1
|
Warren WG, Osborn M, David‐Pereira A, Tsantoulas C, Xue W, Yates A, OSullivan SE. ART26.12, a novel fatty acid-binding protein 5 inhibitor, shows efficacy in multiple preclinical neuropathy models. Eur J Pain 2025; 29:e4718. [PMID: 39188040 PMCID: PMC11671339 DOI: 10.1002/ejp.4718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Painful neuropathy is a pathological condition caused by numerous factors including diabetes, chemotherapy or cancer. ART26.12 is a novel fatty acid-binding protein 5 inhibitor, which our group showed could prevent and treat persistent pain in a preclinical model of oxaliplatin-induced peripheral neuropathy. METHODS In the current study, the efficacy of orally dosed ART26.12 was tested in multiple neuropathy models of different aetiology. Paw withdrawal threshold to von Frey monofilaments and latency to escape a cold plate were used as measurements of mechanical and cold sensitivity. RESULTS ART26.12 (25 and 50 mg/kg BID), dosed prior to the induction of paclitaxel-induced peripheral neuropathy (PIPN), reversed mechanical allodynia induced by paclitaxel in both male and female rats, and ART26.12 (50 mg/kg BID) prevented the induction of PIPN in female rats. ART26.12 (50 mg/kg BID) also had a protective effect on body weight in the PIPN model. ART26.12 (25 and 100 mg/kg BID) reversed mechanical allodynia when treating established streptozotocin-induced diabetic neuropathy in male rats. In a model of breast cancer-induced bone pain in female rats, ART26.12 (100 mg/kg BID) reversed mechanical allodynia within 1 h of dosing. In the same model, ART26.12 (25 mg/kg BID) reversed mechanical allodynia from day 4 of treatment. CONCLUSION Overall, these preclinical data suggest that ART26.12 is a safe and efficacious therapeutic drug for continued development towards the prevention and treatment of peripheral neuropathy. SIGNIFICANCE STATEMENT This work now shows that ART26.12, a novel and selective inhibitor of FABP5, can prevent and treat multiple preclinical models of peripheral neuropathy. Given its excellent safety profile, further work is warranted to develop ART26.12 as a potential therapeutic tool for pain management.
Collapse
Affiliation(s)
- W. G. Warren
- Artelo Biosciences Ltd., Alderley ParkAlderley EdgeCheshireUK
| | - M. Osborn
- Artelo Biosciences Ltd., Alderley ParkAlderley EdgeCheshireUK
| | - A. David‐Pereira
- Transpharmation Ltd.The London Bioscience Innovation CentreLondonUK
| | - C. Tsantoulas
- Transpharmation Ltd.The London Bioscience Innovation CentreLondonUK
| | - Wenwen Xue
- Pharmaron Inc.BeijingPeople's Republic of China
| | - A. Yates
- Artelo Biosciences Ltd., Alderley ParkAlderley EdgeCheshireUK
| | - S. E. OSullivan
- Artelo Biosciences Ltd., Alderley ParkAlderley EdgeCheshireUK
| |
Collapse
|
2
|
Warren WG, Osborn M, Duffy P, Yates A, O'Sullivan SE. Potential safety implications of fatty acid-binding protein inhibition. Toxicol Appl Pharmacol 2024; 491:117079. [PMID: 39218163 DOI: 10.1016/j.taap.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Fatty acid-binding proteins (FABPs) are small intracellular proteins that regulate fatty acid metabolism, transport, and signalling. There are ten known human isoforms, many of which are upregulated and involved in clinical pathologies. As such, FABP inhibition may be beneficial in disease states such as cancer, and those involving the cardiovascular system, metabolism, immunity, and cognition. Recently, a potent, selective FABP5 inhibitor (ART26.12), with 90-fold selectivity to FABP3 and 20-fold selectivity to FABP7, was found to be remarkably benign, with a no-observed-adverse-effect level of 1000 mg/kg in rats and dogs, showing no genotoxicity, cardiovascular, central, or respiratory toxicity. To understand the potential implication of FABP inhibition more fully, this review systematically assessed literature investigating genetic knockout, knockdown, and pharmacological inhibition of FABP3, FABP4, FABP5, or FABP7. Analysis of the literature revealed that animals bred not to express FABPs showed the most biological effects, suggesting key roles of these proteins during development. FABP ablation sometimes exacerbated symptoms of disease models, particularly those linked to metabolism, inflammatory and immune responses, cardiac contractility, neurogenesis, and cognition. However, FABP inhibition (genetic silencing or pharmacological) had a positive effect in many more disease conditions. Several polymorphisms of each FABP gene have also been linked to pathological conditions, but it was unclear how several polymorphisms affected protein function. Overall, analysis of the literature to date suggests that pharmacological inhibition of FABPs in adults is of low risk.
Collapse
Affiliation(s)
- William G Warren
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom.
| | - Myles Osborn
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Paul Duffy
- Apconix Ltd., Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Andrew Yates
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | | |
Collapse
|
3
|
Hanna R, Graur A, Sinclair P, Mckiver BD, Bos PD, Damaj MI, Kabbani N. Proteomic analysis of dorsal root ganglia in a mouse model of paclitaxel-induced neuropathic pain. PLoS One 2024; 19:e0306498. [PMID: 39331687 PMCID: PMC11432834 DOI: 10.1371/journal.pone.0306498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/30/2024] [Indexed: 09/29/2024] Open
Abstract
Paclitaxel is a chemotherapy drug widely used for the treatment of various cancers based on its ability to potently stabilize cellular microtubules and block division in cancer cells. Paclitaxel-based treatment, however, accumulates in peripheral system sensory neurons and leads to a high incidence rate (over 50%) of chemotherapy induced peripheral neuropathy in patients. Using an established preclinical model of paclitaxel-induced peripheral neuropathy (PIPN), we examined proteomic changes in dorsal root ganglia (DRG) of adult male mice that were treated with paclitaxel (8 mg/kg, at 4 injections every other day) relative to vehicle-treated mice. High throughput proteomics based on liquid chromatography electrospray ionization mass spectrometry identified 165 significantly altered proteins in lumbar DRG. Gene ontology enrichment and bioinformatic analysis revealed an effect of paclitaxel on pathways for mitochondrial regulation, axonal function, and inflammatory purinergic signaling as well as microtubule activity. These findings provide insight into molecular mechanisms that can contribute to PIPN in patients.
