1
|
Joshi U, Jani D, George LB, Highland H. Human erythrocytes' perplexing behaviour: erythrocytic microRNAs. Mol Cell Biochem 2024:10.1007/s11010-024-05075-0. [PMID: 39037663 DOI: 10.1007/s11010-024-05075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Erythrocytes have the potential role in erythropoiesis and disease diagnosis. Thought to have lacked nucleic acid content, mammalian erythrocytes are nevertheless able to function for 120-140 days, metabolize heme, maintain oxidative stress, and so on. Mysteriously, erythrocytes proved as largest repositories of microRNAs (miRNAs) some of which are selectively retained and function in mature erythrocytes. They have unique expression patterns and have been found to be linked to specific conditions such as sickle cell anaemia, high-altitude hypoxia, chronic mountain sickness, cardiovascular and metabolic conditions as well as host-parasite interactions. They also have been implicated in cell storage-related damage and the regulation of its survival. However, the mechanism by which miRNAs function in the cell remains unclear. Investigations into the molecular mechanism of miRNAs in erythrocytes via extracellular vesicles have provided important clues in research studies on Plasmodium infection. Erythrocytes are also the primary source of circulating miRNAs but, how they affect the plasma/serum miRNAs profiles are still poorly understood. Erythrocyte-derived exosomal miRNAs, can interact with various body cell types, and have easy access to all regions, making them potentially crucial in various pathophysiological conditions. Which can also improve our understanding to identify potential treatment options and discovery related to non-invasive diagnostic markers. This article emphasizes the importance of erythrocytic miRNAs while focusing on the enigmatic behaviour of erythrocytes. It also sheds light on how this knowledge may be applied in the future to enhance the state of erythrocyte translational research from the standpoint of erythrocytic miRNAs.
Collapse
Affiliation(s)
- Urja Joshi
- Department of Biochemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| | - Dhara Jani
- Department of Zoology, Biomedical Technology, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Linz-Buoy George
- Department of Zoology, Biomedical Technology, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Hyacinth Highland
- Department of Zoology, Biomedical Technology, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
2
|
Nucera F, Ruggeri P, Spagnolo CC, Santarpia M, Ieni A, Monaco F, Tuccari G, Pioggia G, Gangemi S. MiRNAs and Microbiota in Non-Small Cell Lung Cancer (NSCLC): Implications in Pathogenesis and Potential Role in Predicting Response to ICI Treatment. Int J Mol Sci 2024; 25:6685. [PMID: 38928392 PMCID: PMC11203619 DOI: 10.3390/ijms25126685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Lung cancer (LC) is one of the most prevalent cancers in both men and women and today is still characterized by high mortality and lethality. Several biomarkers have been identified for evaluating the prognosis of non-small cell lung cancer (NSCLC) patients and selecting the most effective therapeutic strategy for these patients. The introduction of innovative targeted therapies and immunotherapy with immune checkpoint inhibitors (ICIs) for the treatment of NSCLC both in advanced stages and, more recently, also in early stages, has revolutionized and significantly improved the therapeutic scenario for these patients. Promising evidence has also been shown by analyzing both micro-RNAs (miRNAs) and the lung/gut microbiota. MiRNAs belong to the large family of non-coding RNAs and play a role in the modulation of several key mechanisms in cells such as proliferation, differentiation, inflammation, and apoptosis. On the other hand, the microbiota (a group of several microorganisms found in human orgasms such as the gut and lungs and mainly composed by bacteria) plays a key role in the modulation of inflammation and, in particular, in the immune response. Some data have shown that the microbiota and the related microbiome can modulate miRNAs expression and vice versa by regulating several intracellular signaling pathways that are known to play a role in the pathogenesis of lung cancer. This evidence suggests that this axis is key to predicting the prognosis and effectiveness of ICIs in NSCLC treatment and could represent a new target in the treatment of NSCLC. In this review, we highlight the most recent evidence and data regarding the role of both miRNAs and the lung/gut microbiome in the prediction of prognosis and response to ICI treatment, focusing on the link between miRNAs and the microbiome. A new potential interaction based on the underlying modulated intracellular signaling pathways is also shown.
Collapse
Affiliation(s)
- Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, 98166 Messina, Italy;
| | - Paolo Ruggeri
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, 98166 Messina, Italy;
| | - Calogera Claudia Spagnolo
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (C.C.S.); (M.S.)
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (C.C.S.); (M.S.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, 98100 Messina, Italy; (A.I.); (G.T.)
| | - Francesco Monaco
- Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, 98166 Messina, Italy;
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, 98100 Messina, Italy; (A.I.); (G.T.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| |
Collapse
|
3
|
Spagnolo CC, Pepe F, Ciappina G, Nucera F, Ruggeri P, Squeri A, Speranza D, Silvestris N, Malapelle U, Santarpia M. Circulating biomarkers as predictors of response to immune checkpoint inhibitors in NSCLC: Are we on the right path? Crit Rev Oncol Hematol 2024; 197:104332. [PMID: 38580184 DOI: 10.1016/j.critrevonc.2024.104332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
Immune checkpoints inhibitors (ICIs) have markedly improved the therapeutic management of advanced NSCLC and, more recently, they have demonstrated efficacy also in the early-stage disease. Despite better survival outcomes with ICIs compared to standard chemotherapy, a large proportion of patients can derive limited clinical benefit from these agents. So far, few predictive biomarkers, including the programmed death-ligand 1 (PD-L1), have been introduced in clinical practice. Therefore, there is an urgent need to identify novel biomarkers to select patients for immunotherapy, to improve efficacy and avoid unnecessary toxicity. A deeper understanding of the mechanisms involved in antitumor immunity and advances in the field of liquid biopsy have led to the identification of a wide range of circulating biomarkers that could potentially predict response to immunotherapy. Herein, we provide an updated overview of these circulating biomarkers, focusing on emerging data from clinical studies and describing modern technologies used for their detection.
Collapse
Affiliation(s)
- Calogera Claudia Spagnolo
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Via S. Pansini, Naples 80131, Italy
| | - Giuliana Ciappina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Francesco Nucera
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina 98122, Italy
| | - Paolo Ruggeri
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina 98122, Italy
| | - Andrea Squeri
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Desirèe Speranza
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Via S. Pansini, Naples 80131, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy.
| |
Collapse
|
4
|
Shokati E, Safari E. The immunomodulatory role of exosomal microRNA networks in the crosstalk between tumor-associated myeloid-derived suppressor cells and tumor cells. Int Immunopharmacol 2023; 120:110267. [PMID: 37276829 DOI: 10.1016/j.intimp.2023.110267] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are considered a heterogeneous group of immature myeloid cells engaging in aggressive tumor progression and metastasis in the tumor microenvironment (TME) of patients diagnosed with cancer, through downregulation of anti-tumor immune responses. Exosomes are small vesicles carrying specific cargos, including proteins, lipids, and MicroRNA (miRNAs). Such exosomal miRNAs delivered by MDSCs and tumor cells are short noncoding RNAs mediating some of the immunosuppressive characteristics of MDSCs in the TME. However, when it comes to cancer diseases, how these miRNAs interact with MDSCs and encourage MDSCs differentiation and function need further investigations. In this review, we discuss MDSC-derived exosomal miRNAs and those derived from tumor cells (TDE) could modulate anti-tumor immunity and regulate the interaction between tumor cells and MDSCs in the TME. Afterward, we focus on dividing miRNAs, as an important substance interacting with MDSCs and tumor cells in the TME, into those have an immunosuppressive or stimulating effect not only on MDSCs expansion, differentiation, and suppressive function but also on tumor evasion.
