increased risk of cancer, estrogens which exert their estrogenic effects selectively on bone are desired. It has been shown that rhein inhibits osteoclast formation and bone resorption activity and has an antitumor role in several types of cancers. Having found that rhein had high affinity for the bone mineral, we synthesized estrone-rhein hybrid compounds and confirmed that one of these hybrid compounds, LC, exhibited a selective profile in the bone and prevented bone loss but had no effect on endometrium growth in ovariectomized rats. However, the mechanisms underlying its actions on human bone cells have not been well defined. Here we show that LC concurrently stimulates osteoprotegerin (OPG) and inhibits receptor activator of nuclear factor-κB ligand (RANKL) and Interleukin-6 (IL-6) production by human osteoblastic MG-63 cells containing two estrogen receptor (ER) isotypes. Treatment with the ER antagonist ICI 182,780 abrogates the above actions of LC on osteoblast-derived cells. Using small interfering double-stranded RNAs (siRNA) technology, we further demonstrate that the effects of LC on IL-6 production are mediated by both ERα and ERβ but those on OPG and RANKL expression primarily by ERα. Furthermore, we also demonstrate that LC functions at least partially through activation of the classic estrogen response element (ERE) pathway as well as Ras/MEK/ERK and PI3K/Akt signaling. The effect of LC on bone is due to not only its estrogenic activity but also action of its rhein moiety. Also, this compound shows much weaker effect on breast epithelial cell growth than that of estrone. Therefore, using rhein for conjugating compounds is a promising method of effectively targeting estrogens to the bone.
Collapse
Affiliation(s)
- Yue Wang
- Department of Immunology, Medical College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
24
|
Jeng YJ, Watson CS. Combinations of physiologic estrogens with xenoestrogens alter ERK phosphorylation profiles in rat pituitary cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:104-12. [PMID: 20870566 PMCID: PMC3018487 DOI: 10.1289/ehp.1002512] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/22/2010] [Indexed: 05/08/2023]
Abstract
BACKGROUND Estrogens are potent nongenomic phospho-activators of extracellular-signal-regulated kinases (ERKs). A major concern about the toxicity of xenoestrogens (XEs) is potential alteration of responses to physiologic estrogens when XEs are present simultaneously. OBJECTIVES We examined estrogen-induced ERK activation, comparing the abilities of structurally related XEs (alkylphenols and bisphenol A) to alter ERK responses induced by physiologic concentrations (1 nM) of estradiol (E2), estrone (E1), and estriol (E3). METHODS We quantified hormone/mimetic-induced ERK phosphorylations in the GH3/B6/F10 rat pituitary cell line using a plate immunoassay, comparing effects with those on cell proliferation and by estrogen receptor subtype-selective ligands. RESULTS Alone, these structurally related XEs activate ERKs in an oscillating temporal pattern similar (but not identical) to that with physiologic estrogens. The potency of all estrogens was similar (active between femtomolar and nanomolar concentrations). XEs potently disrupted physiologic estrogen signaling at low, environmentally relevant concentrations. Generally, XEs potentiated (at the lowest, subpicomolar concentrations) and attenuated (at the highest, picomolar to 100 nM concentrations) the actions of the physiologic estrogens. Some XEs showed pronounced nonmonotonic responses/inhibitions. The phosphorylated ERK and proliferative responses to receptor-selective ligands were only partially correlated. CONCLUSIONS XEs are both imperfect potent estrogens and endocrine disruptors; the more efficacious an XE, the more it disrupts actions of physiologic estrogens. This ability to disrupt physiologic estrogen signaling suggests that XEs may disturb normal functioning at life stages where actions of particular estrogens are important (e.g., development, reproductive cycling, pregnancy, menopause).
Collapse
Affiliation(s)
| | - Cheryl S. Watson
- Address correspondence to C.S. Watson, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0645 USA. Telephone/fax: (409) 772-2383. E-mail:
| |
Collapse
|
25
|
Watson CS, Alyea RA, Cunningham KA, Jeng YJ. Estrogens of multiple classes and their role in mental health disease mechanisms. Int J Womens Health 2010; 2:153-66. [PMID: 21072308 PMCID: PMC2971739 DOI: 10.2147/ijwh.s6907] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Indexed: 12/21/2022] Open
Abstract
Gender and sex hormones can influence a variety of mental health states, including mood, cognitive development and function, and vulnerability to neurodegenerative diseases and brain damage. Functions of neuronal cells may be altered by estrogens depending upon the availability of different physiological estrogenic ligands; these ligands and their effects vary with life stages, the genetic or postgenetic regulation of receptor levels in specific tissues, or the intercession of competing nonphysiological ligands (either intentional or unintentional, beneficial to health or not). Here we review evidence for how different estrogens (physiological and environmental/dietary), acting via different estrogen receptor subtypes residing in alternative subcellular locations, influence brain functions and behavior. We also discuss the families of receptors and transporters for monoamine neurotransmitters and how they may interact with the estrogenic signaling pathways.
Collapse
|
26
|
Aden P, Goverud I, Liestøl K, Løberg EM, Paulsen RE, Maehlen J, Lømo J. Low-potency glucocorticoid hydrocortisone has similar neurotoxic effects as high-potency glucocorticoid dexamethasone on neurons in the immature chicken cerebellum. Brain Res 2008; 1236:39-48. [PMID: 18706896 DOI: 10.1016/j.brainres.2008.07.095] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 06/20/2008] [Accepted: 07/18/2008] [Indexed: 11/15/2022]
Abstract
High-potency glucocorticoids (GC) are used in the prophylaxis and treatment of neonatal bronchopulmonal dysplasia, but there is concern about side effects on the developing brain. Recently, the low-potency GC hydrocortisone (HC) has been suggested as an alternative to high-potency GC. We compared the neurotoxic effects of HC with the high-potency GC dexamethasone (DEX) in chicken cerebellum. A single dose of GC was injected into the egg at embryonic day 16 and the death of granule neurons in histologic sections of the cerebellar cortex was examined 24 h later. DEX and HC showed a similar dose-dependent induction of morphological apoptosis and caspase-3 activation in the internal granular layer. A doubling of the apoptosis rate compared to the basal rate was seen for the highest dose of DEX (5 mg/kg) and medium dose of HC (1 mg/kg). In cultures of embryonic chicken cerebellar granule cells, DEX and HC increased cell death and induced rapid caspase-3 activation in a similar dose-dependent manner. Transfection of granule cells with a luciferase reporter gene revealed that the dose needed for the activation of gene transcription (classical signalling pathway) with DEX was much lower than for HC. In conclusion, HC does not present itself as a safer drug than DEX in this model. In addition, it appears that DEX and HC induce apoptosis in immature granule neurons via a non-genomic (non-classical) mechanism.