Collapse
Affiliation(s)
- Rania Hanna
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
| | - Alexandru Graur
- School of Systems Biology, George Mason University, Fairfax, VA, United States of America
| | - Patricia Sinclair
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
| | - Bryan D. Mckiver
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Paula D. Bos
- Department of Pathology, Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
| | - M. Imad Damaj
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
- School of Systems Biology, George Mason University, Fairfax, VA, United States of America
| |
Collapse
|
4
|
Warren G, Osborn M, Tsantoulas C, David-Pereira A, Cohn D, Duffy P, Ruston L, Johnson C, Bradshaw H, Kaczocha M, Ojima I, Yates A, O'Sullivan SE. Discovery and Preclinical Evaluation of a Novel Inhibitor of FABP5, ART26.12, Effective in Oxaliplatin-Induced Peripheral Neuropathy. THE JOURNAL OF PAIN 2024; 25:104470. [PMID: 38232863 DOI: 10.1016/j.jpain.2024.01.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Oxaliplatin-induced peripheral neuropathy (OIPN) is a dose-limiting toxicity characterised by mechanical allodynia and thermal hyperalgesia, without any licensed medications. ART26.12 is a fatty acid-binding protein (FABP) 5 inhibitor with antinociceptive properties, characterised here for the prevention and treatment of OIPN. ART26.12 binds selectively to FABP5 compared to FABP3, FABP4, and FABP7, with minimal off-target liabilities, high oral bioavailability, and a NOAEL of 1,000 mg/kg/day in rats and dogs. In an established preclinical OIPN model, acute oral dosing (25-100 mg/kg) showed a cannabinoid receptor type 1 (CB1)-dependent anti-allodynic effect lasting up to 8 hours (persisting longer than plasma exposure to ART26.12). Antagonists of cannabinoid receptor type 2 (CB2), peroxisome proliferator-activated receptor alpha, and transient receptor potential cation channel subfamily V member 1 (TRPV1) may have also been implicated. Twice daily oral dosing (25 mg/kg bis in die (BID) for 7 days) showed anti-allodynic effects in an established OIPN model without the development of tolerance. In a prevention paradigm, coadministration of ART26.12 (10 and 25 mg/kg BID for 15 days) with oxaliplatin prevented thermal hyperalgesia, mitigated mechanical allodynia, and attenuated OXA-induced weight loss. Multi-scale analyses revealed widespread lipid modulation, particularly among N-acyl amino acids in the spinal cord, including potential analgesic mediators. Additionally, ART26.12 administration led to upregulation of ion channels in the periaqueductal grey, and broad translational upregulation within the plasma proteome. These results show promise that ART26.12 is a safe and well-tolerated candidate for the treatment and prevention of OIPN through lipid modulation. PERSPECTIVE: Inhibition of fatty acid-binding protein 5 (FABP5) is a novel target for reducing pain associated with chemotherapy. ART26.12 is a safe and well-tolerated small molecule FABP5 inhibitor effective at preventing and reducing pain induced with oxaliplatin through lipid modulation and activation of cannabinoid receptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Clare Johnson
- Department of Psychological and Brain Sciences, Bloomington, Indiana
| | - Heather Bradshaw
- Department of Psychological and Brain Sciences, Bloomington, Indiana
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, New York; Institute of Chemical Biology and Drug Discovery, Stony Brook University, New York
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, New York; Institute of Chemical Biology and Drug Discovery, Stony Brook University, New York
| | | | | |
Collapse
|
5
|
Hanna R, Graur A, Sinclair P, Mckiver BD, Paula D Bos M, Imad Damaj M, Kabbani N. Proteomic Analysis of Dorsal Root Ganglia in a Mouse Model of Paclitaxel-Induced Neuropathic Pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599888. [PMID: 38979383 PMCID: PMC11230256 DOI: 10.1101/2024.06.20.599888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Paclitaxel is a chemotherapy drug widely used for the treatment of various cancers based on its ability to potently stabilize cellular microtubules and block division in cancer cells. Paclitaxel-based treatment, however, accumulates in peripheral system sensory neurons and leads to a high incidence rate (over 60%) of chemotherapy induced peripheral neuropathy. Using an established preclinical model of paclitaxel-induced peripheral neuropathy (PIPN), we examined proteomic changes in dorsal root ganglia (DRG) of adult male mice that were treated with paclitaxel (8 mg/kg, at 4 injections every other day) relative to vehicle-treated mice. High throughput proteomics based on liquid chromatography electrospray ionization mass spectrometry identified 165 significantly altered proteins in lumbar DRG. Gene ontology enrichment and bioinformatic analysis revealed an effect of paclitaxel on pathways for mitochondrial regulation, axonal function, and inflammatory purinergic signaling as well as microtubule activity. These findings provide insight into molecular mechanisms that can contribute to PIPN in patients.
Collapse
Affiliation(s)
- Rania Hanna
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Alexandru Graur
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Patricia Sinclair
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Bryan D Mckiver
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - M Paula D Bos
- Department of Pathology, Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298
| | - M Imad Damaj
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
6
|
Gordon C, Trainor J, Shah RJ, Studholme K, Gelman A, Doswell F, Sadar F, Giovannetti A, Gershenson J, Khan A, Nicholson J, Huang Z, Spurgat M, Tang SJ, Wang H, Ojima I, Carlson D, Komatsu DE, Kaczocha M. Fatty acid binding protein 5 inhibition attenuates pronociceptive cytokine/chemokine expression and suppresses osteoarthritis pain: A comparative human and rat study. Osteoarthritis Cartilage 2024; 32:266-280. [PMID: 38035977 PMCID: PMC11283882 DOI: 10.1016/j.joca.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is often accompanied by debilitating pain that is refractory to available analgesics due in part to the complexity of signaling molecules that drive OA pain and our inability to target these in parallel. Fatty acid binding protein 5 (FABP5) is a lipid chaperone that regulates inflammatory pain; however, its contribution to OA pain has not been characterized. DESIGN This combined clinical and pre-clinical study utilized synovial tissues obtained from subjects with end-stage OA and rats with monoiodoacetate-induced OA. Cytokine and chemokine release from human synovia incubated with a selective FABP5 inhibitor was profiled with cytokine arrays and ELISA. Immunohistochemical analyses were conducted for FABP5 in human and rat synovium. The efficacy of FABP5 inhibitors on pain was assessed in OA rats using incapacitance as an outcome. RNA-seq was then performed to characterize the transcriptomic landscape of synovial gene expression in OA rats treated with FABP5 inhibitor or vehicle. RESULTS FABP5 was expressed in human synovium and FABP5 inhibition reduced the secretion of pronociceptive cytokines (interleukin-6 [IL6], IL8) and chemokines (CCL2, CXCL1). In rats, FABP5 was upregulated in the OA synovium and its inhibition alleviated incapacitance. The transcriptome of the rat OA synovium exhibited >6000 differentially expressed genes, including the upregulation of numerous pronociceptive cytokines and chemokines. FABP5 inhibition blunted the upregulation of the majority of these pronociceptive mediators. CONCLUSIONS FABP5 is expressed in the OA synovium and its inhibition suppresses pronociceptive signaling and pain, indicating that FABP5 inhibitors may constitute a novel class of analgesics to treat OA.
Collapse
Affiliation(s)
- Chris Gordon
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - James Trainor
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Rohan J Shah
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Keith Studholme
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Alex Gelman
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Faniya Doswell
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Faisal Sadar
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Allessio Giovannetti
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Josh Gershenson
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Ayesha Khan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - James Nicholson
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - ZeYu Huang
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Michael Spurgat
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Hehe Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - David Carlson
- Genomics Core Facility and Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, NY, USA
| | - David E Komatsu
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Penman SL, Roeder NM, Berthold EC, Senetra AS, Marion M, Richardson BJ, White O, Fearby NL, McCurdy CR, Hamilton J, Sharma A, Thanos PK. FABP5 is important for cognitive function and is an important regulator of the physiological effects and pharmacokinetics of acute Δ9 tetrahydrocannabinol inhalation in mice. Pharmacol Biochem Behav 2023; 231:173633. [PMID: 37716413 DOI: 10.1016/j.pbb.2023.173633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Fatty acid binding protein 5 (FABP5) interacts with the endocannabinoid system in the brain via intracellular transport of anandamide, as well as Δ9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis. Previous work has established the behavioral effects of genetic deletion of FABP5, but not in the presence of THC. The present study sought to further elucidate the role of FABP5 on the pharmacokinetic and behavioral response to THC through global deletion. Adult FABP5+/+ and FABP5-/- mice were tested for behavioral response to THC using Open Field (OF), Novel Object Recognition (NOR), T-Maze, Morris Water Maze (MWM), and Elevated Plus Maze (EPM). An additional cohort of mice was used to harvest blood, brains, and liver samples to measure THC and metabolites after acute administration of THC. Behavioral tests showed that some cognitive deficits from FABP5 deletion, particularly in MWM, were blocked by THC administration, while this was not observed in other measures of memory and anxiety (such as T-Maze and EPM). Measurement of THC and metabolites in blood serum and brain tissue through UPLC-MS/MS analysis showed that the pharmacokinetics of THC was altered by FABP5. The present study shows further evidence of the importance of FABP5 in cognitive function. Additionally, results showed that FABP5 is an important regulator of the physiological effects and pharmacokinetics of THC.