Collapse
Affiliation(s)
- Elham Shokati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Elahe Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Sevcikova A, Fridrichova I, Nikolaieva N, Kalinkova L, Omelka R, Martiniakova M, Ciernikova S. Clinical Significance of microRNAs in Hematologic Malignancies and Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2023; 15:cancers15092658. [PMID: 37174123 PMCID: PMC10177548 DOI: 10.3390/cancers15092658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Hematologic malignancies are a group of neoplastic conditions that can develop from any stage of the hematopoiesis cascade. Small non-coding microRNAs (miRNAs) play a crucial role in the post-transcriptional regulation of gene expression. Mounting evidence highlights the role of miRNAs in malignant hematopoiesis via the regulation of oncogenes and tumor suppressors involved in proliferation, differentiation, and cell death. In this review, we provide current knowledge about dysregulated miRNA expression in the pathogenesis of hematological malignancies. We summarize data about the clinical utility of aberrant miRNA expression profiles in hematologic cancer patients and their associations with diagnosis, prognosis, and the monitoring of treatment response. Moreover, we will discuss the emerging role of miRNAs in hematopoietic stem cell transplantation (HSCT), and severe post-HSCT complications, such as graft-versus-host disease (GvHD). The therapeutical potential of the miRNA-based approach in hemato-oncology will be outlined, including studies with specific antagomiRs, mimetics, and circular RNAs (circRNAs). Since hematologic malignancies represent a full spectrum of disorders with different treatment paradigms and prognoses, the potential use of miRNAs as novel diagnostic and prognostic biomarkers might lead to improvements, resulting in a more accurate diagnosis and better patient outcomes.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Ivana Fridrichova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Nataliia Nikolaieva
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Lenka Kalinkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
6
|
Zhang W, Fang X, Gao C, Song C, He Y, Zhou T, Yang X, Shang Y, Xu J. MDSCs in sepsis-induced immunosuppression and its potential therapeutic targets. Cytokine Growth Factor Rev 2023; 69:90-103. [PMID: 35927154 DOI: 10.1016/j.cytogfr.2022.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. In sepsis, a complicated immune response is initiated, which varies over time with sustained excessive inflammation and immunosuppression. Identifying a promising way to orchestrate sepsis-induced immunosuppression is a challenge. Myeloid-derived suppressor cells (MDSCs) comprise pathologically activated neutrophils and monocytes with potent immunosuppressive activity. They play an important part in inhibiting innate and adaptive immune responses, and have emerged as part of the immune response in sepsis. MDSCs numbers are persistently high in sepsis patients, and associated with nosocomial infections and other adverse clinical outcomes. However, their characteristics and functional mechanisms during sepsis have not been addressed fully. Our review sheds light on the features and suppressive mechanism of MDSCs. We also review the potential applications of MDSCs as biomarkers and targets for clinical treatment of sepsis.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and critical care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangzhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenggang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoying Song
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and critical care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and critical care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
7
|
Xu D, Li C, Xu Y, Huang M, Cui D, Xie J. Myeloid-derived suppressor cell: A crucial player in autoimmune diseases. Front Immunol 2022; 13:1021612. [PMID: 36569895 PMCID: PMC9780445 DOI: 10.3389/fimmu.2022.1021612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are identified as a highly heterogeneous group of immature cells derived from bone marrow and play critical immunosuppressive functions in autoimmune diseases. Accumulating evidence indicates that the pathophysiology of autoimmune diseases was closely related to genetic mutations and epigenetic modifications, with the latter more common. Epigenetic modifications, which involve DNA methylation, covalent histone modification, and non-coding RNA-mediated regulation, refer to inheritable and potentially reversible changes in DNA and chromatin that regulate gene expression without altering the DNA sequence. Recently, numerous reports have shown that epigenetic modifications in MDSCs play important roles in the differentiation and development of MDSCs and their suppressive functions. The molecular mechanisms of differentiation and development of MDSCs and their regulatory roles in the initiation and progression of autoimmune diseases have been extensively studied, but the exact function of MDSCs remains controversial. Therefore, the biological and epigenetic regulation of MDSCs in autoimmune diseases still needs to be further characterized. This review provides a detailed summary of the current research on the regulatory roles of DNA methylation, histone modifications, and non-coding RNAs in the development and immunosuppressive activity of MDSCs, and further summarizes the distinct role of MDSCs in the pathogenesis of autoimmune diseases, in order to provide help for the diagnosis and treatment of diseases from the perspective of epigenetic regulation of MDSCs.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China
| | - Cheng Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yushan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China
| | - Mingyue Huang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China,*Correspondence: Dawei Cui, ; Jue Xie,
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China,*Correspondence: Dawei Cui, ; Jue Xie,
| |
Collapse
|
8
|
Plasma-Based microRNA Expression Analysis in Advanced Stage NSCLC Patients Treated with Nivolumab. Cancers (Basel) 2022; 14:cancers14194739. [PMID: 36230658 PMCID: PMC9564103 DOI: 10.3390/cancers14194739] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Nivolumab (anti-PD-1 inhibitor) is the first monoclonal antibody approved for the treatment of NSCLC, with research results showing that patients who had received previous lines of therapy had a better response to this treatment and better overall survival. Tissue-level analyses fail to capture the dynamic tumor-host relationship, in contrast to circulating biomarkers, which can reflect the systemic response of the tumor, allowing for repeated sampling and monitoring. In the context of liquid biopsy, microRNAs are studied as biomarkers of immunotherapy efficacy based on their role in regulating antitumor immunity. The present study suggests that miR-200c and miR-34a plasma expression levels have a prognostic role in patients with advanced NSCLC receiving Nivolumab. It further supports that the expression profile of circulating immunomodulatory microRNAs provides information on the survival of patients with advanced NSCLC receiving Nivolumab and could represent promising circulating biomarkers that may provide information about patients’ responses to immunotherapy. Abstract Since circulating microRNAs (miRNAs) are involved in the modulation of the immune response, they are tested as liquid biopsy-based biomarkers in patients with NSCLC treated with immunotherapy. We analyzed the expression levels and examined the clinical significance of immunoregulatory miRNAs involved in immune checkpoint regulation (miR-34a, miR-200b, miR-200c), T-cell activity (miR-155), and the function of myeloid-derived suppressive cells (MDSCs) (miR-223) or regulatory T lymphocytes (Tregs) (miR-146a), in patients with advanced NSCLC (N = 69) treated with anti-PD-1 (Nivolumab) immunotherapy as 2nd or 3rd line of treatment therapy. Plasma levels of circulating miRNAs were analyzed by RT-qPCR before the initiation of immunotherapy. Expression of miR-34a, miR-146a, mir-200c, and miR-223 was found to be associated with response to immunotherapy. High miR-200c expression emerged as an independent prognostic factor for inferior overall survival in all patients with NSCLC (OS, HR: 2.243, 95% CI: 1.208–4.163; p = 0.010) and in patients with non-Squamous (non-SqCC) subtype (N = 38) (HR: 2.809, 95% CI: 1.116–7.074; p = 0.028). Low miR-34a expression independently predicted for shorter OS (HR: 3.189, 95% CI: 1.193–8.527; p = 0.021) in the non-SqCC subgroup. Our findings suggest that alterations in circulating miR-200c and miR-34a expression levels are associated with the response and outcome in patients with advanced NSCLC treated with anti-PD1 immunotherapy.
Collapse
|
9
|
Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol 2022; 13:951798. [PMID: 35990654 PMCID: PMC9389448 DOI: 10.3389/fimmu.2022.951798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis is a major public health concern associated with one in five deaths worldwide. Sepsis is characterized by unbalanced inflammation and profound and sustained immunosuppression, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based therapies for sepsis. Yet, the picture is not so straightforward because of the versatile and dynamic features of miRNAs. Clearly, more research is needed to clarify the expression and role of miRNAs in sepsis, and to promote the use of miRNAs for sepsis management.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
10
|
Sun Q, Xiao L, Cui Z, Yang Y, Ma J, Huang Z, Zhang J, Chen J. 3,3'-Diindolylmethane improves antitumor immune responses of PD-1 blockade via inhibiting myeloid-derived suppressor cells. Chin Med 2022; 17:81. [PMID: 35773674 PMCID: PMC9245307 DOI: 10.1186/s13020-022-00638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background Immune checkpoint inhibitors that target programmed cell death protein 1 (PD-1) have obtained encouraging results, but a fraction of tumor patients failed to respond to anti-PD-1 treatment due to the existence of multiple immune suppressive elements such as myeloid-derived suppressor cells (MDSCs). Traditional Chinese medicine or natural products from medicinal plants could enhance immunity and may be helpful for cancer immunotherapy. As a digestive metabolite from cruciferous plants, 3,3′-diindolylmethane (DIM) has been widely used in chemotherapy, but its influence on cancer immunotherapy remains unclear. Here we investigate the function of DIM on MDSCs and examine the therapeutic effects of DIM in conjunction with PD-1 antibody against mouse tumors. Methods Flow cytometry analysis, Western blot analysis and qRT-PCR assay were used to examine the inhibitory effects and mechanisms of DIM on MDSCs in vitro and in vivo. The therapeutic effects of DIM on cancer immunotherapy by PD-1 antibody were evaluated in mouse models of breast cancer and melanoma tumor. Results DIM exerted the inhibitory effect on MDSCs via downregulating miR-21 level and subsequently activating PTEN/PIAS3-STAT3 pathways. Adoptive transfer of MDSCs impaired the therapeutic effects of DIM, indicating that the antitumor activity of DIM might be due to the suppression of MDSCs. Furthermore, in mouse models of breast cancer and melanoma tumor, the addition of DIM can enhance the therapeutic effect of PD-1 antibody through promoting T cells responses, and thereby inhibiting tumor growth. Conclusions Overall, the strategy based on the combination treatment of anti-PD-1 antibody and DIM may provide a new approach for cancer immunotherapy. Cruciferae plants-rich diet which contains high amount of DIM precursor may be beneficial for cancer patients that undergo the anti-PD-1 treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00638-z.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Lin Xiao
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Zhiying Cui
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Yaping Yang
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Junting Ma
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China. .,Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China.