Collapse
Affiliation(s)
- Petra Aden
- Department of Pathology, Ullevål University Hospital, N-0407 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
27
|
Watson CS, Jeng YJ, Kochukov MY. Nongenomic actions of estradiol compared with estrone and estriol in pituitary tumor cell signaling and proliferation. FASEB J 2008; 22:3328-36. [PMID: 18541692 DOI: 10.1096/fj.08-107672] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Physiological estrogens, including estrone (E(1)), estradiol (E(2)), and estriol (E(3)), fluctuate with life stage, suggesting specific roles for them in biological and disease processes. We compared their nongenomic signaling and functional actions in GH3/B6/F10 rat pituitary tumor cells. All hormones caused prolactin release at 1 min; the lowest effective concentrations were 10(-11) M E(2), 10(-10) M E(1), and 10(-7) M E(3). All estrogens increased the oscillation frequency of calcium (Ca) spikes, with the same time delay (approximately 200 s) at all levels (10(-15) to 10(-9) M). At some concentrations, E(1) and E(3) provoked more Ca-responding cells than E(2). The amplitude and volume of Ca peaks were elevated by all hormones at > or = 10(-15) M. All hormones caused cell proliferation, with the lowest effective concentrations of E(2) (10(-15) M) > E(1) (10(-12) M) > E(3) (10(-10) M); E(2) caused higher maximal cell numbers at most concentrations. All estrogens caused oscillating extracellular-regulated kinase (ERK) activations, with relative potencies of E(1) and E(2) > E(3). All estrogens were ineffective in activation of ERKs or causing proliferation in a subline expressing low levels of membrane estrogen receptor-alpha. Dose-response patterns were frequently nonmonotonic. Therefore, the hormones E(1) and E(3), which have been designated "weak" estrogens in genomic actions, are strong estrogens in the nongenomic signaling pathways and functional responses in the pituitary.
Collapse
Affiliation(s)
- Cheryl S Watson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0645, USA
| | | | | |
Collapse
|
28
|
Alyea RA, Laurence SE, Kim SH, Katzenellenbogen BS, Katzenellenbogen JA, Watson CS. The roles of membrane estrogen receptor subtypes in modulating dopamine transporters in PC-12 cells. J Neurochem 2008; 106:1525-33. [PMID: 18489713 DOI: 10.1111/j.1471-4159.2008.05491.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The effects of 17beta-estradiol (E(2)) on dopamine (DA) transport could explain gender and life-stage differences in the incidence of some neurological disorders. We tested the effects of E(2) at physiological concentrations on DA efflux in nerve growth factor-differentiated rat pheochromocytoma cells that express estrogen receptors (ER) alpha, ERbeta, and G-protein coupled receptor 30 (GPR30), and DA transporter (DAT). DAT efflux was determined as the transporter-specific loss of (3)H-DA from pre-loaded cells; a 9-15 min 10(-9 )M E(2) treatment caused maximal DA efflux. Such rapid estrogenic action suggests a non-genomic response, and an E(2)-dendrimer conjugate (limited to non-nuclear actions) caused DA efflux within 5 min. Efflux dose-responses for E(2) were non-monotonic, also characteristic of non-genomic estrogenic actions. ERalpha siRNA knockdown abolished E(2)-mediated DA efflux, while ERbeta knockdown did not, and GPR30 knockdown increased E(2)-mediated DA efflux (suggesting GPR30 is inhibitory). Use of ER-selective agonists/antagonists demonstrated that ERalpha is the predominant mediator of E(2)-mediated DA efflux, with inhibitory contributions from GPR30 and ERbeta. E(2) also caused trafficking of ERalpha to the plasma membrane, trafficking of ERbeta away from the plasma membrane, and unchanged membrane GPR30 levels. Therefore, ERalpha is largely responsible for non-genomic estrogenic effects on DAT activity.
Collapse
Affiliation(s)
- Rebecca A Alyea
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | |
Collapse
|
29
|
Phillips KP, Foster WG. Key developments in endocrine disrupter research and human health. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:322-344. [PMID: 18368559 DOI: 10.1080/10937400701876194] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Environmental etiologies involving exposures to chemicals that mimic endogenous hormones are proposed for a number of adverse human health effects, including infertility, abnormal prenatal and childhood development, and reproductive cancers (National Research Council, 1999; World Health Organization, 2002). Endocrine disrupters represent a significant area of environmental research with important implications for human health. This article provides an overview of some of the key developments in this field that may enhance our ability to assess the human health risks posed by exposure to endocrine disrupters. Advances in methodologies of hazard identification (toxicogenomics, transcriptomics, proteomics, metabolomics, bioinformatics) are discussed, as well as epigenetics and emerging biological endpoints.