Collapse
Affiliation(s)
- Samantha L Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Nicole M Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Erin C Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alexandria S Senetra
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Matthew Marion
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Brittany J Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Olivia White
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Nathan L Fearby
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Christopher R McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA; Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
8
|
Ding YY, Xu F, Wang YF, Han LL, Huang SQ, Zhao S, Ma LL, Zhang TH, Zhao WJ, Chen XD. Electroacupuncture alleviates postoperative pain through inhibiting neuroinflammation via stimulator of interferon genes/type-1 interferon pathway. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:496-508. [PMID: 37517892 DOI: 10.1016/j.joim.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE This work explores the impact of electroacupuncture (EA) on acute postoperative pain (APP) and the role of stimulator of interferon genes/type-1 interferon (STING/IFN-1) signaling pathway modulation in the analgesic effect of EA in APP rats. METHODS The APP rat model was initiated through abdominal surgery and the animals received two 30 min sessions of EA at bilateral ST36 (Zusanli) and SP6 (Sanyinjiao) acupoints. Mechanical, thermal and cold sensitivity tests were performed to measure the pain threshold, and electroencephalograms were recorded in the primary somatosensory cortex to identify the effects of EA treatment on APP. Western blotting and immunofluorescence were used to examine the expression and distribution of proteins in the STING/IFN-1 pathway as well as neuroinflammation. A STING inhibitor (C-176) was administered intrathecally to verify its role in EA. RESULTS APP rats displayed mechanical and thermal hypersensitivities compared to the control group (P < 0.05). APP significantly reduced the amplitude of θ, α and γ oscillations compared to their baseline values (P < 0.05). Interestingly, expression levels of proteins in the STING/IFN-1 pathway were downregulated after inducing APP (P < 0.05). Further, APP increased pro-inflammatory factors, including interleukin-6, tumor necrosis factor-α and inducible nitric oxide synthase, and downregulated anti-inflammatory factors, including interleukin-10 and arginase-1 (P < 0.05). EA effectively attenuated APP-induced painful hypersensitivities (P < 0.05) and restored the θ, α and γ power in APP rats (P < 0.05). Meanwhile, EA distinctly activated the STING/IFN-1 pathway and mitigated the neuroinflammatory response (P < 0.05). Furthermore, STING/IFN-1 was predominantly expressed in isolectin-B4- or calcitonin-gene-related-peptide-labeled dorsal root ganglion neurons and superficial laminae of the spinal dorsal horn. Inhibition of the STING/IFN-1 pathway by intrathecal injection of C-176 weakened the analgesic and anti-inflammatory effects of EA on APP (P < 0.05). CONCLUSION EA can generate robust analgesic and anti-inflammatory effects on APP, and these effects may be linked to activating the STING/IFN-1 pathway, suggesting that STING/IFN-1 may be a target for relieving APP. Please cite this article as: Ding YY, Xu F, Wang YF, Han LL, Huang SQ, Zhao S, Ma LL, Zhang TH, Zhao WJ, Chen XD. Electroacupuncture alleviates postoperative pain through inhibiting neuroinflammation via stimulator of interferon genes/type-1 interferon pathway. J Integr Med. 2023; 21(5): 496-508.
Collapse
Affiliation(s)
- Yuan-Yuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Ya-Feng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Lin-Lin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Shi-Qian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Shuai Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Lu-Lin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Tian-Hao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Wen-Jing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xiang-Dong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
9
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
10
|
Uzuneser TC, Szkudlarek HJ, Jones MJ, Nashed MG, Clement T, Wang H, Ojima I, Rushlow WJ, Laviolette SR. Identification of a novel fatty acid binding protein-5-CB2 receptor-dependent mechanism regulating anxiety behaviors in the prefrontal cortex. Cereb Cortex 2023; 33:2470-2484. [PMID: 35650684 PMCID: PMC10016066 DOI: 10.1093/cercor/bhac220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
The endocannabinoid (eCB) system represents a promising neurobiological target for novel anxiolytic pharmacotherapies. Previous clinical and preclinical evidence has revealed that genetic and/or pharmacological manipulations altering eCB signaling modulate fear and anxiety behaviors. Water-insoluble eCB lipid anandamide requires chaperone proteins for its intracellular transport to degradation, a process that requires fatty acid-binding proteins (FABPs). Here, we investigated the effects of a novel FABP-5 inhibitor, SBFI-103, on fear and anxiety-related behaviors using rats. Acute intra-prelimbic cortex administration of SBFI-103 induced a dose-dependent anxiolytic response and reduced contextual fear expression. Surprisingly, both effects were reversed when a cannabinoid-2 receptor (CB2R) antagonist, AM630, was co-infused with SBFI-103. Co-infusion of the cannabinoid-1 receptor antagonist Rimonabant with SBFI-103 reversed the contextual fear response yet showed no reversal effect on anxiety. Furthermore, in vivo neuronal recordings revealed that intra-prelimbic region SBFI-103 infusion altered the activity of putative pyramidal neurons in the basolateral amygdala and ventral hippocampus, as well as oscillatory patterns within these regions in a CB2R-dependent fashion. Our findings identify a promising role for FABP5 inhibition as a potential target for anxiolytic pharmacotherapy. Furthermore, we identify a novel, CB2R-dependent FABP-5 signaling pathway in the PFC capable of strongly modulating anxiety-related behaviors and anxiety-related neuronal transmission patterns.
Collapse
Affiliation(s)
- Taygun C Uzuneser
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Hanna J Szkudlarek
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Matthew J Jones
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Mina G Nashed
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Timothy Clement
- Institute of Chemical Biology and Drug Discoveries, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Hehe Wang
- Institute of Chemical Biology and Drug Discoveries, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discoveries, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Walter J Rushlow
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Mental Health Care Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Steven R Laviolette
- Corresponding author: Department of Anatomy and Cell Biology, University of Western Ontario, 468 Medical Science Building, London, ON N6A 3K7, Canada.
| |
Collapse
|
11
|
Wang H, Taouil A, Awwa M, Clement T, Zhu C, Kim J, Rendina D, Jayanetti K, Maharaj A, Wang L, Bogdan D, Pepe A, Kaczocha M, Ojima I. SAR study on Novel truxillic acid monoester-Based inhibitors of fatty acid binding proteins as Next-Generation antinociceptive agents. Bioorg Chem 2022; 129:106184. [PMID: 36244323 PMCID: PMC11323223 DOI: 10.1016/j.bioorg.2022.106184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022]
Abstract
Fatty acid binding protein 5 (FABP5) is a highly promising target for the development of analgesics as its inhibition is devoid of CB1R-dependent side-effects. The design and discovery of highly potent and FABP5-selective truxillic acid (TA) monoesters (TAMEs) is the primary aim of the present study. On the basis of molecular docking analysis, ca. 2,000 TAMEs were designed and screened in silico, to funnel down to 55 new TAMEs, which were synthesized and assayed for their affinity (Ki) to FABP5, 3 and 7. The SAR study revealed that the introduction of H-bond acceptors to the far end of the 1,1'-biphenyl-3-yl and 1,1'-biphenyl-2-yl ester moieties improved the affinity of α-TAMEs to FABP5. Compound γ-3 is the first γ-TAME, demonstrating a high affinity to FABP5 and competing with α-TAMEs. We identified the best 20 TAMEs based on the FABP5/3 selectivity index. The clear front runner is α-16, bearing a 2‑indanyl ester moiety. In sharp contrast, no ε-TAMEs made the top 20 in this list. However, α-19 and ε-202, have been identified as potent FABP3-selective inhibitors for applications related to their possible use in the protection of cardiac myocytes and the reduction of α-synuclein accumulation in Parkinson's disease. Among the best 20 TAMEs selected based on the affinity to FABP7, 13 out of 20 TAMEs were found to be FABP7-selective, with α-21 as the most selective. This study identified several TAMEs as FABP7-selective inhibitors, which would have potentially beneficial therapeutic effects in diseases such as Down's syndrome, schizophrenia, breast cancer, and astrocytoma. We successfully introduced the α-TA monosilyl ester (TAMSE)-mediated protocol to dramatically improve the overall yields of α-TAMEs. α-TAMSEs with TBDPS as the silyl group is isolated in good yields and unreacted α-TA/ α-MeO-TA, as well as disilyl esters (α-TADSEs) are fully recycled. Molecular docking analysis provided rational explanations for the observed binding affinity and selectivity of the FABP3, 5 and 7 inhibitors, including their α, γ and ε isomers, in this study.
Collapse
Affiliation(s)
- Hehe Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Adam Taouil
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Monaf Awwa
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Timothy Clement
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Chuanzhou Zhu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Jinwoo Kim
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Dominick Rendina
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Kalani Jayanetti
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Atri Maharaj
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Liqun Wang
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794-8480, United States
| | - Diane Bogdan
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794-8480, United States
| | - Antonella Pepe
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794-8480, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, United States.
| |
Collapse
|
12
|
Kaczocha M, Haj-Dahmane S. Mechanisms of endocannabinoid transport in the brain. Br J Pharmacol 2022; 179:4300-4310. [PMID: 33786823 PMCID: PMC8481389 DOI: 10.1111/bph.15469] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide are among the best studied lipid messengers in the brain. By activating cannabinoid receptors in the CNS, endocannabinoids tune synaptic function, thereby influencing a variety of physiological and behavioural processes. Extensive research conducted over the last few decades has considerably enhanced our understanding of the molecular mechanisms and physiological functions of the endocannabinoid system. It is now well-established that endocannabinoids are synthesized by postsynaptic neurons and serve as retrograde messengers that suppress neurotransmitter release at central synapses. While the detailed mechanisms by which endocannabinoids gate synaptic function and behavioural processes are relatively well characterized, the mechanisms governing endocannabinoid transport at central synapses remain ill defined. Recently, several studies have begun to unravel the mechanisms governing intracellular and intercellular endocannabinoid transport. In this review, we will focus on new advances in the mechanisms of intracellular and synaptic endocannabinoid transport in the CNS. LINKED ARTICLES: This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.