| | - Zhen Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China.
| | - Junfeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Jiangning Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
11
|
Hu F, Liu J, Liu H, Li F, Wan M, Zhang M, Jiang Y, Rao M. Role of Exosomal Non-coding RNAs in Gastric Cancer: Biological Functions and Potential Clinical Applications. Front Oncol 2021; 11:700168. [PMID: 34195097 PMCID: PMC8238120 DOI: 10.3389/fonc.2021.700168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer (GC) is one of the most common fatal cancers worldwide. The communication between GC and other cells in the GC microenvironment directly affects GC progression. Recently, exosomes have been revealed as new players in intercellular communication. They play an important role in human health and diseases, including cancer, owing to their ability to carry various bioactive molecules, including non-coding RNAs (ncRNAs). NcRNAs, including micro RNAs, long non-coding RNAs, and circular RNAs, play a significant role in various pathophysiological processes, especially cancer. Increasing evidence has shown that exosomal ncRNAs are involved in the regulation of tumor proliferation, invasion, metastasis, angiogenesis, immune regulation, and treatment resistance in GC. In addition, exosomal ncRNAs have promising potential as diagnostic and prognostic markers for GC. Considering the biocompatibility of exosomes, they can also be used as biological carriers for targeted therapy. This review summarizes the current research progress on exosomal ncRNAs in gastric cancer, focusing on their biological role in GC and their potential as new biomarkers for GC and therapeutics. Our review provides insight into the mechanisms involved in GC progression, which may provide a new point cut for the discovery of new diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Feng Hu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jixuan Liu
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Huibo Liu
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Fan Li
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Minjie Wan
- Department of Central Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Manli Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Min Rao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Thakuri BKC, Zhang J, Zhao J, Nguyen LN, Nguyen LNT, Schank M, Khanal S, Dang X, Cao D, Lu Z, Wu XY, Jiang Y, El Gazzar M, Ning S, Wang L, Moorman JP, Yao ZQ. HCV-Associated Exosomes Upregulate RUNXOR and RUNX1 Expressions to Promote MDSC Expansion and Suppressive Functions through STAT3-miR124 Axis. Cells 2020; 9:cells9122715. [PMID: 33353065 PMCID: PMC7766103 DOI: 10.3390/cells9122715] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
RUNX1 overlapping RNA (RUNXOR) is a long non-coding RNA and plays a pivotal role in the differentiation of myeloid cells via targeting runt-related transcription factor 1 (RUNX1). We and others have previously reported that myeloid-derived suppressor cells (MDSCs) expand and inhibit host immune responses during chronic viral infections; however, the mechanisms responsible for MDSC differentiation and suppressive functions, in particular the role of RUNXOR–RUNX1, remain unclear. Here, we demonstrated that RUNXOR and RUNX1 expressions are significantly upregulated and associated with elevated levels of immunosuppressive molecules, such as arginase 1 (Arg1), inducible nitric oxide synthase (iNOS), signal transducer and activator of transcription 3 (STAT3), and reactive oxygen species (ROS) in MDSCs during chronic hepatitis C virus (HCV) infection. Mechanistically, we discovered that HCV-associated exosomes (HCV-Exo) can induce the expressions of RUNXOR and RUNX1, which in turn regulates miR-124 expression via STAT3 signaling, thereby promoting MDSC differentiation and suppressive functions. Importantly, overexpression of RUNXOR in healthy CD33+ myeloid cells promoted differentiation and suppressive functions of MDSCs. Conversely, silencing RUNXOR or RUNX1 expression in HCV-derived CD33+ myeloid cells significantly inhibited their differentiation and expressions of suppressive molecules and improved the function of co-cultured autologous CD4 T cells. Taken together, these results indicate that the RUNXOR–RUNX1–STAT3–miR124 axis enhances the differentiation and suppressive functions of MDSCs and could be a potential target for immunomodulation in conjunction with antiviral therapy during chronic HCV infection.
Collapse
Affiliation(s)
- Bal Krishna Chand Thakuri
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Jinyu Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Juan Zhao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Lam N. Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Lam N. T. Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Madison Schank
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Sushant Khanal
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Xindi Dang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Dechao Cao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Zeyuan Lu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Xiao Y. Wu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Yong Jiang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
| | - Mohamed El Gazzar
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Ling Wang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Jonathan P. Moorman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| | - Zhi Q. Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
- Correspondence: ; Tel.: +1-423-439-8029; Fax: +1-423-439-7010
| |
Collapse
|
13
|
Thakuri BKC, Zhang J, Zhao J, Nguyen LN, Nguyen LNT, Khanal S, Cao D, Dang X, Schank M, Wu XY, Morrison ZD, Gazzar ME, Li Z, Jiang Y, Ning S, Wang L, Moorman JP, Yao ZQ. LncRNA HOTAIRM1 promotes MDSC expansion and suppressive functions through the HOXA1-miR124 axis during HCV infection. Sci Rep 2020; 10:22033. [PMID: 33328510 PMCID: PMC7745042 DOI: 10.1038/s41598-020-78786-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1) is a long non-coding RNA (lncRNA) that plays a pivotal role in regulating myeloid cell development via targeting HOXA1 gene expression. We and others have previously shown that myeloid-derived suppressor cells (MDSCs), a heterogeneous population of immature myeloid cells, expand during chronic viral (HCV, HIV) infections. However, the role of HOTAIRM1 in the development and suppression of MDSCs during viral infection remains unknown. In this study, we demonstrate that the expressions of HOTAIRM1 and its target HOXA1 are substantially upregulated to promote the expressions of immunosuppressive molecules, including arginase 1, inducible nitric oxide synthase, signal transducer and activator of transcription 3, and reactive oxygen species, in CD33+ myeloid cells derived from hepatitis C virus (HCV)-infected patients. We show that HCV-associated exosomes (HCV-Exo) can modulate HOTAIRM1, HOXA1, and miR124 expressions to regulate MDSC development. Importantly, overexpression of HOTAIRM1 or HOXA1 in healthy CD33+ myeloid cells promoted the MDSC differentiation and suppressive functions; conversely, silencing of HOTAIRM1 or HOXA1 expression in MDSCs from HCV patients significantly reduced the MDSC frequency and their suppressive functions. In essence, these results indicate that the HOTAIRM1-HOXA1-miR124 axis enhances the differentiation and suppressive functions of MDSCs and may be a potential target for immunomodulation in conjunction with antiviral therapy during chronic viral infection.
Collapse
Affiliation(s)
- Bal Krishna Chand Thakuri
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Jinyu Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Juan Zhao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Lam N Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Lam N T Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Sushant Khanal
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Dechao Cao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Xindi Dang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Madison Schank
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Xiao Y Wu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Zheng D Morrison
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Zhengke Li
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Yong Jiang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Ling Wang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Jonathan P Moorman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
- Department of Veterans Affairs, Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Johnson City, TN, 37614, USA
| | - Zhi Q Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA.
- Department of Veterans Affairs, Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Johnson City, TN, 37614, USA.
- Center of Excellence for HIV/AIDS Care, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
14
|
Shabgah AG, Salmaninejad A, Thangavelu L, Alexander M, Yumashev AV, Goleij P, Hedayati-Moghadam M, Mohammadi H, Ahmadi M, Navashenaq JG. The role of non-coding genome in the behavior of infiltrated myeloid-derived suppressor cells in tumor microenvironment; a perspective and state-of-the-art in cancer targeted therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 161:17-26. [PMID: 33259833 DOI: 10.1016/j.pbiomolbio.2020.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Cancer is one of the healthcare problems that affect many communities around the world. Many factors contribute to cancer development. Besides, these factors are counted as the main impediment in cancer immunotherapy. Myeloid-derived suppressor cells (MDSCs) are one of these impediments. MDSCs inhibit the immune responses through various mechanisms such as inhibitory cytokine release and nitric oxide metabolite production. Several factors are involved in forming these cells, including tumor secreted cytokine and chemokines, transcription factors, and non-coding RNA. In the meantime, micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the vital gene regulatory elements that affect gene expression. In this study, we are going to discuss the role of miRNAs and lncRNAs in MDSCs development in a cancer situation. It is hoped that miRNA and lncRNAs targeting may prevent the growth and development of these inhibitory cells in the cancer environment.
