1
|
Zhang X, Wang S, Xie J, Wang J, Gu Y, Wu B, Zhang Y, Yan T, Jia Y. Multi-platform analysis revealed the substance basis and mechanism of Wei-Tong-Xin in ameliorating ENS dysfunction for dyspepsia treatment. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118875. [PMID: 39362321 DOI: 10.1016/j.jep.2024.118875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Duodenal motility disorder is a contributing factor to dyspepsia. The traditional Chinese medicine (TCM) formula Wei-Tong-Xin (WTX), originated from the famous ancient Chinese formula "Wan Ying Yuan", has been demonstrated efficacy in alleviating dyspepsia. AIM OF THE STUDY The current study aims to elucidate the chemical composition of WTX to establish the pharmacodynamic material basis. On the basis of component, in depth to illuminate the mechanism by which WTX treats dyspepsia via constructing the comprehensive analysis of multi-platform. MATERIALS AND METHODS The chemical constituents of WTX were systematically analyzed by UHPLC-Q-TOF-MS/MS data processing methods. Based on this, network pharmacology was employed to predict the mechanism by which WTX improved dyspepsia. The dyspepsia mouse model was constructed, and histopathology as well as intestinal permeability were assessed using H&E staining, PAS staining and FITC-dextran assay. Protein expression was detected using Western blot, immunofluorescence, immunohistochemistry and ELISA kits. RESULTS A total of 100 chemical components of WTX were preliminarily identified. Network pharmacological analysis indicated that the therapeutic mechanism of WTX in treating dyspepsia may be related to the regulation of inflammation and oxidative stress-related signaling pathways. In vivo studies showed that WTX mitigated duodenal inflammation and oxidative stress responses, repairing the intestinal mucosal barrier damaged by cisplatin (CIS). Additionally, WTX restored the number of glial cells diminished by inflammatory damage, and ameliorated the serotoninergic neuronal dysfunction caused by insufficient secretion of glia-derived neurotrophic factor (GDNF), and enhanced intestinal transit. CONCLUSIONS In this study, a total of 100 components of the WTX extract were identified through literature review and mass spectrometry database search. Utilizing computer technology, in conjunction with pharmacodynamic and mechanistic studies, WTX has been found to restore serotoninergic neuronal function by reducing intestinal mucosal inflammatory and oxidative damage, ultimately promoting intestinal transport and treating dyspepsia.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China; College of Pharmacy, Hebei University of Chinese Medicine, Xingyuan Road 3, Shijiazhuang, 050200, China
| | - Shiyu Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Jinyu Xie
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Jinyu Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Yaru Gu
- College of Pharmacy, Hebei University of Chinese Medicine, Xingyuan Road 3, Shijiazhuang, 050200, China
| | - Bo Wu
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Yixin Zhang
- College of Pharmacy, Hebei University of Chinese Medicine, Xingyuan Road 3, Shijiazhuang, 050200, China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050091, China
| | - Tingxu Yan
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
| |
Collapse
|
2
|
Chen WJ, Chen YT, Ko JL, Chen JY, Zheng JY, Liao JW, Ou CC. Butyrate modulates gut microbiota and anti-inflammatory response in attenuating cisplatin-induced kidney injury. Biomed Pharmacother 2024; 181:117689. [PMID: 39581143 DOI: 10.1016/j.biopha.2024.117689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
In our previous research, we reported that administering probiotics Lactobacillus reuteri and Clostridium butyricum (LCs) before cisplatin treatment effectively modifies structures of the gut microbiota and restore ecological balance and significantly increases butyrate levels, a process closely associated with reducing cisplatin-induced nephrotoxicity. This study aims to investigate further whether the elevation of metabolite butyrate in the gut, promoted by probiotics LCs, can effectively mitigate the nephrotoxic effects of cisplatin and the progression of renal senescence in rats. Results show that butyrate administration significantly improved kidney function and decreased renal fibrosis in a dose-dependent manner compared to the cisplatin group. Its effects were associated with reductions in inflammatory responses, evidenced by decreased levels of key inflammatory markers, including KIM-1, MPO, NOX2, F4/80, and TGF-β1, alongside increased production of the anti-inflammatory cytokine IL-10. Furthermore, the butyrate intervention ameliorated cisplatin-induced gut microbiota dysbiosis, preserving the structure and diversity of healthy microbial communities. Specifically, we observed a decrease in the abundance of Escherichia_Shigella and Blautia, alongside an increase in the abundance of the butyrate-producing genus Roseburia. Notably, Escherichia_Shigella exhibited a positive correlation with the pro-inflammatory factor MPO, while displaying a negative correlation with the anti-inflammatory cytokine IL-10. Butyrate also attenuated the cisplatin-induced expression of senescence markers p21 and p16 in kidney tissue. It alleviated the cisplatin-increased senescence-associated beta-galactosidase activity and reactive oxygen species production in SV40 MES-13 cells. These results indicate that butyrate, derived from the gut microbiota, may exert a protective effect against cisplatin-induced kidney damage by regulating microbiota balance and anti-inflammatory effects.
Collapse
Affiliation(s)
- Wen-Jung Chen
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yng-Tay Chen
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan; Department of Food Science and Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jian-Yuan Chen
- Department of Food Science and Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Jun-Yao Zheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Department of Food Science and Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan; Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan.
| | - Chu-Chyn Ou
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Zhao Y, Yuan M, Sun X, Wang P, Meng X, Zhang S, Luo W, Zhang M, Gao X. The Chinese herbal prescription Kang-Gong-Yan alleviates cervicitis by modulating metabolites and gut microbiota. PHARMACEUTICAL BIOLOGY 2024; 62:341-355. [PMID: 39648685 PMCID: PMC11086028 DOI: 10.1080/13880209.2024.2318791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 12/10/2024]
Abstract
CONTEXT Cervicitis is a common gynecological inflammatory disease. The Chinese herbal prescription Kang-Gong-Yan (KGY) is clinically effective against cervicitis; however, the chemical constituents and therapeutic mechanism of KGY remain elusive. OBJECTIVE To analyze the chemical constituents of KGY and explore the potential mechanism of KGY in treating cervicitis. MATERIALS AND METHODS UHPLC-Q-Exactive Plus Orbitrap MS was used to identify the active compounds of KGY; Sprague-Dawley (SD) female rats were randomly divided into the control, model, and KGY groups. Phenol mucilage (25%) was slowly injected into the vagina and cervix of the rats to establish the cervicitis model. Then, rats in the KGY groups (low dose: 1 g/kg/d; medium dose: 5 g/kg/d; high dose: 10 g/kg/d) were continuously gavaged KGY for one week. HE staining was used to observe the cervical tissues of rats; ELISA was used to detect inflammatory factors in plasma; non-targeted metabolomics was used to analyze metabolites; 16S rRNA sequencing was used to analyze intestinal microorganisms. RESULTS KGY exerted anti-cervicitis effects and decreased the levels of IL-6, IL-1β, and TNF-α. The mechanism of KGY in treating cervicitis is mainly associated with betaine, amino acid, pyrimidine, and phospholipid metabolism by regulating fifteen metabolites. Moreover, KGY reversed cervicitis-induced gut dysbiosis by mediating five bacteria. DISCUSSION AND CONCLUSIONS The Chinese herbal prescription KGY may alleviate cervicitis by modulating metabolites and gut microbiota disorders. These findings provide a scientific basis for the clinical application of KGY and a new strategy for treating cervicitis in Chinese medicine.
