1
|
Gupta RA, Higham JP, Pearce A, Urriola-Muñoz P, Barker KH, Paine L, Ghooraroo J, Raine T, Hockley JRF, Rahman T, St John Smith E, Brown AJH, Ladds G, Suzuki R, Bulmer DC. GPR35 agonists inhibit TRPA1-mediated colonic nociception through suppression of substance P release. Pain 2024:00006396-990000000-00727. [PMID: 39382322 DOI: 10.1097/j.pain.0000000000003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/25/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT The development of nonopioid analgesics for the treatment of abdominal pain is a pressing clinical problem. To address this, we examined the expression of Gi/o-coupled receptors, which typically inhibit nociceptor activation, in colonic sensory neurons. This led to the identification of the orphan receptor GPR35 as a visceral analgesic drug target because of its marked coexpression with transient receptor potential ankyrin 1 (TRPA1), a mediator of noxious mechanotransduction in the bowel. Building on in silico docking simulations, we confirmed that the mast cell stabiliser, cromolyn (CS), and phosphodiesterase inhibitor, zaprinast, are agonists at mouse GPR35, promoting the activation of different Gi/o subunits. Pretreatment with either CS or zaprinast significantly attenuated TRPA1-mediated colonic nociceptor activation and prevented TRPA1-mediated mechanosensitisation. These effects were lost in tissue from GPR35-/- mice and were shown to be mediated by inhibition of TRPA1-evoked substance P (SP) release. This observation highlights the pronociceptive effect of SP and its contribution to TRPA1-mediated colonic nociceptor activation and sensitisation. Consistent with this mechanism of action, we confirmed that TRPA1-mediated colonic contractions evoked by SP release were abolished by CS pretreatment in a GPR35-dependent manner. Our data demonstrate that GPR35 agonists prevent the activation and sensitisation of colonic nociceptors through the inhibition of TRPA1-mediated SP release. These findings highlight the potential of GPR35 agonists to deliver nonopioid analgesia for the treatment of abdominal pain.
Collapse
Affiliation(s)
- Rohit A Gupta
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - James P Higham
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Abigail Pearce
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Paulina Urriola-Muñoz
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Katie H Barker
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Luke Paine
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Joshua Ghooraroo
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Tim Raine
- Department of Gastroenterology, Addenbrookes Hospital, Cambridge University Teaching Hospitals, Cambridge, United Kingdom
| | - James R F Hockley
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Alastair J H Brown
- Nxera, Steinmetz Building, Granta Park Great Abington, Cambridge, United Kingdom
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Rie Suzuki
- Nxera, Steinmetz Building, Granta Park Great Abington, Cambridge, United Kingdom
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| |
Collapse
|
2
|
Nelson TS, Santos DFS, Prasoon P, Gralinski M, Allen HN, Taylor BK. Endogenous μ-opioid-Neuropeptide Y Y1 receptor synergy silences chronic postoperative pain in mice. PNAS NEXUS 2023; 2:pgad261. [PMID: 37649580 PMCID: PMC10465188 DOI: 10.1093/pnasnexus/pgad261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/09/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Tissue injury creates a delicate balance between latent pain sensitization (LS) and compensatory endogenous analgesia. Inhibitory G-protein-coupled receptor (GPCR) interactions that oppose LS, including μ-opioid receptor (MOR) or neuropeptide Y Y1 receptor (Y1R) activity, persist in the spinal cord dorsal horn (DH) for months, even after the resolution of normal pain thresholds. Here, we demonstrate that following recovery from surgical incision, a potent endogenous analgesic synergy between MOR and Y1R activity persists within DH interneurons to reduce the intensity and duration of latent postoperative hypersensitivity and ongoing pain. Failure of such endogenous GPCR signaling to maintain LS in remission may underlie the transition from acute to chronic pain states.
Collapse
Affiliation(s)
- Tyler S Nelson
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Diogo F S Santos
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Margaret Gralinski
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Heather N Allen
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Bradley K Taylor
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Xie Z, Fox AP. Rapid emergence from dexmedetomidine sedation in Sprague Dawley rats by repurposing an α 2-adrenergic receptor competitive antagonist in combination with caffeine. BMC Anesthesiol 2023; 23:39. [PMID: 36721095 PMCID: PMC9890710 DOI: 10.1186/s12871-023-01986-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The α2 adrenergic receptor agonist dexmedetomidine is an important intravenous sedative with analgesic properties. Currently available dexmedetomidine reversal agents, like the α2-receptor antagonist atipamezole, cause serious adverse effects at the large dosages required for effective reversal; they are not used clinically. Without reversal agents, emergence times from dexmedetomidine sedation are slow. In this study we tested the ability of low-dose atipamezole, in combination with caffeine, to reverse dexmedetomidine sedation. The low dose of atipamezole employed should not be associated with unwanted effects. METHODS Two different sedation protocols were employed. In the first protocol, a bolus of dexmedetomidine was rapidly applied and the drug was allowed to equilibrate for 10 min before rats received either saline (as control) or low-dose atipamezole with caffeine. Following this procedure, rats were placed on their backs. Emergence from sedation was the time for rats to recover their righting reflex and stand with 4 paws on the floor. A second sedation protocol simulated a pediatric magnetic resonance imaging (MRI) scan. Adult rats were sedated with dexmedetomidine for one hour followed by 30 min with both dexmedetomidine and propofol. At the end of 90 min, rats received either saline (control) or a combination of low-dose atipamezole, and caffeine. Recovery of the righting reflex was used as a proxy for emergence from sedation. RESULTS Emergence from sedation, the time for rats to recover their righting reflex, decreased by ~ 90% when using an atipamezole dose ~ 20 fold lower than manufacturer's recommendation, supplemented with caffeine. Using an atipamezole dose ~ tenfold lower than recommended, with caffeine, emergence times decreased by ~ 97%. A different stimulant, forskolin, when tested, was as effective as caffeine. For the MRI simulation, emergence times were decreased by ~ 93% by low-dose atipamezole with caffeine. CONCLUSIONS Low dose atipamezole with caffeine was effective at reversing dexmedetomidine sedation. Emergence was rapid and the rats regained not only their righting reflex but also their balance and their ability to carry out complex behaviors. These findings suggest that the combination of low dose atipamezole with caffeine may permit rapid clinical reversal of dexmedetomidine without unwanted effects.