Collapse
Affiliation(s)
- Arezoo Gowhari Shabgah
- School of Medicine, Bam University of Medical Sciences, Bam, Iran; Student Research Committee, Bam University of Medical Sciences, Bam, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Alexei Valerievich Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Pouya Goleij
- Sana Institute of Higher Education, Faculty of Biology, Department of Genetics, Sari, Iran
| | | | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamshid Gholizadeh Navashenaq
- Student Research Committee, Bam University of Medical Sciences, Bam, Iran; Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.
| |
Collapse
|
15
|
Safarzadeh E, Asadzadeh Z, Safaei S, Hatefi A, Derakhshani A, Giovannelli F, Brunetti O, Silvestris N, Baradaran B. MicroRNAs and lncRNAs-A New Layer of Myeloid-Derived Suppressor Cells Regulation. Front Immunol 2020; 11:572323. [PMID: 33133086 PMCID: PMC7562789 DOI: 10.3389/fimmu.2020.572323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) constitute an important component in regulating immune responses in several abnormal physiological conditions such as cancer. Recently, novel regulatory tumor MDSC biology modulating mechanisms, including differentiation, expansion and function, were defined. There is growing evidence that miRNAs and long non-coding RNAs (lncRNA) are involved in modulating transcriptional factors to become complex regulatory networks that regulate the MDSCs in the tumor microenvironment. It is possible that aberrant expression of miRNAs and lncRNA contributes to MDSC biological characteristics under pathophysiological conditions. This review provides an overview on miRNAs and lncRNAs epiregulation of MDSCs development and immunosuppressive functions in cancer.
Collapse
Affiliation(s)
- Elham Safarzadeh
- Department of Microbiology & Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Francesco Giovannelli
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy.,Department of Biomedical Sciences and Human Oncology, Department of Internal Medicine and Oncology (DIMO)-University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Han X, Luan T, Sun Y, Yan W, Wang D, Zeng X. MicroRNA 449c Mediates the Generation of Monocytic Myeloid-Derived Suppressor Cells by Targeting STAT6. Mol Cells 2020; 43:793-803. [PMID: 32863280 PMCID: PMC7528684 DOI: 10.14348/molcells.2020.2307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) promote tumour progression by contributing to angiogenesis, immunosuppression, and immunotherapy resistance. Although recent studies have shown that microRNAs (miRNAs) can promote the expansion of MDSCs in the tumour environment, the mechanisms involved in this process are largely unknown. Here, we report that microRNA 449c (miR-449c) expression was upregulated in myeloid progenitor cells upon activation of C-X-C motif chemokine receptor 2 (CXCR2) under tumour conditions. MiR-449c upregulation increased the generation of monocytic MDSCs (mo-MDSCs). The increased expression of miR-449c could target STAT6 mRNA in myeloid progenitor cells to shift the differentiation balance of myeloid progenitor cells and lead to an enhancement of the mo-MDSCs population in the tumour environment. Thus, our results demonstrate that the miR-449c/STAT6 axis is involved in the expansion of mo-MDSCs from myeloid progenitor cells upon activation of CXCR2, and thus, inhibition of miR-449c/STAT6 signalling may help to attenuate tumour progression.
Collapse
Affiliation(s)
- Xiaoqing Han
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Tao Luan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yingying Sun
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Wenyi Yan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Dake Wang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
17
|
Chen L, Xiong L, Hong S, Li J, Huo Z, Li Y, Chen S, Zhang Q, Zhao R, Gingold JA, Zhu X, Lv W, Li Y, Yu S, Xiao H. Circulating Myeloid-derived Suppressor Cells Facilitate Invasion of Thyroid Cancer Cells by Repressing miR-486-3p. J Clin Endocrinol Metab 2020; 105:5850994. [PMID: 32492708 DOI: 10.1210/clinem/dgaa344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) have become increasingly recognized as facilitators of tumor development. However, the role of MDSCs in papillary thyroid carcinoma (PTC) progression has not been clearly explored. OBJECTIVE We aimed to evaluate the levels and function of circulating MDSCs in PTC. METHODS The proportion of circulating polymorphonuclear (PMN)-MDSCs and mononuclear-MDSCs from patients with PTC or benign thyroid nodules and healthy controls was measured using flow cytometry. For immunosuppressive activity analysis, sorted circulating MDSCs were cocultured with CD3/CD28-costimulated T lymphocytes and the proliferation of T cells was determined. PTC cell lines (TPC-1 and BC-PAP) were cocultured with PMN-MDSCs, and the effects on cell migration, invasion, proliferation, and apoptosis were evaluated. The differential expressed microribonucleic acids (RNAs) and messenger RNAs and their function were also explored in TPC-1 cells cocultured with or without PMN-MDSCs. RESULTS PMN-MDSCs were increased in peripheral blood mononuclear cells of patients with PTC. Circulating PMN-MDSCs displayed strong T cell suppressive activity. PTC cells demonstrated enhanced invasive capabilities in vitro and in vivo when cocultured with sorted PMN-MDSCs. PMN-MDSCs decreased expression of miR-486-3p and activated nuclear factor kappa B2 (NF-κB2), a direct target of miR-486-3p. Rescue of miR-486-3p diminished the cell migration and invasion induced by PMN-MDSCs. CONCLUSION Collectively, our work indicates that circulating PMN-MDSCs promote PTC progression. By suppressing miR-486-3p, PMN-MDSCs promote the activity of the NF-κB2 signaling pathway, resulting in accelerated invasion of PTC cells, which may provide new therapeutic strategies for treatment of thyroid cancer.
Collapse
Affiliation(s)
- Li Chen
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li Xiong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shubing Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jin Li
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zijun Huo
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yudong Li
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Shuwei Chen
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Quan Zhang
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Julian A Gingold
- Department of Obstetrics & Gynecology and Women's Health, Einstein/Montefiore Medical Center, New York, New York
| | - Xiaonan Zhu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
18
|
Bah I, Alkhateeb T, Kumbhare A, Youssef D, Yao ZQ, Hawkin GA, McCall CE, El Gazzar M. HuR promotes miRNA-mediated upregulation of NFI-A protein expression in MDSCs during murine sepsis. Mol Immunol 2020; 123:97-105. [PMID: 32474254 DOI: 10.1016/j.molimm.2020.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/04/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) contribute to high mortality rates during sepsis, but how sepsis induces MDSCs is unclear. Previously we reported that microRNA (miR)-21 and miR-181b reprogram MDSCs in septic mice by increasing levels of DNA binding transcription factor, nuclear factor 1 (NFI-A). Here, we provide evidence that miR-21 and miR-181b stabilize NFI-A mRNA and increase NFI-A protein levels by recruiting RNA-binding proteins HuR and Ago1 to its 3' untranslated region (3'UTR). We also find that the NFI-A GU-rich element (GRE)-binding protein CUGBP1 counters miR-21 and miR-181b dependent NFI-A mRNA stabilization and decreases protein production by replacing 3'UTR bound Ago1 with Ago2. We confirmed the miR-21 and miR-181b dependent reprogramming pathway in MDSCs transfected with a luciferase reporter construct containing an NFI-A 3'UTR fragment with point mutations in the miRNA binding sites. These results suggest that targeting NFI-A in MDSCs during sepsis may enhance resistance to uncontrolled infection.