Collapse
Affiliation(s)
- Yanni Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Minyan Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Xiaodong Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Xiaoxia Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Shuo Zhang
- Experimental Animal Center of Guizhou Medical University, Guiyang, China
| | - Wei Luo
- Guizhou Huizheng Pharmaceutical Co., Ltd, Qiannan, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Liu T, Lei C, Huang Q, Song W, Li C, Sun N, Liu Z. Hesperidin and Fecal Microbiota Transplantation Modulate the Composition of the Gut Microbiota and Reduce Obesity in High Fat Diet Mice. Diabetes Metab Syndr Obes 2024; 17:3643-3656. [PMID: 39398388 PMCID: PMC11468570 DOI: 10.2147/dmso.s474034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Obesity, which is associated with gut microbiota dysbiosis, low-grade chronic inflammation and intestinal barrier dysfunction, can cause a variety of chronic metabolic diseases. Phytochemical flavonoids have a variety of biological activities, among which there may be safe and effective anti-obesity solutions. Methods We tested a plant-derived flavonoid hesperidin and fecal microbiota transplantation (FMT) to alleviate diet-induced obesity. High-fat diet (HFD)-fed mice were treated with hesperidin (100 and 200 mg/kg BW) and FMT. Results Results indicated that hesperidin had the effects of reducing obesity as indicated by reduction of body weight, fat accumulation and blood lipids, reducing inflammation as indicated by reduction of pro-inflammation factors including TNFα, IL-6, IL-1βand iNOS, and improving gut integrity as indicated by increasing colon length, reducing plasma gut permeability indicators iFABP and LBP, increased mRNA expression of mucus protein Muc2, tight junction p Claudin 2, Occludin and ZO-1 in the HFD-fed mice. The anti-obesity effects of hesperidin treatment have a dose-dependent manner. In addition, 16S rRNA-based gut microbiota analysis revealed that hesperidin selectively promoted the growth of Lactobacillus salivarius, Staphylococcus sciuri and Desulfovibrio C21_c20 while inhibiting Bifidobacterium pseudolongum, Mucispirillum schaedleri, Helicobacter ganmani and Helicobacter hepaticus in the HFD-fed mice. Horizontal feces transfer from the normal diet (ND)-fed mice to the HFD-fed mice conferred anti-obesity effects and transmitted some of the HFD-modulated microbes. Conclusion We concluded that hesperidin and FMT both affect the reduction of body weight and improve HFD-related disorders in the HFD-fed mice possibly through modulating the composition of the gut microbiota.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, People’s Republic of China
| | - Chao Lei
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, People’s Republic of China
| | - Qinhong Huang
- The First Clinical College, Guangzhou Medical University, Guangzhou, 511400, People’s Republic of China
| | - Weiqi Song
- Department of Public Health, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Chen Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, People’s Republic of China
| | - Ning Sun
- Guangzhou 11th People’s Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, 510530, People’s Republic of China
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Zhihua Liu
- Department of Anorectal Surgery, the Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, People’s Republic of China
| |
Collapse
|
5
|
Fernandes C, Miranda MCC, Roque CR, Paguada ALP, Mota CAR, Florêncio KGD, Pereira AF, Wong DVT, Oriá RB, Lima-Júnior RCP. Is There an Interplay between Environmental Factors, Microbiota Imbalance, and Cancer Chemotherapy-Associated Intestinal Mucositis? Pharmaceuticals (Basel) 2024; 17:1020. [PMID: 39204125 PMCID: PMC11357004 DOI: 10.3390/ph17081020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Interindividual variation in drug efficacy and toxicity is a significant problem, potentially leading to adverse clinical and economic public health outcomes. While pharmacogenetics and pharmacogenomics have long been considered the primary causes of such heterogeneous responses, pharmacomicrobiomics has recently gained attention. The microbiome, a community of microorganisms living in or on the human body, is a critical determinant of drug response and toxicity. Factors such as diet, lifestyle, exposure to xenobiotics, antibiotics use, illness, and genetics can influence the composition of the microbiota. Changes in the intestinal microbiota are particularly influential in drug responsiveness, especially in cancer chemotherapy. The microbiota can modulate an individual's response to a drug, affecting its bioavailability, clinical effect, and toxicity, affecting treatment outcomes and patient quality of life. For instance, the microbiota can convert drugs into active or toxic metabolites, influencing their efficacy and side effects. Alternatively, chemotherapy can also alter the microbiota, creating a bidirectional interplay. Probiotics have shown promise in modulating the microbiome and ameliorating chemotherapy side effects, highlighting the potential for microbiota-targeted interventions in improving cancer treatment outcomes. This opinion paper addresses how environmental factors and chemotherapy-induced dysbiosis impact cancer chemotherapy gastrointestinal toxicity.
Collapse
Affiliation(s)
- Camila Fernandes
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | | | - Cássia Rodrigues Roque
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology, and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza 60430-170, Brazil; (C.R.R.); (R.B.O.)
| | - Ana Lizeth Padilla Paguada
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Carlos Adrian Rodrigues Mota
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Katharine Gurgel Dias Florêncio
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Anamaria Falcão Pereira
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Deysi Viviana Tenazoa Wong
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Reinaldo Barreto Oriá
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology, and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza 60430-170, Brazil; (C.R.R.); (R.B.O.)
| | - Roberto César Pereira Lima-Júnior
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| |
Collapse
|
6
|
Stringer AM, Hargreaves BM, Mendes RA, Blijlevens NMA, Bruno JS, Joyce P, Kamath S, Laheij AMGA, Ottaviani G, Secombe KR, Tonkaboni A, Zadik Y, Bossi P, Wardill HR. Updated perspectives on the contribution of the microbiome to the pathogenesis of mucositis using the MASCC/ISOO framework. Support Care Cancer 2024; 32:558. [PMID: 39080025 PMCID: PMC11289053 DOI: 10.1007/s00520-024-08752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Advances in the treatment of cancer have significantly improved mortality rates; however, this has come at a cost, with many treatments still limited by their toxic side effects. Mucositis in both the mouth and gastrointestinal tract is common following many anti-cancer agents, manifesting as ulcerative lesions and associated symptoms throughout the alimentary tract. The pathogenesis of mucositis was first defined in 2004 by Sonis, and almost 20 years on, the model continues to be updated reflecting ongoing research initiatives and more sophisticated analytical techniques. The most recent update, published by the Multinational Association for Supportive Care in Cancer and the International Society for Oral Oncology (MASCC/ISOO), highlights the numerous co-occurring events that underpin mucositis development. Most notably, a role for the ecosystem of microorganisms that reside throughout the alimentary tract (the oral and gut microbiota) was explored, building on initial concepts proposed by Sonis. However, many questions remain regarding the true causal contribution of the microbiota and associated metabolome. This review aims to provide an overview of this rapidly evolving area, synthesizing current evidence on the microbiota's contribution to mucositis development and progression, highlighting (i) components of the 5-phase model where the microbiome may be involved, (ii) methodological challenges that have hindered advances in this area, and (iii) opportunities for intervention.
