1
|
Gaviria E, Eltayeb Hamid AH. Neuroimaging biomarkers for predicting stroke outcomes: A systematic review. Health Sci Rep 2024; 7:e2221. [PMID: 38957864 PMCID: PMC11217021 DOI: 10.1002/hsr2.2221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
Background and Aims Stroke is a prominent cause of long-term adult impairment globally and a significant global health issue. Only 14% of stroke survivors achieve full recovery, while 25% to 50% require varying degrees of support, and over half become dependent. The aftermath of a stroke brings profound changes to an individual's life, with early choices significantly impacting their quality of life. This review aims to establish the efficacy of neuroimaging data in predicting long-term outcomes and recovery rates following a stroke. Methods A scientific literature search was conducted using the Centre of Reviews and Dissemination (CRD) criteria and PRISMA guidelines for a combined meta-narrative and systematic quantitative review. The methodology involved a structured search in databases like PubMed and The Cochrane Library, following inclusion and exclusion criteria to identify relevant studies on neuroimaging biomarkers for stroke outcome prediction. Data collection utilized the Microsoft Edge Zotero plugin, with quality appraisal conducted via the CASP checklist. Studies published from 2010 to 2024, including observational, randomized control trials, case reports, and clinical trials. Non-English and incomplete studies were excluded, resulting in the identification of 11 pertinent articles. Data extraction emphasized study methodologies, stroke conditions, clinical parameters, and biomarkers, aiming to provide a thorough literature overview and evaluate the significance of neuroimaging biomarkers in predicting stroke recovery outcomes. Results The results of this systematic review indicate that integrating advanced neuroimaging methods with highly successful reperfusion therapies following a stroke facilitates the diagnosis of the condition and assists in improving neurological impairments resulting from stroke. These measures reduce the possibility of death and improve the treatment provided to stroke patients. Conclusion These findings highlight the crucial role of neuroimaging in advancing our understanding of post-stroke outcomes and improving patient care.
Collapse
|
2
|
Kim D, Ko SH, Han J, Kim YT, Kim YH, Chang WH, Shin YI. Evidence of the existence of multiple modules for the stroke-caused flexion synergy from Fugl-Meyer assessment scores. J Neurophysiol 2024; 132:78-86. [PMID: 38691520 PMCID: PMC11381114 DOI: 10.1152/jn.00067.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024] Open
Abstract
Stroke-caused synergies may result from the preferential use of the reticulospinal tract (RST) due to damage to the corticospinal tract. The RST branches multiple motoneuron pools across the arm together resulting in gross motor control or abnormal synergies, and accordingly, the controllability of individual muscles decreases. However, it is not clear whether muscles involuntarily activated by abnormal synergy vary depending on the muscles voluntarily activated when motor commands descend through the RST. Studies showed that abnormal synergies may originate from the merging and reweighting of synergies in individuals without neurological deficits. This leads to a hypothesis that those abnormal synergies are still selectively excited depending on the context. In this study, we test this hypothesis, leveraging the Fugl-Meyer assessment that could characterize the neuroanatomical architecture in individuals with a wide range of impairments. We examine the ability to perform an out-of-synergy movement with the flexion synergy caused by either shoulder or elbow loading. The results reveal that about 14% [8/57, 95% confidence interval (5.0%, 23.1%)] of the participants with severe impairment (total Fugl-Meyer score <29) in the chronic phase (6 months after stroke) are able to keep the elbow extended during shoulder loading and keep the shoulder at neutral during elbow loading. Those participants underwent a different course of neural reorganization, which enhanced abnormal synergies in comparison with individuals with mild impairment (P < 0.05). These results provide evidence that separate routes and synergy modules to motoneuron pools across the arm might exist even if the motor command is mediated possibly via the RST.NEW & NOTEWORTHY We demonstrate that abnormal synergies are still selectively excited depending on the context.
Collapse
Affiliation(s)
- Dongwon Kim
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Sung-Hwa Ko
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Junhee Han
- Department of Statistics, Hallym University, Chuncheon-si, Republic of Korea
| | - Young-Taek Kim
- Department of Preventive Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Yun-Hee Kim
- Department of Health Sciences and Technology, Department of Medical Device Management and Research, Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
3
|
Darvishi S, Datta Gupta A, Hamilton-Bruce A, Koblar S, Baumert M, Abbott D. Enhancing poststroke hand movement recovery: Efficacy of RehabSwift, a personalized brain-computer interface system. PNAS NEXUS 2024; 3:pgae240. [PMID: 38984151 PMCID: PMC11232286 DOI: 10.1093/pnasnexus/pgae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
This study explores the efficacy of our novel and personalized brain-computer interface (BCI) therapy, in enhancing hand movement recovery among stroke survivors. Stroke often results in impaired motor function, posing significant challenges in daily activities and leading to considerable societal and economic burdens. Traditional physical and occupational therapies have shown limitations in facilitating satisfactory recovery for many patients. In response, our study investigates the potential of motor imagery-based BCIs (MI-BCIs) as an alternative intervention. In this study, MI-BCIs translate imagined hand movements into actions using a combination of scalp-recorded electrical brain activity and signal processing algorithms. Our prior research on MI-BCIs, which emphasizes the benefits of proprioceptive feedback over traditional visual feedback and the importance of customizing the delay between brain activation and passive hand movement, led to the development of RehabSwift therapy. In this study, we recruited 12 chronic-stage stroke survivors to assess the effectiveness of our solution. The primary outcome measure was the Fugl-Meyer upper extremity (FMA-UE) assessment, complemented by secondary measures including the action research arm test, reaction time, unilateral neglect, spasticity, grip and pinch strength, goal attainment scale, and FMA-UE sensation. Our findings indicate a remarkable improvement in hand movement and a clinically significant reduction in poststroke arm and hand impairment following 18 sessions of neurofeedback training. The effects persisted for at least 4 weeks posttreatment. These results underscore the potential of MI-BCIs, particularly our solution, as a prospective tool in stroke rehabilitation, offering a personalized and adaptable approach to neurofeedback training.
Collapse
Affiliation(s)
- Sam Darvishi
- RehabSwift Pty Ltd, 10 Pulteney Street, The University of Adelaide, Adelaide, SA 5000, Australia
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Anupam Datta Gupta
- Department of Rehabilitation Medicine, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Anne Hamilton-Bruce
- Stroke Research Programme, Basil Hetzel Institute, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville, SA 5011, Australia
| | - Simon Koblar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Derek Abbott
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
4
|
Yu P, Dong R, Wang X, Tang Y, Liu Y, Wang C, Zhao L. Neuroimaging of motor recovery after ischemic stroke - functional reorganization of motor network. Neuroimage Clin 2024; 43:103636. [PMID: 38950504 PMCID: PMC11267109 DOI: 10.1016/j.nicl.2024.103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
The long-term motor outcome of acute stroke patients may be correlated to the reorganization of brain motor network. Abundant neuroimaging studies contribute to understand the pathological changes and recovery of motor networks after stroke. In this review, we summarized how current neuroimaging studies have increased understanding of reorganization and plasticity in post stroke motor recovery. Firstly, we discussed the changes in the motor network over time during the motor-activation and resting states, as well as the overall functional integration trend of the motor network. These studies indicate that the motor network undergoes dynamic bilateral hemispheric functional reorganization, as well as a trend towards network randomization. In the second part, we summarized the current study progress in the application of neuroimaging technology to early predict the post-stroke motor outcome. In the third part, we discuss the neuroimaging techniques commonly used in the post-stroke recovery. These methods provide direct or indirect visualization patterns to understand the neural mechanisms of post-stroke motor recovery, opening up new avenues for studying spontaneous and treatment-induced recovery and plasticity after stroke.
Collapse
Affiliation(s)
- Pei Yu
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ruoyu Dong
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Wang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuqi Tang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yaning Liu
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Can Wang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ling Zhao
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Esht V, Alshehri MM, Balasubramanian K, Sanjeevi RR, Shaphe MA, Alhowimel A, Alenazi AM, Alqahtani BA, Alhwoaimel N. Transcranial direct current stimulation (tDCS) for neurological disability among subacute stroke survivors to improve multiple domains in health-related quality of life: Randomized controlled trial protocol. Neurophysiol Clin 2024; 54:102976. [PMID: 38663043 DOI: 10.1016/j.neucli.2024.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVES The primary goal of the current proposal is to fill the gaps in the literature by studying the effectiveness of transcranial direct current stimulation (tDCS) on lifestyle parameters, and physical, behavioral, and cognitive functions among stroke survivors, and understanding the factors that mediate the effects of various domains related to Health-related Quality of life (HRQoL) improvements. METHODS Anticipated 64 volunteer subacute stroke survivors (>7 days to 3 months post stroke) aged 40-75 years with National Institutes of Health stroke scale (NIHSS) score of >10 and Mini-Mental State Examination (MMSE) score between 18 and 23 will be randomly assigned at a ratio of 1:1 to receive either: (1) 20 sessions of anodal tDCS or (2) sham tDCS in addition to conventional rehabilitation. Battery driven tDCS will be applied at 2 mA intensity to the dorsolateral prefrontal cortex and primary motor cortex for 20 minutes. The primary endpoints of study will be 36-Item Short Form Survey (SF-36) post intervention at 4 weeks. The secondary outcomes will include Stroke Specific Quality of Life Scale (SS_QOL), Montreal cognitive assessment (MCA), Beck Anxiety Inventory (BAI), Fugl-Meyer Assessment (FMA), 10 m walk test and Modified Barthel Activities of daily living (ADL) Index. At 0.05 level of significance, data normality, within group and between group actual differences will be analyzed with a moderate scope software. DISCUSSION Our knowledge of this technique and its use is expanding daily as tDCS motor recovery studies-mostly single-center studies-in either single session or many sessions have been completed and shown positive results. The field is prepared for a multi-center, carefully planned, sham-controlled, double-blinded tDCS study to comprehensively examine its feasibility and effectiveness in enhancing outcomes in stroke population. CONCLUSION The function of Transcranial Direct Current Stimulation in aiding stroke recuperation will be ascertained.
Collapse
Affiliation(s)
- Vandana Esht
- Physical Therapy Department, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia.
| | - Mohammed M Alshehri
- Physical Therapy Department, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Karthick Balasubramanian
- Physical Therapy Department, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Ramya R Sanjeevi
- Physical Therapy Department, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Mohammed A Shaphe
- Physical Therapy Department, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Ahmed Alhowimel
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin University, Jazan 45142, Kingdom of Saudi Arabia
| | - Aqeel M Alenazi
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin University, Jazan 45142, Kingdom of Saudi Arabia
| | - Bader A Alqahtani
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin University, Jazan 45142, Kingdom of Saudi Arabia
| | - Norah Alhwoaimel
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin University, Jazan 45142, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Berger DJ, d’Avella A. Myoelectric control and virtual reality to enhance motor rehabilitation after stroke. Front Bioeng Biotechnol 2024; 12:1376000. [PMID: 38665814 PMCID: PMC11043476 DOI: 10.3389/fbioe.2024.1376000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Effective upper-limb rehabilitation for severely impaired stroke survivors is still missing. Recent studies endorse novel motor rehabilitation approaches such as robotic exoskeletons and virtual reality systems to restore the function of the paretic limb of stroke survivors. However, the optimal way to promote the functional reorganization of the central nervous system after a stroke has yet to be uncovered. Electromyographic (EMG) signals have been employed for prosthetic control, but their application to rehabilitation has been limited. Here we propose a novel approach to promote the reorganization of pathological muscle activation patterns and enhance upper-limb motor recovery in stroke survivors by using an EMG-controlled interface to provide personalized assistance while performing movements in virtual reality (VR). We suggest that altering the visual feedback to improve motor performance in VR, thereby reducing the effect of deviations of the actual, dysfunctional muscle patterns from the functional ones, will actively engage patients in motor learning and facilitate the restoration of functional muscle patterns. An EMG-controlled VR interface may facilitate effective rehabilitation by targeting specific changes in the structure of muscle synergies and in their activations that emerged after a stroke-offering the possibility to provide rehabilitation therapies addressing specific individual impairments.
Collapse
Affiliation(s)
- Denise Jennifer Berger
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine, Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea d’Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Lanzone J, Zulueta A, Boscarino M, Gallotta M, Argentieri MR, Viganò A, Sarasso S, Colombo MA, D’Ambrosio S, Lunetta C, Parati E. Spectral exponent assessment and neurofilament light chain: a comprehensive approach to describe recovery patterns in stroke. Front Neurol 2024; 15:1329044. [PMID: 38562428 PMCID: PMC10982436 DOI: 10.3389/fneur.2024.1329044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Understanding the residual recovery potential in stroke patients is crucial for tailoring effective neurorehabilitation programs. We propose using EEG and plasmatic Neurofilament light chain (NfL) levels as a model to depict longitudinal patterns of stroke recovery. Methods We enrolled 13 patients (4 female, mean age 74.7 ± 8.8) who underwent stroke in the previous month and were hospitalized for 2-months rehabilitation. Patients underwent blood withdrawal, clinical evaluation and high-definition EEG at T1 (first week of rehabilitation) and at T2 (53 ± 10 days after). We assessed the levels of NfL and we analyzed the EEG signal extracting Spectral Exponent (SE) values. We compared our variables between the two timepoint and between cortical and non-cortical strokes. Results We found a significant difference in the symmetry of SE values between cortical and non-cortical stroke at both T1 (p = 0.005) and T2 (p = 0.01). SE in the affected hemisphere showed significantly steeper values at T1 when compared with T2 (p = 0.001). EEG measures were consistently related to clinical scores, while NfL at T1 was related to the volume of ischemic lesions (r = 0.75; p = 0.003). Additionally, the combined use of NfL and SE indicated varying trends in longitudinal clinical recovery. Conclusion We present proof of concept of a promising approach for the characterization of different recovery patterns in stroke patients.