Collapse
Affiliation(s)
- Isatou Bah
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, 37614, USA
| | - Tuqa Alkhateeb
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, 37614, USA
| | - Ajinkya Kumbhare
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, 37614, USA
| | - Dima Youssef
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, 37614, USA
| | - Zhi Q Yao
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, 37614, USA
| | - Gregory A Hawkin
- Department of Biochemistry and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Charles E McCall
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mohamed El Gazzar
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, 37614, USA.
| |
Collapse
|
19
|
Zhang Z, Huang X, Wang E, Huang Y, Yang R. Suppression of Mll1-Complex by Stat3/Cebpβ–Induced miR-21a/21b/181b Maintains the Accumulation, Homeostasis, and Immunosuppressive Function of Polymorphonuclear Myeloid-Derived Suppressor Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:3400-3415. [DOI: 10.4049/jimmunol.2000230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022]
|
20
|
Sudo K, Kato K, Matsuzaki J, Takizawa S, Aoki Y, Shoji H, Iwasa S, Honma Y, Takashima A, Sakamoto H, Naka T, Sekine S, Boku N, Ochiya T. Identification of serum microRNAs predicting the response of esophageal squamous-cell carcinoma to nivolumab. Jpn J Clin Oncol 2020; 50:114-121. [PMID: 31612917 DOI: 10.1093/jjco/hyz146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Nivolumab, a programmed cell death protein 1 (PD-1) inhibitor, showed promising activity for the treatment of advanced esophageal squamous-cell carcinoma in a phase II study (ONO-4538-07; JapicCTI-No.142422). We explored serum microRNA (miRNA) candidate predictive markers of the response to nivolumab. METHODS In the phase II study, 19 patients received nivolumab (3 mg/kg IV Q2W) at National Cancer Center Hospital. The expression of 2565 serum miRNAs before and during treatment was analyzed using a 3D-Gene Human miRNA Oligo Chip (Toray Industries, Inc.). Immune-related response evaluation criteria used to evaluate response and miRNA expression were compared between responders and non-responders. The top 20 miRNAs by accuracy in receiver operating characteristic curve analysis were identified by leave-one-out cross-validation, and those with the area under curve values > 0.8, cross-validated accuracy > 0.8, and a 0.5 difference in the average log2 expression level between responders and non-responders were further analyzed. RESULTS Of the 19 patients, five responded to nivolumab. We identified miRNAs related to the response to nivolumab, including one detected in the serum before treatment (miR-1233-5p; AUC = 0.895) and three present after treatment (miR-6885-5p, miR-4698 and miR-128-2-5p; AUC = 0.93, 0.97 and 0.93, respectively). CONCLUSIONS Candidate miRNAs capable of predicting the response to nivolumab were identified in the serum of patients with advanced esophageal squamous-cell carcinoma in ONO-4538-07.
Collapse
Affiliation(s)
- Kazuki Sudo
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.,Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Juntaro Matsuzaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoko Takizawa
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Toray Industries, Inc., Tokyo, Japan
| | | | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Satoru Iwasa
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshitaka Honma
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Atsuo Takashima
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiromi Sakamoto
- Department of Biobank and Tissue Resources, National Cancer Center Research Institute, Tokyo, Japan
| | - Tomoaki Naka
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Shigeki Sekine
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
21
|
Lim J, Lee A, Lee HG, Lim JS. Modulation of Immunosuppression by Oligonucleotide-Based Molecules and Small Molecules Targeting Myeloid-Derived Suppressor Cells. Biomol Ther (Seoul) 2020; 28:1-17. [PMID: 31431006 PMCID: PMC6939693 DOI: 10.4062/biomolther.2019.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exert suppressive function on the immune response. MDSCs expand in tumor-bearing hosts or in the tumor microenvironment and suppress T cell responses via various mechanisms, whereas a reduction in their activities has been observed in autoimmune diseases or infections. It has been reported that the symptoms of various diseases, including malignant tumors, can be alleviated by targeting MDSCs. Moreover, MDSCs can contribute to patient resistance to therapy using immune checkpoint inhibitors. In line with these therapeutic approaches, diverse oligonucleotide-based molecules and small molecules have been evaluated for their therapeutic efficacy in several disease models via the modulation of MDSC activity. In the current review, MDSC-targeting oligonucleotides and small molecules are briefly summarized, and we highlight the immunomodulatory effects on MDSCs in a variety of disease models and the application of MDSC-targeting molecules for immuno-oncologic therapy.
Collapse
Affiliation(s)
- Jihyun Lim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Aram Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hee Gu Lee
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea.,Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
22
|
Hollen MK, Stortz JA, Darden D, Dirain ML, Nacionales DC, Hawkins RB, Cox MC, Lopez MC, Rincon JC, Ungaro R, Wang Z, Wu Q, Brumback B, Gauthier MPL, Kladde M, Leeuwenburgh C, Segal M, Bihorac A, Brakenridge S, Moore FA, Baker HV, Mohr AM, Moldawer LL, Efron PA. Myeloid-derived suppressor cell function and epigenetic expression evolves over time after surgical sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:355. [PMID: 31722736 PMCID: PMC6854728 DOI: 10.1186/s13054-019-2628-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
Background Sepsis is an increasingly significant challenge throughout the world as one of the major causes of patient morbidity and mortality. Central to the host immunologic response to sepsis is the increase in circulating myeloid-derived suppressor cells (MDSCs), which have been demonstrated to be present and independently associated with poor long-term clinical outcomes. MDSCs are plastic cells and potentially modifiable, particularly through epigenetic interventions. The objective of this study was to determine how the suppressive phenotype of MDSCs evolves after sepsis in surgical ICU patients, as well as to identify epigenetic differences in MDSCs that may explain these changes. Methods Circulating MDSCs from 267 survivors of surgical sepsis were phenotyped at various intervals over 6 weeks, and highly enriched MDSCs from 23 of these samples were co-cultured with CD3/CD28-stimulated autologous T cells. microRNA expression from enriched MDSCs was also identified. Results We observed that MDSC numbers remain significantly elevated in hospitalized sepsis survivors for at least 6 weeks after their infection. However, only MDSCs obtained at and beyond 14 days post-sepsis significantly suppressed T lymphocyte proliferation and IL-2 production. These same MDSCs displayed unique epigenetic (miRNA) expression patterns compared to earlier time points. Conclusions We conclude that in sepsis survivors, immature myeloid cell numbers are increased but the immune suppressive function specific to MDSCs develops over time, and this is associated with a specific epigenome. These findings may explain the chronic and persistent immune suppression seen in these subjects.
Collapse
Affiliation(s)
- McKenzie K Hollen
- Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, Gainesville, FL, 32610-0019, USA
| | - Julie A Stortz
- Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, Gainesville, FL, 32610-0019, USA
| | - Dijoia Darden
- Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, Gainesville, FL, 32610-0019, USA
| | - Marvin L Dirain
- Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, Gainesville, FL, 32610-0019, USA
| | - Dina C Nacionales
- Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, Gainesville, FL, 32610-0019, USA
| | - Russell B Hawkins
- Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, Gainesville, FL, 32610-0019, USA
| | - Michael C Cox
- Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, Gainesville, FL, 32610-0019, USA
| | - Maria-Cecilia Lopez
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jaimar C Rincon
- Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, Gainesville, FL, 32610-0019, USA
| | - Ricardo Ungaro
- Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, Gainesville, FL, 32610-0019, USA
| | - Zhongkai Wang
- Department of Biostatistics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Quran Wu
- Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, Gainesville, FL, 32610-0019, USA
| | - Babette Brumback
- Department of Biostatistics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Marie-Pierre L Gauthier
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael Kladde
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Mark Segal
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Azra Bihorac
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Scott Brakenridge
- Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, Gainesville, FL, 32610-0019, USA
| | - Frederick A Moore
- Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, Gainesville, FL, 32610-0019, USA
| | - Henry V Baker
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Alicia M Mohr
- Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, Gainesville, FL, 32610-0019, USA
| | - Lyle L Moldawer
- Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, Gainesville, FL, 32610-0019, USA
| | - Philip A Efron
- Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, Gainesville, FL, 32610-0019, USA.
| |
Collapse
|
23
|
|
24
|
Leija Montoya G, González Ramírez J, Sandoval Basilio J, Serafín Higuera I, Isiordia Espinoza M, González González R, Serafín Higuera N. Long Non-coding RNAs: Regulators of the Activity of Myeloid-Derived Suppressor Cells. Front Immunol 2019; 10:1734. [PMID: 31404149 PMCID: PMC6671873 DOI: 10.3389/fimmu.2019.01734] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent immunosuppressive functions. They play major roles in cancer and many of the pathologic conditions associated with inflammation. Long non-coding RNAs (lncRNAs) are untranslated functional RNA molecules. The lncRNAs are involved in the control of a wide variety of cellular processes and are dysregulated in different diseases. They can participate in the modulation of immune function and activity of inflammatory cells, including MDSCs. This mini review focuses on the emerging role of lncRNAs in MDSC activity. We summarize how lncRNAs modulate the generation, recruitment, and immunosuppressive functions of MDSCs and the underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Mario Isiordia Espinoza
- División de Ciencias Biomédicas, Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Guadalajara, Mexico
| | | | - Nicolás Serafín Higuera
- Unidad de Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali, Mexico
| |
Collapse
|
25
|
Ren W, Zhang X, Li W, Feng Q, Feng H, Tong Y, Rong H, Wang W, Zhang D, Zhang Z, Tu S, Zhu X, Zhang Q. Exosomal miRNA-107 induces myeloid-derived suppressor cell expansion in gastric cancer. Cancer Manag Res 2019; 11:4023-4040. [PMID: 31190980 PMCID: PMC6511657 DOI: 10.2147/cmar.s198886] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Myeloid-derived suppressor cells (MDSCs) promote immunosuppression in the tumor microenvironment, support tumor growth and survival, and may contribute to immunotherapy resistance. Recent studies showed that tumor-derived exosomes (TDEs) can induce MDSCs accumulation and expansion, the mechanisms of which are largely unknown. Methods: The morphologies and sizes of the exosomes was observed by using a JEM-1400 transmission electron microscope. MicroRNA(miR)-107 and ARG1, DICER1, PTEN, PI3K, AKT, mTOR, and NF-kB mRNAs were quantified by quantitative reverse tanscription PCR. Dual-Luciferase Reports Assay were used to examine the expression of genes which was targeted by miR-107. The expression of proteins were analyzed by using western blot. Results: MiR-107 was not only overexpressed in gastric cancer cells but also enriched in their secreted TDEs. Also, these miR-107 enriched TDEs could be taken up by HLA-DR-CD33+MDSCs, where miR-107 was able to target and suppress expression of DICER1 and PTEN genes. Dampened DICER1 expression supported expansion of MDSCs , while decreased PTEN led to activation of the PI3K pathway, resulting in increased ARG1 expression. Furthemore, gastric cancer-derived miR-107 TDEs, when dosed intravenously into mice, were also capable of inducing expansion of CD11b+Gr1+/high MDSCs in mouse peripheral blood and altering expression of DICER1, PTEN, ARG1, and NOS2 in the MDSCs. Conclusions: Our findings demonstrate for the first time that gastric cancer-secreted exosomes are able to deliver miR-107 to the host MDSCs where they induce their expansion and activition by targeting DICER1 and PTEN genes, thereby may provide novel cancer therapeutics target for gastric cancer.