Collapse
Affiliation(s)
- Zheng Xie
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA
| | - Aaron P Fox
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Kelly E, Conibear A, Henderson G. Biased Agonism: Lessons from Studies of Opioid Receptor Agonists. Annu Rev Pharmacol Toxicol 2023; 63:491-515. [PMID: 36170657 DOI: 10.1146/annurev-pharmtox-052120-091058] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In ligand bias different agonist drugs are thought to produce distinct signaling outputs when activating the same receptor. If these signaling outputs mediate therapeutic versus adverse drug effects, then agonists that selectively activate the therapeutic signaling pathway would be extremely beneficial. It has long been thought that μ-opioid receptor agonists that selectively activate G protein- over β-arrestin-dependent signaling pathways would produce effective analgesia without the adverse effects such as respiratory depression. However, more recent data indicate that most of the therapeutic and adverse effects of agonist-induced activation of the μ-opioid receptor are actually mediated by the G protein-dependent signaling pathway, and that a number of drugs described as G protein biased in fact may not be biased, but instead may be low-intrinsic-efficacy agonists. In this review we discuss the current state of the field of bias at the μ-opioid receptor and other opioid receptor subtypes.
Collapse
Affiliation(s)
- Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Alexandra Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| |
Collapse
|
5
|
Shoenhard H, Jain RA, Granato M. The calcium-sensing receptor (CaSR) regulates zebrafish sensorimotor decision making via a genetically defined cluster of hindbrain neurons. Cell Rep 2022; 41:111790. [PMID: 36476852 PMCID: PMC9813870 DOI: 10.1016/j.celrep.2022.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Decision making is a fundamental nervous system function that ranges widely in complexity and speed of execution. We previously established larval zebrafish as a model for sensorimotor decision making and identified the G-protein-coupled calcium-sensing receptor (CaSR) to be critical for this process. Here, we report that CaSR functions in neurons to dynamically regulate the bias between two behavioral outcomes: escapes and reorientations. By employing a computational guided transgenic strategy, we identify a genetically defined neuronal cluster in the hindbrain as a key candidate site for CaSR function. Finally, we demonstrate that transgenic CaSR expression targeting this cluster consisting of a few hundred neurons shifts behavioral bias in wild-type animals and restores decision making deficits in CaSR mutants. Combined, our data provide a rare example of a G-protein-coupled receptor that biases vertebrate sensorimotor decision making via a defined neuronal cluster.
Collapse
Affiliation(s)
- Hannah Shoenhard
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roshan A Jain
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Marwari S, Kowalski C, Martemyanov KA. Exploring pharmacological inhibition of G q/11 as an analgesic strategy. Br J Pharmacol 2022; 179:5196-5208. [PMID: 35900909 PMCID: PMC9633401 DOI: 10.1111/bph.15935] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Misuse of opioids has greatly affected our society. One potential solution is to develop analgesics that act at targets other than opioid receptors. These can be used either as stand-alone therapeutics or to improve the safety profile of opioid drugs. Previous research showed that activation of Gq/11 proteins by G-protein coupled receptors has pro-nociceptive properties, suggesting that blockade of Gq/11 signalling could be beneficial for pain control. The aim of this study was to test this hypothesis pharmacologically by using potent and selective Gq/11 inhibitor YM-254890. EXPERIMENTAL APPROACH We used a series of behavioural assays to evaluate the acute responses of mice to painful thermal stimulation while administering YM-254890 alone and in combination with morphine. We then used electrophysiological recordings to evaluate the effects of YM-254890 on the excitability of dorsal root ganglion (DRG) nociceptor neurons. KEY RESULTS We found that systemic administration of YM-254890 produced anti-nociceptive effects and also augmented morphine analgesia in both hotplate and tail flick paradigms. However, it also caused substantial inhibition of locomotion, which may limit its therapeutic utility. To circumvent these issues, we explored the local administration of YM-254890. Intrathecal injections of YM-254890 produced lasting analgesia in a tail flick test and greatly augmented the anti-nociceptive effects of morphine without any significant effects on locomotor behaviour. Electrophysiological studies showed that YM-254890 reduced the excitability of DRG nociceptors and augmented their opioid-induced inhibition. CONCLUSION AND IMPLICATIONS These findings indicate that pharmacological inhibition of Gq/11 could be explored as an analgesic strategy.
Collapse
Affiliation(s)
- Subhi Marwari
- Department of NeuroscienceThe Scripps Research InstituteJupiterFloridaUSA
| | - Cody Kowalski
- Department of NeuroscienceThe Scripps Research InstituteJupiterFloridaUSA
| | | |
Collapse
|
7
|
Liu J, Jia S, Huang F, He H, Fan W. Peripheral role of glutamate in orofacial pain. Front Neurosci 2022; 16:929136. [PMID: 36440288 PMCID: PMC9682037 DOI: 10.3389/fnins.2022.929136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/10/2022] [Indexed: 09/10/2023] Open
Abstract
Glutamate is the principal excitatory neurotransmitter in the central nervous system. In the periphery, glutamate acts as a transmitter and involves in the signaling and processing of sensory input. Glutamate acts at several types of receptors and also interacts with other transmitters/mediators under various physiological and pathophysiological conditions including chronic pain. The increasing amount of evidence suggests that glutamate may play a role through multiple mechanisms in orofacial pain processing. In this study, we reviewed the current understanding of how peripheral glutamate mediates orofacial pain, how glutamate is regulated in the periphery, and how these findings are translated into therapies for pain conditions.