Collapse
Affiliation(s)
- Jacopo Lanzone
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Department of the Milano Institute, Milan, Italy
| | - Aida Zulueta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Department of the Milano Institute, Milan, Italy
| | - Marilisa Boscarino
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Department of the Milano Institute, Milan, Italy
| | - Matteo Gallotta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Department of the Milano Institute, Milan, Italy
| | - Maria Rosaria Argentieri
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Department of the Milano Institute, Milan, Italy
| | | | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Michele A. Colombo
- Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Sasha D’Ambrosio
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, Milan, Italy
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Department of the Milano Institute, Milan, Italy
| | - Eugenio Parati
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Department of the Milano Institute, Milan, Italy
| |
Collapse
|
8
|
Tang CW, Zich C, Quinn AJ, Woolrich MW, Hsu SP, Juan CH, Lee IH, Stagg CJ. Post-stroke upper limb recovery is correlated with dynamic resting-state network connectivity. Brain Commun 2024; 6:fcae011. [PMID: 38344655 PMCID: PMC10853981 DOI: 10.1093/braincomms/fcae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/25/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Motor recovery is still limited for people with stroke especially those with greater functional impairments. In order to improve outcome, we need to understand more about the mechanisms underpinning recovery. Task-unbiased, blood flow-independent post-stroke neural activity can be acquired from resting brain electrophysiological recordings and offers substantial promise to investigate physiological mechanisms, but behaviourally relevant features of resting-state sensorimotor network dynamics have not yet been identified. Thirty-seven people with subcortical ischaemic stroke and unilateral hand paresis of any degree were longitudinally evaluated at 3 weeks (early subacute) and 12 weeks (late subacute) after stroke. Resting-state magnetoencephalography and clinical scores of motor function were recorded and compared with matched controls. Magnetoencephalography data were decomposed using a data-driven hidden Markov model into 10 time-varying resting-state networks. People with stroke showed statistically significantly improved Action Research Arm Test and Fugl-Meyer upper extremity scores between 3 weeks and 12 weeks after stroke (both P < 0.001). Hidden Markov model analysis revealed a primarily alpha-band ipsilesional resting-state sensorimotor network which had a significantly increased life-time (the average time elapsed between entering and exiting the network) and fractional occupancy (the occupied percentage among all networks) at 3 weeks after stroke when compared with controls. The life-time of the ipsilesional resting-state sensorimotor network positively correlated with concurrent motor scores in people with stroke who had not fully recovered. Specifically, this relationship was observed only in ipsilesional rather in contralesional sensorimotor network, default mode network or visual network. The ipsilesional sensorimotor network metrics were not significantly different from controls at 12 weeks after stroke. The increased recruitment of alpha-band ipsilesional resting-state sensorimotor network at subacute stroke served as functionally correlated biomarkers exclusively in people with stroke with not fully recovered hand paresis, plausibly reflecting functional motor recovery processes.
Collapse
Affiliation(s)
- Chih-Wei Tang
- Institute of Brain Science, Brain Research Center, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
- Department of Neurology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Catharina Zich
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford OX3 9DU, UK
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, UK
| | - Andrew J Quinn
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford OX3 9DU, UK
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark W Woolrich
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford OX3 9DU, UK
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, UK
| | - Shih-Pin Hsu
- Institute of Brain Science, Brain Research Center, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 320, Taiwan
| | - I Hui Lee
- Institute of Brain Science, Brain Research Center, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
- Division of Cerebrovascular Diseases, Neurological Institute, Taipei Veterans General Hospital, Taipei City 112, Taiwan
| | - Charlotte J Stagg
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford OX3 9DU, UK
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, UK
| |
Collapse
|
9
|
Park CH, Kim MS. Stratified predictions of upper limb motor outcomes after stroke. Front Neurol 2024; 14:1323529. [PMID: 38239320 PMCID: PMC10794733 DOI: 10.3389/fneur.2023.1323529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Longitudinal observations of upper limb motor recovery after stroke have suggested that certain subgroups may exhibit distinct recovery patterns. Here we sought to examine whether the predictive ability for post-stroke upper limb motor outcomes could be enhanced by applying conventional stratification strategies. Method For 60 individuals who suffered the first stroke, upper limb motor impairment was assessed with the upper extremity Fugl-Meyer assessment (UE-FMA) at 2 weeks as a baseline and then 3 months post-stroke. Brain structural damage at baseline was assessed by MRI data-derived markers ranging from traditional lesion size to the lesion load and to the disconnectome. Linear regression models for predicting upper limb motor outcomes (UE-FMA score at 3 months post-stroke) based on baseline upper limb motor impairment (UE-FMA score at 2 weeks post-stroke), brain structural damage, and their combinations were generated, and those with the best predictive performance were determined for individual subgroups stratified according to initial impairment (severe and non-severe), lesion location (cortical and non-cortical), and neurophysiological status (motor evoked potential-positive and motor evoked potential-negative). Results The best predictions were made by baseline upper limb motor impairment alone for subgroups with less functional impairment (non-severe) or less structural involvement (non-cortical), but by the combination of baseline upper limb motor impairment and brain structural damage for the other subgroups. The predictive models tailored for subgroups determined according to initial impairment and neurophysiological status yielded a smaller overall error than that for the whole group in upper limb motor outcome predictions. Discussion The predictive ability for upper limb motor outcomes could be enhanced beyond the one-size-fits-all model for all individuals with stroke by applying specific stratification strategies, with stratification according to initial impairment being the most promising. We expect that predictive models tailored for individual subgroups could lead closer to the personalized prognosis of upper limb motor outcomes after stroke.
Collapse
Affiliation(s)
- Chang-hyun Park
- Division of Artificial Intelligence and Software, College of Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Min-Su Kim
- Department of Physical Medicine and Rehabilitation, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
10
|
Kwakkel G, Stinear C, Essers B, Munoz-Novoa M, Branscheidt M, Cabanas-Valdés R, Lakičević S, Lampropoulou S, Luft AR, Marque P, Moore SA, Solomon JM, Swinnen E, Turolla A, Alt Murphy M, Verheyden G. Motor rehabilitation after stroke: European Stroke Organisation (ESO) consensus-based definition and guiding framework. Eur Stroke J 2023; 8:880-894. [PMID: 37548025 PMCID: PMC10683740 DOI: 10.1177/23969873231191304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
PURPOSE To propose a consensus-based definition and framework for motor rehabilitation after stroke. METHODS An expert European working group reviewed the literature, attaining internal consensus after external feedback. FINDINGS Motor rehabilitation is defined as a process that engages people with stroke to benefit their motor function, activity capacity and performance in daily life. It is necessary for people with residual motor disability whose goal is to enhance their functioning, independence and participation. Motor rehabilitation operates through learning- and use-dependent mechanisms. The trajectory of motor recovery varies across patients and stages of recovery. Early behavioral restitution of motor function depends on spontaneous biological mechanisms. Further improvements in activities of daily living are achieved by compensations. Motor rehabilitation is guided by regular assessment of motor function and activity using consensus-based measures, including patient-reported outcomes. Results are discussed with the patient and their carers to set personal goals. During motor rehabilitation patients learn to optimize and adapt their motor, sensory and cognitive functioning through appropriately dosed repetitive, goal-oriented, progressive, task- and context-specific training. Motor rehabilitation supports people with stroke to maximize health, well-being and quality of life. The framework describes the International Classification of Functioning, Disability and Health in the context of stroke, describes neurobiological mechanisms of behavioral restitution and compensation, and summarizes recommendations for clinical assessment, prediction tools, and motor interventions with strong recommendations from clinical practice guidelines (2016-2022). CONCLUSIONS This definition and framework may guide clinical educators, inform clinicians on current recommendations and guidelines, and identify gaps in the evidence base.
Collapse
Affiliation(s)
- Gert Kwakkel
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
- Department Acquired Brain Injuries, Amsterdam Rehabilitation Research Centre, Reade, Amsterdam, The Netherlands
| | - Cathy Stinear
- Department of Medicine, Waipapa Taumata Rau University of Auckland, Aotearoa, New Zealand
| | - Bea Essers
- Department of Rehabilitation Sciences, KU Leuven – University of Leuven, Leuven, Belgium
| | - Maria Munoz-Novoa
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Meret Branscheidt
- Department of Neurology, University Hospital of Zurich, and Cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - Rosa Cabanas-Valdés
- Department of Physiotherapy, Faculty of Medicine and Health Science, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Sandra Lakičević
- Department of Neurology, Stroke Unit, University Hospital Mostar, Mostar, Bosnia and Herzegovina
| | - Sofia Lampropoulou
- Physiotherapy Department, School of Health Rehabilitation Sciences, University of Patras, Rio, Greece
| | - Andreas R Luft
- Department of Neurology, University Hospital of Zurich, and Cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - Philippe Marque
- Service de médecine physique et réadaptation, CHU de Toulouse, Toulouse, France
| | - Sarah A Moore
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Science, Northumbria University, Newcastle upon Tyne, UK
- Stroke Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John M Solomon
- Centre for Comprehensive Stroke Rehabilitation and Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Eva Swinnen
- Rehabilitation Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrea Turolla
- Department of Biomedical and Neuromotor Sciences, Alma Mater University of Bologna, Bologna, Italy
- Unit of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Margit Alt Murphy
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Occupational Therapy and Physiotherapy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven – University of Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Migdady I, Johnson-Black PH, Leslie-Mazwi T, Malhotra R. Current and Emerging Endovascular and Neurocritical Care Management Strategies in Large-Core Ischemic Stroke. J Clin Med 2023; 12:6641. [PMID: 37892779 PMCID: PMC10607145 DOI: 10.3390/jcm12206641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The volume of infarcted tissue in patients with ischemic stroke is consistently associated with increased morbidity and mortality. Initial studies of endovascular thrombectomy for large-vessel occlusion excluded patients with established large-core infarcts, even when large volumes of salvageable brain tissue were present, due to the high risk of hemorrhagic transformation and reperfusion injury. However, recent retrospective and prospective studies have shown improved outcomes with endovascular thrombectomy, and several clinical trials were recently published to evaluate the efficacy of endovascular management of patients presenting with large-core infarcts. With or without thrombectomy, patients with large-core infarcts remain at high risk of in-hospital complications such as hemorrhagic transformation, malignant cerebral edema, seizures, and others. Expert neurocritical care management is necessary to optimize blood pressure control, mitigate secondary brain injury, manage cerebral edema and elevated intracranial pressure, and implement various neuroprotective measures. Herein, we present an overview of the current and emerging evidence pertaining to endovascular treatment for large-core infarcts, recent advances in neurocritical care strategies, and their impact on optimizing patient outcomes.
Collapse
Affiliation(s)
- Ibrahim Migdady
- Division of Critical Care Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA
- Department of Neurology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA
- Department of Neurological Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA
- Department of Health Policy and Management, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Phoebe H. Johnson-Black
- Department of Neurosurgery, Division of Neurocritical Care, UCLA David Geffen School of Medicine, Ronald Reagan Medical Center, Los Angeles, CA 90095, USA;
| | | | - Rishi Malhotra
- Division of Critical Care Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA
- Department of Neurology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA
- Department of Neurological Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA
| |
Collapse
|
12
|
Li S. Stroke Recovery Is a Journey: Prediction and Potentials of Motor Recovery after a Stroke from a Practical Perspective. Life (Basel) 2023; 13:2061. [PMID: 37895442 PMCID: PMC10608684 DOI: 10.3390/life13102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/01/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Stroke recovery is a journey. Stroke survivors can face many consequences that may last the rest of their lives. Assessment of initial impairments allows reasonable prediction of biological spontaneous recovery at 3 to 6 months for a majority of survivors. In real-world clinical practice, stroke survivors continue to improve their motor function beyond the spontaneous recovery period, but management plans for maximal recovery are not well understood. A model within the international classification of functioning (ICF) theoretical framework is proposed to systematically identify opportunities and potential barriers to maximize and realize the potentials of functional recovery from the acute to chronic stages and to maintain their function in the chronic stages. Health conditions of individuals, medical and neurological complications can be optimized under the care of specialized physicians. This permits stroke survivors to participate in various therapeutic interventions. Sufficient doses of appropriate interventions at the right time is critical for stroke motor rehabilitation. It is important to highlight that combining interventions is likely to yield better clinical outcomes. Caregivers, including family members, can assist and facilitate targeted therapeutic exercises for these individuals and can help stroke survivors comply with medical plans (medications, visits), and provide emotional support. With health optimization, comprehensive rehabilitation, support from family and caregivers and a commitment to a healthy lifestyle, many stroke survivors can overcome barriers and achieve potentials of maximum recovery and maintain their motor function in chronic stages. This ICF recovery model is likely to provide a guidance through the journey to best achieve stroke recovery potentials.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center—Houston, Houston, TX 77025, USA;
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| |
Collapse
|
13
|
de Andrade FPPV, de Freitas SMSF, Giangiardi VF, Banjai RM, Alouche SR. Aiming Movement After Stroke: Do Time-Since-Injury and Impairment Severity Influence Ipsilateral Performance? Percept Mot Skills 2023; 130:2069-2086. [PMID: 37442542 DOI: 10.1177/00315125231189339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
In this cross-sectional study, we evaluated post-stroke ipsilesional (less affected) upper limb aiming movement in individuals whose strokes were either 2-5 months (n = 16) or >6 months (n = 17) prior to our testing; we also compared both stroke groups to a control group of healthy individuals (n = 14). We evaluated the participants' level of movement impairment in the contralateral upper limb from the site of the cerebrovascular lesion as an indicator of the severity of the participants' impairment. Participants were asked to move a stylus on a tablet with their ipsilesional upper limb according to a visual stimulus seen on a monitor. Those who had experienced more recent strokes showed poorer movement planning and execution, regardless of their impairment level. Since the stroke occurred, the amount of time was significantly associated with the ipsilesional aiming movement, and improvement over time brought performance levels closer to that of healthy controls.