Collapse
Affiliation(s)
- Karen P Phillips
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| | | |
Collapse
|
30
|
Lenie S, Cortvrindt R, Eichenlaub-Ritter U, Smitz J. Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 651:71-81. [DOI: 10.1016/j.mrgentox.2007.10.017] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 10/28/2007] [Indexed: 11/29/2022]
|
31
|
Nishimura I, Ui-Tei K, Saigo K, Ishii H, Sakuma Y, Kato M. 17beta-estradiol at physiological concentrations augments Ca(2+) -activated K+ currents via estrogen receptor beta in the gonadotropin-releasing hormone neuronal cell line GT1-7. Endocrinology 2008; 149:774-82. [PMID: 17962348 DOI: 10.1210/en.2007-0759] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogens play essential roles in the neuroendocrine control of reproduction. In the present study, we focused on the effects of 17beta-estradiol (E2) on the K(+) currents that regulate neuronal cell excitability and carried out perforated patch-clamp experiments with the GnRH-secreting neuronal cell line GT1-7. We revealed that a 3-d incubation with E2 at physiological concentrations (100 pm to 1 nm) augmented Ca(2+)-activated K(+) [K(Ca)] currents without influencing Ca(2+)-insensitive voltage-gated K(+) currents in GT1-7 cells. Acute application of E2 (1 nm) had no effect on the either type of K(+) current. The augmentation was completely blocked by an estrogen receptor (ER) antagonist, ICI-182,780. An ERbeta-selective agonist, 2,3-bis(4-hydroxyphenyl)-propionitrile, augmented the K(Ca) currents, although an ERalpha-selective agonist, 4,4',4''-[4-propyl-(1H)-pyrazole-1,3,5-triyl]tris-phenol, had no effect. Knockdown of ERbeta by means of RNA interference blocked the effect of E2 on the K(Ca) currents. Furthermore, semiquantitative RT-PCR analysis revealed that the levels of BK channel subunit mRNAs for alpha and beta4 were significantly increased by incubating cells with 300 pm E2 for 3 d. In conclusion, E2 at physiological concentrations augments K(Ca) currents through ERbeta in the GT1-7 GnRH neuronal cell line and increases the expression of the BK channel subunit mRNAs, alpha and beta4.
Collapse
Affiliation(s)
- Ichiro Nishimura
- Department of Physiology, Nippon Medical School, Bunkyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Morrill GA, Kostellow AB, Askari A. Progesterone binding to the alpha1-subunit of the Na/K-ATPase on the cell surface: insights from computational modeling. Steroids 2008; 73:27-40. [PMID: 17936318 PMCID: PMC2275170 DOI: 10.1016/j.steroids.2007.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 11/26/2022]
Abstract
Progesterone triggers the resumption of meiosis in the amphibian oocyte through a signaling system at the plasma membrane. Analysis of [(3)H]ouabain and [(3)H]progesterone binding to the plasma membrane of the Rana pipiens oocyte indicates that progesterone competes with ouabain for a low affinity ouabain binding site on a 112kDa alpha1-subunit of the membrane Na/K-ATPase. Published amino acid sequences from both low and high affinity ouabain binding alpha1-subunits are compared, together with published site-directed mutagenesis studies of ouabain binding. We propose that the progesterone binding site is located in the external loop (23 amino acids) between the M1-M2 transmembrane helices. Analysis of loop topology and the countercurrent hydrophobicity/polarity gradients within the M1-M2 loop further suggest that the polar beta and hydrophobic alpha surfaces of the planar progesterone molecule interact with opposite sides of the amino acid loop. The 19-angular methyl group of progesterone is essential for activity; it could bind to the C-terminal region of the M1-M2 loop. Maximum biological activity requires formation of hydrogen-bond networks between the 3-keto group of progesterone and Arg(118), Asp(129) and possibly Glu(122-124) in the C-terminal region of the loop. The 20-keto group hydrogen may in turn hydrogen bond to Cys(111) near the M1 helix. Peptide flexibility undergoes a maximal transition near the midway point in the M1-M2 loop, suggesting that folding occurs within the loop, which further stabilizes progesterone binding.
Collapse
Affiliation(s)
- Gene A Morrill
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
33
|
Watson CS, Alyea RA, Jeng YJ, Kochukov MY. Nongenomic actions of low concentration estrogens and xenoestrogens on multiple tissues. Mol Cell Endocrinol 2007; 274:1-7. [PMID: 17601655 PMCID: PMC1986712 DOI: 10.1016/j.mce.2007.05.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
Nongenomic estrogenic mechanisms offer an opportunity to explain the conundrum of environmental estrogen and plant estrogen effects on cells and animals at the very low concentrations which are prevalent in our environments and diets. Heretofore the actions of these compounds have not been adequately accounted for by laboratory tests utilizing assays for actions only via the genomic pathway of steroid action and the nuclear forms of estrogen receptor alpha and beta. Membrane versions of these receptors, and the newly described GPR30 (7TMER) receptor protein provide explanations for the more potent actions of xenoestrogens. The effects of estrogens on many tissues demand a comprehensive assessment of the receptors, receptor levels, and mechanisms that might be involved, to determine which of these estrogen mimetic compounds are harmful and which might even be used therapeutically, depending upon the life stage at which we are exposed to them.
Collapse
Affiliation(s)
- C S Watson
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0645, USA.
| | | | | | | |
Collapse
|
34
|
Furukawa T, Kurokawa J. Regulation of cardiac ion channels via non-genomic action of sex steroid hormones: implication for the gender difference in cardiac arrhythmias. Pharmacol Ther 2007; 115:106-15. [PMID: 17583354 DOI: 10.1016/j.pharmthera.2007.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 04/25/2007] [Indexed: 01/17/2023]
Abstract
Long QT syndrome (LQTS) is a disorder associated with prolonged electrocardiographic QT intervals and the development of ventricular arrhythmias. LQTS occurs as a congenital form in an autosomal-dominant or an autosomal-recessive manner, and as an acquired form occurred in various cardiac disorders and induced by drug side actions. Accumulating clinical information indicates the presence of gender difference in LQTS. Rate-corrected QT interval (QT(c) interval) is longer in females than in males, and female gender itself is an independent risk factor for development of arrhythmias in both congenital and acquired forms of LQTS. Gender differences in QT(c) interval and arrhythmic event in LQTS are not observed before puberty, while they become suddenly notable upon the onset of puberty. In females, QT(c) interval and risk of arrhythmic events in LQTS patients fluctuates during the menstrual cycle, and is affected by hormone replacement therapy. These clinical data suggest a critical role of sex steroid hormones on QT(c) interval and gender difference in LQTS risk. Sex steroid hormones have been traditionally considered as transactivation factors regulating the expression of target genes. However, accumulating evidences indicate the presence of novel non-transcriptional mechanisms of signal transduction through steroid hormone receptors. Sex steroid hormones rapidly regulate cardiac ion channel activity without transcription processes, which involves nitric oxides produced via the PI3-kinase/Akt/eNOS signaling cascade. In addition to transcriptional regulation, non-transcriptional regulation of cardiac ion channels is in part responsible for the gender difference in LQTS risk and its fluctuation during the menstrual cycle in females.