Collapse
Affiliation(s)
- Andrea M Stringer
- Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Benjamin M Hargreaves
- Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Rui Amaral Mendes
- Faculty of Medicine, University of Porto/CINTESIS@RISE, Porto, Portugal
- Department of Oral and Maxillofacial Medicine and Diagnostic Sciences, Case Western Reserve University, Cleveland, OH, 44106-7401, USA
| | - Nicole M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julia S Bruno
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Srinivas Kamath
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Alexa M G A Laheij
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Giulia Ottaviani
- Department of Surgical, Medical and Health Sciences, University of Trieste, Trieste, Italy
| | - Kate R Secombe
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Arghavan Tonkaboni
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Yehuda Zadik
- Department of Military Medicine and "Tzameret", Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Oral Medicine, Sedation and Imaging, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paolo Bossi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Hannah R Wardill
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Level 5S, Adelaide, 5000, Australia.
| |
Collapse
|
7
|
Thapa D, Kumar V, Naik B, Kumar V, Gupta AK, Mohanta YK, Mishra B, Rustagi S. Harnessing probiotic foods: managing cancer through gut health. Food Sci Biotechnol 2024; 33:2141-2160. [PMID: 39130664 PMCID: PMC11315834 DOI: 10.1007/s10068-024-01638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024] Open
Abstract
One of the greatest threats to global health is cancer. Probiotic foods have been shown to have therapeutic promise in the management of cancer, even though traditional treatments such as radiation therapy, chemotherapy, and surgery are still essential. The generation of anticarcinogenic compounds, immune system stimulation, and gut microbiota regulation are a few ways that probiotics when taken in sufficient quantities, might help health. The purpose of this review is to examine the therapeutic potential of probiotic foods in the management of cancer. Research suggests that certain strains of probiotics have anticancer effects by preventing the growth of cancer cells, triggering apoptosis, and reducing angiogenesis in new tumors. Probiotics have shown promise in mitigating treatment-related adverse effects, such as diarrhea, mucositis, and immunosuppression caused by chemotherapy, improving the general quality of life for cancer patients. However, there are several factors, such as patient-specific features, cancer subtype, and probiotic strain type and dosage, which affect how effective probiotic therapies are in managing cancer. More research is necessary to find the long-term safety and efficacy characteristics of probiotics as well as to clarify the best ways to incorporate them into current cancer treatment methods. Graphical abstract Graphical representation showing the role of probiotic foods in cancer management.
Collapse
Affiliation(s)
- Devika Thapa
- Department of Food Science and Technology, Graphic Era Deemed to be University, Clement Town, Dehradun, Uttarakhand 248002 India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand 248140 India
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era Deemed to be University, Clement Town, Dehradun, Uttarakhand 248002 India
- School of Agriculture, Graphic Era Hill University, Dehradun, Uttarakhand India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand 248140 India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era Deemed to be University, Clement Town, Dehradun, Uttarakhand 248002 India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, Meghalaya 793101 India
| | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT), Gandipet, Hyderabad, Telangana 500075 India
| | - Sarvesh Rustagi
- Department of Food Technology, SALS, Uttaranchal University, Dehradun, 248007 Uttarakhand India
| |
Collapse
|
8
|
Biji CA, Balde A, Nazeer RA. Anti-inflammatory peptide therapeutics and the role of sulphur containing amino acids (cysteine and methionine) in inflammation suppression: A review. Inflamm Res 2024; 73:1203-1221. [PMID: 38769154 DOI: 10.1007/s00011-024-01893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Inflammation serves as our body's immune response to combat infections, pathogens, viruses, and external stimuli. Inflammation can be classified into two types: acute inflammation and chronic inflammation. Non-steroidal anti-inflammatory medications (NSAIDs) are used to treat both acute and chronic inflammatory disorders. However, these treatments have various side effects such as reduced healing efficiency, peptic ulcers, gastrointestinal toxicities, etc. METHOD: This review assesses the potential of anti-inflammatory peptides (AIPs) derived from various natural sources, such as algae, fungi, plants, animals, and marine organisms. Focusing on peptides rich in cysteines and methionine, sulphur-containing amino acids known for their role in suppression of inflammation. RESULT Due to their varied biological activity, ability to penetrate cells, and low cytotoxicity, bioactive peptides have garnered interest as possible therapeutic agents. The utilisation of AIPs has shown great potential in the treatment of disorders associated with inflammation. AIPs can be obtained from diverse natural sources such as algae, fungi, plants, and animals. Cysteine and methionine are sulphur-containing amino acids that aid in the elimination of free radicals, hence assisting in the treatment of inflammatory diseases. CONCLUSION This review specifically examines several sources of AIPs including peptides that contain numerous cysteines and methionine. In addition, the biological characteristics of these amino acids and advancements in peptide delivery are also discussed.
Collapse
Affiliation(s)
- Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India.