Collapse
Affiliation(s)
- Flávia Priscila Paiva Vianna de Andrade
- Master's and Doctoral Program in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, Brazil
- School of Physical Therapy, Universidade do Vale do Sapucaí, Pouso Alegre, Brazil
| | | | - Vivian Farahte Giangiardi
- Master's and Doctoral Program in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, Brazil
- School of Physical Therapy, Universidade de Ribeirão Preto, Guarujá, Brazil
| | - Renata Morales Banjai
- Master's and Doctoral Program in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, Brazil
- School of Physical Therapy, Universidade de Ribeirão Preto, Guarujá, Brazil
- School of Physical Therapy, Universidade Santa Cecília, Santos, Brazil
| | - Sandra Regina Alouche
- Master's and Doctoral Program in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Li S, Ghuman J, Gonzalez-Buonomo J, Huang X, Malik A, Yozbatiran N, Francisco GE, Wu H, Frontera WR. Does Spasticity Correlate With Motor Impairment in the Upper and Lower Limbs in Ambulatory Chronic Stroke Survivors? Am J Phys Med Rehabil 2023; 102:907-912. [PMID: 37026840 PMCID: PMC10522784 DOI: 10.1097/phm.0000000000002247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
OBJECTIVE This study aimed to explore correlations between spasticity and motor impairments in the upper and lower limbs in ambulatory chronic stroke survivors. DESIGN We performed clinical assessments in 28 ambulatory chronic stroke survivors with spastic hemiplegia (female: 12; male: 16; mean ages = 57.8 ± 11.8 yrs; 76 ± 45 mos after stroke). RESULTS In the upper limb, spasticity index and Fugl-Meyer Motor Assessment showed a significant correlation. Spasticity index for the upper limb showed a significant negative correlation with handgrip strength of the affected side ( r = -0.4, P = 0.035) while Fugl-Meyer Motor Assessment for the upper limb had a significant positive correlation ( r = 0.77, P < 0.001). In the LL, no correlation was found between SI_LL and FMA_LL. There was a significant and high correlation between timed up and go test and gait speed ( r = 0.93, P < 0.001). Gait speed was positively correlated with Spasticity index for the lower limb ( r = 0.48, P = 0.01), and negatively correlated with Fugl-Meyer Motor Assessment for the lower limb ( r = -0.57, P = 0.002). Age and time since stroke showed no association in analyses for both upper limb and lower limb. CONCLUSIONS Spasticity has a negative correlation on motor impairment in the upper limb but not in the lower limb. Motor impairment was significantly correlated with grip strength in the upper limb and gait performance in the lower limb of ambulatory stroke survivors.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center, Houston
- TIRR Memorial Hermann Hospital, Houston
| | | | | | - Xinran Huang
- Department of Biostatistics and Data Science, The University of Texas Health Science Center, Houston
| | - Aila Malik
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center, Houston
- TIRR Memorial Hermann Hospital, Houston
| | - Nuray Yozbatiran
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center, Houston
- TIRR Memorial Hermann Hospital, Houston
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center, Houston
- TIRR Memorial Hermann Hospital, Houston
| | - Hulin Wu
- Department of Biostatistics and Data Science, The University of Texas Health Science Center, Houston
| | - Walter R Frontera
- Department of Physical Medicine, Rehabilitation, and Sports Medicine, Department of Physiology, University of Puerto Rico School of Medicine, PR
| |
Collapse
|
15
|
Reibelt A, Quandt F, Schulz R. Posterior parietal cortical areas and recovery after motor stroke: a scoping review. Brain Commun 2023; 5:fcad250. [PMID: 37810465 PMCID: PMC10551853 DOI: 10.1093/braincomms/fcad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Brain imaging and electrophysiology have significantly enhanced our current understanding of stroke-related changes in brain structure and function and their implications for recovery processes. In the motor domain, most studies have focused on key motor areas of the frontal lobe including the primary and secondary motor cortices. Time- and recovery-dependent alterations in regional anatomy, brain activity and inter-regional connectivity have been related to recovery. In contrast, the involvement of posterior parietal cortical areas in stroke recovery is poorly understood although these regions are similarly important for important aspects of motor functioning in the healthy brain. Just in recent years, the field has increasingly started to explore to what extent posterior parietal cortical areas might undergo equivalent changes in task-related activation, regional brain structure and inter-regional functional and structural connectivity after stroke. The aim of this scoping review is to give an update on available data covering these aspects and thereby providing novel insights into parieto-frontal interactions for systems neuroscience stroke recovery research in the upper limb motor domain.
Collapse
Affiliation(s)
- Antonia Reibelt
- Experimental Electrophysiology and Neuroimaging Lab, Department of Neurology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Fanny Quandt
- Experimental Electrophysiology and Neuroimaging Lab, Department of Neurology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Robert Schulz
- Experimental Electrophysiology and Neuroimaging Lab, Department of Neurology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
16
|
Vidaurre C, Irastorza-Landa N, Sarasola-Sanz A, Insausti-Delgado A, Ray AM, Bibián C, Helmhold F, Mahmoud WJ, Ortego-Isasa I, López-Larraz E, Lozano Peiteado H, Ramos-Murguialday A. Challenges of neural interfaces for stroke motor rehabilitation. Front Hum Neurosci 2023; 17:1070404. [PMID: 37789905 PMCID: PMC10543821 DOI: 10.3389/fnhum.2023.1070404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
More than 85% of stroke survivors suffer from different degrees of disability for the rest of their lives. They will require support that can vary from occasional to full time assistance. These conditions are also associated to an enormous economic impact for their families and health care systems. Current rehabilitation treatments have limited efficacy and their long-term effect is controversial. Here we review different challenges related to the design and development of neural interfaces for rehabilitative purposes. We analyze current bibliographic evidence of the effect of neuro-feedback in functional motor rehabilitation of stroke patients. We highlight the potential of these systems to reconnect brain and muscles. We also describe all aspects that should be taken into account to restore motor control. Our aim with this work is to help researchers designing interfaces that demonstrate and validate neuromodulation strategies to enforce a contingent and functional neural linkage between the central and the peripheral nervous system. We thus give clues to design systems that can improve or/and re-activate neuroplastic mechanisms and open a new recovery window for stroke patients.
Collapse
Affiliation(s)
- Carmen Vidaurre
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Ikerbasque Science Foundation, Bilbao, Spain
| | | | | | | | - Andreas M. Ray
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Carlos Bibián
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Florian Helmhold
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Wala J. Mahmoud
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Eduardo López-Larraz
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Bitbrain, Zaragoza, Spain
| | | | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Zhang K, Wang H, Wang X, Xiong X, Tong S, Sun C, Zhu B, Xu Y, Fan M, Sun L, Guo X. Neuroimaging prognostic factors for treatment response to motor imagery training after stroke. Cereb Cortex 2023; 33:9504-9513. [PMID: 37376787 DOI: 10.1093/cercor/bhad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The efficacy of motor imagery training for motor recovery is well acknowledged, but with substantial inter-individual variability in stroke patients. To help optimize motor imagery training therapy plans and screen suitable patients, this study aimed to explore neuroimaging biomarkers explaining variability in treatment response. Thirty-nine stroke patients were randomized to a motor imagery training group (n = 22, received a combination of conventional rehabilitation therapy and motor imagery training) and a control group (n = 17, received conventional rehabilitation therapy and health education) for 4 weeks of interventions. Their demography and clinical information, brain lesion from structural MRI, spontaneous brain activity and connectivity from rest fMRI, and sensorimotor brain activation from passive motor task fMRI were acquired to identify prognostic factors. We found that the variability of outcomes from sole conventional rehabilitation therapy could be explained by the reserved sensorimotor neural function, whereas the variability of outcomes from motor imagery training + conventional rehabilitation therapy was related to the spontaneous activity in the ipsilesional inferior parietal lobule and the local connectivity in the contralesional supplementary motor area. The results suggest that additional motor imagery training treatment is also efficient for severe patients with damaged sensorimotor neural function, but might be more effective for patients with impaired motor planning and reserved motor imagery.
Collapse
Affiliation(s)
- Kexu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hewei Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Xu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Xiong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changhui Sun
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Bing Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Yiming Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China
| | - Limin Sun
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Xiaoli Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Abdullahi A, Wong TWL, Ng SSM. Variation in the rate of recovery in motor function between the upper and lower limbs in patients with stroke: some proposed hypotheses and their implications for research and practice. Front Neurol 2023; 14:1225924. [PMID: 37602245 PMCID: PMC10435271 DOI: 10.3389/fneur.2023.1225924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Background Stroke results in impairment of motor function of both the upper and lower limbs. However, although it is debatable, motor function of the lower limb is believed to recover faster than that of the upper limb. The aim of this paper is to propose some hypotheses to explain the reasons for that, and discuss their implications for research and practice. Method We searched PubMED, Web of Science, Scopus, Embase and CENTRAL using the key words, stroke, cerebrovascular accident, upper extremity, lower extremity, and motor recovery for relevant literature. Result The search generated a total of 2,551 hits. However, out of this number, 51 duplicates were removed. Following review of the relevant literature, we proposed four hypotheses: natural instinct for walking hypothesis, bipedal locomotion hypothesis, central pattern generators (CPGs) hypothesis and role of spasticity hypothesis on the subject matter. Conclusion We opine that, what may eventually account for the difference, is the frequency of use of the affected limb or intensity of the rehabilitation intervention. This is because, from the above hypotheses, the lower limb seems to be used more frequently. When limbs are used frequently, this will result in use-dependent plasticity and eventual recovery. Thus, rehabilitation techniques that involve high repetitive tasks practice such as robotic rehabilitation, Wii gaming and constraint induced movement therapy should be used during upper limb rehabilitation.
Collapse
|
19
|
Sardesai S, Solomon JM, Ali AS, Arumugam A, Nazareth ED, Pai AS, Guddattu V, Kumaran D S. Do kinematic measures, added to clinical measures, better predict upper extremity motor impairments at three months post-stroke? J Stroke Cerebrovasc Dis 2023; 32:107245. [PMID: 37453408 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
OBJECTIVE Predicting post-stroke recovery through prediction models is crucial for choosing appropriate treatment options. However, the existing models predominantly incorporate clinical measures although measurement of movement quality using kinematic measures is essential for distinguishing various types of recovery. Thus, this study aimed at determining if, by considering varied aspects of recovery, adding kinematic measurements over clinical measures would better predict upper extremity (UE) motor impairments at three months post-stroke. MATERIALS AND METHODS Eighty-nine stroke survivors (58.9 ± 11.8 years) were assessed for clinical predictors between 4 and 7 days, kinematic predictors within 1 month, and the impairment outcome of the Fugl Meyer Assessment of the UE (FM-UE) at three months post-stroke. Significant predictors (p<0.05) with a variation inflation factor (VIF) <10 were selected for model development. After performing further step-wise selection, three models incorporating clinical outcomes, kinematic measurements, and a combination of these two, respectively, were formulated. RESULTS The clinical model (R2 = 0.70) included shoulder abduction finger extension (SAFE) scores, the National Institutes of Health Stroke Scale (NIHSS), and the Montreal Cognitive Assessment (MoCA). The kinematic model (R2 = 0.34) included total displacement, total time, and reaction time. The combined model (R2 = 0.72) comprised of SAFE score and shoulder flexion. All the models had a minimal mean squared error on cross validation, which indicated a good validity. CONCLUSION The performance of clinical and combined prediction models for predicting three-month post-stroke UE motor recovery was nearly similar. However, in order to detect minimal changes over time and to understand all aspects of motor recovery, there is a need to add instrument-based kinematic measures.
Collapse
Affiliation(s)
- Sanjukta Sardesai
- PhD Scholar, Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - John M Solomon
- Additional Professor, Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - A Sulfikar Ali
- PhD Scholar, Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ashokan Arumugam
- Associate Professor, Department of Physiotherapy, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Elton Dylan Nazareth
- PhD Scholar, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Aparna S Pai
- Professor, Department of Neurology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104
| | - Vasudeva Guddattu
- Associate Professor, Department of Data Sciences, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, 576104
| | - Senthil Kumaran D
- Additional Professor, Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
20
|
Zu W, Huang X, Xu T, Du L, Wang Y, Wang L, Nie W. Machine learning in predicting outcomes for stroke patients following rehabilitation treatment: A systematic review. PLoS One 2023; 18:e0287308. [PMID: 37379289 DOI: 10.1371/journal.pone.0287308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/03/2023] [Indexed: 06/30/2023] Open
Abstract
OBJECTIVE This review aimed to summarize the use of machine learning for predicting the potential benefits of stroke rehabilitation treatments, to evaluate the risk of bias of predictive models, and to provide recommendations for future models. MATERIALS AND METHODS This systematic review was conducted in accordance with the PRISMA statement and the CHARMS checklist. The PubMed, Embase, Cochrane Library, Scopus, and CNKI databases were searched up to April 08, 2023. The PROBAST tool was used to assess the risk of bias of the included models. RESULTS Ten studies within 32 models met our inclusion criteria. The optimal AUC value of the included models ranged from 0.63 to 0.91, and the optimal R2 value ranged from 0.64 to 0.91. All of the included models were rated as having a high or unclear risk of bias, and most of them were downgraded due to inappropriate data sources or analysis processes. DISCUSSION AND CONCLUSION There remains much room for improvement in future modeling studies, such as high-quality data sources and model analysis. Reliable predictive models should be developed to improve the efficacy of rehabilitation treatment by clinicians.