Collapse
Affiliation(s)
- Jinyue Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shilin Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Deng L, Ravenscraft B, Xu XM. Exploring propriospinal neuron-mediated neural circuit plasticity using recombinant viruses after spinal cord injury. Exp Neurol 2021; 349:113962. [PMID: 34953895 DOI: 10.1016/j.expneurol.2021.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/04/2022]
Abstract
Propriospinal neurons (PSNs) play a crucial role in motor control and sensory processing and contribute to plastic reorganization of spinal circuits responsible for recovery from spinal cord injury (SCI). Due to their scattered distribution and various intersegmental projection patterns, it is challenging to dissect the function of PSNs within the neuronal network. New genetically encoded tools, particularly cell-type-specific transgene expression methods using recombinant viral vectors combined with other genetic, pharmacologic, and optogenetic approaches, have enormous potential for visualizing PSNs in the neuronal circuits and monitoring and manipulating their activity. Furthermore, recombinant viral tools have been utilized to promote the intrinsic regenerative capacities of PSNs, towards manipulating the 'hostile' microenvironment for improving functional regeneration of PSNs. Here we summarize the latest development in this fast-moving field and provide a perspective for using this technology to dissect PSN physiological role in contributing to recovery of function after SCI.
Collapse
Affiliation(s)
- Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Baylen Ravenscraft
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
9
|
Lee DF, Geron M, Scherrer G. A modulator-bound GPCR structure enables allosteric non-opioid analgesia. Nat Struct Mol Biol 2021; 28:871-872. [PMID: 34754105 DOI: 10.1038/s41594-021-00681-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David F Lee
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Pharmacology Curriculum, Biological & Biomedical Sciences Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,New York Stem Cell Foundation-Robertson Investigator, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Bony AR, McArthur JR, Finol-Urdaneta RK, Adams DJ. Analgesic α-conotoxins modulate native and recombinant GIRK1/2 channels via activation of GABA B receptors and reduce neuroexcitability. Br J Pharmacol 2021; 179:179-198. [PMID: 34599513 DOI: 10.1111/bph.15690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of GIRK channels via G protein-coupled GABAB receptors has been shown to attenuate nociceptive transmission. The analgesic α-conotoxin Vc1.1 activates GABAB receptors resulting in inhibition of Cav 2.2 and Cav 2.3 channels in mammalian primary afferent neurons. Here, we investigated the effects of analgesic α-conotoxins on recombinant and native GIRK-mediated K+ currents and on neuronal excitability. EXPERIMENTAL APPROACH The effects of analgesic α-conotoxins, Vc1.1, RgIA, and PeIA, were investigated on inwardly-rectifying K+ currents in HEK293T cells recombinantly co-expressing either heteromeric human GIRK1/2 or homomeric GIRK2 subunits, with GABAB receptors. The effects of α-conotoxin Vc1.1 and baclofen were studied on GIRK-mediated K+ currents and the passive and active electrical properties of adult mouse dorsal root ganglion neurons. KEY RESULTS Analgesic α-conotoxins Vc1.1, RgIA, and PeIA potentiate inwardly-rectifying K+ currents in HEK293T cells recombinantly expressing human GIRK1/2 channels and GABAB receptors. GABAB receptor-dependent GIRK channel potentiation by Vc1.1 and baclofen occurs via a pertussis toxin-sensitive G protein and is inhibited by the selective GABAB receptor antagonist CGP 55845. In adult mouse dorsal root ganglion neurons, GABAB receptor-dependent GIRK channel potentiation by Vc1.1 and baclofen hyperpolarizes the cell membrane potential and reduces excitability. CONCLUSIONS AND IMPLICATIONS This is the first report of GIRK channel potentiation via allosteric α-conotoxin Vc1.1-GABAB receptor agonism, leading to decreased neuronal excitability. Such action potentially contributes to the analgesic effects of Vc1.1 and baclofen observed in vivo.
Collapse
Affiliation(s)
- Anuja R Bony
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
11
|
Cui L, Cai H, Sun F, Wang Y, Qu Y, Dong J, Wang H, Li J, Qian C, Li J. Beta-endorphin inhibits the inflammatory response of bovine endometrial cells through δ opioid receptor in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104074. [PMID: 33775662 DOI: 10.1016/j.dci.2021.104074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Postpartum uterine infections are common reproductive diseases in postpartum cows. Evidence has shown that plasma β-endorphins increase during bovine uterine inflammation. However, the effect of β-endorphins on the inflammatory response in bovine endometrium has not been clarified. The aim of this study was to investigate the effect of β-endorphins on the inflammatory response of bovine endometrial epithelial and stromal cells, and to explore the possible mechanism. The cells were treated with E. coli lipopolysaccharide (LPS) to simulate inflammation, which was characterized by the significant activation of NF-κB signaling pathway and the increased gene expression of the downstream proinflammatory cytokines (approximately 1.2- to 15-fold increase, P < 0.05). By using Western blot and qPCR techniques, we found that β-endorphins inhibited the key protein expression of NF-κB pathway, and the gene expressions of TNF, IL1B, IL6, CXCL8, nitric oxide synthase 2, and prostaglandin-endoperoxide synthase 2 (P < 0.05). The co-treatment of β-endorphins and opioid antagonists showed that the anti-inflammatory effect of β-endorphins could be blocked (P < 0.05) by non-selective opioid antagonist naloxone or δ opioid receptor antagonist ICI 154129, but not the μ opioid receptor antagonist CTAP (P > 0.05). In conclusion, β-endorphins may inhibit the inflammatory response of bovine endometrial epithelial and stromal cells through δ opioid receptor.