Collapse
Affiliation(s)
- Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
- Neuroscience Program, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
13
|
Fauzan M, Oubraim S, Yu M, Glaser ST, Kaczocha M, Haj-Dahmane S. Fatty Acid-Binding Protein 5 Modulates Brain Endocannabinoid Tone and Retrograde Signaling in the Striatum. Front Cell Neurosci 2022; 16:936939. [PMID: 35875351 PMCID: PMC9302024 DOI: 10.3389/fncel.2022.936939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoid (eCB) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are endogenous lipid neurotransmitters that regulate an array of physiological functions, including pain, stress homeostasis, and reward. Fatty acid-binding protein 5 (FABP5) is a key modulator of intracellular eCB transport and inactivation. Recent evidence suggests that FABP5 controls synaptic 2-AG signaling at excitatory synapses in the dorsal raphe nucleus. However, it is currently not known whether this function extends to other brain areas. To address this, we first profiled eCB levels across several brain areas in FABP5 knockout mice and wild-type controls and report that FABP5 deletion elevates AEA levels in the striatum, prefrontal cortex, midbrain, and thalamus, as well as midbrain 2-AG levels. The expression of eCB biosynthetic and catabolic enzymes was largely unaltered in these regions, although minor sex and region-specific changes in the expression of 2-AG catabolic enzymes were observed in female FABP5 KO mice. Robust FABP5 expression was observed in the striatum, a region where both AEA and 2-AG control synaptic transmission. Deletion of FABP5 impaired tonic 2-AG and AEA signaling at striatal GABA synapses of medium spiny neurons, and blunted phasic 2-AG mediated short-term synaptic plasticity without altering CB1R expression or function. Collectively, these results support the role of FABP5 as a key regulator of eCB signaling at excitatory and inhibitory synapses in the brain.
Collapse
Affiliation(s)
- Mohammad Fauzan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Saida Oubraim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Mei Yu
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Sherrye T. Glaser
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States,Department of Biological Sciences, Kingsborough Community College, Brooklyn, NY, United States
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States,Martin Kaczocha
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States,University at Buffalo Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States,*Correspondence: Samir Haj-Dahmane
| |
Collapse
|
14
|
Wang Q, Zhang X, Li C, Xiong M, Bai W, Sun S, Chen C, Zhang X, Li M, Zhao A. Intracellular Lipid Accumulation Drives the Differentiation of Decidual Polymorphonuclear Myeloid-Derived Suppressor Cells via Arachidonic Acid Metabolism. Front Immunol 2022; 13:868669. [PMID: 35664000 PMCID: PMC9159278 DOI: 10.3389/fimmu.2022.868669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Decidual polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are essential to immune tolerance during pregnancy. A reduction in the number of these cells is associated with unexplained recurrent pregnancy loss (URPL). In our previous study, we reported that PMN-MDSCs are a group of mature neutrophils that are activated by the decidua microenvironment. In the present study, we show that the decidua microenvironment induces substantial lipid accumulation in neutrophils during their differentiation to PMN-MDSCs. Lower levels of lipid accumulation are detected in PMN-MDSCs from URPL patients, and the amount of lipid in the PMN-MDSCs is positively correlated with the proportion of PMN-MDSCs. Next, we demonstrate that decidua-derived IL6 with the presence of arachidonic acid upregulates fatty acid-binding protein 5 (FABP5) via the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Fy -60ABP5 then continuously stimulates intracellular lipid accumulation. Increased intracellular lipid accumulation mediates arachidonic acid metabolism, a pathway that is significantly activated by the induction of the decidua microenvironment, to stimulate the synthesis of prostaglandin E2 (PGE2) and finally induce the differentiation of PMN-MDSCs. To summarize, decidua-derived IL6 facilitates the differentiation of PMN-MDSCs from neutrophils via the pSTAT3/FABP5/PGE2 pathway. Defects in the process may result in impaired differentiation and dysfunction of PMN-MDSCs in URPL. These findings enhance our understanding of the physiological mechanisms of immune tolerance in pregnancy and provide therapeutic options for URPL.
Collapse
Affiliation(s)
- Qiaohong Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Xinyang Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Congcong Li
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Miao Xiong
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenxin Bai
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Si Sun
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Chao Chen
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Xiaoxin Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Mingyang Li
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| |
Collapse
|
15
|
Gene expression of the endocannabinoid system in endometrium through menstrual cycle. Sci Rep 2022; 12:9400. [PMID: 35672435 PMCID: PMC9174470 DOI: 10.1038/s41598-022-13488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Endocannabinoids mediate cellular functions and their activity is controlled by a complex system of enzymes, membrane receptors and transport molecules. Endocannabinoids are present in endometrium, a cyclical regenerative tissue requiring tightly regulated cellular mechanisms for maturation. The objective of this study was to investigate the gene expression of key elements involved in the endocannabinoid system across the menstrual cycle. RNA was isolated from endometrial tissue and genome-wide gene expression datasets were generated using RNA-sequencing. An a priori set of 70 genes associated with endocannabinoid system were selected from published literature. Gene expression across the menstrual cycle was analyzed using a moderated t test, corrected for multiple testing with Bonferroni’s method. A total of 40 of the 70 genes were present in > 90% of the samples, and significant differential gene expression identified for 29 genes. We identified 4 distinct regulation patterns for synthesizing enzymes, as well as a distinct regulation pattern for degradations and transporting enzymes. This study charts the expression of endometrial endocannabinoid system genes across the menstrual cycle. Altered expression of genes that control endocannabinoid may allow fine control over endocannabinoid concentrations and their influence on cellular function, maturation and differentiation as the endometrium matures through the menstrual cycle.
Collapse
|
16
|
Bogdan DM, Studholme K, DiBua A, Gordon C, Kanjiya MP, Yu M, Puopolo M, Kaczocha M. FABP5 deletion in nociceptors augments endocannabinoid signaling and suppresses TRPV1 sensitization and inflammatory pain. Sci Rep 2022; 12:9241. [PMID: 35655086 PMCID: PMC9163147 DOI: 10.1038/s41598-022-13284-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
The endocannabinoid anandamide (AEA) produces antinociceptive effects by activating cannabinoid receptor 1 (CB1). However, AEA also serves as an agonist at transient receptor potential vanilloid receptor 1 (TRPV1) in nociceptive sensory neurons, which may exacerbate pain. This potential functional duality is highlighted by the failure of an inhibitor of the AEA catabolic enzyme fatty acid amide hydrolase (FAAH) to afford pain relief in a clinical trial. Consequently, it remains to be determined whether elevating AEA levels in nociceptors leads to antinociceptive or pro-nociceptive effects. Fatty acid binding protein 5 (FABP5) is an intracellular carrier that mediates AEA transport to FAAH for inactivation. Leveraging the abundant expression of FABP5 in TRPV1+ nociceptors, we employed a conditional knockout strategy to demonstrate that FABP5 deletion in nociceptors augments AEA levels, resulting in the emergence of antinociceptive effects mediated by CB1. Mechanistically, FABP5 deletion suppresses inflammation- and nerve growth factor-mediated TRPV1 sensitization via CB1, an effect mediated by calcineurin. Unexpectedly, inhibition of FAAH failed to blunt TRPV1 sensitization, uncovering functionally distinct outputs resulting from FABP5 and FAAH inhibition. Collectively, our results demonstrate that FABP5 serves a key role in governing endocannabinoid signaling in nociceptors to disrupt TRPV1 sensitization and pain, and position FABP5 as a therapeutic target for the development of analgesics.