Collapse
Affiliation(s)
- Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan.
| | | |
Collapse
|
35
|
Bukiya AN, Liu J, Toro L, Dopico AM. Beta1 (KCNMB1) subunits mediate lithocholate activation of large-conductance Ca2+-activated K+ channels and dilation in small, resistance-size arteries. Mol Pharmacol 2007; 72:359-69. [PMID: 17468198 DOI: 10.1124/mol.107.034330] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Among the nongenomic effects of steroids, control of vasomotion has received increasing attention. Lithocholate (LC) and other physiologically relevant cholane-derived steroids cause vasodilation, yet the molecular targets and mechanisms underlying this action remain largely unknown. We demonstrate that LC (45 microM) reversibly increases the diameter of pressurized resistance cerebral arteries by approximately 10%, which would result in approximately 30% increase in cerebral blood flow. LC action is independent of endothelial integrity, prevented by 55 nM iberiotoxin, and unmodified by 0.8 mM 4-aminopyridine, indicating that LC causes vasodilation via myocyte BK channels. Indeed, LC activates BK channels in isolated myocytes through a destabilization of channel long-closed states without modifying unitary conductance. LC channel activation occurs within a wide voltage range and at Ca2+ concentrations reached in the myocyte at rest and during contraction. Channel accessory beta1 subunits, which are predominant in smooth muscle, are necessary for LC to modify channel activity. In contrast, beta4 subunits, which are predominant in neuronal tissues, fail to evoke LC sensitivity. LC activation of cbv1+beta1 and native BK channels display identical characteristics, including EC50 (46 microM) and Emax (approximately 300 microM) values, strongly suggesting that the cbv1+beta1 complex is necessary and sufficient to evoke LC action. Finally, intact arteries from beta1 subunit knockout mice fail to relax in response to LC, although they are able to respond to other vasodilators. This study pinpoints the BK beta1 subunit as the molecule that senses LC, which results in myocyte BK channel activation and, thus, endothelial-independent relaxation of small, resistance-size arteries.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, University of Tennessee Health Science Center, 874 Union Ave. Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
36
|
Narita SI, Goldblum RM, Watson CS, Brooks EG, Estes DM, Curran EM, Midoro-Horiuti T. Environmental estrogens induce mast cell degranulation and enhance IgE-mediated release of allergic mediators. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:48-52. [PMID: 17366818 PMCID: PMC1797832 DOI: 10.1289/ehp.9378] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Prevalence and morbidity of allergic diseases have increased over the last decades. Based on the recently recognized differences in asthma prevalence between the sexes, we have examined the effect of endogenous estrogens on a key element of the allergic response. Some lipophilic pollutants have estrogen-like activities and are termed environmental estrogens. These pollutants tend to degrade slowly in the environment and to bioaccumulate and bioconcentrate in the food chain; they also have long biological half-lives. OBJECTIVES Our goal in this study was to identify possible pathogenic roles for environmental estrogens in the development of allergic diseases. METHODS We screened a number of environmental estrogens for their ability to modulate the release of allergic mediators from mast cells. We incubated a human mast cell line and primary mast cell cultures derived from bone marrow of wild type and estrogen receptor alpha (ER-alpha)-deficient mice with environmental estrogens with and without estradiol or IgE and allergens. We assessed degranulation of mast cells by quantifying the release of beta-hexosaminidase. RESULTS All of the environmental estrogens tested caused rapid, dose-related release of beta-hexosaminidase from mast cells and enhanced IgE-mediated release. The combination of physiologic concentrations of 17beta-estradiol and several concentrations of environmental estrogens had additive effects on mast cell degranulation. Comparison of bone marrow mast cells from ER-alpha-sufficient and ER-alpha-deficient mice indicated that much of the effect of environmental estrogens was mediated by ER-alpha. CONCLUSIONS Our findings suggest that estrogenic environmental pollutants might promote allergic diseases by inducing and enhancing mast cell degranulation by physiologic estrogens and exposure to allergens.
Collapse
Affiliation(s)
| | | | - Cheryl S. Watson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - D. Mark Estes
- Department of Pediatrics, Child Health Research Center and
| | | | - Terumi Midoro-Horiuti
- Department of Pediatrics, Child Health Research Center and
- Address correspondence to T. Midoro-Horiuti, Child Health Research Center, University of Texas Medical Branch, 2.300 Children’s Hospital, 301 University Blvd., Galveston, TX 77555-0366 USA. Telephone: (409) 772-3832. Fax: (409) 772-1761. E-mail:
| |
Collapse
|
37
|
Hayashi H, Nishimoto A, Oshima N, Iwamuro S. EXPRESSION OF THE ESTROGEN RECEPTOR ALPHA GENE IN THE ANAL FIN OF JAPANESE MEDAKA, ORYZIAS LATIPES, BY ENVIRONMENTAL CONCENTRATIONS OF BISPHENOL A. J Toxicol Sci 2007; 32:91-6. [PMID: 17327697 DOI: 10.2131/jts.32.91] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The anal fin in Japanese medaka, Oryzias latipes, is a typical sexual secondary character. In the present study, we focused on this organ and examined the effects of low doses of a natural estrogen, 17beta-estradiol (E(2)), and an environmental xenoestrogen, bisphenol A (BPA), in vivo by monitoring estrogen receptor (ER) alpha gene expression. Groups of adult male and female medaka were immersed in 10(-9) M E(2) or 10(-10) to 10(-8) M BPA and the levels of ERalpha gene transcripts in the anal fins were measured by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). One day of treatment with each concentration of BPA examined and 10(-9) M E(2) increased the levels of ERalpha mRNA in female anal fins by 3-fold as compared with controls. In the male specimens, neither 10(-9) M E(2) nor 10(-10) M BPA showed remarkable effects on the anal fins as compared with the results in females, but 10(-9) and 10(-8) M BPA increased the levels of ERalpha mRNA by 2.3- and 3.3-fold with 1 day of exposure, respectively. The present results showed that medaka anal fins may be a sensitive bio-indicator for screening of environmental estrogenic chemicals.