Collapse
Affiliation(s)
- Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Hele Cai
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Fazhuang Sun
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Yali Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Yang Qu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Chen Qian
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
12
|
Bassetti D, Luhmann HJ, Kirischuk S. Presynaptic GABA B receptor-mediated network excitation in the medial prefrontal cortex of Tsc2 +/- mice. Pflugers Arch 2021; 473:1261-1271. [PMID: 34279736 PMCID: PMC8302497 DOI: 10.1007/s00424-021-02576-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 11/02/2022]
Abstract
The TSC1 and TSC2 tumor suppressor genes control the activity of mechanistic target of rapamycin (mTOR) pathway. Elevated activity of this pathway in Tsc2+/- mouse model leads to reduction of postsynaptic GABAB receptor-mediated inhibition and hyperexcitability in the medial prefrontal cortex (mPFC). In this study, we asked whether presynaptic GABAB receptors (GABABRs) can compensate this shift of hyperexcitability. Experiments were performed in brain slices from adolescent wild-type (WT) and Tsc2+/- mice. Miniature and spontaneous postsynaptic currents (m/sPSCs) were recorded from layer 2/3 pyramidal neurons in mPFC using patch-clamp technique using a Cs+-based intrapipette solution. Presynaptic GABABRs were activated by baclofen (10 µM) or blocked by CGP55845 (1 µM). Independent on genotype, GABABR modulators bidirectionally change miniature excitatory postsynaptic current (mEPSC) frequency by about 10%, indicating presynaptic GABABR-mediated effects on glutamatergic transmission are comparable in both genotypes. In contrast, frequencies of both mIPSCs and sIPCSs were suppressed by baclofen stronger in Tsc2+/- neurons than in WT ones, whereas CGP55845 significantly increased (m/s)IPSC frequencies only in WT cells. Effects of baclofen and CGP55845 on the amplitudes of evoked (e)IPSCs confirmed these observations. These data indicate (1) that GABAergic synapses are inhibited by ambient GABA in WT but not in Tsc2+/- slices, and (2) that baclofen shifts the E/I ratio, determined as the ratio of (m/s)EPSC frequency to (m/s)IPSC frequency, towards excitation only in Tsc2+/- cells. This excitatory presynaptic GABABR-mediated action has to be taken into account for a possible medication of mental disorders using baclofen.
Collapse
Affiliation(s)
- Davide Bassetti
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| |
Collapse
|
13
|
Cho PS, Lee HK, Choi YI, Choi SI, Lim JY, Kim M, Kim H, Jung SJ, Hwang SW. GPR171 Activation Modulates Nociceptor Functions, Alleviating Pathologic Pain. Biomedicines 2021; 9:biomedicines9030256. [PMID: 33807709 PMCID: PMC8001436 DOI: 10.3390/biomedicines9030256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 01/04/2023] Open
Abstract
Modulation of the function of somatosensory neurons is an important analgesic strategy, requiring the proposal of novel molecular targets. Many G-protein-coupled receptors (GPRs) have been deorphanized, but the receptor locations, outcomes due to their activations, and their signal transductions remain to be elucidated, regarding the somatosensory nociceptor function. Here we report that GPR171, expressed in a nociceptor subpopulation, attenuated pain signals via Gi/o-coupled modulation of the activities of nociceptive ion channels when activated by its newly found ligands. Administration of its natural peptide ligand and a synthetic chemical ligand alleviated nociceptor-mediated acute pain aggravations and also relieved pathologic pain at nanomolar and micromolar ranges. This study suggests that functional alteration of the nociceptor neurons by GPR171 signaling results in pain alleviation and indicates that GPR171 is a promising molecular target for peripheral pain modulation.
Collapse
Affiliation(s)
- Pyung Sun Cho
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (P.S.C.); (S.I.C.); (J.Y.L.); (M.K.)
- Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Han Kyu Lee
- Department of Physiology, College of Medicine, Hanyang University, Seoul 04763, Korea; (H.K.L.); (Y.I.C.)
| | - Young In Choi
- Department of Physiology, College of Medicine, Hanyang University, Seoul 04763, Korea; (H.K.L.); (Y.I.C.)
| | - Seung In Choi
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (P.S.C.); (S.I.C.); (J.Y.L.); (M.K.)
- Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Ji Yeon Lim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (P.S.C.); (S.I.C.); (J.Y.L.); (M.K.)
- Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Minseok Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (P.S.C.); (S.I.C.); (J.Y.L.); (M.K.)
- Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea;
| | - Sung Jun Jung
- Department of Physiology, College of Medicine, Hanyang University, Seoul 04763, Korea; (H.K.L.); (Y.I.C.)
- Correspondence: (S.J.J.); (S.W.H.)
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (P.S.C.); (S.I.C.); (J.Y.L.); (M.K.)
- Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
- Correspondence: (S.J.J.); (S.W.H.)
| |
Collapse
|
14
|
Cornelison LE, Woodman SE, Durham PL. 5-HT3/7 and GABA B receptors mediate inhibition of trigeminal nociception by dietary supplementation of grape seed extract. Nutr Neurosci 2021; 25:1565-1576. [PMID: 33544064 PMCID: PMC8339147 DOI: 10.1080/1028415x.2021.1880211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Temporomandibular joint disorder is a prevalent orofacial pain condition involving sensitization and activation of trigeminal nociceptive neurons. Dietary supplementation with a proanthocyanin-enriched grape seed extract (GSE) was found to inhibit trigeminal nociception in a chronic TMD model. In this study, the cellular mechanisms by which GSE inhibits sustained trigeminal nociception in male and female Sprague Dawley rats were investigated.Methods: Some animals were supplemented with 0.5% GSE dissolved in their water one week prior to neck muscle inflammation induced by injection of complete Freund's adjuvant into the trapezius. To investigate the mechanism of GSE, some animals were injected intracisternally with antagonists of 5-HT3, 5-HT7, GABAA, or GABAB, receptor prior to jaw opening.Results: In males and females, trapezius inflammation prior to jaw opening resulted in sustained mechanical hypersensitivity of trigeminal nociceptors that was significantly inhibited by GSE. Further, GSE beginning 14 days post jaw opening also inhibited trigeminal nociception. Intracisternal injection of antagonists of the 5-HT3/7 and GABAB, but not GABAA receptors reduced the anti-nocifensive effect of GSE in both sexes. Neuronal expression of GABAB protein and mRNA in the spinal cord and trigeminal ganglion were detected.Conclusions: The inhibitory effect of GSE is mediated via activation of 5-HT3/7 receptors and GABAB to enhance central descending inhibitory pain pathways and suppress ongoing trigeminal nociception. Further, our findings support the use of GSE as a dietary supplement in the management of pain associated with TMD and other orofacial pain conditions involving central sensitization and dysfunction of descending pain modulation.