Collapse
Affiliation(s)
- WeiHong Ren
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China.,Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - XuRan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - WenBo Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - Qian Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - HuiJie Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - Yan Tong
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - Hao Rong
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - Wei Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - Dai Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - ZhenQiang Zhang
- Immunology Laboratory of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - ShiChun Tu
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - XiaoYan Zhu
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - QinXian Zhang
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| |
Collapse
|
26
|
Contribution of microRNAs to the immunosuppressive function of mesenchymal stem cells. Biochimie 2018; 155:109-118. [DOI: 10.1016/j.biochi.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023]
|
27
|
Yang Y, Sun D, Zhou J, Tan C, Zhang H, Chen Z, Hao C, Zhang J. LPS expands MDSCs by inhibiting apoptosis through the regulation of the GATA2/let-7e axis. Immunol Cell Biol 2018; 97:142-151. [PMID: 30221399 DOI: 10.1111/imcb.12204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a group of immature myeloid cells composed of myeloid progenitor cells and immature myeloid cells that can negatively regulate immune responses by inhibiting T-cell function. In mice, MDSCs are broadly defined by the expression of CD11b and Gr1. We and others have shown that injection of a lethal or sublethal dose of lipopolysaccharide (LPS) into mice could result in the expansion of MDSCs in the bone marrow (BM), spleen and blood. Until now, the molecular mechanisms responsible for this expansion are poorly studied; specifically, the roles of the individual microRNAs (miRNAs) which may be involved remain largely unknown. We performed microarray analysis to compare the miRNA expression profiles of CD11b+ Gr1+ cells sorted from the BM of LPS-injected and phosphate-buffered saline-injected mice. We identified let-7e, which was highly upregulated in the LPS-treated group, as a potent regulator of LPS-induced MDSC expansion. Furthermore, let-7e overexpression in BM chimeric mice led to a noticeable increase in the population of CD11b+ Gr1+ cells, which resulted from reduced cellular apoptosis. Further studies showed that let-7e could directly target caspase-3 to inhibit cell apoptosis, and upregulation of let-7e in LPS-stimulated MDSCs could be due to the relieved repression of let-7e transcription exerted by downregulated GATA2. Our findings suggest that LPS expands MDSCs by inhibiting apoptosis through the regulation of the GATA2/let-7e axis.
Collapse
Affiliation(s)
- Yi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Di Sun
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ji Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chensheng Tan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - ZhengRong Chen
- Department of Respiratory Disease, Children's hospital of Soochow University, Suzhou, China
| | - ChuangLi Hao
- Department of Respiratory Disease, Children's hospital of Soochow University, Suzhou, China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
28
|
Salminen A, Kaarniranta K, Kauppinen A. The potential importance of myeloid-derived suppressor cells (MDSCs) in the pathogenesis of Alzheimer's disease. Cell Mol Life Sci 2018; 75:3099-3120. [PMID: 29779041 PMCID: PMC11105369 DOI: 10.1007/s00018-018-2844-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/30/2018] [Accepted: 05/16/2018] [Indexed: 02/08/2023]
Abstract
The exact cause of Alzheimer's disease (AD) is still unknown, but the deposition of amyloid-β (Aβ) plaques and chronic inflammation indicates that immune disturbances are involved in AD pathogenesis. Recent genetic studies have revealed that many candidate genes are expressed in both microglia and myeloid cells which infiltrate into the AD brains. Invading myeloid cells controls the functions of resident microglia in pathological conditions, such as AD pathology. AD is a neurologic disease with inflammatory component where the immune system is not able to eliminate the perpetrator, while, concurrently, it should prevent neuronal injuries induced by inflammation. Recent studies have indicated that AD brains are an immunosuppressive microenvironment, e.g., microglial cells are hyporesponsive to Aβ deposits and anti-inflammatory cytokines enhance Aβ deposition. Immunosuppression is a common element in pathological disorders involving chronic inflammation. Studies on cancer-associated inflammation have demonstrated that myeloid-derived suppressor cells (MDSCs) have a crucial role in the immune escape of tumor cells. Immunosuppression is not limited to tumors, since MDSCs can be recruited into chronically inflamed tissues where inflammatory mediators enhance the proliferation and activation of MDSCs. AD brains express a range of chemokines and cytokines which could recruit and expand MDSCs in inflamed AD brains and thus generate an immunosuppressive microenvironment. Several neuroinflammatory disorders, e.g., the early phase of AD pathology, have been associated with an increase in the level of circulating MDSCs. We will elucidate the immunosuppressive armament of MDSCs and present evidences in support of the crucial role of MDSCs in the pathogenesis of AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
29
|
Zheng J, Jia L, Mori S, Kodama T. Evaluation of metastatic niches in distant organs after surgical removal of tumor-bearing lymph nodes. BMC Cancer 2018; 18:608. [PMID: 29848296 PMCID: PMC5977453 DOI: 10.1186/s12885-018-4538-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 05/21/2018] [Indexed: 11/30/2022] Open
Abstract
Background Surgical removal of primary tumors can promote the incidence of tumor metastasis. However, molecular mechanisms underlying this process remain unclear. Methods We inoculated tumor cells expressing luciferase gene into subiliac lymph node (SiLN) of the MXH10/Mo-lpr/lpr mice. The tumor-bearing SiLNs were surgically removed at a certain period of time after inoculation. Results In vivo bioluminescence imaging system and histological staining revealed metastasis in lung, proper axillary lymph node (PALN) and liver. The lung metastasis rate in SiLN removal groups was significantly higher than in the control group using Fisher exact test. Mann-Whitney U-test indicated that the luciferase-positive tumor cells in the lung and liver were significantly higher than in the control groups. The lung samples in SiLN removal groups had strong expression of lysine oxidase (LOX). Moreover, the number of CD11b+ cells in the lung and liver in the SiLN removal groups was significantly increased, which was positively correlated with LOX expression level. In addition, the condition of LOX and CD11b in liver was similar to lung. In the SiLN surgical removal groups, the matrix metalloproteinase (MMP)-2 and VEGFA expression in the lung tissues was significantly higher than in the control groups; the collagen fibers per area around the pulmonary vessels was quite significantly lower and negatively correlated with the expression of MMP-2 by Spearman’s analysis. Our data indicated that the reticular fibers were deposited and disordered in the tumor tissues of the lungs in the removal groups, and the reticular fibers per area was higher than in the control groups. The tumor cells in the PALN of control groups were significantly higher than in the SiLN removal groups, and CD169+ and CD11c+ cells were also higher than in the SiLN removal groups. Conclusions Altogether, surgical removal of the tumor-bearing lymph node promoted tumor metastasis through changing the niche in lung and liver. Treatment targeting the metastatic niche might be an effective strategy to prevent tumor metastasis, thereby possibly increasing the survival and reducing the incidence of metastasis in cancer patients.