Collapse
|
38
|
Abstract
By regulating activities and expression levels of key signaling molecules, estrogens control mechanisms that are responsible for crucial cellular functions. Ligand binding to estrogen receptor (ER) leads to conformational changes that regulate the receptor activity, its interaction with other proteins and DNA. In the cytoplasm, receptor interactions with kinases and scaffolding molecules regulate cell signaling cascades (extranuclear/nongenomic action). In the nucleus, estrogens control a repertoire of coregulators and other auxiliary proteins that are associated with ER, which in turn determines the nature of regulated genes and level of their expression (genomic action). The combination of genomic and nongenomic actions of estrogens ultimately confers the cell-type and tissue-type selectivity. Recent studies have revealed some important new insights into the molecular mechanisms underlying ER action, which may help to explain the functional basis of existing selective ER modulators (SERMs) and provide evidence into how ER might be selectively targeted to achieve specific therapeutic goals. In this review, we will summarize some new molecular details that relate to estrogen signaling. We will also discuss some new strategies that may potentially lead to the development of functionally selective ER modulators that can separate between the beneficial, prodifferentiative effects in bone, the cardiovascular system and the CNS as well as the "detrimental," proliferative effects in reproductive tissues and organs.
Collapse
Affiliation(s)
- Boris J Cheskis
- Women's Health and Musculoskeletal Biology, Wyeth Research, Collegeville, Pennsylvania 19426, USA.
| | | | | | | |
Collapse
|
39
|
Greger JG, Fursov N, Cooch N, McLarney S, Freedman LP, Edwards DP, Cheskis BJ. Phosphorylation of MNAR promotes estrogen activation of phosphatidylinositol 3-kinase. Mol Cell Biol 2006; 27:1904-13. [PMID: 17194752 PMCID: PMC1820473 DOI: 10.1128/mcb.01732-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estrogen actions are mediated by a complex interface of direct control of gene expression (the so-called "genomic action") and by regulation of cell signaling/phosphorylation cascades, referred to as the "nongenomic," or extranuclear, action. We have previously described the identification of MNAR (modulator of nongenomic action of estrogen receptor) as a novel scaffold protein that regulates estrogen receptor alpha (ERalpha) activation of cSrc. In this study, we have investigated the role of MNAR in 17beta-estradiol (E2)-induced activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Consistent with our previous results, a direct correlation was established between MNAR expression levels and E2-induced activation of PI3 and Akt kinases. Endogenous MNAR, ERalpha, cSrc, and p85, the regulatory subunit of PI3 kinase, interacted in MCF7 cells treated with E2. The interaction between p85 and MNAR required activation of cSrc and MNAR phosphorylation on Tyr 920. Consequently, the mutation of this tyrosine to alanine (Y920A) abrogated the interaction between MNAR and p85 and the E2-induced activation of the PI3K/Akt pathway, which was required for the E2-induced protection of MCF7 cells from apoptosis. Nonetheless, the Y920A mutant potentiated the E2-induced activation of the Src/MAPK pathway and MCF7 cell proliferation, as observed with the wild-type MNAR. These results provide new and important insights into the molecular mechanisms of E2-induced regulation of cell proliferation and apoptosis.
Collapse
Affiliation(s)
- James G Greger
- Women's Health and Musculoskeletal Biology, Wyeth Research, Nuclear Receptors, 500 Arcola Road, Collegeville, PA 19426, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids 2006; 72:124-34. [PMID: 17174995 DOI: 10.1016/j.steroids.2006.11.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 10/31/2006] [Accepted: 11/03/2006] [Indexed: 01/28/2023]
Abstract
Studies of the nuclear transcriptional regulatory activities of non-physiological estrogens have not explained their actions in mediating endocrine disruption in animals and humans at the low concentrations widespread in the environment. However, xenoestrogens have rarely been tested for their ability to participate in the plethora of nongenomic steroid signaling pathways elucidated over the last several years. Here we review what is known about such responses in comparison to our recent evidence that xenoestrogens can rapidly and potently elicit signaling through nongenomic pathways culminating in functional endpoints. Both estradiol (E(2)) and compounds representing various classes of xenoestrogens (diethylstilbestrol, coumestrol, bisphenol A, DDE, nonylphenol, endosulfan, and dieldrin) act via a membrane version of the estrogen receptor-alpha on pituitary cells, and can provoke Ca(2+) influx via L-type channels, leading to prolactin (PRL) secretion. These hormones and mimetics can also cause the oscillating activation of extracellular regulated kinases (ERKs). However, individual estrogen mimetics differ in their potency and temporal phasing of these activations compared to each other and to E(2). It is perhaps in these ways that they disrupt some endocrine functions when acting in combination with physiological estrogens. Our quantitative assays allow comparison of these outcomes for each mimetic, and let us build a detailed picture of alternative signaling pathway usage. Such an understanding should allow us to determine the estrogenic or antiestrogenic potential of different types of xenoestrogens, and help us to develop strategies for preventing xenoestrogenic disruption of estrogen action in many tissues.