Collapse
|
15
|
Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020; 14:601324. [PMID: 33390906 PMCID: PMC7775489 DOI: 10.3389/fncel.2020.601324] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brain pericytes reside on the abluminal surface of capillaries, and their processes cover ~90% of the length of the capillary bed. These cells were first described almost 150 years ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental scrutiny in recent years, but their physiological roles remain uncertain and little is known of the complement of signaling elements that they employ to carry out their functions. In this review, we synthesize functional data with single-cell RNAseq screens to explore the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand pericytes of the brain, with the aim of providing a framework for deeper explorations of the molecular mechanisms that govern pericyte physiology. We argue that their complement of channels and receptors ideally positions capillary pericytes to play a central role in adapting blood flow to meet the challenge of satisfying neuronal energy requirements from deep within the capillary bed, by enabling dynamic regulation of their membrane potential to influence the electrical output of the cell. In particular, we outline how genetic and functional evidence suggest an important role for Gs-coupled GPCRs and ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles, and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes that counterbalance this. We underscore critical questions that need to be addressed to further advance our understanding of the signaling topology of capillary pericytes, and how this contributes to their physiological roles and their dysfunction in disease.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Colin Robertson
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liqun He
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicine Huddinge (MedH), Karolinska Institutet & Integrated Cardio Metabolic Centre, Huddinge, Sweden
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
16
|
Behrendt M, Gruss F, Enzeroth R, Dembla S, Zhao S, Crassous PA, Mohr F, Nys M, Louros N, Gallardo R, Zorzini V, Wagner D, Economou A, Rousseau F, Schymkowitz J, Philipp SE, Rohacs T, Ulens C, Oberwinkler J. The structural basis for an on-off switch controlling Gβγ-mediated inhibition of TRPM3 channels. Proc Natl Acad Sci U S A 2020; 117:29090-29100. [PMID: 33122432 PMCID: PMC7682392 DOI: 10.1073/pnas.2001177117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
TRPM3 channels play important roles in the detection of noxious heat and in inflammatory thermal hyperalgesia. The activity of these ion channels in somatosensory neurons is tightly regulated by µ-opioid receptors through the signaling of Gβγ proteins, thereby reducing TRPM3-mediated pain. We show here that Gβγ directly binds to a domain of 10 amino acids in TRPM3 and solve a cocrystal structure of this domain together with Gβγ. Using these data and mutational analysis of full-length proteins, we pinpoint three amino acids in TRPM3 and their interacting partners in Gβ1 that are individually necessary for TRPM3 inhibition by Gβγ. The 10-amino-acid Gβγ-interacting domain in TRPM3 is subject to alternative splicing. Its inclusion in or exclusion from TRPM3 channel proteins therefore provides a mechanism for switching on or off the inhibitory action that Gβγ proteins exert on TRPM3 channels.
Collapse
Affiliation(s)
- Marc Behrendt
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, 35032 Marburg, Germany
| | - Fabian Gruss
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Raissa Enzeroth
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, 35032 Marburg, Germany
| | - Sandeep Dembla
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, 35032 Marburg, Germany
| | - Siyuan Zhao
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Pierre-Antoine Crassous
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Florian Mohr
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Mieke Nys
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Rodrigo Gallardo
- Switch Laboratory, VIB Center for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Valentina Zorzini
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Doris Wagner
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Stephan E Philipp
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium;
| | - Johannes Oberwinkler
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, 35037 Marburg, Germany;
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, 35032 Marburg, Germany
| |
Collapse
|
17
|
Lee J, Raycraft L, Johnson AW. The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol Behav 2020; 229:113234. [PMID: 33130035 DOI: 10.1016/j.physbeh.2020.113234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The lateral hypothalamic area (LHA) is a heterogeneous brain structure extensively studied for its potent role in regulating energy balance. The anatomical and molecular diversity of the LHA permits the orchestration of responses to energy sensing cues from the brain and periphery. Two of the primary cell populations within the LHA associated with integration of this information are Orexin (ORX) and Melanin Concentrating Hormone (MCH). While both of these non-overlapping populations exhibit orexigenic properties, the activities of these two systems support feeding behavior through contrasting mechanisms. We describe the anatomical and functional properties as well as interaction with other neuropeptides and brain reward and hedonic systems. Specific outputs relating to arousal, food seeking, feeding, and metabolism are coordinated through these mechanisms. We then discuss how both the ORX and MCH systems harmonize in a divergent yet overall cooperative manner to orchestrate feeding behavior through transitions between various appetitive states, and thus offer novel insights into LHA allostatic control of appetite.
Collapse
Affiliation(s)
| | | | - Alexander W Johnson
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing.
| |
Collapse
|
18
|
Dannhäuser S, Lux TJ, Hu C, Selcho M, Chen JTC, Ehmann N, Sachidanandan D, Stopp S, Pauls D, Pawlak M, Langenhan T, Soba P, Rittner HL, Kittel RJ. Antinociceptive modulation by the adhesion GPCR CIRL promotes mechanosensory signal discrimination. eLife 2020; 9:e56738. [PMID: 32996461 PMCID: PMC7546736 DOI: 10.7554/elife.56738] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Adhesion-type GPCRs (aGPCRs) participate in a vast range of physiological processes. Their frequent association with mechanosensitive functions suggests that processing of mechanical stimuli may be a common feature of this receptor family. Previously, we reported that the Drosophila aGPCR CIRL sensitizes sensory responses to gentle touch and sound by amplifying signal transduction in low-threshold mechanoreceptors (Scholz et al., 2017). Here, we show that Cirl is also expressed in high-threshold mechanical nociceptors where it adjusts nocifensive behaviour under physiological and pathological conditions. Optogenetic in vivo experiments indicate that CIRL lowers cAMP levels in both mechanosensory submodalities. However, contrasting its role in touch-sensitive neurons, CIRL dampens the response of nociceptors to mechanical stimulation. Consistent with this finding, rat nociceptors display decreased Cirl1 expression during allodynia. Thus, cAMP-downregulation by CIRL exerts opposing effects on low-threshold mechanosensors and high-threshold nociceptors. This intriguing bipolar action facilitates the separation of mechanosensory signals carrying different physiological information.