Collapse
Affiliation(s)
- Diane M Bogdan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Keith Studholme
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Adriana DiBua
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Chris Gordon
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Martha P Kanjiya
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Mei Yu
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michelino Puopolo
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
- Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
17
|
Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L, Qi S, Zhu J, He Y, Chen X, Zhang H, Shen Y, Chen G, Gu J, Guo Y, Liu S, Xie T. The Biological Functions and Regulatory Mechanisms of Fatty Acid Binding Protein 5 in Various Diseases. Front Cell Dev Biol 2022; 10:857919. [PMID: 35445019 PMCID: PMC9013884 DOI: 10.3389/fcell.2022.857919] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, fatty acid binding protein 5 (FABP5), also known as fatty acid transporter, has been widely researched with the help of modern genetic technology. Emerging evidence suggests its critical role in regulating lipid transport, homeostasis, and metabolism. Its involvement in the pathogenesis of various diseases such as metabolic syndrome, skin diseases, cancer, and neurological diseases is the key to understanding the true nature of the protein. This makes FABP5 be a promising component for numerous clinical applications. This review has summarized the most recent advances in the research of FABP5 in modulating cellular processes, providing an in-depth analysis of the protein's biological properties, biological functions, and mechanisms involved in various diseases. In addition, we have discussed the possibility of using FABP5 as a new diagnostic biomarker and therapeutic target for human diseases, shedding light on challenges facing future research.
Collapse
Affiliation(s)
- Binyue Xu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yu Zhan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Karl Nelson S. Marquez
- Clinical Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hankou, China
| | - Lvjia Zhuo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shasha Qi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jinyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ying He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xudong Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Hao Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gongxing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jianzhong Gu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuiping Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
18
|
Campbell WA, Tangeman A, El-Hodiri HM, Hawthorn EC, Hathoot M, Blum S, Hoang T, Blackshaw S, Fischer AJ. Fatty acid-binding proteins and fatty acid synthase influence glial reactivity and promote the formation of Müller glia-derived progenitor cells in the chick retina. Development 2022; 149:274285. [PMID: 35132991 PMCID: PMC8959147 DOI: 10.1242/dev.200127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
A recent comparative transcriptomic study of Müller glia (MG) in vertebrate retinas revealed that fatty acid binding proteins (FABPs) are among the most highly expressed genes in chick ( Hoang et al., 2020). Here, we investigate how FABPs and fatty acid synthase (FASN) influence glial cells in the chick retina. During development, FABP7 is highly expressed by retinal progenitor cells and maturing MG, whereas FABP5 is upregulated in maturing MG. PMP2 (FABP8) is expressed by oligodendrocytes and FABP5 is expressed by non-astrocytic inner retinal glial cells, and both of these FABPs are upregulated by activated MG. In addition to suppressing the formation of Müller glia-derived progenitor cells (MGPCs), we find that FABP-inhibition suppresses the proliferation of microglia. FABP-inhibition induces distinct changes in single cell transcriptomic profiles, indicating transitions of MG from resting to reactive states and suppressed MGPC formation, with upregulation of gene modules for gliogenesis and decreases in neurogenesis. FASN-inhibition increases the proliferation of microglia and suppresses the formation of MGPCs. We conclude that fatty acid metabolism and cell signaling involving fatty acids are important in regulating the reactivity and dedifferentiation of MG, and the proliferation of microglia and MGPCs.
Collapse
Affiliation(s)
- Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Allen Tangeman
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Evan C Hawthorn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Maddie Hathoot
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Sydney Blum
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Clayton P, Subah S, Venkatesh R, Hill M, Bogoda N. Palmitoylethanolamide: A Potential Alternative to Cannabidiol. J Diet Suppl 2021; 20:505-530. [PMID: 34842030 DOI: 10.1080/19390211.2021.2005733] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The endocannabinoid system (ECS) is a widespread cell signaling network that maintains homeostasis in response to endogenous and exogenous stressors. This has made the ECS an attractive therapeutic target for various disease states. The ECS is a well-known target of exogenous phytocannabinoids derived from cannabis plants, the most well characterized being Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). However, the therapeutic efficacy of cannabis products comes with a risk of toxicity and high abuse potential due to the psychoactivity of THC. CBD, on the other hand, is reported to have beneficial medicinal properties including analgesic, neuroprotective, anxiolytic, anticonvulsant, and antipsychotic activities, while apparently lacking the toxicity of THC. Nevertheless, not only is the currently available scientific data concerning CBD's efficacy insufficient, there is also ambiguity surrounding its regulatory status and safety in humans that brings inherent risks to manufacturers. There is a demand for alternative compounds combining similar effects with a robust safety profile and regulatory approval. Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator, primarily known for its anti-inflammatory, analgesic and neuroprotective properties. It appears to have a multi-modal mechanism of action, by primarily activating the nuclear receptor PPAR-α while also potentially working through the ECS, thus targeting similar pathways as CBD. With proven efficacy in several therapeutic areas, its safety and tolerability profile and the development of formulations that maximize its bioavailability, PEA is a promising alternative to CBD.
Collapse
Affiliation(s)
- Paul Clayton
- Institute of Food, Brain and Behaviour, Oxford, UK
| | - Silma Subah
- Gencor Pacific Limited, Lantau Island, Hong Kong
| | | | - Mariko Hill
- Gencor Pacific Limited, Lantau Island, Hong Kong
| | | |
Collapse
|
20
|
Abstract
In this review, the state of the art for compounds affecting the endocannabinoid (eCB) system is described with a focus on the treatment of pain. Amongst directly acting CB receptor ligands, clinical experience with ∆9 -tetrahydracannabinol and medical cannabis in chronic non-cancer pain indicates that there are differences between the benefits perceived by patients and the at best modest effect seen in meta-analyses of randomized controlled trials. The reason for this difference is not known but may involve differences in the type of patients that are recruited, the study conditions that are chosen and the degree to which biases such as reporting bias are operative. Other directly acting CB receptor ligands such as biased agonists and allosteric receptor modulators have not yet reached the clinic. Amongst indirectly acting compounds targeting the enzymes responsible for the synthesis and catabolism of the eCBs anandamide and 2-arachidonoylglycerol, fatty acid amide hydrolase (FAAH) inhibitors have been investigated clinically but were per se not useful for the treatment of pain, although they may be useful for the treatment of post-traumatic stress disorder and cannabis use disorder. Dual-acting compounds targeting this enzyme and other targets such as cyclooxygenase-2 or transient potential vanilloid receptor 1 may be a way forward for the treatment of pain.
Collapse
Affiliation(s)
- C J Fowler
- From the, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
The Basal Pharmacology of Palmitoylethanolamide. Int J Mol Sci 2020; 21:ijms21217942. [PMID: 33114698 PMCID: PMC7662788 DOI: 10.3390/ijms21217942] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Palmitoylethanolamide (PEA, N-hexadecanoylethanolamide) is an endogenous compound belonging to the family of N-acylethanolamines. PEA has anti-inflammatory and analgesic properties and is very well tolerated in humans. In the present article, the basal pharmacology of PEA is reviewed. In terms of its pharmacokinetic properties, most work has been undertaken upon designing formulations for its absorption and upon characterising the enzymes involved in its metabolism, but little is known about its bioavailability, tissue distribution, and excretion pathways. PEA exerts most of its biological effects in the body secondary to the activation of peroxisome proliferator-activated receptor-α (PPAR-α), but PPAR-α-independent pathways involving other receptors (Transient Receptor Potential Vanilloid 1 (TRPV1), GPR55) have also been identified. Given the potential clinical utility of PEA, not least for the treatment of pain where there is a clear need for new well-tolerated drugs, we conclude that the gaps in our knowledge, in particular those relating to the pharmacokinetic properties of the compound, need to be filled.
Collapse
|
22
|
Jasim H, Ernberg M, Carlsson A, Gerdle B, Ghafouri B. Protein Signature in Saliva of Temporomandibular Disorders Myalgia. Int J Mol Sci 2020; 21:ijms21072569. [PMID: 32272779 PMCID: PMC7177369 DOI: 10.3390/ijms21072569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 11/16/2022] Open
Abstract
In the last years, several attempts have been made to study specific biological markers of temporomandibular disorders (TMD). So far, no laboratory tests have been appropriately validated for the diagnosis and prognosis of these disorders. This study aimed to investigate the proteomic profile of the whole stimulated saliva of TMD myalgia patients in order to evaluate potential diagnostic and/or prognostic salivary candidate proteins which could be useful for the management of TMD. Twenty patients diagnosed with TMD myalgia according to the validated Diagnostic Criteria for TMD (DC/TMD) and 20 matched healthy pain-free controls were enrolled. Saliva samples were collected in the morning. Comparative proteomic analysis was performed with two-dimensional gel electrophoresis followed by identification with liquid chromatography–tandem mass spectrometry. Statistical analysis of the quantitative proteomics data revealed that 20 proteins were significantly altered in patients compared to controls. Among these proteins, 12 showed significantly increased levels, and 8 showed significantly decreased levels in patients with TMD myalgia compared to controls. The identified proteins are involved in metabolic processes, immune response, and stress response. This proteomic study shows that the salivary protein profile can discriminate patients with TMD myalgia from healthy subjects, but the protein signature has no correlation with the clinical features of TMD myalgia. Additional studies are needed to validate our observations in additional sample sets and to continue assessing the utility of saliva as a suitable sample for studying processes related to TMD myalgia.