Collapse
Affiliation(s)
- Wanting Zu
- School of Nursing, Jilin University, Changchun, China
| | - Xuemiao Huang
- School of Nursing, Jilin University, Changchun, China
| | - Tianxin Xu
- School of Nursing, Jilin University, Changchun, China
| | - Lin Du
- School of Nursing, Jilin University, Changchun, China
| | - Yiming Wang
- School of Nursing, Jilin University, Changchun, China
| | - Lisheng Wang
- School of Nursing, Jilin University, Changchun, China
| | - Wenbo Nie
- School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
21
|
Chen ZJ, Li YA, Xia N, Gu MH, Xu J, Huang XL. Effects of repetitive peripheral magnetic stimulation for the upper limb after stroke: Meta-analysis of randomized controlled trials. Heliyon 2023; 9:e15767. [PMID: 37180919 PMCID: PMC10172780 DOI: 10.1016/j.heliyon.2023.e15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Repetitive peripheral magnetic stimulation (rPMS) can stimulate profound neuromuscular tissues painlessly to evoke action potentials in motor axons and induce muscle contraction for treating neurological conditions. It has been increasingly used in stroke rehabilitation as an easy-to-administer approach for therapeutic neuromodulation. Objective We performed this meta-analysis of randomized controlled trials to systematically evaluate the effects of rPMS for the upper limb in patients with stroke, including motor impairment, muscle spasticity, muscle strength, and activity limitation outcomes. Methods The meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. PubMed, EMBASE, Web of Science, Cochrane Library, and Physiotherapy Evidence Database (PEDro) were searched for articles published before June 2022. Forest plots were employed to estimate the pooled results of the included studies, and the I2 statistical analysis was used to identify the source of heterogeneity. Publication bias was examined by Egger's regression tests or visual inspection of the funnel plots. Results The database searches yielded 1052 potential eligible literature; of them, five randomized controlled trials met the eligible criteria, involving a total of 188 participants. Patients in the rPMS group showed better improvement in motor impairment as measured by the FM-UE (MD: 5.39 [95% CI, 4.26 to 6.52]; P < 0.001; I2 = 0%) compared with the control group. Among the secondary outcomes, no difference was found in the improvement of muscle spasticity (SMD: 0.36 [95% CI, -0.05 to 0.77]; P = 0.08; I2 = 41%). There was a significant difference in the proximal (SMD: 0.58 [95% CI, 0.10 to 1.06]; P = 0.02; I2 = 0%) but not the distal muscle strength (SMD: 1.18 [95% CI, -1.00 to 3.36]; P = 0.29; I2 = 93%). Moreover, the activity limitation outcomes were significantly improved with rPMS intervention (SMD: 0.59 [95% CI, 0.08 to 1.10]; P = 0.02; I2 = 0%). Conclusion This meta-analysis showed that rPMS might improve upper limb motor impairment, proximal muscle strength, and activity limitation outcomes but not muscle spasticity and distal strength in patients after stroke. Due to the limited number of studies, further randomized clinical trials are still warranted for more accurate interpretation and clinical recommendation.
Collapse
Affiliation(s)
- Ze-Jian Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, 430030, China
| | - Yang-An Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, 430030, China
| | - Nan Xia
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, 430030, China
| | - Ming-Hui Gu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, 430030, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, 430030, China
| | - Xiao-Lin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, 430030, China
| |
Collapse
|
22
|
Pila O, Duret C, Koeppel T, Jamin P. Performance-Based Robotic Training in Individuals with Subacute Stroke: Differences between Responders and Non-Responders. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094304. [PMID: 37177508 PMCID: PMC10181678 DOI: 10.3390/s23094304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
The high variability of upper limb motor recovery with robotic training (RT) in subacute stroke underscores the need to explore differences in responses to RT. We explored differences in baseline characteristics and the RT dose between responders (ΔFugl-Meyer Assessment (FMA) score ≥ 9 points; n = 20) and non-responders (n = 16) in people with subacute stroke (mean [SD] poststroke time at baseline, 54 (26) days, baseline FMA score, 23 (17) points) who underwent 16 RT sessions combined with conventional therapies. Baseline characteristics were compared between groups. During RT sessions, the actual practice time (%), number of movements performed, and total distance covered (cm) in assisted and unassisted modalities were compared between groups. At baseline, participant characteristics and FMA scores did not differ between groups. During the RT, non-responders increased practice time (+15%; p = 0.02), performed more movements (+285; p = 0.004), and covered more distance (+4037 cm; p < 10-3), with no difference between physical modalities. In contrast, responders decreased practice time (-21%; p = 0.01) and performed fewer movements (-338; p = 0.03) in the assisted modality while performing more movements (+328; p < 0.05) and covering a greater distance (+4779 cm; p = 0.01) in unassisted modalities. Despite a large amount of motor practice, motor outcomes did not improve in non-responders compared to responders: the difficulty level in RT may have been too low for them. Future studies should combine robot-based parameters to describe the treatment dose, especially in people with severe-to-moderate arm paresis, to optimize the RT and improve the recovery prognosis.
Collapse
Affiliation(s)
- Ophélie Pila
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Neurorééducation, 77310 Boissise-Le-Roi, France
| | - Christophe Duret
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Neurorééducation, 77310 Boissise-Le-Roi, France
| | - Typhaine Koeppel
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Neurorééducation, 77310 Boissise-Le-Roi, France
| | - Pascal Jamin
- Institut Robert Merle d'Aubigné, Rééducation et Appareillage, 94460 Valenton, France
| |
Collapse
|
23
|
Kolmos M, Madsen MJ, Liu ML, Karabanov A, Johansen KL, Thielscher A, Gandrup K, Lundell H, Fuglsang S, Thade E, Christensen H, Iversen HK, Siebner HR, Kruuse C. Patient-tailored transcranial direct current stimulation to improve stroke rehabilitation: study protocol of a randomized sham-controlled trial. Trials 2023; 24:216. [PMID: 36949490 PMCID: PMC10035265 DOI: 10.1186/s13063-023-07234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Many patients do not fully regain motor function after ischemic stroke. Transcranial direct current stimulation (TDCS) targeting the motor cortex may improve motor outcome as an add-on intervention to physical rehabilitation. However, beneficial effects on motor function vary largely among patients within and across TDCS trials. In addition to a large heterogeneity of study designs, this variability may be caused by the fact that TDCS was given as a one-size-fits-all protocol without accounting for anatomical differences between subjects. The efficacy and consistency of TDCS might be improved by a patient-tailored design that ensures precise targeting of a physiologically relevant area with an appropriate current strength. METHODS In a randomized, double-blinded, sham-controlled trial, patients with subacute ischemic stroke and residual upper-extremity paresis will receive two times 20 min of focal TDCS of ipsilesional primary motor hand area (M1-HAND) during supervised rehabilitation training three times weekly for 4 weeks. Anticipated 60 patients will be randomly assigned to active or sham TDCS of ipsilesional M1-HAND, using a central anode and four equidistant cathodes. The placement of the electrode grid on the scalp and current strength at each cathode will be personalized based on individual electrical field models to induce an electrical current of 0.2 V/m in the cortical target region resulting in current strengths between 1 and 4 mA. Primary endpoint will be the difference in change of Fugl-Meyer Assessment of Upper Extremity (FMA-UE) score between active TDCS and sham at the end of the intervention. Exploratory endpoints will include UE-FMA at 12 weeks. Effects of TDCS on motor network connectivity and interhemispheric inhibition will be assessed with functional MRI and transcranial magnetic stimulation. DISCUSSION The study will show the feasibility and test the efficacy of personalized, multi-electrode anodal TDCS of M1-HAND in patients with subacute stroke patients with upper-extremity paresis. Concurrent multimodal brain mapping will shed light into the mechanisms of action of therapeutic personalized TDCS of M1-HAND. Together, the results from this trial may inform future personalized TDCS studies in patients with focal neurological deficits after stroke.
Collapse
Affiliation(s)
- Mia Kolmos
- Neurovascular Research Unit (NVRU), Department of Neurology, Copenhagen University Hospital -Herlev and Gentofte, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Mads Just Madsen
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Marie Louise Liu
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Anke Karabanov
- Department of Nutrition, Exercise and Sport (NEXS), Copenhagen University, Copenhagen, Denmark
| | - Katrine Lyders Johansen
- Department of Physiotherapy and Occupational Therapy, Copenhagen University Hospital Herlev and Gentofte, Copenhagen, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Karen Gandrup
- Department of Radiology, Copenhagen University Hospital Herlev and Gentofte, Copenhagen, Denmark
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Søren Fuglsang
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Esben Thade
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Hanne Christensen
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle Klingenberg Iversen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Kruuse
- Neurovascular Research Unit (NVRU), Department of Neurology, Copenhagen University Hospital -Herlev and Gentofte, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Barth J, Lohse KR, Bland MD, Lang CE. Predicting later categories of upper limb activity from earlier clinical assessments following stroke: an exploratory analysis. J Neuroeng Rehabil 2023; 20:24. [PMID: 36810072 PMCID: PMC9945671 DOI: 10.1186/s12984-023-01148-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Accelerometers allow for direct measurement of upper limb (UL) activity. Recently, multi-dimensional categories of UL performance have been formed to provide a more complete measure of UL use in daily life. Prediction of motor outcomes after stroke have tremendous clinical utility and a next step is to explore what factors might predict someone's subsequent UL performance category. PURPOSE To explore how different machine learning techniques can be used to understand how clinical measures and participant demographics captured early after stroke are associated with the subsequent UL performance categories. METHODS This study analyzed data from two time points from a previous cohort (n = 54). Data used was participant characteristics and clinical measures from early after stroke and a previously established category of UL performance at a later post stroke time point. Different machine learning techniques (a single decision tree, bagged trees, and random forests) were used to build predictive models with different input variables. Model performance was quantified with the explanatory power (in-sample accuracy), predictive power (out-of-bag estimate of error), and variable importance. RESULTS A total of seven models were built, including one single decision tree, three bagged trees, and three random forests. Measures of UL impairment and capacity were the most important predictors of the subsequent UL performance category, regardless of the machine learning algorithm used. Other non-motor clinical measures emerged as key predictors, while participant demographics predictors (with the exception of age) were generally less important across the models. Models built with the bagging algorithms outperformed the single decision tree for in-sample accuracy (26-30% better classification) but had only modest cross-validation accuracy (48-55% out of bag classification). CONCLUSIONS UL clinical measures were the most important predictors of the subsequent UL performance category in this exploratory analysis regardless of the machine learning algorithm used. Interestingly, cognitive and affective measures emerged as important predictors when the number of input variables was expanded. These results reinforce that UL performance, in vivo, is not a simple product of body functions nor the capacity for movement, instead being a complex phenomenon dependent on many physiological and psychological factors. Utilizing machine learning, this exploratory analysis is a productive step toward the prediction of UL performance. Trial registration NA.
Collapse
Affiliation(s)
- Jessica Barth
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Keith R Lohse
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marghuretta D Bland
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine E Lang
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA.
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
25
|
Baghi R, Kim D, Koh K, Zhang LQ. Characterization of the influence of the dominant tract on hand closing post stroke based on the Fugl-Meyer score. Sci Rep 2023; 13:2611. [PMID: 36788262 PMCID: PMC9929234 DOI: 10.1038/s41598-023-28290-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
While stroke survivors with moderate or mild impairment are typically able to open their hand at will, those with severe impairment cannot. Abnormal synergies govern the arm and hand in stoke survivors with severe impairment, so hand opening, which is required to overcome the working synergy, is an extremely difficult task for them to achieve. It is universally accepted that alternative tracts including the cortico-reticulospinal tract (CRST), employed in the case that the corticospinal tract (CST) is damaged by stroke, brings about such abnormal synergies. Here we note that hand closing is enabled by alternative tracts as well as the CST, and a research question arises: Does motor characteristics while closing the hand depend on the integrity of the CST? In this study, we evaluate the abilities of 17 stroke survivors to flex and relax the metacarpophalangeal (MCP) joints and investigate whether motor characteristics can be distinguished based on CST integrity which is estimated using upper-extremity Fugl-Meyer (UEFM) scores. UEFM scores have been perceived as an indirect indicator of CST integrity. We found that participants with the UEFM score above a certain value, who are assumed to use the CST, moves the MCP joints more smoothly (P < 0.05) and activates the flexors to flex the joints faster (P < 0.05), in comparison to participants with low UEFM scores, who are assumed to preferentially use alternative tracts. The results imply that use of alternative tracts (i.e. the CRST) results in a degradation in movement smoothness and slow activation of MCP flexors. We present evidence that responses of flexors of the MCP joints following stroke depend on the degree of impairment which is hypothesized to originate from preferentially use of different neural motor pathways.
Collapse
Affiliation(s)
- Raziyeh Baghi
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, MD, USA
| | | | - Kyung Koh
- Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Li-Qun Zhang
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, MD, USA
- Department of Orthopedics, University of Maryland, Baltimore, MD, USA
- Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
26
|
Götz J, Wieters F, Fritz VJ, Käsgen O, Kalantari A, Fink GR, Aswendt M. Temporal and Spatial Gene Expression Profile of Stroke Recovery Genes in Mice. Genes (Basel) 2023; 14:454. [PMID: 36833381 PMCID: PMC9956317 DOI: 10.3390/genes14020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Stroke patients show some degree of spontaneous functional recovery, but this is not sufficient to prevent long-term disability. One promising approach is to characterize the dynamics of stroke recovery genes in the lesion and distant areas. We induced sensorimotor cortex lesions in adult C57BL/6J mice using photothrombosis and performed qPCR on selected brain areas at 14, 28, and 56 days post-stroke (P14-56). Based on the grid walk and rotating beam test, the mice were classified into two groups. The expression of cAMP pathway genes Adora2a, Pde10a, and Drd2, was higher in poor- compared to well-recovered mice in contralesional primary motor cortex (cl-MOp) at P14&56 and cl-thalamus (cl-TH), but lower in cl-striatum (cl-Str) at P14 and cl-primary somatosensory cortex (cl-SSp) at P28. Plasticity and axonal sprouting genes, Lingo1 and BDNF, were decreased in cl-MOp at P14 and cl-Str at P28 and increased in cl-SSp at P28 and cl-Str at P14, respectively. In the cl-TH, Lingo1 was increased, and BDNF decreased at P14. Atrx, also involved in axonal sprouting, was only increased in poor-recovered mice in cl-MOp at P28. The results underline the gene expression dynamics and spatial variability and challenge existing theories of restricted neural plasticity.