Collapse
Affiliation(s)
- Sven Dannhäuser
- Department of Animal Physiology, Institute of Biology, Leipzig UniversityLeipzigGermany
- Carl-Ludwig-Institute for Physiology, Leipzig UniversityLeipzigGermany
| | - Thomas J Lux
- Center for Interdisciplinary Pain Medicine, Department of Anaesthesiology, University Hospital WürzburgWürzburgGermany
| | - Chun Hu
- Neuronal Patterning and Connectivity, Center for Molecular Neurobiology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Mareike Selcho
- Department of Animal Physiology, Institute of Biology, Leipzig UniversityLeipzigGermany
- Carl-Ludwig-Institute for Physiology, Leipzig UniversityLeipzigGermany
| | - Jeremy T-C Chen
- Center for Interdisciplinary Pain Medicine, Department of Anaesthesiology, University Hospital WürzburgWürzburgGermany
| | - Nadine Ehmann
- Department of Animal Physiology, Institute of Biology, Leipzig UniversityLeipzigGermany
- Carl-Ludwig-Institute for Physiology, Leipzig UniversityLeipzigGermany
| | - Divya Sachidanandan
- Department of Animal Physiology, Institute of Biology, Leipzig UniversityLeipzigGermany
- Carl-Ludwig-Institute for Physiology, Leipzig UniversityLeipzigGermany
| | - Sarah Stopp
- Department of Animal Physiology, Institute of Biology, Leipzig UniversityLeipzigGermany
- Carl-Ludwig-Institute for Physiology, Leipzig UniversityLeipzigGermany
| | - Dennis Pauls
- Department of Animal Physiology, Institute of Biology, Leipzig UniversityLeipzigGermany
- Carl-Ludwig-Institute for Physiology, Leipzig UniversityLeipzigGermany
| | - Matthias Pawlak
- Department of Neurophysiology, Institute of Physiology, University of WürzburgWürzburgGermany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig UniversityLeipzigGermany
| | - Peter Soba
- Neuronal Patterning and Connectivity, Center for Molecular Neurobiology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Heike L Rittner
- Center for Interdisciplinary Pain Medicine, Department of Anaesthesiology, University Hospital WürzburgWürzburgGermany
| | - Robert J Kittel
- Department of Animal Physiology, Institute of Biology, Leipzig UniversityLeipzigGermany
- Carl-Ludwig-Institute for Physiology, Leipzig UniversityLeipzigGermany
| |
Collapse
|
19
|
Del Rosario JS, Yudin Y, Su S, Hartle CM, Mirshahi T, Rohacs T. Gi-coupled receptor activation potentiates Piezo2 currents via Gβγ. EMBO Rep 2020; 21:e49124. [PMID: 32227462 DOI: 10.15252/embr.201949124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanically activated Piezo2 channels are key players in somatosensory touch, but their regulation by cellular signaling pathways is poorly understood. Dorsal root ganglion (DRG) neurons express a variety of G-protein-coupled receptors that modulate the function of sensory ion channels. Gi-coupled receptors are generally considered inhibitory, as they usually decrease excitability. Paradoxically, activation of Gi-coupled receptors in DRG neurons sometimes induces mechanical hypersensitivity, the mechanism of which is not well understood. Here, we find that activation of Gi-coupled receptors potentiates mechanically activated currents in DRG neurons and heterologously expressed Piezo2 channels, but inhibits Piezo1 currents in heterologous systems in a Gβγ-dependent manner. Pharmacological inhibition of kinases downstream of Gβγ, phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) also abolishes the potentiation of Piezo2 currents. Local injection of sumatriptan, an agonist of the Gi-coupled serotonin 1B/1D receptors, increases mechanical sensitivity in mice, and the effect is abolished by inhibiting PI3K and MAPK. Hence, our studies illustrate an indirect mechanism of action of Gβγ to sensitize Piezo2 currents and alter mechanosensitivity after activation of Gi-coupled receptors.
Collapse
Affiliation(s)
- John Smith Del Rosario
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, USA
| | - Yevgen Yudin
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, USA
| | - Songxue Su
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, USA
| | - Cassandra M Hartle
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
| | - Tooraj Mirshahi
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
20
|
Malerba N, De Nittis P, Merla G. The Emerging Role of Gβ Subunits in Human Genetic Diseases. Cells 2019; 8:E1567. [PMID: 31817184 PMCID: PMC6952978 DOI: 10.3390/cells8121567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Environmental stimuli are perceived and transduced inside the cell through the activation of signaling pathways. One common type of cell signaling transduction network is initiated by G-proteins. G-proteins are activated by G-protein-coupled receptors (GPCRs) and transmit signals from hormones, neurotransmitters, and other signaling factors, thus controlling a number of biological processes that include synaptic transmission, visual photoreception, hormone and growth factors release, regulation of cell contraction and migration, as well as cell growth and differentiation. G-proteins mainly act as heterotrimeric complexes, composed of alpha, beta, and gamma subunits. In the last few years, whole exome sequencing and biochemical studies have shown causality of disease-causing variants in genes encoding G-proteins and human genetic diseases. This review focuses on the G-protein β subunits and their emerging role in the etiology of genetically inherited rare diseases in humans.