| |
Collapse
|
9
|
Cai B, Luo L, Zhao X, Chen H, Wan P, Huang J, Chen D, Pan J. Administration of Gracilariopsis lemaneiformis polysaccharide attenuates cisplatin-induced inflammation and intestinal mucosal damage in colon-26 carcinoma tumor-bearing mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3757-3766. [PMID: 38234098 DOI: 10.1002/jsfa.13260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Our preliminary research revealed that the polysaccharide GP90 from Gracilariopsis lemaneiformis enhanced the antitumor effect of cisplatin, indicating that GP90 may increase the chemotherapeutic sensitivity. However, it is still necessary to fully understand whether GP90 can also improve the intestinal barrier dysfunction and systemic inflammation induced by cisplatin. RESULTS GP90 has been demonstrated to inhibit the excessive release of nitirc oxide, interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α induced by lipopolysaccharide in RAW264.7 cells. In vivo, GP90 effectively ameliorated the decrease in the serum CD4+ /CD8+ T-cell ratio induced by cisplatin and significantly reduced the increase in the inflammatory cytokines, CD4+ Foxp3+ , CD4+ granzyme B+ and CD4+ TNF-α induced by cisplatin. Furthermore, when combined with cisplatin, GP90 increases the protein expression levels of mucin-2 and zonula occludens-1 in the mouse small intestine. Additionally, GP90 combined with cisplatin has a modulatory effect on the intestinal microbiota by elevating the Firmicutes-to-Bacteroidetes ratio and the relative abundance of beneficial microorganisms (Lachnospiraceae bacterium), at the same time as reducing the abundance of cisplatin specific Bacteroides acidifaciens and elevating the content of butyric acid and isobutyric acid. CONCLUSION Collectively, these findings indicate that GP90 potentially mitigates inflammation and protects the intestinal barrier in tumor-bearing organisms undergoing chemotherapy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bingna Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Lianxiang Luo
- Experimental Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Xiangtan Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hua Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Peng Wan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Jingtong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Deke Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jianyu Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Yu H, Lin G, Jiang J, Yao J, Pan Z, Xie H, Bo Z, He Q, Yang J, Chen Z, Li J, Wang Y, Yu Z, Assaraf YG, Chen G. Synergistic activity of Enterococcus Faecium-induced ferroptosis via expansion of IFN-γ +CD8 + T cell population in advanced hepatocellular carcinoma treated with sorafenib. Gut Microbes 2024; 16:2410474. [PMID: 39353096 PMCID: PMC11445893 DOI: 10.1080/19490976.2024.2410474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/09/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
The gut microbiota plays an important role in the development and treatment of hepatocellular carcinoma (HCC). However, the implication of specific gut microbiota in targeted sorafenib therapy for advanced HCC and the microbiota mode of action, remain to be elucidated. Here, we confirmed that four bacterial genera, Lachnoclostridium, Lachnospira, Enterobacter and Enterococcus, are associated with the therapeutic efficacy of Sorafenib, and that Enterobacter faecium (Efm) plays a crucial role in modulating the sorafenib activity. The effective colonization by Emf induced the IL-12 and IFN-γ production and an increased proportion of IFN-γ+CD8+ T cells in the tumor microenvironment. Finally, exopolysaccharides (EPS) from Efm were the primary inducer to prompt IFN-γ+CD8+ T cells to secrete IFN-γ, which together with sorafenib instigated ferroptosis in HCC cells. Collectively, these results indicate that Efm is a promising probiotics that enhances the efficacy of sorafenib treatment in advanced HCC.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ganglian Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junyan Jiang
- Alberta Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiangqiao Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenyan Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haonan Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qikuan He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinhuan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziyan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiacheng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
López-Tofiño Y, Barragán del Caz LF, Benítez-Álvarez D, Molero-Mateo P, Nurgali K, Vera G, Bagües A, Abalo R. Contractility of isolated colonic smooth muscle strips from rats treated with cancer chemotherapy: differential effects of cisplatin and vincristine. Front Neurosci 2023; 17:1304609. [PMID: 38192512 PMCID: PMC10773793 DOI: 10.3389/fnins.2023.1304609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Background Certain antineoplastic drugs cause gastrointestinal disorders even after the end of treatment. Enteric neuropathy has been associated with some of these alterations. Our goal was to assess the impact of repeated treatment with cisplatin and vincristine on the contractility of circular and longitudinal muscle strips isolated from the rat colon. Methods Two cohorts of male rats were used: in cohort 1, rats received one intraperitoneal (ip) injection of saline or cisplatin (2 mg kg-1 week-1) on the first day of weeks 1-5; in cohort 2, rats received two cycles of five daily ip injections (Monday to Friday, weeks 1-2) of saline or vincristine (0.1 mg kg-1 day-1). Body weight and food and water intake were monitored throughout the study. One week after treatment, responses of colonic smooth muscle strips to acetylcholine (10-9-10-5 M) and electrical field stimulation (EFS, 0.1-20 Hz), before and after atropine (10-6 M), were evaluated in an organ bath. Results Both drugs decreased body weight gain. Compared to saline, cisplatin significantly decreased responses of both longitudinal and circular smooth muscle strips to EFS, whereas vincristine tended to increase them, although in a non-significant manner. No differences were observed in the muscle response to acetylcholine. Atropine abolished the contractile responses induced by acetylcholine, although those induced by EFS were only partially reduced in the presence of atropine. Conclusion The findings suggest that although both drugs cause the development of enteric neuropathy, this seems to have a functional impact only in cisplatin-treated animals. Understanding the effects of chemotherapy on gastrointestinal motor function is vital for enhancing the quality of life of cancer patients.
Collapse
Affiliation(s)
- Yolanda López-Tofiño
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- International Doctoral School, URJC, Móstoles, Spain
| | | | - David Benítez-Álvarez
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
| | - Paula Molero-Mateo
- International Doctoral School, URJC, Móstoles, Spain
- Lescer Center (Neurological Rehabilitation), Madrid, Spain
- Department of Physiotherapy, Occupational Therapy, Rehabilitation and Physical Medicine, URJC, Alcorcón, Spain
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Gema Vera
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
| | - Ana Bagües
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, Madrid, Spain
| |
Collapse
|
12
|
Huang G, Khan R, Zheng Y, Lee PC, Li Q, Khan I. Exploring the role of gut microbiota in advancing personalized medicine. Front Microbiol 2023; 14:1274925. [PMID: 38098666 PMCID: PMC10720646 DOI: 10.3389/fmicb.2023.1274925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Ongoing extensive research in the field of gut microbiota (GM) has highlighted the crucial role of gut-dwelling microbes in human health. These microbes possess 100 times more genes than the human genome and offer significant biochemical advantages to the host in nutrient and drug absorption, metabolism, and excretion. It is increasingly clear that GM modulates the efficacy and toxicity of drugs, especially those taken orally. In addition, intra-individual variability of GM has been shown to contribute to drug response biases for certain therapeutics. For instance, the efficacy of cyclophosphamide depends on the presence of Enterococcus hirae and Barnesiella intestinihominis in the host intestine. Conversely, the presence of inappropriate or unwanted gut bacteria can inactivate a drug. For example, dehydroxylase of Enterococcus faecalis and Eggerthella lenta A2 can metabolize L-dopa before it converts into the active form (dopamine) and crosses the blood-brain barrier to treat Parkinson's disease patients. Moreover, GM is emerging as a new player in personalized medicine, and various methods are being developed to treat diseases by remodeling patients' GM composition, such as prebiotic and probiotic interventions, microbiota transplants, and the introduction of synthetic GM. This review aims to highlight how the host's GM can improve drug efficacy and discuss how an unwanted bug can cause the inactivation of medicine.