Collapse
Affiliation(s)
- Hajer Jasim
- Division of Oral Diagnostics & Rehabilitation, Department of Dental Medicine, Karolinska Institutet and Scandinavian Center for Orofacial neuroscience (SCON), SE 14104 Huddinge, Sweden
- Correspondence: ; Tel.: +468-524-880-42
| | - Malin Ernberg
- Division of Oral Diagnostics & Rehabilitation, Department of Dental Medicine, Karolinska Institutet and Scandinavian Center for Orofacial neuroscience (SCON), SE 14104 Huddinge, Sweden
| | - Anders Carlsson
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, SE 581 83 Linköping, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, SE 581 83 Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, SE 581 83 Linköping, Sweden
| |
Collapse
|
23
|
Chen J, Liu X, Zhang S, Chen J, Sun H, Zhang L, Zhang Q. Molecular mechanism with regard to the binding selectivity of inhibitors toward FABP5 and FABP7 explored by multiple short molecular dynamics simulations and free energy analyses. Phys Chem Chem Phys 2020; 22:2262-2275. [DOI: 10.1039/c9cp05704h] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, fatty acid binding proteins 5 and 7 (FABP5 and FABP7) have been regarded as the prospective targets for clinically treating multiple diseases related to FABPs.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- People's Republic of China
| | - Xinguo Liu
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- People's Republic of China
| | - Shaolong Zhang
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- People's Republic of China
| | - Junxiao Chen
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology
- Jinan
- People's Republic of China
| | - Haibo Sun
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- People's Republic of China
| | - Lin Zhang
- School of Construction Machinery
- Shandong Jiaotong University
- Jinan 250357
- People's Republic of China
| | - Qinggang Zhang
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- People's Republic of China
| |
Collapse
|
24
|
Zhou Y, Elmes MW, Sweeney JM, Joseph OM, Che J, Hsu HC, Li H, Deutsch DG, Ojima I, Kaczocha M, Rizzo RC. Identification of Fatty Acid Binding Protein 5 Inhibitors Through Similarity-Based Screening. Biochemistry 2019; 58:4304-4316. [PMID: 31539229 PMCID: PMC6812325 DOI: 10.1021/acs.biochem.9b00625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fatty acid binding protein 5 (FABP5) is a promising target for development of inhibitors to help control pain and inflammation. In this work, computer-based docking (DOCK6 program) was employed to screen ∼2 M commercially available compounds to FABP5 based on an X-ray structure complexed with the small molecule inhibitor SBFI-26 previously identified by our group (also through virtual screening). The goal was discovery of additional chemotypes. The screen resulted in the purchase of 78 candidates, which led to the identification of a new inhibitor scaffold (STK-0) with micromolar affinity and apparent selectivity for FABP5 over FABP3. A second similarity-based screen resulted in three additional hits (STK-15, STK-21, STK-22) from which preliminary SAR could be derived. Notably, STK-15 showed comparable activity to the SBFI-26 reference under the same assay conditions (1.40 vs 0.86 μM). Additional molecular dynamics simulations, free energy calculations, and structural analysis (starting from DOCK-generated poses) revealed that R enantiomers (dihydropyrrole scaffold) of STK-15 and STK-22 have a more optimal composition of functional groups to facilitate additional H-bonds with Arg109 of FABP5. This observation suggests enantiomerically pure compounds could show enhanced activity. Overall, our study highlights the utility of using similarity-based screening methods to discover new inhibitor chemotypes, and the identified FABP5 hits provide a strong starting point for future efforts geared to improve activity.
Collapse
Affiliation(s)
- Yuchen Zhou
- Department of Applied Mathematics & Statistics , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Matthew W Elmes
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States.,Department of Anesthesiology , Stony Brook University , Stony Brook , New York 11794 , United States.,Graduate Program in Molecular and Cellular Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Joseph M Sweeney
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Olivia M Joseph
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Joyce Che
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Hao-Chi Hsu
- Structural Biology Program , Van Andel Institute , Grand Rapids , Michigan 49503 , United States
| | - Huilin Li
- Structural Biology Program , Van Andel Institute , Grand Rapids , Michigan 49503 , United States
| | - Dale G Deutsch
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Iwao Ojima
- Institute of Chemical Biology & Drug Discovery , Stony Brook University , Stony Brook , New York 11794 , United States.,Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Martin Kaczocha
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States.,Department of Anesthesiology , Stony Brook University , Stony Brook , New York 11794 , United States.,Institute of Chemical Biology & Drug Discovery , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Robert C Rizzo
- Department of Applied Mathematics & Statistics , Stony Brook University , Stony Brook , New York 11794 , United States.,Institute of Chemical Biology & Drug Discovery , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| |
Collapse
|
25
|
Floresta G, Cilibrizzi A, Abbate V, Spampinato A, Zagni C, Rescifina A. 3D-QSAR assisted identification of FABP4 inhibitors: An effective scaffold hopping analysis/QSAR evaluation. Bioorg Chem 2018; 84:276-284. [PMID: 30529845 DOI: 10.1016/j.bioorg.2018.11.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 02/09/2023]
Abstract
Following on the recent publication of pharmacologically relevant effects, small molecule inhibitors of adipocyte fatty-acid binding protein 4 (FABP4) have attracted high interest. FABP4 is mainly expressed in macrophages and adipose tissue, where it regulates fatty acid storage and lipolysis, being also an important mediator of inflammation. In this regard, FABP4 recently demonstrated an interesting molecular target for the treatment of type 2 diabetes, other metabolic diseases and some type of cancers. In the past years, hundreds of effective FABP4 inhibitors have been synthesized. In this paper, a quantitative structure-activity relationship (QSAR) model has been produced, in order to predict the bioactivity of FABP4 inhibitors. The methodology has been combined with a scaffold-hopping approach, allowing to identify three new molecules that act as effective inhibitors of this protein. These molecules, synthesized and tested for their FABP4 inhibitor activity, showed IC50 values between 3.70 and 5.59 μM, with a high level of agreement with the predicted values.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy; Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK.
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK; King's Forensics, School of Population Health & Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Vincenzo Abbate
- King's Forensics, School of Population Health & Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Ambra Spampinato
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Chiara Zagni
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
26
|
Yan S, Elmes MW, Tong S, Hu K, Awwa M, Teng GYH, Jing Y, Freitag M, Gan Q, Clement T, Wei L, Sweeney JM, Joseph OM, Che J, Carbonetti GS, Wang L, Bogdan DM, Falcone J, Smietalo N, Zhou Y, Ralph B, Hsu HC, Li H, Rizzo RC, Deutsch DG, Kaczocha M, Ojima I. SAR studies on truxillic acid mono esters as a new class of antinociceptive agents targeting fatty acid binding proteins. Eur J Med Chem 2018; 154:233-252. [PMID: 29803996 DOI: 10.1016/j.ejmech.2018.04.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 01/27/2023]
Abstract
Fatty acid binding proteins (FABPs) serve as critical modulators of endocannabinoid signaling by facilitating the intracellular transport of anandamide and whose inhibition potentiates anandamide signaling. Our previous work has identified a novel small-molecule FABP inhibitor, α-truxillic acid 1-naphthyl monoester (SB-FI-26, 3) that has shown efficacy as an antinociceptive and anti-inflammatory agent in rodent models. In the present work, we have performed an extensive SAR study on a series of 3-analogs as novel FABP inhibitors based on computer-aided inhibitor drug design and docking analysis, chemical synthesis and biological evaluations. The prediction of binding affinity of these analogs to target FABP3, 5 and 7 isoforms was performed using the AutoDock 4.2 program, using the recently determined co-crystal structures of 3 with FABP5 and FABP7. The compounds with high docking scores were synthesized and evaluated for their activities using a fluorescence displacement assay against FABP3, 5 and 7. During lead optimization, compound 3l emerged as a promising compound with the Ki value of 0.21 μM for FABP 5, 4-fold more potent than 3 (Ki, 0.81 μM). Nine compounds exhibit similar or better binding affinity than 3, including compounds 4b (Ki, 0.55 μM) and 4e (Ki, 0.68 μM). Twelve compounds are selective for FABP5 and 7 with >10 μM Ki values for FABP3, indicating a safe profile to avoid potential cardiotoxicity concerns. Compounds 4f, 4j and 4k showed excellent selectivity for FABP5 and would serve as other new lead compounds. Compound 3a possessed high affinity and high selectivity for FABP7. Compounds with moderate to high affinity for FABP5 displayed antinociceptive effects in mice while compounds with low FABP5 affinity lacked in vivo efficacy. In vivo pain model studies in mice revealed that exceeding hydrophobicity significantly affects the efficacy. Thus, among the compounds with high affinity to FABP5 in vitro, the compounds with moderate hydrophobicity were identified as promising new lead compounds for the next round of optimization, including compounds 4b and 4j. For select cases, computational analysis of the observed SAR, especially the selectivity of new inhibitors to particular FABP isoforms, by comparing docking poses, interaction map, and docking energy scores has provided useful insights.