Collapse
Affiliation(s)
- Jinhua Zheng
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, 150081, China
| | - Limin Jia
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, 150081, China
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan. .,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
30
|
Zöller M. Janus-Faced Myeloid-Derived Suppressor Cell Exosomes for the Good and the Bad in Cancer and Autoimmune Disease. Front Immunol 2018; 9:137. [PMID: 29456536 PMCID: PMC5801414 DOI: 10.3389/fimmu.2018.00137] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells originally described to hamper immune responses in chronic infections. Meanwhile, they are known to be a major obstacle in cancer immunotherapy. On the other hand, MDSC can interfere with allogeneic transplant rejection and may dampen autoreactive T cell activity. Whether MDSC-Exosomes (Exo) can cope with the dangerous and potentially therapeutic activities of MDSC is not yet fully explored. After introducing MDSC and Exo, it will be discussed, whether a blockade of MDSC-Exo could foster the efficacy of immunotherapy in cancer and mitigate tumor progression supporting activities of MDSC. It also will be outlined, whether application of native or tailored MDSC-Exo might prohibit autoimmune disease progression. These considerations are based on the steadily increasing knowledge on Exo composition, their capacity to distribute throughout the organism combined with selectivity of targeting, and the ease to tailor Exo and includes open questions that answers will facilitate optimizing protocols for a MDSC-Exo blockade in cancer as well as for strengthening their therapeutic efficacy in autoimmune disease.
Collapse
Affiliation(s)
- Margot Zöller
- Tumor Cell Biology, University Hospital of Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
31
|
Arbab AS, Rashid MH, Angara K, Borin TF, Lin PC, Jain M, Achyut BR. Major Challenges and Potential Microenvironment-Targeted Therapies in Glioblastoma. Int J Mol Sci 2017; 18:ijms18122732. [PMID: 29258180 PMCID: PMC5751333 DOI: 10.3390/ijms18122732] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is considered one of the most malignant, genetically heterogeneous, and therapy-resistant solid tumor. Therapeutic options are limited in GBM and involve surgical resection followed by chemotherapy and/or radiotherapy. Adjuvant therapies, including antiangiogenic treatments (AATs) targeting the VEGF–VEGFR pathway, have witnessed enhanced infiltration of bone marrow-derived myeloid cells, causing therapy resistance and tumor relapse in clinics and in preclinical models of GBM. This review article is focused on gathering previous clinical and preclinical reports featuring major challenges and lessons in GBM. Potential combination therapies targeting the tumor microenvironment (TME) to overcome the myeloid cell-mediated resistance problem in GBM are discussed. Future directions are focused on the use of TME-directed therapies in combination with standard therapy in clinical trials, and the exploration of novel therapies and GBM models for preclinical studies. We believe this review will guide the future of GBM research and therapy.
Collapse
Affiliation(s)
- Ali S Arbab
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Mohammad H Rashid
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Kartik Angara
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Thaiz F Borin
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Ping-Chang Lin
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Meenu Jain
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Bhagelu R Achyut
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
32
|
Zilio S, Vella JL, De la Fuente AC, Daftarian PM, Weed DT, Kaifer A, Marigo I, Leone K, Bronte V, Serafini P. 4PD Functionalized Dendrimers: A Flexible Tool for In Vivo Gene Silencing of Tumor-Educated Myeloid Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:4166-4177. [PMID: 28396317 DOI: 10.4049/jimmunol.1600833] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/13/2017] [Indexed: 12/11/2022]
Abstract
Myeloid cells play a key role in tumor progression and metastasis by providing nourishment and immune protection, as well as facilitating cancer invasion and seeding to distal sites. Although advances have been made in understanding the biology of these tumor-educated myeloid cells (TEMCs), their intrinsic plasticity challenges our further understanding of their biology. Indeed, in vitro experiments only mimic the in vivo setting, and current gene-knockout technologies do not allow the simultaneous, temporally controlled, and cell-specific silencing of multiple genes or pathways. In this article, we describe the 4PD nanoplatform, which allows the in vivo preferential transfection and in vivo tracking of TEMCs with the desired RNAs. This platform is based on the conjugation of CD124/IL-4Rα-targeting peptide with G5 PAMAM dendrimers as the loading surface and can convey therapeutic or experimental RNAs of interest. When injected i.v. in mice bearing CT26 colon carcinoma or B16 melanoma, the 4PD nanoparticles predominantly accumulate at the tumor site, transfecting intratumoral myeloid cells. The use of 4PD to deliver a combination of STAT3- and C/EBPβ-specific short hairpin RNA or miR-142-3p confirmed the importance of these genes and microRNAs in TEMC biology and indicates that silencing of both genes is necessary to increase the efficacy of immune interventions. Thus, the 4PD nanoparticle can rapidly and cost effectively modulate and assess the in vivo function of microRNAs and mRNAs in TEMCs.
Collapse
Affiliation(s)
- Serena Zilio
- Department of Microbiology and Immunology, University of Miami, Miami, FL, 33136
| | - Jennifer L Vella
- Department of Microbiology and Immunology, University of Miami, Miami, FL, 33136
| | | | - Pirouz M Daftarian
- Department of Microbiology and Immunology, University of Miami, Miami, FL, 33136
| | - Donald T Weed
- Department of Otolaryngology, University of Miami, Miami, FL, 33136
| | - Angel Kaifer
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146
| | - Ilaria Marigo
- Istituto Oncologico Veneto-Istituto di Ricovero e Cura a Carattere Scientifico, IOV-IRCCS, 35128 Padova, Italy; and
| | - Kevin Leone
- Istituto Oncologico Veneto-Istituto di Ricovero e Cura a Carattere Scientifico, IOV-IRCCS, 35128 Padova, Italy; and
| | - Vincenzo Bronte
- Department of Medicine, Verona University Hospital, 37134 Verona, Italy
| | - Paolo Serafini
- Department of Microbiology and Immunology, University of Miami, Miami, FL, 33136;
| |
Collapse
|
33
|
Vallacchi V, Camisaschi C, Dugo M, Vergani E, Deho P, Gualeni A, Huber V, Gloghini A, Maurichi A, Santinami M, Sensi M, Castelli C, Rivoltini L, Rodolfo M. microRNA Expression in Sentinel Nodes from Progressing Melanoma Patients Identifies Networks Associated with Dysfunctional Immune Response. Genes (Basel) 2016; 7:genes7120124. [PMID: 27983661 PMCID: PMC5192500 DOI: 10.3390/genes7120124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022] Open
Abstract
Sentinel node biopsy (SNB) is a main staging biomarker in melanoma and is the first lymph node to drain the tumor, thus representing the immunological site where anti-tumor immune dysfunction is established and where potential prognostic immune markers can be identified. Here we analyzed microRNA (miR) profiles in archival tumor-positive SNBs derived from melanoma patients with different outcomes and performed an integrated analysis of transcriptional data to identify deregulated immune signaling networks. Twenty-six miRs were differentially expressed in melanoma-positive SNB samples between patients with disease progression and non-progressing patients, the majority being previously reported in the regulation of immune responses. A significant variation in miR expression levels was confirmed in an independent set of SNB samples. Integrated information from genome-wide transcriptional profiles and in vitro assessment in immune cells led to the identification of miRs associated with the regulation of the TNF receptor superfamily member 8 (TNFRSF8) gene encoding the CD30 receptor, a marker increased in lymphocytes of melanoma patients with progressive disease. These findings indicate that miRs are involved in the regulation of pathways leading to immune dysfunction in the sentinel node and may provide valuable markers for developing prognostic molecular signatures for the identification of stage III melanoma patients at risk of recurrence.
Collapse
Affiliation(s)
- Viviana Vallacchi
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Chiara Camisaschi
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Matteo Dugo
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Elisabetta Vergani
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Paola Deho
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Ambra Gualeni
- Molecular Pathology Unit, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Veronica Huber
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Annunziata Gloghini
- Molecular Pathology Unit, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Andrea Maurichi
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Mario Santinami
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Marialuisa Sensi
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Chiara Castelli
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Licia Rivoltini
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Monica Rodolfo
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| |
Collapse
|
34
|
Ren JP, Wang L, Zhao J, Wang L, Ning SB, El Gazzar M, Moorman JP, Yao ZQ. Decline of miR-124 in myeloid cells promotes regulatory T-cell development in hepatitis C virus infection. Immunology 2016; 150:213-220. [PMID: 27753084 DOI: 10.1111/imm.12680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) and microRNAs (miRNAs) contribute to attenuating immune responses during chronic viral infection; however, the precise mechanisms underlying their suppressive activities remain incompletely understood. We have recently shown marked expansion of MDSCs that promote regulatory T (Treg) cell development in patients with chronic hepatitis C virus (HCV) infection. Here we further investigated whether the HCV-induced expansion of MDSCs and Treg cells is regulated by an miRNA-mediated mechanism. The RNA array analysis revealed that six miRNAs were up-regulated and six miRNAs were down-regulated significantly in myeloid cells during HCV infection. Real-time RT-PCR confirmed the down-regulation of miR-124 in MDSCs from HCV patients. Bioinformatic analysis suggested that miR-124 may be involved in the regulation of signal transducer and activator of transcription 3 (STAT-3), which was overexpressed in MDSCs from HCV patients. Notably, silencing of STAT-3 significantly increased the miR-124 expression, whereas reconstituting miR-124 decreased the levels of STAT-3, as well as interleukin-10 and transforming growth factor-β, which were overexpressed in MDCSs, and reduced the frequencies of Foxp3+ Treg cells that were developed during chronic HCV infection. These results suggest that reciprocal regulation of miR-124 and STAT-3 in MDSCs promotes Treg cell development, thus uncovering a novel mechanism for the expansion of MDSC and Treg cells during HCV infection.