Collapse
Affiliation(s)
- Gouxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Ping-Chin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Qingnan Li
- Clinical Research Center, Shantou Central Hospital, Shantou, China
- Department of Pharmacy, Shantou Central Hospital, Shantou, China
| | - Imran Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
13
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Yamaguchi T, Gaowa A, Park EJ, Tawara I, Shimaoka M. Recombinant soluble thrombomodulin attenuates cisplatin-induced intestinal injury by inhibiting intestinal epithelial cell-derived cytokine secretion. Mol Biol Rep 2023; 50:8459-8467. [PMID: 37632632 DOI: 10.1007/s11033-023-08762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Intestinal injury is one of the main side-effects of cisplatin chemotherapy, impairing the quality of life in patients with cancer. In this study, we investigated the protective effects of recombinant soluble thrombomodulin (rsTM), which is a potent anti-inflammatory agent, on cisplatin-induced intestinal injury. METHODS We first evaluated the effects of rsTM on intestinal injury caused by cisplatin in mice in vivo. Disease progression was monitored by analyzing loss of body weight and histological changes in intestinal tissue. We then investigated the effects of rsTM on mouse intestinal organoid formation and growth in vitro. Gene expression levels were analyzed by quantitative real-time polymerase chain reaction and Western blotting. RESULTS rsTM treatment significantly attenuated the loss of body weight, histological damage and gene expression levels of pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α and high-mobility group box-1 in a cisplatin-treated mouse model. Furthermore, rsTM alleviated the inflammatory response and apoptosis in a cisplatin-treated intestinal epithelial organoid model. CONCLUSION rsTM suppresses cisplatin-induced intestinal epithelial cell-derived cytokine production and alleviates intestinal mucositis.
Collapse
Affiliation(s)
- Takanori Yamaguchi
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
15
|
Xiao L, Dou W, Wang Y, Deng H, Xu H, Pan Y. Treatment with S-adenosylmethionine ameliorates irinotecan-induced intestinal barrier dysfunction and intestinal microbial disorder in mice. Biochem Pharmacol 2023; 216:115752. [PMID: 37634598 DOI: 10.1016/j.bcp.2023.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
This study aimed to investigate the protective effects of S-adenosylmethionine (SAM) on irinotecan-induced intestinal barrier dysfunction and microbial ecological dysregulation in both mice and human colon cell line Caco-2, which is widely used for studying intestinal epithelial barrier function. Specifically, this study utilized Caco-2 monolayers incubated with 7-ethyl-10-hydroxycamptothecin (SN-38) as well as an irinotecan-induced diarrhea model in mice. Our study found that SAM pretreatment significantly reduced body weight loss and diarrhea induced by irinotecan in mice. Furthermore, SAM inhibited the increase of intestinal permeability in irinotecan-treated mice and ameliorated the decrease of Zonula occludens-1(ZO-1), Occludin, and Claudin-1 expression. Additionally, irinotecan treatment increased the relative abundance of Proteobacteria compared to the control group, an effect that was reversed by SAM administration. In Caco-2 monolayers, SAM reduced the expression of reactive oxygen species (ROS) and ameliorated the decrease in transepithelial electrical resistance (TER) and increase in fluorescein isothiocyanate-dextran 4000 Da (FD-4) flux caused by SN-38. Moreover, SAM attenuated changes in the localization and distribution of ZO-1and Occludin in Caco-2 monolayers induced by SN-38 and protected barrier function by inhibiting activation of the p38 MAPK/p65 NF-κB/MLCK/MLC signaling pathway. These findings provide preliminary evidence for the potential use of SAM in treating diarrhea caused by irinotecan.
Collapse
Affiliation(s)
- Lin Xiao
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Weidong Dou
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Yajie Wang
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Huan Deng
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Hao Xu
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China.
| | - YiSheng Pan
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China.
| |
Collapse
|
16
|
LI C, YANG Y, FENG C, LI H, QU Y, WANG Y, WANG D, WANG Q, GUO J, SHI T, SUN X, WANG X, HOU Y, SUN Z, YANG T. Integrated 'omics analysis for the gut microbiota response to moxibustion in a rat model of chronic fatigue syndrome. J TRADIT CHIN MED 2023; 43:1176-1189. [PMID: 37946480 PMCID: PMC10623263 DOI: 10.19852/j.cnki.jtcm.20231018.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/08/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To observe the efficacy of moxibustion in the treatment of chronic fatigue syndrome (CFS) and explore the effects on gut microbiota and metabolic profiles. METHODS Forty-eight male Sprague-Dawley rats were randomly assigned to control group (Con), CFS model group (Mod, established by multiple chronic stress for 35 d), MoxA group (CFS model with moxibustion Shenque (CV8) and Guanyuan (CV4), 10 min/d, 28 d) and MoxB group (CFS model with moxibustion Zusanli (ST36), 10 min/d, 28 d). Open-field test (OFT) and Morris-water-maze test (MWMT) were determined for assessment the CFS model and the therapeutic effects of moxibustion.16S rRNA gene sequencing analysis based gut microbiota integrated untargeted liquid chromatograph-mass spectrometer (LC-MS) based fecal metabolomics were executed, as well as Spearman correlation analysis, was utilized to uncover the functional relevance between the potential metabolites and gut microbiota. RESULTS The results of our behavioral tests showed that moxibustion improved the performance of CFS rats in the OFT and the MWMT. Microbiome profiling analysis revealed that the gut microbiomes of CFS rats were less diverse with altered composition, including increases in pro-inflammatory species (such as Proteobacteria) and decreases in anti-inflammatory species (such as Bacteroides, Lactobacillus, Ruminococcus, and Prevotella). Moxibustion partially normalized these changes in the gut microbiota. Furthermore, CFS was associated with metabolic disorders, which were effectively ameliorated by moxibustion. This was demonstrated by the normalization of 33 microbiota-related metabolites, including mannose (P = 0.001), aspartic acid (P = 0.009), alanine (P = 0.007), serine (P = 0.000), threonine (P = 0.027), methionine (P = 0.023), 5-hydroxytryptamine (P = 0.008), alpha-linolenic acid (P = 0.003), eicosapentaenoic acid (P = 0.006), hypoxanthine (P = 0.000), vitamin B6 (P = 0.000), cholic acid (P = 0.013), and taurocholate (P = 0.002). Correlation analysis showed a significant association between the perturbed fecal microbiota and metabolite levels, with a notable negative relationship between LCA and Bacteroides. CONCLUSIONS In this study, we demonstrated that moxibustion has an antifatigue-like effect. The results from the 16S rRNA gene sequencing and metabolomics analysis suggest that the therapeutic effects of moxibustion on CFS are related to the regulation of gut microorganisms and their metabolites. The increase in Bacteroides and decrease in LCA may be key targets for the moxibustion treatment of CFS.