Collapse
Affiliation(s)
- Jan Götz
- Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Department of Neurology, University Hospital Cologne, 50931 Cologne, Germany
| | - Frederique Wieters
- Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Department of Neurology, University Hospital Cologne, 50931 Cologne, Germany
| | - Veronika J. Fritz
- Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Department of Neurology, University Hospital Cologne, 50931 Cologne, Germany
| | - Olivia Käsgen
- Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Department of Neurology, University Hospital Cologne, 50931 Cologne, Germany
| | - Aref Kalantari
- Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Department of Neurology, University Hospital Cologne, 50931 Cologne, Germany
| | - Gereon R. Fink
- Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Department of Neurology, University Hospital Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425 Juelich, Germany
| | - Markus Aswendt
- Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Department of Neurology, University Hospital Cologne, 50931 Cologne, Germany
| |
Collapse
|
27
|
Kern K, Vukelić M, Guggenberger R, Gharabaghi A. Oscillatory neurofeedback networks and poststroke rehabilitative potential in severely impaired stroke patients. Neuroimage Clin 2023; 37:103289. [PMID: 36525745 PMCID: PMC9791174 DOI: 10.1016/j.nicl.2022.103289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Motor restoration after severe stroke is often limited. However, some of the severely impaired stroke patients may still have a rehabilitative potential. Biomarkers that identify these patients are sparse. Eighteen severely impaired chronic stroke patients with a lack of volitional finger extension participated in an EEG study. During sixty-six trials of kinesthetic motor imagery, a brain-machine interface turned event-related beta-band desynchronization of the ipsilesional sensorimotor cortex into opening of the paralyzed hand by a robotic orthosis. A subgroup of eight patients participated in a subsequent four-week rehabilitation training. Changes of the movement extent were captured with sensors which objectively quantified even discrete improvements of wrist movement. Albeit with the same motor impairment level, patients could be differentiated into two groups, i.e., with and without task-related increase of bilateral cortico-cortical phase synchronization between frontal/premotor and parietal areas. This fronto-parietal integration (FPI) was associated with a significantly higher volitional beta modulation range in the ipsilesional sensorimotor cortex. Following the four-week training, patients with FPI showed significantly higher improvement in wrist movement than those without FPI. Moreover, only the former group improved significantly in the upper extremity Fugl-Meyer-Assessment score. Neurofeedback-related long-range oscillatory coherence may differentiate severely impaired stroke patients with regard to their rehabilitative potential, a finding that needs to be confirmed in larger patient cohorts.
Collapse
Affiliation(s)
- Kevin Kern
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany
| | - Mathias Vukelić
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany
| | - Robert Guggenberger
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany.
| |
Collapse
|
28
|
Serrano-López Terradas PA, Criado Ferrer T, Jakob I, Calvo-Arenillas JI. Quo Vadis, Amadeo Hand Robot? A Randomized Study with a Hand Recovery Predictive Model in Subacute Stroke. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:690. [PMID: 36613027 PMCID: PMC9820043 DOI: 10.3390/ijerph20010690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Early identification of hand-prognosis-factors at patient's admission could help to select optimal synergistic rehabilitation programs based on conventional (COHT) or robot-assisted (RAT) therapies. METHODS In this bi-phase cross-over prospective study, 58 stroke patients were enrolled in two randomized groups. Both groups received same treatments A + B (A = 36 COHT sessions for 10 weeks; B = 36 RAT sessions for 10 weeks; 45 min/session; 3 to 5 times per week). Outcome repeated measures by blinded assessors included FMUL, BBT, NHPT, Amadeo Robot (AHR) and AMPS. Statistical comparisons by Pearson's rank correlations and one-way analyses of variance (ANOVA) with Bonferroni posthoc tests, with size effects and statistic power, were reported. Multiple backward linear regression models were used to predict the variability of sensorimotor and functional outcomes. RESULTS Isolated COHT or RAT treatments improved hand function at 3 months. While "higher hand paresis at admission" affected to sensorimotor and functional outcomes, "laterality of injury" did not seem to affect the recovery of the hand. Kinetic-kinematic parameters of robot allowed creating a predictive model of hand recovery at 3 and 6 months from 1st session. CONCLUSIONS Hand impairment is an important factor in define sensorimotor and functional outcomes, but not lesion laterality, to predict hand recovery.
Collapse
Affiliation(s)
- Pedro Amalio Serrano-López Terradas
- Robotics Unit, Brain Damage Service, Hospital Beata María Ana, 28007 Madrid, Spain
- Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
- Occupational Thinks Research Group, Occupational Therapy Department, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Teresa Criado Ferrer
- Robotics Unit, Brain Damage Service, Hospital Beata María Ana, 28007 Madrid, Spain
| | | | | |
Collapse
|
29
|
Wenk N, Buetler KA, Penalver-Andres J, Müri RM, Marchal-Crespo L. Naturalistic visualization of reaching movements using head-mounted displays improves movement quality compared to conventional computer screens and proves high usability. J Neuroeng Rehabil 2022; 19:137. [PMID: 36494668 PMCID: PMC9733395 DOI: 10.1186/s12984-022-01101-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/25/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The relearning of movements after brain injury can be optimized by providing intensive, meaningful, and motivating training using virtual reality (VR). However, most current solutions use two-dimensional (2D) screens, where patients interact via symbolic representations of their limbs (e.g., a cursor). These 2D screens lack depth cues, potentially deteriorating movement quality and increasing cognitive load. Head-mounted displays (HMDs) have great potential to provide naturalistic movement visualization by incorporating improved depth cues, reduce visuospatial transformations by rendering movements in the space where they are performed, and preserve eye-hand coordination by showing an avatar-with immersive VR (IVR)-or the user's real body-with augmented reality (AR). However, elderly populations might not find these novel technologies usable, hampering potential motor and cognitive benefits. METHODS We compared movement quality, cognitive load, motivation, and system usability in twenty elderly participants (>59 years old) while performing a dual motor-cognitive task with different visualization technologies: IVR HMD, AR HMD, and a 2D screen. We evaluated participants' self-reported cognitive load, motivation, and usability using questionnaires. We also conducted a pilot study with five brain-injured patients comparing the visualization technologies while using an assistive device. RESULTS Elderly participants performed straighter, shorter duration, and smoother movements when the task was visualized with the HMDs than screen. The IVR HMD led to shorter duration movements than AR. Movement onsets were shorter with IVR than AR, and shorter for both HMDs than the screen, potentially indicating facilitated reaction times due to reduced cognitive load. No differences were found in the questionnaires regarding cognitive load, motivation, or usability between technologies in elderly participants. Both HMDs proved high usability in our small sample of patients. CONCLUSIONS HMDs are a promising technology to be incorporated into neurorehabilitation, as their more naturalistic movement visualization improves movement quality compared to conventional screens. HMDs demonstrate high usability, without decreasing participants' motivation, and might potentially lower cognitive load. Our preliminary clinical results suggest that brain-injured patients may especially benefit from more immersive technologies. However, larger patient samples are needed to draw stronger conclusions.*.
Collapse
Affiliation(s)
- Nicolas Wenk
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010, Bern, Switzerland
| | - Karin A Buetler
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010, Bern, Switzerland
| | - Joaquin Penalver-Andres
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010, Bern, Switzerland
| | - René M Müri
- Gerontechnology and Rehabilitation, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Neurology, University Neurorehabilitation, University Hospital Bern (Inselspital), University of Bern, Bern, Switzerland
| | - Laura Marchal-Crespo
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010, Bern, Switzerland.
- Department of Cognitive Robotics, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| |
Collapse
|
30
|
Buyandelger B, Chen YW, Li YC, Lin CJ, Chen CL, Lin KC. Predictors for Upper-Limb Functional Recovery Trajectory in Individuals Receiving Stroke Rehabilitation: A Secondary Analysis of Data from Randomized Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16514. [PMID: 36554396 PMCID: PMC9778967 DOI: 10.3390/ijerph192416514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The objective of the study was to determine predictors for upper-limb functional recovery trajectory after occupational therapy in a population with chronic stroke. METHODS In this retrospective secondary analysis, Fugl-Meyer Assessment-Upper Extremity (FMA-UE) scores before and after intervention and at the 3-month follow-up were used to divide 105 participants with chronic stroke into three groups of recovery trajectories: fast (participants who reached an improvement of 7 after intervention), extended (those who reached an improvement of 7 at follow-up), and limited (those who did not reach an improvement of 7) recovery. Comparisons among the three groups were made in demographics, stroke characteristics, and baseline assessment scores. Logistic regression analyses were performed to determine predictors for group membership. RESULTS Time after onset of stroke and the baseline scores of FMA-UE, Stroke Impact Scale-Hand (SIS-Hand), Wolf Motor Function Test (WMFT)-Quality, WMFT-Time scores, Motor Activity Log-Amount of Use (MAL-AOU), and Motor Activity Log-Quality of Movement (MAL-QOM) scores were significantly different among the three groups. Univariate logistic regressions confirmed that SIS-Hand, WMFT-Quality, WMFT-Time, MAL-AOU, and MAL-QOM were significant predictors for both the fast versus limited recovery group membership and the extended versus limited group membership. Time after stroke onset and baseline FMA-UE were additional predictors for the fast versus limited recovery group membership. CONCLUSION These findings may assist healthcare professionals in making optimal therapeutic decisions and in informing clients and caregivers about the outcomes of stroke recovery.
Collapse
Affiliation(s)
- Batsaikhan Buyandelger
- School of Occupational Therapy, National Taiwan University College of Medicine, 17, F4, Xu-Zhou Road, Taipei 100, Taiwan
| | - Yu-Wen Chen
- School of Occupational Therapy, National Taiwan University College of Medicine, 17, F4, Xu-Zhou Road, Taipei 100, Taiwan
| | - Yi-Chun Li
- School of Occupational Therapy, National Taiwan University College of Medicine, 17, F4, Xu-Zhou Road, Taipei 100, Taiwan
| | - Chia-Jung Lin
- School of Occupational Therapy, National Taiwan University College of Medicine, 17, F4, Xu-Zhou Road, Taipei 100, Taiwan
| | - Chia-Ling Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, 5 Fusing Street, Gueishan District, Taoyuan 333, Taiwan
- Graduate Institute of Early Intervention, College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Gueishan District, Taoyuan 333, Taiwan
| | - Keh-Chung Lin
- School of Occupational Therapy, National Taiwan University College of Medicine, 17, F4, Xu-Zhou Road, Taipei 100, Taiwan
- Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
31
|
Goldsmith J, Kitago T, Garcia de la Garza A, Kundert R, Luft A, Stinear C, Byblow WD, Kwakkel G, Krakauer JW. Arguments for the biological and predictive relevance of the proportional recovery rule. eLife 2022; 11:e80458. [PMID: 36255057 PMCID: PMC9648971 DOI: 10.7554/elife.80458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
The proportional recovery rule (PRR) posits that most stroke survivors can expect to reduce a fixed proportion of their motor impairment. As a statistical model, the PRR explicitly relates change scores to baseline values - an approach that arises in many scientific domains but has the potential to introduce artifacts and flawed conclusions. We describe approaches that can assess associations between baseline and changes from baseline while avoiding artifacts due either to mathematical coupling or to regression to the mean. We also describe methods that can compare different biological models of recovery. Across several real datasets in stroke recovery, we find evidence for non-artifactual associations between baseline and change, and support for the PRR compared to alternative models. We also introduce a statistical perspective that can be used to assess future models. We conclude that the PRR remains a biologically relevant model of stroke recovery.
Collapse
Affiliation(s)
- Jeff Goldsmith
- Department of Biostatistics, Columbia Mailman School of Public HealthNew YorkUnited States
| | - Tomoko Kitago
- Burke Neurological InstituteWhite PlainsUnited States
- Weill Cornell MedicineNew YorkUnited States
| | | | - Robinson Kundert
- Cereneo, Center for Neurology and RehabilitationVitznauSwitzerland
| | - Andreas Luft
- Cereneo, Center for Neurology and RehabilitationVitznauSwitzerland
- Vascular Neurology and Neurorehabilitation, Department of Neurology, University Hospital Zurich, University of ZurichZurichSwitzerland
| | - Cathy Stinear
- Department of Medicine, University of AucklandAucklandNew Zealand
| | - Winston D Byblow
- Department of Exercise Sciences, University of AucklandAucklandNew Zealand
| | - Gert Kwakkel
- Rehabilitation Research Centre, ReadeAmsterdamNetherlands
- Rehabilitation Medicine, Amsterdam UMC - Location VUMC, Amsterdam Movement SciencesAmsterdamNetherlands
| | - John W Krakauer
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Department of Physical Medicine and RehabilitationBaltimoreUnited States
- Santa Fe InstituteSanta Fe NMUnited States
| |
Collapse
|
32
|
Forsyth RJ, Roberts L, Henderson R, Wales L. Rehabilitation after paediatric acquired brain injury: Longitudinal change in content and effect on recovery. Dev Med Child Neurol 2022; 64:1168-1175. [PMID: 35262182 PMCID: PMC9544058 DOI: 10.1111/dmcn.15199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/19/2023]
Abstract
AIM To describe cross-sectional and longitudinal variation in neurorehabilitation content provided to young people after severe paediatric acquired brain injury (pABI) and to relate this to observed functional recovery. METHOD This was an observational study in a cohort of admissions to a residential neurorehabilitation centre. Recovery was described using the Pediatric Evaluation of Disability - Computer Adaptive Testing instrument. Rehabilitation content was measured using the recently described Paediatric Rehabilitation Ingredients Measure (PRISM) and examined using multidimensional scaling. RESULTS The PRISM reveals wide variation in rehabilitation content between and during admissions primarily reflecting proportions of child active practice, child emotional support, and other management of body structure and function. Rehabilitation content is predicted by pre-admission recovery, suggesting therapist decisions in designing rehabilitation programmes are shaped by their initial expectations of recovery. However, significant correlations persist between plausibly-related aspects of delivered therapy and observed post-admission recovery after adjusting for such effects. INTERPRETATION The PRISM approach to the analysis of rehabilitation content shows promise in that it demonstrates significant correlations between plausibly-related aspects of delivered therapy and observed recovery that have been hard to identify with other approaches. However, rigorous, causal analysis will be required to truly understand the contributions of rehabilitation to recovery after pABI. WHAT THIS PAPER ADDS Rehabilitation content varies widely between, and during, admissions for neurorehabilitation after paediatric acquire brain injury. Strong correlations are seen between plausibly-related aspects of rehabilitation content and observed recovery, though careful interpretation is necessary.