Collapse
Affiliation(s)
- Natascia Malerba
- Division of Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo (FG), Italy;
| | - Pasquelena De Nittis
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Giuseppe Merla
- Division of Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo (FG), Italy;
| |
Collapse
|
21
|
Finno CJ, Peterson J, Kang M, Park S, Bordbari MH, Durbin-Johnson B, Settles M, Perez-Flores MC, Lee JH, Yamoah EN. Single-Cell RNA-seq Reveals Profound Alterations in Mechanosensitive Dorsal Root Ganglion Neurons with Vitamin E Deficiency. iScience 2019; 21:720-735. [PMID: 31733517 PMCID: PMC6864320 DOI: 10.1016/j.isci.2019.10.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/16/2019] [Accepted: 10/28/2019] [Indexed: 12/26/2022] Open
Abstract
Ninety percent of Americans consume less than the estimated average requirements of dietary vitamin E (vitE). Severe vitE deficiency due to genetic mutations in the tocopherol transfer protein (TTPA) in humans results in ataxia with vitE deficiency (AVED), with proprioceptive deficits and somatosensory degeneration arising from dorsal root ganglia neurons (DRGNs). Single-cell RNA-sequencing of DRGNs was performed in Ttpa-/- mice, an established model of AVED. In stark contrast to expected changes in proprioceptive neurons, Ttpa-/- DRGNs showed marked upregulation of voltage-gated Ca2+ and K+ channels in mechanosensitive, tyrosine-hydroxylase positive (TH+) DRGNs. The ensuing significant conductance changes resulted in reduced excitability in mechanosensitive Ttpa-/- DRGNs. A highly supplemented vitE diet (600 mg dl-α-tocopheryl acetate/kg diet) prevented the cellular and molecular alterations and improved mechanosensation. VitE deficiency profoundly alters the molecular signature and functional properties of mechanosensitive TH+ DRGN, representing an intriguing shift of the prevailing paradigm from proprioception to mechanical sensation.
Collapse
Affiliation(s)
- Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Janel Peterson
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Mincheol Kang
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Seojin Park
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Matthew H Bordbari
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Blythe Durbin-Johnson
- Bioinformatics Core Facility, Genome Center, University of California, Davis, CA 95616, USA
| | - Matthew Settles
- Bioinformatics Core Facility, Genome Center, University of California, Davis, CA 95616, USA
| | - Maria C Perez-Flores
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Jeong H Lee
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Ebenezer N Yamoah
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
22
|
de Oliveira PG, Ramos MLS, Amaro AJ, Dias RA, Vieira SI. G i/o-Protein Coupled Receptors in the Aging Brain. Front Aging Neurosci 2019; 11:89. [PMID: 31105551 PMCID: PMC6492497 DOI: 10.3389/fnagi.2019.00089] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/03/2019] [Indexed: 12/18/2022] Open
Abstract
Cells translate extracellular signals to regulate processes such as differentiation, metabolism and proliferation, via transmembranar receptors. G protein-coupled receptors (GPCRs) belong to the largest family of transmembrane receptors, with over 800 members in the human species. Given the variety of key physiological functions regulated by GPCRs, these are main targets of existing drugs. During normal aging, alterations in the expression and activity of GPCRs have been observed. The central nervous system (CNS) is particularly affected by these alterations, which results in decreased brain functions, impaired neuroregeneration, and increased vulnerability to neuropathologies, such as Alzheimer's and Parkinson diseases. GPCRs signal via heterotrimeric G proteins, such as Go, the most abundant heterotrimeric G protein in CNS. We here review age-induced effects of GPCR signaling via the Gi/o subfamily at the CNS. During the aging process, a reduction in protein density is observed for almost half of the Gi/o-coupled GPCRs, particularly in age-vulnerable regions such as the frontal cortex, hippocampus, substantia nigra and striatum. Gi/o levels also tend to decrease with aging, particularly in regions such as the frontal cortex. Alterations in the expression and activity of GPCRs and coupled G proteins result from altered proteostasis, peroxidation of membranar lipids and age-associated neuronal degeneration and death, and have impact on aging hallmarks and age-related neuropathologies. Further, due to oligomerization of GPCRs at the membrane and their cooperative signaling, down-regulation of a specific Gi/o-coupled GPCR may affect signaling and drug targeting of other types/subtypes of GPCRs with which it dimerizes. Gi/o-coupled GPCRs receptorsomes are thus the focus of more effective therapeutic drugs aiming to prevent or revert the decline in brain functions and increased risk of neuropathologies at advanced ages.
Collapse
Affiliation(s)
- Patrícia G de Oliveira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| | - Marta L S Ramos
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| | - António J Amaro
- School of Health Sciences (ESSUA), Universidade de Aveiro, Aveiro, Portugal
| | - Roberto A Dias
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| | - Sandra I Vieira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
23
|
Wang T, Li B, Wang Z, Wang X, Xia Z, Ning G, Wang X, Zhang Y, Cui L, Yu M, Zhang L, Zhang Z, Yuan W, Guo X, Yuan X, Feng S, Chen X. Sorafenib promotes sensory conduction function recovery via miR-142-3p/AC9/cAMP axis post dorsal column injury. Neuropharmacology 2019; 148:347-357. [PMID: 30710569 DOI: 10.1016/j.neuropharm.2019.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Spinal cord injury results in sensation dysfunction. This study explored miR-142-3p, which acts a critical role in sciatic nerve conditioning injury (SNCI) promoting the repair of the dorsal column injury and validated its function on primary sensory neuron(DRG). miR-142-3p expression increased greatly in the spinal cord dorsal column lesion (SDCL) group and increased slightly in the SNCI group. Subsequently, the expression of adenylate cyclase 9 (AC9), the target gene of miR-142-3p, declined sharply in the SDCL group and declined limitedly in the SNCI group. The expression trend of cAMP was opposite to that of miR-142-3p. MiR-142-3p inhibitor improved the axon length, upregulated the expression of AC9, cAMP, p-CREB, IL-6, and GAP43, and downregulated the expression of GTP-RhoA. miR-142-3p inhibitor combined with AC9 siRNA showed shorter axon length, the expression of AC9, cAMP, p-CREB, IL-6, and GAP43 was decreased, and the expression of GTP-RhoA was increased. H89 and AG490, inhibitors of cAMP/PKA pathway and IL6/STAT3/GAP43 axis, respectively, declined the enhanced axonal growth by miR-142-3p inhibitor and altered the expression level of the corresponding proteins. Thus, a substitution therapy using Sorafenib that downregulates the miR-142-3p expression for SNCI was investigated. The results showed the effect of Sorafenib was similar to that of miR-142-3p inhibitor and SNCI on both axon growth in vitro and sensory conduction function recovery in vivo. In conclusion, miR-142-3p acts a pivotal role in SNCI promoting the repair of dorsal column injury. Sorafenib mimics the treatment effect of SNCI via downregulation of miR-142-3p, subsequently, promoting sensory conduction function recovery post dorsal column injury.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei Province, PR China
| | - Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei Province, PR China
| | - Xin Wang
- Chengde Medical University, Chengde, 067000, Hebei Province, PR China
| | - Ziwei Xia
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Xu Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Yanjun Zhang
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 100000, PR China
| | - Libin Cui
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 100000, PR China
| | - Mei Yu
- Leukemia Center, Chinese Academy of Medical Sciences & Peking Union of Medical College, Institute of Hematology & Hospital of Blood Diseases, Tianjin, 30020, PR China
| | - Liang Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Zheng Zhang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei Province, PR China
| | - Wenqi Yuan
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, PR China
| | - Xiaoling Guo
- Department of Neurology, The 981st Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei Province, PR China.