Collapse
Affiliation(s)
- Chaoran LI
- 1 Department of Acupuncture, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Yan YANG
- 2 Department of Chinese Medical Literature, College of Basic Medicine, Heilongjiang University of Chinese medicine, Harbin 150040, China
| | - Chuwen FENG
- 3 Department of Rehabilitation, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Heng LI
- 7 Shanghai Applied Protein Technology Co., Ltd., Shanghai 200233, China
| | - Yuanyuan QU
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Yulin WANG
- 6 Department of Acupuncture, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Delong WANG
- 6 Department of Acupuncture, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Qingyong WANG
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Jing GUO
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Tianyu SHI
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Xiaowei SUN
- 4 Department of Acupuncture, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Xue WANG
- 8 Department of Acupuncture, Chongqing Changshou District People's Hospital, Chongqing 401220, China
| | - Yunlong HOU
- 9 College of integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, and National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Hebei 050000, China
| | - Zhongren SUN
- 6 Department of Acupuncture, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Tiansong YANG
- 10 Department of Rehabilitation, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, and Traditional Chinese Medicine Informatics Key Laboratory of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
17
|
Wang L, Li L, Wang Z, Zhang P, Zhang J. Gut Microbiota Combined with Metabolomics Reveal the Mechanisms of Sika Deer Antler Protein on Cisplatin-Induced Hepatorenal Injury in Mice. Molecules 2023; 28:6463. [PMID: 37764239 PMCID: PMC10537820 DOI: 10.3390/molecules28186463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Cisplatin is a widely used antineoplastic drug, though its adverse effects, particularly its hepatorenal toxicity, limit its long-term application. Sika deer antler is a valuable traditional Chinese medicine (TCM) documented to possess the capacity for tonifying the kidney and regulating the liver, of which the sika deer antler protein is an important active ingredient. In this study, two protein fractions, SVPr1 and SVPr2, of sika deer antler were purified and administered to mice treated with cisplatin, and serum metabolome and fecal microbiota were measured using ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and 16S rRNA gene sequencing. SVPr1 and SVPr2 significantly ameliorated cisplatin-induced liver and kidney injury and reduced mitochondrial dysfunction, oxidative stress, inflammatory response, and apoptosis. In addition, SVPr1 and SVPr2 impacted the gut microbiota structure of mice, significantly increasing the relative abundances of Lactobacillus, which deserves to be scrutinized. Moreover, SVPr1 and SVPr2 antagonism of cisplatin-induced hepatorenal injury may be related to the regulation of lysine degradation, tryptophan metabolism, and riboflavin metabolism pathways, significantly altering the levels of L-saccharopine, L-lysine, L-kynurenine, 3-methylindole, xanthurenic acid, riboflavin, and D-ribulose-5-phosphate. A correlation between the differential metabolites and Lactobacillus was identified. These findings increased the knowledge of the gut microbiota-metabolites axis mediated by SVPr1 and SVPr2, and may be able to contribute to the development of new therapeutic strategies for the simultaneous prevention and treatment of liver and kidney injury from cisplatin treatment.
Collapse
Affiliation(s)
- Lulu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.W.); (L.L.); (Z.W.); (P.Z.)
- School of Medicine, Changchun Sci-Tech University, Changchun 130600, China
| | - Lei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.W.); (L.L.); (Z.W.); (P.Z.)
| | - Zhenyi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.W.); (L.L.); (Z.W.); (P.Z.)
| | - Pu Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.W.); (L.L.); (Z.W.); (P.Z.)
| | - Jing Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.W.); (L.L.); (Z.W.); (P.Z.)
| |
Collapse
|
18
|
Fernández Forné Á, García Anaya MJ, Segado Guillot SJ, Plaza Andrade I, de la Peña Fernández L, Lorca Ocón MJ, Lupiáñez Pérez Y, Queipo-Ortuño MI, Gómez-Millán J. Influence of the microbiome on radiotherapy-induced oral mucositis and its management: A comprehensive review. Oral Oncol 2023; 144:106488. [PMID: 37399707 DOI: 10.1016/j.oraloncology.2023.106488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Radiation-induced mucositis is the most common, debilitating and painful acute toxicity associated with active treatment in head and neck cancer area, severely affecting more than 65% of patients. Oral microbiota significantly changes during cancer therapy and appears to be involved on its pathophysiology. This review aims to present a comprehensive update of new etiopathogenic factors and treatments that may decrease the incidence of mucositis, mainly modifications of dietary interventions to modify microbiome. Despite advances in recent years, its management is mainly symptomatic opioid-based with variable results on different substances analyzed for its prevention. Immunonutrition seems to play a significant role, particularly the supplementation of compounds such as fatty acids, polyphenols or selected probiotics have shown to promote commensal bacteria diversity and reduced incidence of ulcerative mucositis. Modification of the microbiome is a promising preventive treatment for mucositis although its evidence is still scarce. Large studies are needed to demonstrate the efficacy of interventions on microbiome and its clinical impact on radiation-induced mucositis.
Collapse
Affiliation(s)
- África Fernández Forné
- Department of Radiation Oncology. Punta Europa University Hospital. Algeciras, Cádiz, Spain
| | - María Jesús García Anaya
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | | | - Isaac Plaza Andrade
- Intercenter Clinical Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals, Biomedical Research Institute of Malaga (IBIMA)-CIMES-UMA, University of Malaga, 29010 Málaga, Spain
| | | | - María Jesús Lorca Ocón
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - Yolanda Lupiáñez Pérez
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - María Isabel Queipo-Ortuño
- Intercenter Clinical Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals, Biomedical Research Institute of Malaga (IBIMA)-CIMES-UMA, University of Malaga, 29010 Málaga, Spain; Department of Surgical Specialties, Biochemical and Immunology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain.
| | - Jaime Gómez-Millán
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| |
Collapse
|
19
|
Ikeda Y, Matsuda S. Gut Protective Effect from D-Methionine or Butyric Acid against DSS and Carrageenan-Induced Ulcerative Colitis. Molecules 2023; 28:4392. [PMID: 37298868 PMCID: PMC10254188 DOI: 10.3390/molecules28114392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Microbiome dysbiosis resulting in altered metabolite profiles may be associated with certain diseases, including inflammatory bowel diseases (IBD), which are characterized by active intestinal inflammation. Several studies have indicated the beneficial anti-inflammatory effect of metabolites from gut microbiota, such as short-chain fatty acids (SCFAs) and/or D-amino acids in IBD therapy, through orally administered dietary supplements. In the present study, the potential gut protective effects of d-methionine (D-Met) and/or butyric acid (BA) have been investigated in an IBD mouse model. We have also built an IBD mouse model, which was cost-effectively induced with low molecular weight DSS and kappa-carrageenan. Our findings revealed that D-Met and/or BA supplementation resulted in the attenuation of the disease condition as well as the suppression of several inflammation-related gene expressions in the IBD mouse model. The data shown here may suggest a promising therapeutic potential for improving symptoms of gut inflammation with an impact on IBD therapy. However, molecular metabolisms need to be further explored.