Collapse
Affiliation(s)
- Rob J. Forsyth
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
- Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
- The Children’s TrustHarrison Research CentreTadworthUK
| | - Liz Roberts
- The Children’s TrustHarrison Research CentreTadworthUK
| | - Rob Henderson
- School of Mathematics, Statistics and PhysicsNewcastle UniversityNewcastle upon TyneUK
| | - Lorna Wales
- The Children’s TrustHarrison Research CentreTadworthUK
| |
Collapse
|
33
|
Scott SH, Lowrey CR, Brown IE, Dukelow SP. Assessment of Neurological Impairment and Recovery Using Statistical Models of Neurologically Healthy Behavior. Neurorehabil Neural Repair 2022:15459683221115413. [PMID: 35932111 DOI: 10.1177/15459683221115413] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
While many areas of medicine have benefited from the development of objective assessment tools and biomarkers, there have been comparatively few improvements in techniques used to assess brain function and dysfunction. Brain functions such as perception, cognition, and motor control are commonly measured using criteria-based, ordinal scales which can be coarse, have floor/ceiling effects, and often lack the precision to detect change. There is growing recognition that kinematic and kinetic-based measures are needed to quantify impairments following neurological injury such as stroke, in particular for clinical research and clinical trials. This paper will first consider the challenges with using criteria-based ordinal scales to quantify impairment and recovery. We then describe how kinematic-based measures can overcome many of these challenges and highlight a statistical approach to quantify kinematic measures of behavior based on performance of neurologically healthy individuals. We illustrate this approach with a visually-guided reaching task to highlight measures of impairment for individuals following stroke. Finally, there has been considerable controversy about the calculation of motor recovery following stroke. Here, we highlight how our statistical-based approach can provide an effective estimate of impairment and recovery.
Collapse
Affiliation(s)
- Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Catherine R Lowrey
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Ian E Brown
- Kinarm, BKIN Technologies Ltd. Kingston, ON, Canada
| | - Sean P Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
34
|
Lee HH, Sohn MK, Kim DY, Shin YI, Oh GJ, Lee YS, Joo MC, Lee SY, Song MK, Han J, Ahn J, Lee YH, Chang WH, Choi SM, Lee SK, Lee J, Kim YH. Understanding of the Lower Extremity Motor Recovery After First-Ever Ischemic Stroke. Stroke 2022; 53:3164-3172. [PMID: 35713003 DOI: 10.1161/strokeaha.121.038196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We aimed to verify the validity of the proportional recovery model for the lower extremity. METHODS We reviewed clinical data of patients enrolled in the Korean Stroke Cohort for Functioning and Rehabilitation between August 2012 and May 2015. Recovery proportion was calculated as the amount of motor recovery over initial motor impairment, measured as the Fugl-Meyer Assessment of Lower Extremity score. We used the logistic regression method to model the probability of achieving the full Fugl-Meyer Assessment of Lower Extremity score, whereby we considered the ceiling effect of the score. To show the difference in the prevalence of achieving the full Fugl-Meyer Assessment of Lower Extremity score between 3 and 6 months poststroke, we constructed a marginal model through the generalized estimating equation method. We also performed the propensity score matching analysis to show the dependency of recovery proportion on the initial motor deficit at 3 and 6 months poststroke. RESULTS We evaluated 1085 patients. The recovery proportions at 3 and 6 months poststroke were 0.67±0.42 and 0.75±0.39, respectively. A 1-unit decrease in the initial neurological impairment and the age at stroke onset increased the probability of achieving the full Fugl-Meyer Assessment of Lower Extremity score, which occurred at both 3 and 6 months poststroke. The prevalence of those who reach full lower limb motor recovery differs significantly between 3 and 6 months poststroke. We also found out that the recovery proportion at both 3 and 6 months poststroke is determined by the initial motor deficits of the lower limb. These results are not consistent with the proportional recovery model. CONCLUSIONS Our results demonstrated that the proportional recovery model for the lower limb is invalid.
Collapse
Affiliation(s)
- Hyun Haeng Lee
- Department of Rehabilitation Medicine, Konkuk University Medical Center and Konkuk University School of Medicine, Seoul, South Korea (H.H.L., J.L.)
| | - Min Kyun Sohn
- Department of Rehabilitation Medicine, Chungnam National University School of Medicine, Daejeon, South Korea (M.K.S.)
| | - Deog Young Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea (D.Y.K.)
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, South Korea (Y.-I.S.)
| | - Gyung-Jae Oh
- Department of Preventive Medicine, Wonkwang University School of Medicine, Iksan, South Korea. (G.-J.O., Y.-H.L.)
| | - Yang-Soo Lee
- Department of Rehabilitation Medicine, Kyungpook National University School of Medicine, Kyungpook National University Hospital, Daegu, South Korea (Y.-S.L.)
| | - Min Cheol Joo
- Department of Rehabilitation Medicine, Wonkwang University School of Medicine, Iksan, South Korea. (M.C.J.)
| | - So Young Lee
- Department of Rehabilitation Medicine, Jeju National University Hospital, Jeju National University School of Medicine, South Korea (S.Y.L.)
| | - Min-Keun Song
- Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School, Gwangju, South Korea (M.K.S.)
| | - Junhee Han
- Department of Statistics and Institute of Statistics, Hallym University, Chuncheon, South Korea (J.H.)
| | - Jeonghoon Ahn
- Department of Health Convergence, Ewha Womans University, Seoul, South Korea (J.A.)
| | - Young-Hoon Lee
- Department of Preventive Medicine, Wonkwang University School of Medicine, Iksan, South Korea. (G.-J.O., Y.-H.L.)
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (W.H.C., Y.-H.K.)
| | - Soo Mi Choi
- Division of Chronic Disease Prevention, Korea Disease Control and Prevention Agency, Cheongju, South Korea (S.M.C., S.K.L.)
| | - Seon Kui Lee
- Division of Chronic Disease Prevention, Korea Disease Control and Prevention Agency, Cheongju, South Korea (S.M.C., S.K.L.)
| | - Jongmin Lee
- Department of Rehabilitation Medicine, Konkuk University Medical Center and Konkuk University School of Medicine, Seoul, South Korea (H.H.L., J.L.)
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (W.H.C., Y.-H.K.).,Department of Health Science and Technology, Department of Medical Device Management and Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (Y.-H.K.)
| |
Collapse
|
35
|
Performance Comparison of Different Neuroimaging Methods for Predicting Upper Limb Motor Outcomes in Patients after Stroke. Neural Plast 2022; 2022:4203698. [PMID: 35707519 PMCID: PMC9192322 DOI: 10.1155/2022/4203698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Several neuroimaging methods have been proposed to assess the integrity of the corticospinal tract (CST) for predicting recovery of motor function after stroke, including conventional structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI). In this study, we aimed to compare the predicative performance of these methods using different neuroimaging modalities and optimize the prediction protocol for upper limb motor function after stroke in a clinical environment. We assessed 28 first-ever stroke patients with upper limb motor impairment. We used the upper extremity module of the Fugl-Meyer assessment (UE-FM) within 1 month of onset (baseline) and again 3 months poststroke. sMRI (T1- and T2-based) was used to measure CST-weighted lesion load (CST-wLL), and DTI was used to measure the fractional anisotropy asymmetry index (FAAI) and the ratio of fractional anisotropy (rFA). The CST-wLL within 1 month poststroke was closely correlated with upper limb motor outcomes and recovery potential. CST‐wLL ≥ 2.068 cc indicated serious CST damage and a poor outcome (100%). CST‐wLL < 1.799 cc was correlated with a considerable rate (>70%) of upper limb motor function recovery. CST-wLL showed a comparable area under the curve (AUC) to that of the CST-FAAI (p = 0.71). Inclusion of extra-CST-FAAI did not significantly increase the AUC (p = 0.58). Our findings suggest that sMRI-derived CST-wLL is a precise predictor of upper limb motor outcomes 3 months poststroke. We recommend this parameter as a predictive imaging biomarker for classifying patients' recovery prognosis in clinical practice. Conversely, including DTI appeared to induce no significant benefits.
Collapse
|
36
|
Bartfai A, Elg M, Schult ML, Markovic G. Predicting Outcome for Early Attention Training After Acquired Brain Injury. Front Hum Neurosci 2022; 16:767276. [PMID: 35664351 PMCID: PMC9159897 DOI: 10.3389/fnhum.2022.767276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background The training of impaired attention after acquired brain injury is central for successful reintegration in daily living, social, and working life. Using statistical process control, we found different improvement trajectories following attention training in a group of relatively homogeneous patients early after acquired brain injury (ABI). Objective To examine the contribution of pre-injury factors and clinical characteristics to differences in outcome after early attention training. Materials and Methods Data collected in a clinical trial comparing systematic attention training (APT) with activity-based attention training (ABAT) early after brain injury were reanalyzed. Results Stroke patients (p = 0.004) with unifocal (p = 0.002) and right hemisphere lesions (p = 0.045), and those with higher mental flexibility (TMT 4) (p = 0.048) benefitted most from APT training. Cognitive reserve (p = 0.030) was associated with CHANGE and APT as the sole pre-injury factor. For TBI patients, there was no statistical difference between the two treatments. Conclusion Our study identifies indiscernible factors predicting improvement after early attention training. APT is beneficial for patients with right-hemispheric stroke in an early recovery phase. Knowledge of prognostic factors, including the level of attention deficit, diagnosis, and injury characteristics, is vital to maximizing the efficiency of resource allocation and the effectiveness of rehabilitative interventions to enhance outcomes following stroke and TBI.
Collapse
Affiliation(s)
- Aniko Bartfai
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
- Division of Rehabilitation Medicine, Danderyd University Hospital, Stockholm, Sweden
- *Correspondence: Aniko Bartfai,
| | - Mattias Elg
- Department of Management and Engineering, IEI, Linköping University, Linköping, Sweden
| | - Marie-Louise Schult
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
- Division of Rehabilitation Medicine, Danderyd University Hospital, Stockholm, Sweden
| | - Gabriela Markovic
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
- Division of Rehabilitation Medicine, Danderyd University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Forsyth R, Hamilton C, Ingram M, Kelly G, Grove T, Wales L, Gilthorpe MS. Demonstration of functional rehabilitation treatment effects in children and young people after severe acquired brain injury. Dev Neurorehabil 2022; 25:239-245. [PMID: 34463178 DOI: 10.1080/17518423.2021.1964631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To examine relationships between functional outcomes after pediatric acquired brain injury (ABI) and measures of rehabilitation dose. METHODS An observational study of children receiving residential neurorehabilitation after severe ABI. RESULTS Basic total rehabilitation dose shows a paradoxical inverse relationship to global outcome. This is due to confounding by both initial injury severity and length of stay, and variation in treatment content for a given total rehabilitation dose. Content-aware rehabilitation dose measures show robust positive correlations between fractions of rehabilitation treatment received and plausibly related aspects of outcome: specifically, between rates of recovery of gross motor function and the fraction of rehabilitation effort directed to active practice and motor learning. This relationship was robust to adjustment for therapists' expectations of recovery. CONCLUSION Content-aware measures of rehabilitation dose are robustly causally related to pertinent aspects of outcome. These findings are step toward a goal of comparative effectiveness research in pediatric neurorehabilitation.
Collapse
Affiliation(s)
- Rob Forsyth
- Newcastle University, Newcastle upon Tyne, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Harrison Research Centre, Tadworth, UK
| | - Colin Hamilton
- Harrison Research Centre, Tadworth, UK.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Matthew Ingram
- Newcastle University, Newcastle upon Tyne, UK.,Northumbria Healthcare NHS Foundation Trust, North Shields, Tyne and Wear, UK
| | | | - Tim Grove
- Harrison Research Centre, Tadworth, UK
| | | | - Mark S Gilthorpe
- University of Leeds, Leeds, UK.,The Alan Turing Institute, London, UK
| |
Collapse
|
38
|
Schuch CP, Lam TK, Levin MF, Cramer SC, Swartz RH, Thiel A, Chen JL. A comparison of lesion-overlap approaches to quantify corticospinal tract involvement in chronic stroke. J Neurosci Methods 2022; 376:109612. [PMID: 35487314 DOI: 10.1016/j.jneumeth.2022.109612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Clarissa Pedrini Schuch
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, M5S 2W6, Canada
| | - Timothy K Lam
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Mindy F Levin
- School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, H3G 1Y5, Canada; Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, QC, H7V 1R2, Canada
| | - Steven C Cramer
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles; and California Rehabilitation Institute; Los Angeles, CA, 90095-1769, United States of America
| | - Richard H Swartz
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Alexander Thiel
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Joyce L Chen
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, M5S 2W6, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
39
|
Bonkhoff AK, Grefkes C. Precision medicine in stroke: towards personalized outcome predictions using artificial intelligence. Brain 2022; 145:457-475. [PMID: 34918041 PMCID: PMC9014757 DOI: 10.1093/brain/awab439] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 11/02/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022] Open
Abstract
Stroke ranks among the leading causes for morbidity and mortality worldwide. New and continuously improving treatment options such as thrombolysis and thrombectomy have revolutionized acute stroke treatment in recent years. Following modern rhythms, the next revolution might well be the strategic use of the steadily increasing amounts of patient-related data for generating models enabling individualized outcome predictions. Milestones have already been achieved in several health care domains, as big data and artificial intelligence have entered everyday life. The aim of this review is to synoptically illustrate and discuss how artificial intelligence approaches may help to compute single-patient predictions in stroke outcome research in the acute, subacute and chronic stage. We will present approaches considering demographic, clinical and electrophysiological data, as well as data originating from various imaging modalities and combinations thereof. We will outline their advantages, disadvantages, their potential pitfalls and the promises they hold with a special focus on a clinical audience. Throughout the review we will highlight methodological aspects of novel machine-learning approaches as they are particularly crucial to realize precision medicine. We will finally provide an outlook on how artificial intelligence approaches might contribute to enhancing favourable outcomes after stroke.