| | - Xin Yuan
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 100000, PR China.
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, PR China.
| | - Xueming Chen
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 100000, PR China.
| |
Collapse
|
24
|
A single peri-sciatic nerve administration of the adenosine 2A receptor agonist ATL313 produces long-lasting anti-allodynia and anti-inflammatory effects in male rats. Brain Behav Immun 2019; 76:116-125. [PMID: 30453021 DOI: 10.1016/j.bbi.2018.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/09/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Neuropathic pain is a widespread problem which remains poorly managed by currently available therapeutics. Peripheral nerve injury and inflammation leads to changes at the nerve injury site, including activation of resident and recruited peripheral immune cells, that lead to neuronal central sensitization and pain amplification. The present series of studies tested the effects of peri-sciatic nerve delivery of single doses of adenosine 2A receptor (A2aR) agonists on pain and neuroinflammation. The data provide converging lines of evidence supportive that A2aR agonism at the site of peripheral nerve injury and inflammation is effective in suppressing ongoing neuropathic pain. After A2aR agonism resolved neuropathic pain, a return of pain enhancement (allodynia) was observed in response to peri-sciatic injection of H-89, which can inhibit protein kinase A, and by peri-sciatic injection of neutralizing antibody against the potent anti-inflammatory cytokine interleukin-10. A2aR agonist actions at the nerve injury site suppress neuroinflammation, as reflected by decreased release of interleukin-1β and nitric oxide, as well as decreased sciatic expression of markers of monocytes/macrophages and inducible nitric oxide synthase. Taken together, the data are supportive that A2aR agonists, acting at the level of peripheral nerve injury, may be of therapeutic value in treating chronic pain of neuroinflammatory origin.
Collapse
|
25
|
Riedemann T, Sutor B. Long-lasting actions of somatostatin on pyramidal cell excitability in the mouse cingulate cortex. Neurosci Lett 2019; 698:217-223. [PMID: 30668961 DOI: 10.1016/j.neulet.2019.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
Many neurological diseases are related to disturbances of somatostatin- (SOM-) expressing interneurons in the cingulate cortex. Therefore, their role within the circuitry of the cingulate cortex needs to be investigated. We describe here the physiological time course of SOM effects onto pyramidal cell excitability and action potential discharge pattern. Furthermore, we show that the GRK2 inhibitor Gallein had no effect on the reduced SOM-induced response following repetitive SOM applications.
Collapse
Affiliation(s)
- Therese Riedemann
- Biomedical Center, Ludwig-Maximilians-Universität, Physiological Genomics, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany.
| | - Bernd Sutor
- Biomedical Center, Ludwig-Maximilians-Universität, Physiological Genomics, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
26
|
Machelska H, Celik MÖ. Advances in Achieving Opioid Analgesia Without Side Effects. Front Pharmacol 2018; 9:1388. [PMID: 30555325 PMCID: PMC6282113 DOI: 10.3389/fphar.2018.01388] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Opioids are the most effective drugs for the treatment of severe pain, but they also cause addiction and overdose deaths, which have led to a worldwide opioid crisis. Therefore, the development of safer opioids is urgently needed. In this article, we provide a critical overview of emerging opioid-based strategies aimed at effective pain relief and improved side effect profiles. These approaches comprise biased agonism, the targeting of (i) opioid receptors in peripheral inflamed tissue (by reducing agonist access to the brain, the use of nanocarriers, or low pH-sensitive agonists); (ii) heteromers or multiple receptors (by monovalent, bivalent, and multifunctional ligands); (iii) receptor splice variants; and (iv) endogenous opioid peptides (by preventing their degradation or enhancing their production by gene transfer). Substantial advancements are underscored by pharmaceutical development of new opioids such as peripheral κ-receptor agonists, and by treatments augmenting the action of endogenous opioids, which have entered clinical trials. Additionally, there are several promising novel opioids comprehensively examined in preclinical studies, but also strategies such as biased agonism, which might require careful rethinking.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
27
|
Abstract
Opioids are the most effective drugs for the treatment of severe pain, but they also cause addiction and overdose deaths, which have led to a worldwide opioid crisis. Therefore, the development of safer opioids is urgently needed. In this article, we provide a critical overview of emerging opioid-based strategies aimed at effective pain relief and improved side effect profiles. These approaches comprise biased agonism, the targeting of (i) opioid receptors in peripheral inflamed tissue (by reducing agonist access to the brain, the use of nanocarriers, or low pH-sensitive agonists); (ii) heteromers or multiple receptors (by monovalent, bivalent, and multifunctional ligands); (iii) receptor splice variants; and (iv) endogenous opioid peptides (by preventing their degradation or enhancing their production by gene transfer). Substantial advancements are underscored by pharmaceutical development of new opioids such as peripheral κ-receptor agonists, and by treatments augmenting the action of endogenous opioids, which have entered clinical trials. Additionally, there are several promising novel opioids comprehensively examined in preclinical studies, but also strategies such as biased agonism, which might require careful rethinking.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|