Collapse
|
41
|
Watson CS, Alyea RA, Hawkins BE, Thomas ML, Cunningham KA, Jakubas AA. Estradiol effects on the dopamine transporter - protein levels, subcellular location, and function. J Mol Signal 2006; 1:5. [PMID: 17224081 PMCID: PMC1769494 DOI: 10.1186/1750-2187-1-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 12/05/2006] [Indexed: 01/18/2023] Open
Abstract
Background The effects of estrogens on dopamine (DA) transport may have important implications for the increased incidence of neurological disorders in women during life stages when hormonal fluctuations are prevalent, e.g. during menarche, reproductive cycling, pregnancy, and peri-menopause. Results The activity of the DA transporter (DAT) was measured by the specific uptake of 3H-DA. We found that low concentrations (10-14 to 10-8 M) of 17β-estradiol (E2) inhibit uptake via the DAT in PC12 cells over 30 minutes, with significant inhibition taking place due to E2 exposure during only the last five minutes of the uptake period. Such rapid action suggests a non-genomic, membrane-initiated estrogenic response mechanism. DAT and estrogen receptor-α (ERα) were elevated in cell extracts by a 20 ng/ml 2 day NGFβ treatment, while ERβ was not. DAT, ERα and ERβ were also detectable on the plasma membrane of unpermeabilized cells by immunocytochemical staining and by a fixed cell, quantitative antibody (Ab)-based plate assay. In addition, PC12 cells contained RNA coding for the alternative membrane ER GPR30; therefore, all 3 ER subtypes are candidates for mediating the rapid nongenomic actions of E2. At cell densities above 15,000 cells per well, the E2-induced inhibition of transport was reversed. Uptake activity oscillated with time after a 10 nM E2 treatment; in a slower room temperature assay, inhibition peaked at 9 min, while uptake activity increased at 3 and 20–30 min. Using an Ab recognizing the second extracellular loop of DAT (accessible only on the outside of unpermeabilized cells), our immunoassay measured membrane vs. intracellular/nonvesicular DAT; both were found to decline over a 5–60 min E2 treatment, though immunoblot analyses demonstrated no total cellular loss of protein. Conclusion Our results suggest that physiological levels of E2 may act to sequester DAT in intracellular compartments where the transporter's second extramembrane loop is inaccessible (inside vesicles) and that rapid estrogenic actions on this differentiated neuronal cell type may be regulated via membrane ERs of several types.
Collapse
Affiliation(s)
- Cheryl S Watson
- Department of Biochemistry & Molecular Biology, Univ. of Texas Medical Branch, Galveston TX 77555-0645, USA
| | - Rebecca A Alyea
- Department of Biochemistry & Molecular Biology, Univ. of Texas Medical Branch, Galveston TX 77555-0645, USA
| | - Bridget E Hawkins
- Department of Biochemistry & Molecular Biology, Univ. of Texas Medical Branch, Galveston TX 77555-0645, USA
| | - Mary L Thomas
- Department of Pharmacology & Toxicology, Univ. of Texas Medical Branch, Galveston TX 77555-1031, USA
| | - Kathryn A Cunningham
- Department of Pharmacology & Toxicology, Univ. of Texas Medical Branch, Galveston TX 77555-1031, USA
| | - Adrian A Jakubas
- Department of Biochemistry & Molecular Biology, Univ. of Texas Medical Branch, Galveston TX 77555-0645, USA
| |
Collapse
|
42
|
Ascenzi P, Bocedi A, Marino M. Structure-function relationship of estrogen receptor alpha and beta: impact on human health. Mol Aspects Med 2006; 27:299-402. [PMID: 16914190 DOI: 10.1016/j.mam.2006.07.001] [Citation(s) in RCA: 361] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
17Beta-estradiol (E2) controls many aspects of human physiology, including development, reproduction and homeostasis, through regulation of the transcriptional activity of its cognate receptors (ERs). The crystal structures of ERs with agonists and antagonists and the use of transgenic animals have revealed much about how hormone binding influences ER conformation(s) and how this conformation(s), in turn, influences the interaction of ERs with co-activators or co-repressors and hence determines ER binding to DNA and cellular outcomes. This information has helped to shed light on the connection between E2 and the development or progression of numerous diseases. Current therapeutic strategy in the treatment of E2-related pathologies relies on the modulation of ER trancriptional activity by anti-estrogens; however, data accumulated during the last five years reveal that ER activities are not only restricted to the nucleus. ERs are very mobile proteins continuously shuttling between protein targets located within various cellular compartments (e.g., membrane, nucleus). This allows E2 to generate different and synergic signal transduction pathways (i.e., non-genomic and genomic) which provide plasticity for cell response to E2. Understanding the structural basis and the molecular mechanisms by which ER transduce E2 signals in target cells will allow to create new pharmacologic therapies aimed at the treatment of a variety of human diseases affecting the cardiovascular system, the reproductive system, the skeletal system, the nervous system, the mammary gland, and many others.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | |
Collapse
|
43
|
Salatino M, Beguelin W, Peters MG, Carnevale R, Proietti CJ, Galigniana MD, Vedoy CG, Schillaci R, Charreau EH, Sogayar MC, Elizalde PV. Progestin-induced caveolin-1 expression mediates breast cancer cell proliferation. Oncogene 2006; 25:7723-39. [PMID: 16799639 DOI: 10.1038/sj.onc.1209757] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Progestin regulation of gene expression was assessed in the progestin-dependent murine tumor line C4HD which requires MPA, a synthetic progestin, for in vivo growth and expresses high levels of progesterone receptor (PR). By using suppressive subtractive hybridization, caveolin-1 was identified as a gene whose expression was increased with in vivo MPA treatment. By Northern and Western blot analysis, we further confirmed that caveolin-1 mRNA and protein expression increased in MPA-treated tumors as compared with untreated tumors. When primary cultures of C4HD cells were treated in vitro with MPA, caveolin-1 levels also increased, effect that was abolished by pre-treatment with progestin antagonist RU486. In addition, MPA promoted strong caveolin-1 promoter transcriptional activation both in mouse and human breast cancer cells. We also showed that MPA regulation of caveolin-1 expression involved in activation of two signaling pathways: MAPK and PI-3K. Short-term MPA treatment of C4HD cells led to tyrosine phosphorylation of caveolin-1 protein, where Src was the kinase involved. Additionally, we showed that MPA-induced association of caveolin-1 and PR, which was detected by coimmunoprecipitation and by confocal microscopy. Finally, we proved that MPA-induced proliferation of C4HD cells was inhibited by suppression of caveolin-1 expression with antisense oligodeoxynucleotides to caveolin-1 mRNA. Furthermore, we observed that inhibition of caveolin-1 expression abrogated PR capacity to induced luciferase activity from a progesterone response element-driven reporter plasmid. Comprehensively, our results demonstrated for the first time that caveolin-1 expression is upregulated by progestin in breast cancer. We also demonstrated that caveolin-1 is a downstream effector of MPA that is partially responsible for the stimulation of growth of breast cancer cells.