Collapse
Affiliation(s)
- Anna K Bonkhoff
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Grefkes
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Bonkhoff AK, Hope T, Bzdok D, Guggisberg AG, Hawe RL, Dukelow SP, Chollet F, Lin DJ, Grefkes C, Bowman H. Recovery after stroke: the severely impaired are a distinct group. J Neurol Neurosurg Psychiatry 2022; 93:369-378. [PMID: 34937750 DOI: 10.1136/jnnp-2021-327211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/06/2021] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Stroke causes different levels of impairment and the degree of recovery varies greatly between patients. The majority of recovery studies are biased towards patients with mild-to-moderate impairments, challenging a unified recovery process framework. Our aim was to develop a statistical framework to analyse recovery patterns in patients with severe and non-severe initial impairment and concurrently investigate whether they recovered differently. METHODS We designed a Bayesian hierarchical model to estimate 3-6 months upper limb Fugl-Meyer (FM) scores after stroke. When focusing on the explanation of recovery patterns, we addressed confounds affecting previous recovery studies and considered patients with FM-initial scores <45 only. We systematically explored different FM-breakpoints between severe/non-severe patients (FM-initial=5-30). In model comparisons, we evaluated whether impairment-level-specific recovery patterns indeed existed. Finally, we estimated the out-of-sample prediction performance for patients across the entire initial impairment range. RESULTS Recovery data was assembled from eight patient cohorts (n=489). Data were best modelled by incorporating two subgroups (breakpoint: FM-initial=10). Both subgroups recovered a comparable constant amount, but with different proportional components: severely affected patients recovered more the smaller their impairment, while non-severely affected patients recovered more the larger their initial impairment. Prediction of 3-6 months outcomes could be done with an R2=63.5% (95% CI=51.4% to 75.5%). CONCLUSIONS Our work highlights the benefit of simultaneously modelling recovery of severely-to-non-severely impaired patients and demonstrates both shared and distinct recovery patterns. Our findings provide evidence that the severe/non-severe subdivision in recovery modelling is not an artefact of previous confounds. The presented out-of-sample prediction performance may serve as benchmark to evaluate promising biomarkers of stroke recovery.
Collapse
Affiliation(s)
- Anna K Bonkhoff
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tom Hope
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University Faculty of Medicine and Health Sciences, Montreal, Québec, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Québec, Canada.,Canadian Institute for Advanced Research (CIFAR), Montreal, Québec, Canada
| | - Adrian G Guggisberg
- Department of Clinical Neurosciences, Hopitaux Universitaires de Geneve Hopital de Beau-Sejour, Geneva, Switzerland
| | - Rachel L Hawe
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - François Chollet
- Neurology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - David J Lin
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Grefkes
- Department of Neurology, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
| | - Howard Bowman
- School of Psychology, University of Birmingham, Birmingham, UK.,School of Computing, University of Kent, Canterbury, UK
| |
Collapse
|
41
|
Caimmi M, Giovanzana C, Gasperini G, Molteni F, Molinari Tosatti L. Robot Fully Assisted Upper-Limb Functional Movements Against Gravity to Drive Recovery in Chronic Stroke: A Pilot Study. Front Neurol 2022; 12:782094. [PMID: 35350582 PMCID: PMC8957862 DOI: 10.3389/fneur.2021.782094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022] Open
Abstract
Background Stroke is becoming more and more a disease of chronically disabled patients, and new approaches are needed for better outcomes. An intervention based on robot fully assisted upper-limb functional movements is presented. Objectives To test the immediate and sustained effects of the intervention in reducing impairment in chronic stroke and to preliminarily verify the effects on activity. Methodology Nineteen patients with mild-to-severe impairment underwent 12 40-min rehabilitation sessions, 3 per week, of robot-assisted reaching and hand-to-mouth movements. The primary outcome measure was the Fugl-Meyer Assessment (FMA) at T1, immediately after treatment (n = 19), and at T2, at a 6-month follow-up (n = 10). A subgroup of 11 patients was also administered the Wolf Motor Function Test Time (WMFT TIME) and Functional Ability Scale (WMFT FAS) and Motor Activity Log (MAL) Amount Of Use (AOU), and Quality Of Movement (QOM). Results All patients were compliant with the treatment. There was improvement on the FMA with a mean difference with respect to the baseline of 6.2 points at T1, after intervention (n = 19, 95% CI = 4.6–7.8, p < 0.0002), and 5.9 points at T2 (n = 10, 95% CI = 3.6–8.2, p < 0.005). Significant improvements were found at T1 on the WMFT FAS (n = 11, +0.3/5 points, 95% CI = 0.2–0.4, p < 0.004), on the MAL AOU (n = 11, +0.18/5, 95% CI = 0.07–0.29, p < 0.02), and the MAL QOM (n = 11, +0.14/5, 95% CI = 0.08–0.20, p < 0.02). Conclusions Motor benefits were observed immediately after intervention and at a 6-month follow-up. Reduced impairment would appear to translate to increased activity. Although preliminary, the results are encouraging and lay the foundation for future studies to confirm the findings and define the optimal dose-response curve. Clinical Trial Registration www.ClinicalTrials.gov, identifier: NCT03208634.
Collapse
Affiliation(s)
- Marco Caimmi
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council of Italy, Milan, Italy
| | - Chiara Giovanzana
- Villa Beretta Rehabilitation Centre, Valduce Hospital, Costa Masnaga, Italy
| | - Giulio Gasperini
- Villa Beretta Rehabilitation Centre, Valduce Hospital, Costa Masnaga, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Centre, Valduce Hospital, Costa Masnaga, Italy
| | - Lorenzo Molinari Tosatti
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council of Italy, Milan, Italy
| |
Collapse
|
42
|
Ueda S, Aoki H, Yasuda Y, Nishiyama A, Hayashi Y, Honaga K, Tanuma A, Takakura T, Kurosu A, Hatori K, Hayashi A, Fujiwara T. The MMT of Elbow Flexion and the AFE Predict Impairment and Disability at 3 Weeks in Patients With Acute Stroke. Front Neurol 2022; 13:831800. [PMID: 35432154 PMCID: PMC9005853 DOI: 10.3389/fneur.2022.831800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Objective This study aimed to investigate whether upper extremity motor function assessment within 72 h from stroke onset can predict the functional outcomes of the upper extremity. Design This was a prospective, cohort study of patients with a first unilateral hemispheric stroke between May 2018 and March 2020. The motor arm item of the National Institutes of Health Stroke Scale, manual muscle testing of the elbow and forearm, and active finger extension scale were assessed within 72 h after stroke onset. The Fugl-Meyer assessment upper extremity motor score and action research arm test were assessed at discharge from the acute hospital. Multiple regression analysis was used to study predictors of upper extremity motor function at discharge from the acute hospital. The adjustment variables included age, sex, thumb localizing test, and visuospatial function. Results Sixty acute stroke patients were recruited. The model with the highest coefficient of determination for the Fugl-Meyer assessment upper extremity motor score at discharge was the elbow flexion model (R2 = 0.76), followed by the active finger extension model (R2 = 0.69). For the action research arm test, the highest model was the active finger extension model (R2 = 0.64), followed by the elbow flexion model (R2 = 0.63). Conclusion The manual muscle testing of elbow flexion and the active finger extension may be useful for predicting impairment and disability at 3 weeks in patients with acute stroke.
Collapse
Affiliation(s)
- Shujiro Ueda
- Department of Rehabilitation Medicine, Juntendo University Urayasu Hospital, Chiba, Japan
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- *Correspondence: Shujiro Ueda
| | - Hiroko Aoki
- Department of Rehabilitation Medicine, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Yumiko Yasuda
- Department of Rehabilitation Medicine, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Ayumi Nishiyama
- Department of Rehabilitation Medicine, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Yusuke Hayashi
- Department of Rehabilitation Medicine, Juntendo University Urayasu Hospital, Chiba, Japan
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaoru Honaga
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Tanuma
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomokazu Takakura
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihiro Kurosu
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kozo Hatori
- Department of Rehabilitation Medicine, Juntendo University Urayasu Hospital, Chiba, Japan
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akito Hayashi
- Department of Rehabilitation Medicine, Juntendo University Urayasu Hospital, Chiba, Japan
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiyuki Fujiwara
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Juntendo University Faculty of Health Science, Tokyo, Japan
| |
Collapse
|
43
|
Riga A, Gathy E, Ghinet M, De Laet C, Bihin B, Regnier M, Leeuwerck M, De Coene B, Dricot L, Herman B, Edwards MG, Vandermeeren Y. Evidence of Motor Skill Learning in Acute Stroke Patients Without Lesions to the Thalamus and Internal Capsule. Stroke 2022; 53:2361-2368. [PMID: 35311345 PMCID: PMC9232242 DOI: 10.1161/strokeaha.121.035494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
It is currently unknown whether motor skill learning (MSkL) with the paretic upper limb is possible during the acute phase after stroke and whether lesion localization impacts MSkL. Here, we investigated MSkL in acute (1–7 days post) stroke patients compared with healthy individuals (HIs) and in relation to voxel-based lesion symptom mapping.
Methods:
Twenty patients with acute stroke and 35 HIs were trained over 3 consecutive days on a neurorehabilitation robot measuring speed, accuracy, and movement smoothness variables. Patients used their paretic upper limb and HI used their nondominant upper limb on an MSkL task involving a speed/accuracy trade-off. Generalization was evaluated on day 3. All patients underwent a 3-dimensional magnetic resonance imaging used for VSLM.
Results:
Most patients achieved MSkL demonstrated by day-to-day retention and generalization of the newly learned skill on day 3. When comparing raw speed/accuracy trade-off values, HI achieved larger MSkL than patients. However, relative speed/accuracy trade-off values showed no significant differences in MSkL between patients and HI on day 3. In patients, MSkL progression correlated with acute motor and cognitive impairments. The voxel-based lesion symptom mapping showed that acute vascular damage to the thalamus or the posterior limb of the internal capsule reduced MSkL.
Conclusions:
Despite worse motor performance for acute stroke patients compared with HI, most patients were able to achieve MSkL with their paretic upper limb. Damage to the thalamus and posterior limb of the internal capsule, however, reduced MSkL. These data show that MSkL could be implemented into neurorehabilitation during the acute phase of stroke, particularly for patients without lesions to the thalamus and posterior limb of the internal capsule.
Registration:
URL:
https://www.clinicaltrials.gov
; Unique identifier: NCT01519843.
Collapse
Affiliation(s)
- Audrey Riga
- Department of Neurology, Stroke Unit, CHU UCL Namur, UCLouvain, Yvoir, Belgium (A.R., E.G., M.G., C.D.L., Y.V.)
- NEUR Division, Institute of NeuroScience, UCLouvain, Brussels, Belgium (A.R., L.D., M.G.E., Y.V.)
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium. (A.R., B.H., M.G.E., Y.V.)
| | - Estelle Gathy
- Department of Neurology, Stroke Unit, CHU UCL Namur, UCLouvain, Yvoir, Belgium (A.R., E.G., M.G., C.D.L., Y.V.)
| | - Marisa Ghinet
- Department of Neurology, Stroke Unit, CHU UCL Namur, UCLouvain, Yvoir, Belgium (A.R., E.G., M.G., C.D.L., Y.V.)
| | - Chloë De Laet
- Department of Neurology, Stroke Unit, CHU UCL Namur, UCLouvain, Yvoir, Belgium (A.R., E.G., M.G., C.D.L., Y.V.)
| | - Benoît Bihin
- Scientific Support Unit, CHU UCL Namur, UCLouvain, Yvoir, Belgium. (B.B., M.R.)
| | - Maxime Regnier
- Scientific Support Unit, CHU UCL Namur, UCLouvain, Yvoir, Belgium. (B.B., M.R.)
| | - Maria Leeuwerck
- Department of Physical Medicine and Rehabilitation, CHU UCL Namur, UCLouvain, Yvoir, Belgium. (M.L.)
| | - Béatrice De Coene
- Department of Radiology (B.D.C.), CHU UCL Namur, UCLouvain, Yvoir, Belgium
| | - Laurence Dricot
- NEUR Division, Institute of NeuroScience, UCLouvain, Brussels, Belgium (A.R., L.D., M.G.E., Y.V.)
| | - Benoît Herman
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium. (A.R., B.H., M.G.E., Y.V.)
- Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium. (B.H.)
| | - Martin G. Edwards
- NEUR Division, Institute of NeuroScience, UCLouvain, Brussels, Belgium (A.R., L.D., M.G.E., Y.V.)
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium. (A.R., B.H., M.G.E., Y.V.)
- Psychological Sciences Research Institute (M.G.E.), UCLouvain, Louvain-la-Neuve, Belgium
| | - Yves Vandermeeren
- Department of Neurology, Stroke Unit, CHU UCL Namur, UCLouvain, Yvoir, Belgium (A.R., E.G., M.G., C.D.L., Y.V.)
- NEUR Division, Institute of NeuroScience, UCLouvain, Brussels, Belgium (A.R., L.D., M.G.E., Y.V.)
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium. (A.R., B.H., M.G.E., Y.V.)
- Faculty of Medicine, Laboratory of Anatomy, Université de Namur, Belgium (Y.V.)
| |
Collapse
|
44
|
DiBella EVR, Sharma A, Richards L, Prabhakaran V, Majersik JJ, HashemizadehKolowri SK. Beyond Diffusion Tensor MRI Methods for Improved Characterization of the Brain after Ischemic Stroke: A Review. AJNR Am J Neuroradiol 2022; 43:661-669. [PMID: 35272983 PMCID: PMC9089249 DOI: 10.3174/ajnr.a7414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022]
Abstract
Ischemic stroke is a worldwide problem, with 15 million people experiencing a stroke annually. MR imaging is a valuable tool for understanding and assessing brain changes after stroke and predicting recovery. Of particular interest is the use of diffusion MR imaging in the nonacute stage 1-30 days poststroke. Thousands of articles have been published on the use of diffusion MR imaging in stroke, including several recent articles reviewing the use of DTI for stroke. The goal of this work was to survey and put into context the recent use of diffusion MR imaging methods beyond DTI, including diffusional kurtosis, generalized fractional anisotropy, spherical harmonics methods, and neurite orientation and dispersion models, in patients poststroke. Early studies report that these types of beyond-DTI methods outperform DTI metrics either in being more sensitive to poststroke changes or by better predicting outcome motor scores. More and larger studies are needed to confirm the improved prediction of stroke recovery with the beyond-DTI methods.