Collapse
Affiliation(s)
- Su Yan
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, United states
| | - Matthew W Elmes
- Departments of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, United states
| | - Simon Tong
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, United states
| | - Kongzhen Hu
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, United states
| | - Monaf Awwa
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, United states
| | - Gary Y H Teng
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, United states
| | - Yunrong Jing
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, United states
| | - Matthew Freitag
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, United states
| | - Qianwen Gan
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, United states
| | - Timothy Clement
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, United states
| | - Longfei Wei
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, United states
| | - Joseph M Sweeney
- Departments of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, United states
| | - Olivia M Joseph
- Departments of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, United states
| | - Joyce Che
- Departments of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, United states
| | - Gregory S Carbonetti
- Departments of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, United states
| | - Liqun Wang
- Departments of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, United states
| | - Diane M Bogdan
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794-8480, United states
| | - Jerome Falcone
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794-8480, United states
| | - Norbert Smietalo
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794-8480, United states
| | - Yuchen Zhou
- Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794-3600, United states
| | - Brian Ralph
- Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794-3600, United states
| | - Hao-Chi Hsu
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, 49503, United states
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, 49503, United states
| | - Robert C Rizzo
- Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794-3600, United states; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, United states
| | - Dale G Deutsch
- Departments of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, United states; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, United states
| | - Martin Kaczocha
- Departments of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, United states; Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794-8480, United states; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, United states
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, United states; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, United states.
| |
Collapse
|
27
|
Fatty acid-binding proteins 5 and 7 gene deletion increases sucrose consumption and diminishes forced swim immobility time. Behav Pharmacol 2018; 29:503-508. [PMID: 29570114 DOI: 10.1097/fbp.0000000000000402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inhibition and genetic deletion of fatty acid-binding proteins (FABPs) 5 and 7 have been shown to increase the levels of the endocannabinoid anandamide as well as the related N-acylethanolamine's palmitoylethanolamide and oleoylethanolamide. This study examined the role of these FABPs on forced-swim (FS) behavior and on sucrose consumption in two experiments: (experiment 1) using wild-type (WT) mice treated with the FABP inhibitor SBFI26 or vehicle and (experiment 2) using WT and FABP5/7 deficient mice. Results from experiment 1 showed that acute treatment with SBFI26 did not have any effect on sucrose intake or FS behavior in mice. In experiment 2, male and female FABP5/7 deficient mice showed significant increases in sucrose consumption (25 and 21%, respectively) compared with their WT counterparts. In addition, immobility time during the FS was decreased by 27% in both male and female FABP5/7 knockout mice compared with their WT counterparts. The fact that such differences were seen between the acute pharmacological approach and the genetic approach (gene deletion) of FABP needs to be further investigated. The function of FABPs and their specific effects on endocannabinoid anandamide, oleoylethanolamide, and palmitoylethanolamide may play an important role in the development of reward and mood behaviors and could provide opportunities for potential therapeutic targets.
Collapse
|
28
|
Fatty-acid-binding protein 5 controls retrograde endocannabinoid signaling at central glutamate synapses. Proc Natl Acad Sci U S A 2018. [PMID: 29531087 DOI: 10.1073/pnas.1721339115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endocannabinoids (eCBs) are lipid-signaling molecules involved in the regulation of numerous behaviors and physiological functions. Released by postsynaptic neurons, eCBs mediate retrograde modulation of synaptic transmission and plasticity by activating presynaptic cannabinoid receptors. While the cellular mechanisms by which eCBs control synaptic function have been well characterized, the mechanisms controlling their retrograde synaptic transport remain unknown. Here, we demonstrate that fatty-acid-binding protein 5 (FABP5), a canonical intracellular carrier of eCBs, is indispensable for retrograde eCB transport in the dorsal raphe nucleus (DRn). Thus, pharmacological inhibition or genetic deletion of FABP5 abolishes both phasic and tonic eCB-mediated control of excitatory synaptic transmission in the DRn. The blockade of retrograde eCB signaling induced by FABP5 inhibition is not mediated by impaired cannabinoid receptor function or reduced eCB synthesis. These findings indicate that FABP5 is essential for retrograde eCB signaling and may serve as a synaptic carrier of eCBs at central synapses.
Collapse
|
29
|
Bogdan D, Falcone J, Kanjiya MP, Park SH, Carbonetti G, Studholme K, Gomez M, Lu Y, Elmes MW, Smietalo N, Yan S, Ojima I, Puopolo M, Kaczocha M. Fatty acid-binding protein 5 controls microsomal prostaglandin E synthase 1 (mPGES-1) induction during inflammation. J Biol Chem 2018; 293:5295-5306. [PMID: 29440395 DOI: 10.1074/jbc.ra118.001593] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Fatty acid-binding proteins (FABPs) are intracellular lipid carriers that regulate inflammation, and pharmacological inhibition of FABP5 reduces inflammation and pain. The mechanism(s) underlying the anti-inflammatory effects associated with FABP5 inhibition is poorly understood. Herein, we identify a novel mechanism through which FABP5 modulates inflammation. In mice, intraplantar injection of carrageenan induces acute inflammation that is accompanied by edema, enhanced pain sensitivity, and elevations in proinflammatory cytokines and prostaglandin E2 (PGE2). Inhibition of FABP5 reduced pain, edema, cytokine, and PGE2 levels. PGE2 is a major eicosanoid that enhances pain in the setting of inflammation, and we focused on the mechanism(s) through which FABP5 modulates PGE2 production. Cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1) are enzymes up-regulated at the site of inflammation and account for the bulk of PGE2 biosynthesis. Pharmacological or genetic FABP5 inhibition suppressed the induction of mPGES-1 but not COX-2 in carrageenan-injected paws, which occurred predominantly in macrophages. The cytokine interleukin 1β (IL-1β) is a major inducer of mPGES-1 during inflammation. Using A549 cells that express FABP5, IL-1β stimulation up-regulated mPGES-1 expression, and mPGES-1 induction was attenuated in A549 cells bearing a knockdown of FABP5. IL-1β up-regulates mPGES-1 via NF-κB, which activates the mPGES-1 promoter. Knockdown of FABP5 reduced the activation and nuclear translocation of NF-κB and attenuated mPGES-1 promoter activity. Deletion of NF-κB-binding sites within the mPGES-1 promoter abrogated the ability of FABP5 to inhibit mPGES-1 promoter activation. Collectively, these results position FABP5 as a novel regulator of mPGES-1 induction and PGE2 biosynthesis during inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Gregory Carbonetti
- Biochemistry and Cell Biology, and.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11794
| | | | | | - Yong Lu
- From the Departments of Anesthesiology
| | - Matthew W Elmes
- Biochemistry and Cell Biology, and.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11794
| | | | - Su Yan
- Chemistry.,Institute of Chemical Biology and Drug Discovery, and
| | - Iwao Ojima
- Chemistry.,Institute of Chemical Biology and Drug Discovery, and
| | | | - Martin Kaczocha
- From the Departments of Anesthesiology, .,Biochemistry and Cell Biology, and.,Institute of Chemical Biology and Drug Discovery, and
| |
Collapse
|
30
|
Jee Kim M, Tanioka M, Woo Um S, Hong SK, Hwan Lee B. Analgesic effects of FAAH inhibitor in the insular cortex of nerve-injured rats. Mol Pain 2018; 14:1744806918814345. [PMID: 30380982 PMCID: PMC6247483 DOI: 10.1177/1744806918814345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/10/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023] Open
Abstract
The insular cortex is an important region of brain involved in the processing of pain and emotion. Recent studies indicate that lesions in the insular cortex induce pain asymbolia and reverse neuropathic pain. Endogenous cannabinoids (endocannabinoids), which have been shown to attenuate pain, are simultaneously degraded by fatty acid amide hydrolase (FAAH) that halts the mechanisms of action. Selective inhibitor URB597 suppresses FAAH activity by conserving endocannabinoids, which reduces pain. The present study examined the analgesic effects of URB597 treatment in the insular cortex of an animal model of neuropathic pain. Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to nerve injury and cannula implantation. On postoperative day 14, rodents received microinjection of URB597 into the insular cortex. In order to verify the analgesic mechanisms of URB597, cannabinoid 1 receptor (CB1R) antagonist AM251, peroxisome proliferator-activated receptor alpha (PPAR alpha) antagonist GW6471, and transient receptor potential vanilloid 1 (TRPV1) antagonist Iodoresiniferatoxin (I-RTX) were microinjected 15 min prior to URB597 injection. Changes in mechanical allodynia were measured using the von-Frey test. Expressions of CB1R, N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD), and TRPV1 significantly increased in the neuropathic pain group compared to the sham-operated control group. Mechanical threshold and expression of NAPE-PLD significantly increased in groups treated with 2 nM and 4 nM URB597 compared with the vehicle-injected group. Blockages of CB1R and PPAR alpha diminished the analgesic effects of URB597. Inhibition of TRPV1 did not effectively reduce the effects of URB597 but attenuated expression of NAPE-PLD compared with the URB597-injected group. In addition, optical imaging demonstrated that neuronal activity of the insular cortex was reduced following URB597 treatment. Our results suggest that microinjection of FAAH inhibitor into the insular cortex causes analgesic effects by decreasing neural excitability and increasing signals related to the endogenous cannabinoid pathway in the insular cortex.