Collapse
Affiliation(s)
- M Salatino
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ananthanarayanan VS, Kerman A. Role of metal ions in ligand-receptor interaction: insights from structural studies. Mol Cell Endocrinol 2006; 246:53-9. [PMID: 16368180 DOI: 10.1016/j.mce.2005.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Experimental data indicate that metal ions such as Na(+), Ca(2+) and Mg(2+), which are present in millimolar concentrations in the extracellular environment, modulate binding of ligands to plasma membrane receptors. Here, we briefly review structural studies that demonstrate that various types of ligands, including peptide hormones and drugs, bind metal ions, in particular Ca(2+), in the lipid milieu. We propose that the metal ion-bound forms of ligands represent their bioactive conformations. With a view to understanding the mechanism of modulation of ligand-receptor interactions by metal ions, we have computed a homology model of the mu-opioid receptor, a G protein-coupled receptor (GPCR), and performed docking of specific agonist and antagonist ligands in the receptor. This resulted in the formation of a ligand-metal ion-receptor (ternary) complex which accounted for the data on the structure-activity relationships of ligands and mutation data on the receptor. Based on experimental and modeling data, we have proposed a general mechanism of activation of GPCRs by their corresponding ligands wherein metal ions play a pivotal role. Studies on overexpressed segments of mu-receptor are in progress to verify the above proposal.
Collapse
Affiliation(s)
- Vettai S Ananthanarayanan
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main St. W., Hamilton, Ont., Canada L8N 3Z5.
| | | |
Collapse
|
45
|
Jain S, Li Y, Kumar A, Sehgal PB. Transcriptional signaling from membrane raft-associated glucocorticoid receptor. Biochem Biophys Res Commun 2005; 336:3-8. [PMID: 16125141 DOI: 10.1016/j.bbrc.2005.08.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 08/08/2005] [Indexed: 10/25/2022]
Abstract
The contribution of plasma membrane-associated glucocorticoid receptor (GR) to transcriptional signaling is unclear. We observed GR in low-density detergent-resistant membrane (DRM) rafts derived from human hepatoma Hep3B cells in complexes with caveolin-1, HSP90, and STAT3. In transient transfection assays, GR-stimulated transcriptional signaling was reversibly inhibited by membrane-raft disrupters filipin III and progesterone. These data provide clear evidence for a functional contribution of DRM-associated GR to transcriptional signaling.
Collapse
Affiliation(s)
- Sudhir Jain
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
46
|
Grossmann C, Benesic A, Krug AW, Freudinger R, Mildenberger S, Gassner B, Gekle M. Human Mineralocorticoid Receptor Expression Renders Cells Responsive for Nongenotropic Aldosterone Actions. Mol Endocrinol 2005; 19:1697-710. [PMID: 15761031 DOI: 10.1210/me.2004-0469] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractThe steroid hormone aldosterone is important for salt and water homeostasis as well as for pathological tissue modifications in the cardiovascular system and the kidney. The mechanisms of action include a classical genomic pathway, but physiological relevant nongenotropic effects have also been described. Unlike for estrogens or progesterone, the mechanisms for these nongenotropic effects are not well understood, although pharmacological studies suggest a role for the mineralocorticoid receptor (MR). Here we investigated whether the MR contributes to nongenotropic effects. After transfection with human MR, aldosterone induced a rapid and dose-dependent phosphorylation of ERK1/2 and c-Jun NH2-terminal kinase (JNK) 1/2 kinases in Chinese hamster ovary or human embryonic kidney cells, which was reduced by the MR-antagonist spironolactone and involved cSrc kinase as well as the epidermal growth factor receptor. In primary human aortic endothelial cells, similar results were obtained for ERK1/2 and JNK1/2. Inhibition of MAPK kinase (MEK) kinase but not of protein kinase C prevented the rapid action of aldosterone and also reduced aldosterone-induced transactivation, most probably due to impaired nuclear-cytoplasmic shuttling of MR. Cytosolic Ca2+ was increased by aldosterone in mock- and in human MR-transfected cells to the same extend due to Ca2+ influx, whereas dexamethasone had virtually no effect. Spironolactone did not prevent the Ca2+ response. We conclude that some nongenotropic effects of aldosterone are MR dependent and others are MR independent (e.g. Ca2+), indicating a higher degree of complexity of rapid aldosterone signaling. According to this model, we have to distinguish three aldosterone signaling pathways: 1) genomic via MR, 2) nongenotropic via MR, and 3) nongenotropic MR independent.
Collapse
Affiliation(s)
- Claudia Grossmann
- Professor of Physiology, Physiologisches Institut, Universität Würzburg, Röntgenring 9, 97070 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Younglai EV, Wu YJ, Kwan TK, Kwan CY. Non-genomic action of estradiol and progesterone on cytosolic calcium concentrations in primary cultures of human granulosa-lutein cells. Hum Reprod 2005; 20:2383-90. [PMID: 15932916 DOI: 10.1093/humrep/dei078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The present study examined whether the sex steroids, estradiol and progesterone, could alter cytoplasmic calcium concentrations ([Ca(2+)](cyt)) in human granulosa-lutein cells. METHODS Human granulosa cells were obtained at the time of oocyte retrieval for IVF and cultured for 3-7 days. Cells were loaded with Fura-2 AM and changes in [Ca(2+)](cyt) of single cells were studied using a dynamic digital Ca(2+) imaging system. RESULTS Both estradiol and progesterone stimulated elevations of [Ca(2+)](cyt) in Ca(2+)-containing medium within seconds of exposure of the granulosa-lutein cells to the steroid, but only estradiol caused an increase in [Ca(2+)](cyt) in Ca(2+)-free medium. Both ICI-182780 and RU 486 stimulated [Ca(2+)](cyt) increases and inhibited the effects of estradiol and progesterone, respectively. Tamoxifen also induced transient increases in [Ca(2+)](cyt) concentrations but inhibited the effects of both estradiol and progesterone. The inhibitory effects of tamoxifen, ICI-182780 and RU 4486 on [Ca(2+)](cyt) responses to estradiol and progesterone could be reversed with higher concentrations of estradiol and progesterone, respectively. The [Ca(2+)](cyt) effects induced with tamoxifen could not be eliminated by prior treatment with RU 486 or ICI-182780. CONCLUSION These results provide strong evidence that both estradiol and progesterone as well as the steroid antagonists, tamoxifen, RU 486 and ICI-182780, can act on human granulosa-lutein cells through a non-genomic mechanism.