Collapse
Affiliation(s)
- E V R DiBella
- From the Departments of Radiology and Imaging Sciences (E.V.R.D., A.S., S.K.H.)
| | - A Sharma
- From the Departments of Radiology and Imaging Sciences (E.V.R.D., A.S., S.K.H.)
| | - L Richards
- Occupational and Recreational Therapies (L.R.)
| | - V Prabhakaran
- Department of Radiology (V.P.), University of Wisconsin, Madison, Wisconsin
| | - J J Majersik
- Neurology (J.J.M.), University of Utah, Salt Lake City, Utah
| | | |
Collapse
|
45
|
Busk H, Holm P, Skou S, Seitner S, Siemsen T, Wienecke T. Inter-rater reliability and agreement of 6 Minute Walk Test and 10 Meter Walk Test at comfortable walk speed in patients with acute stroke. Physiother Theory Pract 2022; 39:1024-1032. [PMID: 35109744 DOI: 10.1080/09593985.2022.2030830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Remediation of gait problems is a key feature of neurological physiotherapy We aimed to investigate the inter-rater reliability and agreement of the Six Minute Walk Test (6MWT) and Ten Meter Walk Test (10MWT), at comfortable walking speed, in hospitalized acute ischemic stroke patients. METHOD Forty acute first-time patients with brain stem or hemispheric ischemic stroke aged 67.4 ± 12.5 (SD), able to walk with or without an assistive device, were tested by one of three physiotherapists. Test-retest reliability was evaluated using a one-way random effects single measures model (1,1) absolute agreement-type Interclass Correlation Coefficient (ICC). Agreement was evaluated using the Standard Error of Measurement (SEM) and Smallest Detectable Change (SDC). RESULTS Both tests demonstrated good reliability; ICC1,1 0.83 (CI 95% 0.70-0.90) (6MWT) and 0.76 (CI 95% 0.59-0.87) (10MWT). The 6MWT-SEM was 27.2 m (m) and the SDC was 75.4 m. The 10MWT-SEM was 0.36 meters per second (m/s) and the SDC was 1.0 m/s. CONCLUSION Both tests demonstrated good inter-rater reliability, confirming their discriminative ability on a group of hospitalized first-time acute ischemic stroke patients. However, the measurement error was large for both tests, which is likely due to spontaneous neurological recovery and stress in the acute phase severely affecting the individual-level agreement estimate.
Collapse
Affiliation(s)
- Henriette Busk
- The Research Unit PROgrez, Department of Physiotherapy and Occupational Therapy, Næstved-Slagelse-Ringsted Hospitals, Slagelse, Denmark.,Department of Neurology, Zealand University Hospital, Roskilde, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Paetur Holm
- The Research Unit PROgrez, Department of Physiotherapy and Occupational Therapy, Næstved-Slagelse-Ringsted Hospitals, Slagelse, Denmark.,Research Unit for Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Søren Skou
- The Research Unit PROgrez, Department of Physiotherapy and Occupational Therapy, Næstved-Slagelse-Ringsted Hospitals, Slagelse, Denmark.,Research Unit for Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Simon Seitner
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Troels Siemsen
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Troels Wienecke
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Sardesai S, Solomon M J, Arumugam A, Guddattu V, Gorthi SP, Pai A, Kumaran D S. Predicting post-stroke motor recovery of upper extremity using clinical variables and performance assays: A prospective cohort study protocol. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2022; 27:e1937. [PMID: 35037341 DOI: 10.1002/pri.1937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/19/2021] [Accepted: 12/30/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND PURPOSE Measurement of movement quality is essential to distinguish motor recovery patterns and optimize rehabilitation strategies post-stroke. Recently, the Stroke Recovery and Rehabilitation Roundtable Taskforce (SRRR) recommended four kinetic and kinematic performance assays to measure upper extremity (UE) movements and distinguish behavioral restitution and compensation mechanisms early post-stroke. The purpose of this study is to develop and validate a prediction model to analyze the added prognostic value of performance assays over clinical variables assessed up to 1-month post stroke for predicting recovery of UE motor impairment, capacity and quality of movement (QoM) measured at 3 months post-stroke onset. METHODS In this prospective cohort study, 120 stroke survivors will be recruited within seven days post-stroke. Candidate predictors such as baseline characteristics, demographics and performance assays as per SRRR recommendations along with tonic stretch reflex threshold will be measured up to 1-month post-stroke. Upper extremity motor recovery will be evaluated in terms of motor impairment (Fugl-Meyer assessment for UE), UE capacity measured with Action Research Arm Test (ARAT) and QoM (movement smoothness in the form of peak metrics [PM]) assessed with a reach-to-grasp-to-mouth task (mimicking a drinking task) at 3 months post-stroke. Three multivariable linear regression models will be developed to predict factors responsible for the outcomes of Fugl-Meyer assessment for upper extremity (FM-UE), ARAT and movement quality. The developed models will be internally validated using a split-sample method. DISCUSSION This study will provide a validated prediction model inclusive of clinical and performance assays that may assist in prediction of UE motor recovery. Predicting the amount of recovery and differentiating between behavioral restitution and compensation (as reflected by the FM-UE, QoM and ARAT) would enable us in realistic goal formation and planning rehabilitation. It would also help in encouraging patients to partake in early post-stroke rehabilitation thus improving the recovery potential.
Collapse
Affiliation(s)
- Sanjukta Sardesai
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - John Solomon M
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Ashokan Arumugam
- Department of Physiotherapy, University of Sharjah College of Health Sciences, Sharjah, United Arab Emirates
| | - Vasudeva Guddattu
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | | | - Aparna Pai
- Department of Neurology, Kasturba Hospital, Manipal Academy of Higher Education, Manipal, India
| | - Senthil Kumaran D
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
47
|
Kurosaki M, Tosaka M, Ibe Y, Arii H, Tomono J, Tazawa M, Shimizu T, Aihara M, Yoshimoto Y, Wada N. Functional Recovery after Rehabilitation in Patients with Post-stroke Severe Hemiplegia. Prog Rehabil Med 2022; 7:20220039. [PMID: 35975271 PMCID: PMC9346303 DOI: 10.2490/prm.20220039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives: Stroke patients with hemiplegia can sometimes achieve independent life at home or in light care facilities after rehabilitation. This study examined the outcomes of rehabilitation in stroke patients with severe hemiplegia. Methods: This study included 50 patients with Brunnstrom recovery stage I–II hemiplegia at the start of rehabilitation for stroke. Good outcome after rehabilitation was defined as independent life with functional independence measure (FIM) score of 100 or greater. Predictors for post-rehabilitation functional recovery were statistically analyzed. Results: FIM scores of 100 or greater in 12 of 50 patients (24%) allowed independent life after stroke rehabilitation. According to univariate analysis, factors associated with a FIM score of 100 or greater and good prognosis after rehabilitation were younger age (<70 years), paralysis caused by intracerebral hematoma (ICH), no cortical lesions, short time from admission to comprehensive inpatient rehabilitation (CIR) for stroke (within 1 month), and good status at the start of early rehabilitation and CIR. Eleven of the 12 patients with good prognosis (FIM ≥100) had ICH and a basal ganglia lesion with no cortical damage. Analysis of the location of lesions suggested that many patients with basal ganglia ICH lesions and little cortical involvement have good prognoses. Conclusions: Stroke patients with severe hemiplegia showed a slightly different distribution of lesions between ICH and cerebral ischemia. Cortical involvement may be a prognostic factor for outcome after rehabilitation in stroke patients with severe hemiplegia. More aggressive rehabilitation interventions may be important for patients with severe hemiplegia, especially without cortical involvement.
Collapse
Affiliation(s)
- Minori Kurosaki
- Department of Rehabilitation Medicine, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Masahiko Tosaka
- Department of Neurosurgery, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yoko Ibe
- Department of Rehabilitation Medicine, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hironori Arii
- Department of Rehabilitation Medicine, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Junichi Tomono
- Department of Rehabilitation Medicine, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Masayuki Tazawa
- Department of Rehabilitation Medicine, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Tatsuya Shimizu
- Department of Neurosurgery, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Masanori Aihara
- Department of Neurosurgery, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yuhei Yoshimoto
- Department of Neurosurgery, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Naoki Wada
- Department of Rehabilitation Medicine, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
48
|
Taud B, Lindenberg R, Darkow R, Wevers J, Höfflin D, Grittner U, Meinzer M, Flöel A. Limited Add-On Effects of Unilateral and Bilateral Transcranial Direct Current Stimulation on Visuo-Motor Grip Force Tracking Task Training Outcome in Chronic Stroke. A Randomized Controlled Trial. Front Neurol 2021; 12:736075. [PMID: 34858310 PMCID: PMC8631774 DOI: 10.3389/fneur.2021.736075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: This randomized controlled trial investigated if uni- and bihemispheric transcranial direct current stimulation (tDCS) of the motor cortex can enhance the effects of visuo-motor grip force tracking task training and transfer to clinical assessments of upper extremity motor function. Methods: In a randomized, double-blind, sham-controlled trial, 40 chronic stroke patients underwent 5 days of visuo-motor grip force tracking task training of the paretic hand with either unilateral or bilateral (N = 15/group) or placebo tDCS (N = 10). Immediate and long-term (3 months) effects on training outcome and motor recovery (Upper Extremity Fugl-Meyer, UE-FM, Wolf Motor Function Test, and WMFT) were investigated. Results: Trained task performance significantly improved independently of tDCS in a curvilinear fashion. In the anodal stimulation group UE-FM scores were higher than in the sham group at day 5 (adjusted mean difference: 2.6, 95%CI: 0.6–4.5, p = 0.010) and at 3 months follow up (adjusted mean difference: 2.8, 95%CI: 0.8–4.7, p = 0.006). Neither training alone, nor the combination of training and tDCS improved WMFT performance. Conclusions: Visuo-motor grip force tracking task training can facilitate recovery of upper extremity function. Only minimal add-on effects of anodal but not dual tDCS were observed. Clinical Trial Registration:https://clinicaltrials.gov/ct2/results?recrs=&cond=&term=NCT01969097&cntry=&state=&city=&dist=, identifier: NCT01969097, retrospectively registered on 25/10/2013.
Collapse
Affiliation(s)
- Benedikt Taud
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany
| | - Robert Lindenberg
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany.,Department of History, Philosophy and Ethics of Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Robert Darkow
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany
| | - Jasmin Wevers
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany
| | - Dorothee Höfflin
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany
| | - Ulrike Grittner
- Berlin Institute of Health at Charité, Charité University Medicine, Berlin, Germany.,Institute of Biometry and Clinical Epidemiology, Charité University Medicine, Berlin, Germany
| | - Marcus Meinzer
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany.,Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany.,Department of Neurology, University Medicine Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases, Site Greifswald/Rostock, Greifswald, Germany.,Center for Stroke Research, Charité University Medicine, Berlin, Germany
| |
Collapse
|
49
|
Karatzetzou S, Tsiptsios D, Terzoudi A, Aggeloussis N, Vadikolias K. Transcranial magnetic stimulation implementation on stroke prognosis. Neurol Sci 2021; 43:873-888. [PMID: 34846585 DOI: 10.1007/s10072-021-05791-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Stroke represents a major cause of functional disability with increasing prevalence. Thus, it is imperative that stroke prognosis be both timely and valid. Up to today, several biomarkers have been investigated in an attempt to forecast stroke survivors' potential for motor recovery, transcranial magnetic stimulation (TMS) being among them. METHODS A literature research of two databases (MEDLINE and Scopus) was conducted in order to trace all relevant studies published between 1990 and 2021 that focused on the potential utility of TMS implementation on stroke prognosis. Only full-text articles published in the English language were included. RESULTS Thirty-nine articles have been traced and included in this review. DISCUSSION Motor evoked potentials (MEPs) recording is indicative of a favorable prognosis concerning the motor recovery of upper and lower extremities' weakness, swallowing and speech difficulties, and the patient's general functional outcome. On the contrary, MEP absence is usually associated with poor prognosis. Relative correlations have also been made among other TMS variants (motor threshold, MEP amplitude, central motor conduction time) and the expected recovery rate. Overall, TMS represents a non-invasive, fast, safe, and reproducible prognostic tool poststroke that could resolve prognostic uncertainties in cases of stroke.
Collapse
Affiliation(s)
- Stella Karatzetzou
- Neurology Department, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Tsiptsios
- Neurology Department, Democritus University of Thrace, Alexandroupolis, Greece. .,Laboratory of Clinical Neurophysiology, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Aikaterini Terzoudi
- Neurology Department, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Clinical Neurophysiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos Aggeloussis
- Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
| | - Konstantinos Vadikolias
- Neurology Department, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Clinical Neurophysiology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
50
|
Park CH, Ohn SH. The predictive value of lesion and disconnectome loads for upper limb motor impairment after stroke. Neurol Sci 2021; 43:3097-3104. [PMID: 34843018 DOI: 10.1007/s10072-021-05600-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/06/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The putative effect of lesion-induced brain damage on post-stroke upper limb motor impairment can be estimated by overlaying a patient's lesion or its surrogate with key motor areas. We assessed the predictive value of imaging-based brain damage measures for cross-sectional upper limb motor impairment and subsequent upper limb motor outcome after stroke. METHODS In 47 stroke patients, upper limb motor impairment was evaluated with the Upper-Extremity Fugl-Meyer Assessment (UE-FMA) at 2 weeks (2W) and 3 months (3M) post-stroke. Given each patient's lesion identified at 2W, we considered the disconnectome, estimated as an ensemble of structural and functional connections passing through the lesion, as a surrogate of the lesion. The lesion load and the disconnectome load were measured by overlaying the lesion and disconnectome with the corticospinal tract (CST) and motor cortex (MC), and their association with the UE-FMA score at 2W and 3M was assessed. RESULTS Whereas the disconnectome loads on the CST and MC were better in predicting the UE-FMA score at 2W, the lesion load on the CST was better in predicting the UE-FMA score at 3M. Furthermore, when the CST lesion load was combined with the UE-FMA score at 2W, the UE-FMA score at 3M was better predicted, with smaller generalization error, than by using either measure alone. CONCLUSIONS The combination of the CST lesion load and baseline upper limb motor impairment would provide a tailored fusion of imaging and clinical measures for more accurate motor outcome prediction.
Collapse
Affiliation(s)
- Chang-Hyun Park
- Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Chemin des Mines 9, 1202, Geneva, Switzerland
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, 22 Gwanpyeong-ro 170 Beon-gil Dongan-gu, Anyang, Gyeonggi-do, 14068, Republic of Korea.
| |
Collapse
|