Collapse
Affiliation(s)
- Min Jee Kim
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Motomasa Tanioka
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Woo Um
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-Karp Hong
- Division of Bio and Health Sciences, Mokwon University, Daejeon, Republic of Korea
| | - Bae Hwan Lee
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
31
|
Floresta G, Pistarà V, Amata E, Dichiara M, Marrazzo A, Prezzavento O, Rescifina A. Adipocyte fatty acid binding protein 4 (FABP4) inhibitors. A comprehensive systematic review. Eur J Med Chem 2017; 138:854-873. [PMID: 28738306 DOI: 10.1016/j.ejmech.2017.07.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023]
Abstract
Small molecule inhibitors of adipocyte fatty acid binding protein 4 (FABP4) have attracted interest following the recent publications of beneficial pharmacological effects of these compounds. FABP4 is predominantly expressed in macrophages and adipose tissue where it regulates fatty acids (FAs) storage and lipolysis and is an important mediator of inflammation. In the past years, hundreds FABP4 inhibitors have been synthesized for effective atherosclerosis and diabetes treatments, including derivatives of niacin, quinoxaline, aryl-quinoline, bicyclic pyridine, urea, aromatic compounds and other novel heterocyclic compounds. This review provides an overview of the synthesized and discovered molecules as adipocyte fatty acid binding protein 4 inhibitors (FABP4is) since the synthesis of the putative FABP4i, BMS309403, highlighting the interactions of the different classes of inhibitors with the targets.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy; Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Venerando Pistarà
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy
| | - Emanuele Amata
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy
| | - Maria Dichiara
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy
| | - Agostino Marrazzo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy
| | - Orazio Prezzavento
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy.
| |
Collapse
|
32
|
Hsu HC, Tong S, Zhou Y, Elmes MW, Yan S, Kaczocha M, Deutsch DG, Rizzo RC, Ojima I, Li H. The Antinociceptive Agent SBFI-26 Binds to Anandamide Transporters FABP5 and FABP7 at Two Different Sites. Biochemistry 2017. [PMID: 28632393 DOI: 10.1021/acs.biochem.7b00194] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human FABP5 and FABP7 are intracellular endocannabinoid transporters. SBFI-26 is an α-truxillic acid 1-naphthyl monoester that competitively inhibits the activities of FABP5 and FABP7 and produces antinociceptive and anti-inflammatory effects in mice. The synthesis of SBFI-26 yields several stereoisomers, and it is not known how the inhibitor binds the transporters. Here we report co-crystal structures of SBFI-26 in complex with human FABP5 and FABP7 at 2.2 and 1.9 Å resolution, respectively. We found that only (S)-SBFI-26 was present in the crystal structures. The inhibitor largely mimics the fatty acid binding pattern, but it also has several unique interactions. Notably, the FABP7 complex corroborates key aspects of the ligand binding pose at the canonical site previously predicted by virtual screening. In FABP5, SBFI-26 was unexpectedly found to bind at the substrate entry portal region in addition to binding at the canonical ligand-binding pocket. Our structural and binding energy analyses indicate that both R and S forms appear to bind the transporter equally well. We suggest that the S enantiomer observed in the crystal structures may be a result of the crystallization process selectively incorporating the (S)-SBFI-26-FABP complexes into the growing lattice, or that the S enantiomer may bind to the portal site more rapidly than to the canonical site, leading to an increased local concentration of the S enantiomer for binding to the canonical site. Our work reveals two binding poses of SBFI-26 in its target transporters. This knowledge will guide the development of more potent FABP inhibitors based upon the SBFI-26 scaffold.
Collapse
Affiliation(s)
- Hao-Chi Hsu
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute , Grand Rapids, Michigan 49503, United States
| | - Simon Tong
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Yuchen Zhou
- Department of Applied Mathematics and Statistics, Stony Brook University , Stony Brook, New York 11794, United States
| | - Matthew W Elmes
- Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794, United States
| | - Su Yan
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Martin Kaczocha
- Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794, United States.,Department of Anesthesiology, Stony Brook University , Stony Brook, New York 11794, United States
| | - Dale G Deutsch
- Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794, United States.,Institute of Chemical Biology and Drug Discovery, Stony Brook University , Stony Brook, New York 11794, United States
| | - Robert C Rizzo
- Department of Applied Mathematics and Statistics, Stony Brook University , Stony Brook, New York 11794, United States.,Institute of Chemical Biology and Drug Discovery, Stony Brook University , Stony Brook, New York 11794, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University , Stony Brook, New York 11794, United States
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States.,Institute of Chemical Biology and Drug Discovery, Stony Brook University , Stony Brook, New York 11794, United States
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute , Grand Rapids, Michigan 49503, United States.,Institute of Chemical Biology and Drug Discovery, Stony Brook University , Stony Brook, New York 11794, United States
| |
Collapse
|
33
|
Figueiredo A, Hamilton J, Marion M, Blum K, Kaczocha M, Haj-Dahmane S, Deutsch D, Thanos PK. Pharmacological Inhibition of Brain Fatty Acid Binding Protein Reduces Ethanol Consumption in Mice. JOURNAL OF REWARD DEFICIENCY SYNDROME AND ADDICTION SCIENCE 2017; 3:21-27. [PMID: 29367955 PMCID: PMC5777574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The endocannabinoid (eCB) system is involved in a wide range of behavioral disorders including alcoholism. Inhibition of fatty acid amide hydrolase (FAAH), the principal enzyme that degrades the eCB anandamide (AEA), which enhances AEA levels in the brain, significantly increases ethanol consumption and preference. In the present study, we examined whether pharmacological inhibition of fatty acid binding proteins (FABPs) 5 and 7, which blocks the transport of AEA to FAAH, and increase AEA levels in vivo also alters ethanol consumption and preference. Using a limited access two-bottle choice paradigm, we evaluated ethanol consumption in both male and female C57Bl/6 mice. Results showed a significant decrease in ethanol consumption in both males and females treated with SBFI26, an inhibitor of FABPs. Specifically, male and female mice treated with SBFI26 consumed 24% and 42% less compared to mice receiving no injections, respectively. Subsequently, corticosterone was examined to evaluate the effects FABP5/7 inhibition upon the stress response. We observed a significant elevation in corticosterone levels following restraint stress in SBFI26 treated females, with a weak effect seen in males as compared to vehicle. Based on our results, targeting of FABPs appears to play an important role in ethanol consumption that is differentially regulated in males and females, which is mediated by the stress response.
Collapse
Affiliation(s)
- Antonio Figueiredo
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Matthew Marion
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Department of Psychiatry and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Samir Haj-Dahmane
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Dale Deutsch
- Department of Biochemistry, Stony Brook University, Stony Brook, NY, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA,Correspondence to: Dr. Panayotis K. Thanos, Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, New York, 14203, USA Tel: (716) 881-7520,
| |
Collapse
|