Collapse
Affiliation(s)
- Jun P Ren
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Lin Wang
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Centre for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Zhao
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Ling Wang
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Shun B Ning
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Mohamed El Gazzar
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Jonathan P Moorman
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, TN, USA
| | - Zhi Q Yao
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, TN, USA
| |
Collapse
|
35
|
Tian J, Rui K, Tang X, Ma J, Wang Y, Tian X, Zhang Y, Xu H, Lu L, Wang S. MicroRNA-9 Regulates the Differentiation and Function of Myeloid-Derived Suppressor Cells via Targeting Runx1. THE JOURNAL OF IMMUNOLOGY 2015; 195:1301-11. [PMID: 26091714 DOI: 10.4049/jimmunol.1500209] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) play a critical role in tumor-associated immunosuppression, thus affecting effective immunotherapies for cancers. However, the molecular mechanisms involved in regulating the differentiation and function of MDSCs remain largely unclear. In this study, we found that inhibition of microRNA (miR)-9 promoted the differentiation of MDSCs with significantly reduced immunosuppressive function whereas overexpression of miR-9 markedly enhanced the function of MDSCs. Notably, knockdown of miR-9 significantly impaired the activity of MDSCs and inhibited the tumor growth of Lewis lung carcinoma in mice. Moreover, miR-9 regulated MDSCs differentiation by targeting the runt-related transcription factor 1, an essential transcription factor in regulating MDSC differentiation and function. Furthermore, the CREB was found to regulate miR-9 expression in MDSCs. Taken together, our findings have identified a critical role of miR-9 in regulating the differentiation and function of MDSCs.
Collapse
Affiliation(s)
- Jie Tian
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China; Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang 210013, China; and
| | - Ke Rui
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang 210013, China; and
| | - Xinyi Tang
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang 210013, China; and
| | - Jie Ma
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang 210013, China; and
| | - Yungang Wang
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang 210013, China; and
| | - Xinyu Tian
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang 210013, China; and
| | - Yue Zhang
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China
| | - Huaxi Xu
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang 210013, China; and
| | - Liwei Lu
- Department of Pathology, University of Hong Kong, Hong Kong 999077, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China; Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang 210013, China; and
| |
Collapse
|
36
|
Chen S, Zhang Y, Kuzel TM, Zhang B. Regulating Tumor Myeloid-Derived Suppressor Cells by MicroRNAs. CANCER CELL & MICROENVIRONMENT 2015; 2:e637. [PMID: 26005707 PMCID: PMC4440580 DOI: 10.14800/ccm.637] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the major cell components responsible for cancer immune evasion. Studying mechanisms associated with the regulation of MDSCs is becoming appreciated as another way to manipulate immune responses. MicroRNAs (miRNAs) have been recognized as substances which may interact with MDSCs, and eight miRNAs including miR-17-5p, miR-20a, miR-223, miR-21, miR-155, miR-494, miR-690 and miR-101 are of particular interest regarding MDSC accumulation and function. We have reviewed the data supporting this activity of these entities.
Collapse
Affiliation(s)
- Siqi Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Timothy M. Kuzel
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bin Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
37
|
Botta C, Gullà A, Correale P, Tagliaferri P, Tassone P. Myeloid-derived suppressor cells in multiple myeloma: pre-clinical research and translational opportunities. Front Oncol 2014; 4:348. [PMID: 25538892 PMCID: PMC4258997 DOI: 10.3389/fonc.2014.00348] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/23/2014] [Indexed: 12/31/2022] Open
Abstract
Immunosuppressive cells have been reported to play an important role in tumor-progression mainly because of their capability to promote immune-escape, angiogenesis, and metastasis. Among them, myeloid-derived suppressor cells (MDSCs) have been recently identified as immature myeloid cells, induced by tumor-associated inflammation, able to impair both innate and adaptive immunity. While murine MDSCs are usually identified by the expression of CD11b and Gr1, human MDSCs represent a more heterogeneous population characterized by the expression of CD33 and CD11b, low or no HLA-DR, and variable CD14 and CD15. In particular, the last two may alternatively identify monocyte-like or granulocyte-like MDSC subsets with different immunosuppressive properties. Recently, a substantial increase of MDSCs has been found in peripheral blood and bone marrow (BM) of multiple myeloma (MM) patients with a role in disease progression and/or drug resistance. Pre-clinical models recapitulating the complexity of the MM-related BM microenvironment (BMM) are major tools for the study of the interactions between MM cells and cells of the BMM (including MDSCs) and for the development of new agents targeting MM-associated immune-suppressive cells. This review will focus on current strategies for human MDSCs generation and investigation of their immunosuppressive function in vitro and in vivo, taking into account the relevant relationship occurring within the MM–BMM. We will then provide trends in MDSC-associated research and suggest potential application for the treatment of MM.
Collapse
Affiliation(s)
- Cirino Botta
- Department of Experimental and Clinical Medicine, "Magna Graecia" University and Medical Oncology Unit, T. Campanella Cancer Center, "Salvatore Venuta" University Campus , Catanzaro , Italy
| | - Annamaria Gullà
- Department of Experimental and Clinical Medicine, "Magna Graecia" University and Medical Oncology Unit, T. Campanella Cancer Center, "Salvatore Venuta" University Campus , Catanzaro , Italy
| | | | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, "Magna Graecia" University and Medical Oncology Unit, T. Campanella Cancer Center, "Salvatore Venuta" University Campus , Catanzaro , Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, "Magna Graecia" University and Medical Oncology Unit, T. Campanella Cancer Center, "Salvatore Venuta" University Campus , Catanzaro , Italy ; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , Philadelphia, PA , USA
| |
Collapse
|
38
|
Martín-Gómez L, Villalba A, Kerkhoven RH, Abollo E. Role of microRNAs in the immunity process of the flat oyster Ostrea edulis against bonamiosis. INFECTION GENETICS AND EVOLUTION 2014; 27:40-50. [PMID: 25008434 DOI: 10.1016/j.meegid.2014.06.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/20/2014] [Accepted: 06/30/2014] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small (∼22nt) non-coding regulatory single strand RNA molecules that reduce stability and/or translation of sequence-complementary target. miRNAs are a key component of gene regulatory networks and have been involved in a wide variety of biological processes, such as signal transduction, cell proliferation and apoptosis. Many miRNAs are broadly conserved among the animal lineages and even between invertebrates and vertebrates. The European flat oyster Ostrea edulis is highly susceptible to infection with Bonamia ostreae, an intracellular parasite able to survive and proliferate within oyster haemocytes. Mollusc haemocytes play a key role in the immune response of molluscs as main cellular effectors. The roles of miRNAs in the immune response of O. edulis to bonamiosis were analysed using a commercial microarray platform (miRCURY LNA™ v2, Exiqon) for miRNAs. Expression of miRNAs in haemocytes from oysters with different bonamiosis intensity was compared. Differential expression was detected in 63 and 76 miRNAs when comparing heavily-affected with non-affected oysters and with lightly-affected ones, respectively. Among them, 19 miRNAs are known to be linked to immune response, being responsible of proliferation and activation of macrophages, inflammation, apoptosis and/or oxidative damage, which is consistent with the modulation of their expression in oyster haemocytes due to bonamiosis.
Collapse
Affiliation(s)
- Laura Martín-Gómez
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, Aptdo 13, 36620 Vilanova de Arousa, Spain.
| | - Antonio Villalba
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, Aptdo 13, 36620 Vilanova de Arousa, Spain
| | - Ron H Kerkhoven
- Central Microarray Facility, NKI (The Netherlands Cancer Institute), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Elvira Abollo
- Fundación CETMAR - Centro Tecnológico del Mar, Eduardo Cabello s/n., 36208 Vigo, Spain
| |
Collapse
|