Collapse
Affiliation(s)
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan;
| |
Collapse
|
20
|
Luisa Valerio de Mello Braga L, Simão G, Silva Schiebel C, Caroline Dos Santos Maia A, Mulinari Turin de Oliveira N, Barbosa da Luz B, Rita Corso C, Soares Fernandes E, Maria Ferreira D. Rodent models for anticancer toxicity studies: contributions to drug development and future perspectives. Drug Discov Today 2023:103626. [PMID: 37224998 DOI: 10.1016/j.drudis.2023.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Antineoplastic treatment induces a type of gastrointestinal toxicity known as mucositis. Findings in animal models are usually easily reproducible, and standardized treatment regimens are often used, thus supporting translational science. Essential characteristics of mucositis, including intestinal permeability, inflammation, immune and oxidative responses, and tissue repair mechanisms, can be easily investigated in these models. Given the effects of mucositis on the quality of life of patients with cancer, and the importance of experimental models in the development of more effective new therapeutic alternatives, this review discusses progress and current challenges in using experimental models of mucositis in translational pharmacology research. Teaser Experimental models for studying gastrointestinal mucositis have provided a wealth of information improving the understanding of antineoplastic toxicity.
Collapse
Affiliation(s)
- Lara Luisa Valerio de Mello Braga
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Gisele Simão
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Carolina Silva Schiebel
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Andressa Caroline Dos Santos Maia
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Bruna Barbosa da Luz
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Claudia Rita Corso
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Daniele Maria Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
21
|
Katturajan R, Evan Prince S. L-carnitine and Zinc supplementation impedes intestinal damage in methotrexate-treated adjuvant-induced arthritis rats: Reinstating enterocyte proliferation and trace elements. J Trace Elem Med Biol 2023; 78:127188. [PMID: 37163819 DOI: 10.1016/j.jtemb.2023.127188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/02/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Methotrexate (MTX), a folic acid analogue, is used as a first-line treatment for rheumatoid arthritis (RA) since it has more therapeutic mechanisms than any other drug. Being an undeniable drug for the treatment of arthritis, even low-dose MTX provokes intestinal toxicity as a primary adverse effect and does not revive an anti-inflammatory element. Thus, our study aims to elucidate the anti-arthritic and prophylactic activity of supplements L-carnitine (L) and zinc (Z) against MTX-mediated intestinal damage in arthritis rats. METHODS The rats were assessed for arthritic parameters such as body weight, paw volume, x-ray scan, and serum trace elements level. To analyze the toxic effects of MTX in the rats, intestine pH, mucosal weight, digestive enzymes, myeloperoxidase, histopathological, and immunohistochemical analysis were performed. RESULTS Our study demonstrated that the arthritic parameters have shown that MTX has an ameliorative effect on arthritic rats. Besides, our findings showed that low-dose MTX (2.5 mg/kg b.w.) given once a week for two weeks during arthritis treatment had toxic effects in the rat's intestine, as evidenced by changes in intestine pH and mucosal weight, decreased digestive enzymes, increased MPO, and degenerative changes in histopathological analysis. Concurrent therapy of LZ with MTX, on the other hand, restored the modifications in these parameters. CONCLUSION MTX in combination with LZ effectively manages arthritis than monotherapy and significantly prevents MTX-induced intestinal damage in arthritis rats. Thus, LZ could be used as an improved therapeutic and safety for MTX-instigated intestinal damage during arthritis treatments. Therefore, our combination of L-carnitine and zinc with MTX would be promising prophylactic activity for arthritis patients.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore, Tamil Nadu, India.
| |
Collapse
|
22
|
Álvarez-Mercado AI, del Valle Cano A, Fernández MF, Fontana L. Gut Microbiota and Breast Cancer: The Dual Role of Microbes. Cancers (Basel) 2023; 15:443. [PMID: 36672391 PMCID: PMC9856390 DOI: 10.3390/cancers15020443] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and also one of the leading causes of mortality among women. The genetic and environmental factors known to date do not fully explain the risk of developing this disease. In recent years, numerous studies have highlighted the dual role of the gut microbiota in the preservation of host health and in the development of different pathologies, cancer among them. Our gut microbiota is capable of producing metabolites that protect host homeostasis but can also produce molecules with deleterious effects, which, in turn, may trigger inflammation and carcinogenesis, and even affect immunotherapy. The purpose of this review is to describe the mechanisms by which the gut microbiota may cause cancer in general, and breast cancer in particular, and to compile clinical trials that address alterations or changes in the microbiota of women with breast cancer.
Collapse
Affiliation(s)
- Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| | - Ana del Valle Cano
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Mariana F. Fernández
- Department of Radiology, School of Medicine, and Biomedical Research Center, University of Granada, 18071 Granada, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Luis Fontana
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| |
Collapse
|
23
|
Chen L, Yuan F, Chen S, Li X, Kong L, Zhang W. Potential Role of Host Microbiome in Areca Nut-Associated Carcinogenesis and Addiction. Molecules 2022; 27:8171. [PMID: 36500264 PMCID: PMC9739811 DOI: 10.3390/molecules27238171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Areca nut (AN) is widely consumed all over the world, bringing great harm to human health and economy. Individuals with AN chewing are at high risk of cardiovascular disease and impaired immune system and metabolic system. Despite a growing number of studies having reported on the adverse effects brought by AN chewing, the exact mechanism of it is limited and the need for additional exploration remains. In recent years, the interaction between microorganisms, especially intestinal microorganism and host, has been extensively studied. AN chewing might disrupt the oral and intestinal microbiota communities through direct connect with the microbes it contains, altering PH, oxygen of oral and intestinal microenvironment, and disturbing the immune homeostasis. These mechanisms provide insights into the interplay between areca nut and host microbiota. Emerging studies have proposed that bidirectional interaction between polyphenols and intestinal microbes might play a potential role in the divergence of polyphenol, extracted from AN, among individuals with or without AN-induced cancer development and progression. Although some AN chewers have been aware of the harmful effects brought by AN, they cannot abolish this habit because of the addiction of AN. Increasing studies have tried to revealed that gut microbiota might influence the onset/development of addictive behaviors. Altogether, this review summarizes the possible reasons for the disturbance of host microbiota caused by areca nut chewing and clarifies the complex interaction between human microbiome and major constituents and the addiction and carcinogenicity of AN, tempting to provide novel insights into the development and utilization of it, and to control the adverse consequences caused by AN chewing.