Collapse
Affiliation(s)
- E V Younglai
- Department of Obstetrics and Gynecology, Reproductive Biology Division, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
48
|
Wozniak AL, Bulayeva NN, Watson CS. Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:431-9. [PMID: 15811834 PMCID: PMC1278483 DOI: 10.1289/ehp.7505] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Xenoestrogens (XEs) are widespread in our environment and are known to have deleterious effects in animal (and perhaps human) populations. Acting as inappropriate estrogens, XEs are thought to interfere with endogenous estrogens such as estradiol (E2) to disrupt normal estrogenic signaling. We investigated the effects of E2 versus several XEs representing organochlorine pesticides (dieldrin, endosulfan, o',p'-dichlorodiphenylethylene), plastics manufacturing by-products/detergents (nonylphenol, bisphenol A), a phytoestrogen (coumestrol), and a synthetic estrogen (diethylstilbestrol) on the pituitary tumor cell subline GH3/B6/F10, previously selected for expression of high levels of membrane estrogen receptor-alpha. Picomolar to nanomolar concentrations of both E2 and XEs caused intracellular Ca2+ changes within 30 sec of administration. Each XE produced a unique temporal pattern of Ca2+ elevation. Removing Ca2+ from the extracellular solution abolished both spontaneous and XE-induced intracellular Ca2+ changes, as did 10 microM nifedipine. This suggests that XEs mediate their actions via voltage-dependent L-type Ca2+ channels in the plasma membrane. None of the Ca2+ fluxes came from intracellular Ca2+ stores. E2 and each XE also caused unique time- and concentration-dependent patterns of prolactin (PRL) secretion that were largely complete within 3 min of administration. PRL secretion was also blocked by nifedipine, demonstrating a correlation between Ca2+ influx and PRL secretion. These data indicate that at very low concentrations, XEs mediate membrane-initiated intracellular CCa2+ increases resulting in PRL secretion via a mechanism similar to that for E2, but with distinct patterns and potencies that could explain their abilities to disrupt endocrine functions.
Collapse
Affiliation(s)
- Ann L Wozniak
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-0645, USA
| | | | | |
Collapse
|
49
|
Abstract
Puberty is the interval in the life cycle during which the child becomes an adult. It is heralded by physical changes such as acceleration of linear growth and appearance of secondary sexual characteristics, capped by attainment of reproductive capability, and orchestrated by increases in the secretion of hypothalamic, pituitary, and gonadal hormones. This article discusses selected historical and contemporary aspects of isosexual precocious puberty, i.e., the development of sexual characteristics prior to the usual age of pubertal onset.
Collapse
Affiliation(s)
- Allen W Root
- Department of Pediatrics, University of South Florida College of Medicine, Tampa, USA.
| |
Collapse
|
50
|
Zivadinovic D, Watson CS. Membrane estrogen receptor-alpha levels predict estrogen-induced ERK1/2 activation in MCF-7 cells. Breast Cancer Res 2004; 7:R130-44. [PMID: 15642162 PMCID: PMC1064105 DOI: 10.1186/bcr959] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 08/18/2004] [Accepted: 10/07/2004] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION We examined the participation of a membrane form of estrogen receptor (mER)-alpha in the activation of mitogen-activated protein kinases (extracellular signal-regulated kinase [ERK]1 and ERK2) related to cell growth responses in MCF-7 cells. METHODS We immunopanned and subsequently separated MCF-7 cells (using fluorescence-activated cell sorting) into mER-alpha-enriched (mERhigh) and mER-alpha-depleted (mERlow) populations. We then measured the expression levels of mER-alpha on the surface of these separated cell populations by immunocytochemical analysis and by a quantitative 96-well plate immunoassay that distinguished between mER-alpha and intracellular ER-alpha. Western analysis was used to determine colocalized estrogen receptor (ER)-alpha and caveolins in membrane subfractions. The levels of activated ERK1 and ERK2 were determined using a fixed cell-based enzyme-linked immunosorbent assay developed in our laboratory. RESULTS Immunocytochemical studies revealed punctate ER-alpha antibody staining of the surface of nonpermeabilized mERhigh cells, whereas the majority of mERlow cells exhibited little or no staining. Western analysis demonstrated that mERhigh cells expressed caveolin-1 and caveolin-2, and that ER-alpha was contained in the same gradient-separated membrane fractions. The quantitative immunoassay for ER-alpha detected a significant difference in mER-alpha levels between mERhigh and mERlow cells when cells were grown at a sufficiently low cell density, but equivalent levels of total ER-alpha (membrane plus intracellular receptors). These two separated cell subpopulations also exhibited different kinetics of ERK1/2 activation with 1 pmol/l 17beta-estradiol (E2), as well as different patterns of E2 dose-dependent responsiveness. The maximal kinase activation was achieved after 10 min versus 6 min in mERhigh versus mERlow cells, respectively. After a decline in the level of phosphorylated ERKs, a reactivation was seen at 60 min in mERhigh cells but not in mERlow cells. Both 1A and 2B protein phosphatases participated in dephosphorylation of ERKs, as demonstrated by efficient reversal of ERK1/2 inactivation with okadaic acid and cyclosporin A. CONCLUSION Our results suggest that the levels of mER-alpha play a role in the temporal coordination of phosphorylation/dephosphorylation events for the ERKs in breast cancer cells, and that these signaling differences can be correlated to previously demonstrated differences in E2-induced cell proliferation outcomes in these cell types.
Collapse
Affiliation(s)
- Dragoslava Zivadinovic
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cheryl S Watson
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|