Collapse
Affiliation(s)
- Lihui Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
| | - Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Sifang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Xiong Li
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510060, China
| | - Lingyu Kong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
| |
Collapse
|
24
|
Chen W, Zhao Y, Dai Y, Nie K. Gastrointestinal inflammation plays a critical role in chemotherapy-induced nausea and vomiting. Eur J Pharmacol 2022; 936:175379. [DOI: 10.1016/j.ejphar.2022.175379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
25
|
Microbiome-metabolome analysis reveals cervical lesion alterations. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1552-1560. [PMID: 36269135 PMCID: PMC9828295 DOI: 10.3724/abbs.2022149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cervical cancer (CC) continues to be one of the most common cancers among females worldwide. It takes a few years or even decades for CC to arise in a minority of women with cervical precancers. An increasing corpus of studies today indicates that local microecology and carcinogenesis are intimately related. To investigate the changes in cericovaginal microecology with the development of cervical cancer, we performed 16S rDNA sequencing and metabolomic analysis in cericovaginal fluid from 10 LSIL patients, 10 HSIL patients, 10 CC patients and 10 healthy controls to reveal the differential flora and metabolites during cervical carcinogenesis. Carcinogenesis is associated with alterations in microbiome diversity, individual taxa, and functions with notable changes in Lactobacillus, Prevotella and Aquabacterium, as well as in cervicovaginal metabolites that correlate with cervicovaginal microbial patterns. Increased bacterial diversity and a decline in the relative abundance of Lactobacillus, the dominant species in the cericovaginal flora, are observed when cervical lesions advance. According to KEGG pathway enrichment analysis, lipids and organic acids change as cervical cancer progresses, and the phenylalanine, tyrosine, and tryptophan biosynthesis pathway is essential for the development of cervical cancer. Our results reveal that microbic and metabolomic profiling is capable of distinguishing CC from precancer and highlights potential biomarkers for the early detection of cervical dysplasia. These differential microorganisms and metabolites are expected to become a potential tool to assist in the diagnosis of cervical cancer.
Collapse
|
26
|
Yin B, Wang X, Yuan F, Li Y, Lu P. Research progress on the effect of gut and tumor microbiota on antitumor efficacy and adverse effects of chemotherapy drugs. Front Microbiol 2022; 13:899111. [PMID: 36212852 PMCID: PMC9538901 DOI: 10.3389/fmicb.2022.899111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
Chemotherapy is one of the most effective methods of systemic cancer treatment. Chemotherapy drugs are delivered through the blood circulation system, and they can act at all stages of the cell cycle, and can target DNA, topoisomerase, or tubulin to prevent the growth and proliferation of cancer cells. However, due to the lack of specific targets for chemotherapeutic agents, there are still unavoidable complications of cytotoxic effects. The effect of the microbiome on human health is clear. There is growing evidence of the potential relationship between the microbiome and the efficacy of cancer therapy. Gut microbiota can regulate the metabolism of drugs in several ways. The presence of bacteria in the tumor environment can also affect the response to cancer therapy by altering the chemical structure of chemotherapeutic agents and affecting their activity and local concentration. However, the underlying mechanisms by which the gut and tumor microbiota affect cancer therapeutic response are unclear. This review provides an overview of the effects of gut and tumor microbiota on the efficacy and adverse effects of chemotherapy in cancer patients, thus facilitating personalized treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Beibei Yin
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Xuan Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Fang Yuan
- Department of Digestive Endoscopy, The Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Yan Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
- Yan Li,
| | - Ping Lu
- Department of Cardiovascular Surgery, Shandong Engineering Research Center for Health Transplant and Material, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Ping Lu,
| |
Collapse
|
27
|
Interaction between gut microbiota and tumour chemotherapy. Clin Transl Oncol 2022; 24:2330-2341. [DOI: 10.1007/s12094-022-02919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
|
28
|
Polysaccharide from Salviae miltiorrhizae Radix et Rhizoma Attenuates the Progress of Obesity-Induced Non-Alcoholic Fatty Liver Disease through Modulating Intestinal Microbiota-Related Gut–Liver Axis. Int J Mol Sci 2022; 23:ijms231810620. [PMID: 36142520 PMCID: PMC9505563 DOI: 10.3390/ijms231810620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide, thus treatments for it have attracted lots of interest. In this study, the Salviae miltiorrhizae Radix et Rhizoma (SMRR) polysaccharide was isolated by hot water extraction and ethanol precipitation, and then purified by DEAE anion exchange chromatography and gel filtration. With a high-fat-diet-induced obesity/NAFLD mouse model, we found that consumption of the SMRR polysaccharide could remarkably reverse obesity and its related progress of NAFLD, including attenuated hepatocellular steatosis, hepatic fibrosis and inflammation. In addition, we also reveal the potential mechanism behind these is that the SMRR polysaccharide could regulate the gut–liver axis by modulating the homeostasis of gut microbiota and thereby improving intestinal function.
Collapse
|
29
|
Shen Q, Wei XM, Hu JN, Li MH, Li K, Qi SM, Liu XX, Wang Z, Li W, Wang YP. Saponins From Platycodon grandiflorum Reduces Cisplatin-Induced Intestinal Toxicity in Mice through Endoplasmic Reticulum Stress-Activated Apoptosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1927-1944. [PMID: 36056466 DOI: 10.1142/s0192415x22500823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Saponins from the roots of Platycodon grandiflorum, an edible medicinal plant, have shown a wide range of beneficial effects on various biological processes. In this study, an animal model was established by a single intraperitoneal injection of cisplatin (20[Formula: see text]mg/kg) for evaluating the protective effects of saponins from the roots of P. grandiflorum (PGS, 15[Formula: see text]mg/kg and 30[Formula: see text]mg/kg) in mice. The results indicated that PGS treatment for 10 days restored the destroyed intestinal mucosal oxidative system, and the loosened junctions of small intestinal villi was significantly improved. In addition, a significant mitigation of apoptotic effects deteriorated by cisplatin exposure in small intestinal villi was observed by immunohischemical staining. Also, western blot showed that PGS could effectively prevent endoplasmic reticulum (ER) stress-induced apoptosis caused by cisplatin in mice by restoring the activity of PERK (an ER kinase)-eIF2[Formula: see text]-ATF4 signal transduction pathway. Furthermore, molecular docking results of main saponins in PGS suggested a better binding ability with target proteins. In summary, the present work revealed the underlying protective mechanisms of PGS on intestinal injury induced by cisplatin in mice.
Collapse
Affiliation(s)
- Qiong Shen
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
- National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Xiao-Meng Wei
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Ming-Han Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Ke Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Si-Min Qi
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Xiang-Xiang Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
- Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500 P. R. China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
- National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
- National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| |
Collapse
|
30
|
Ikeda Y, Taniguchi K, Sawamura H, Tsuji A, Matsuda S. Promising role of D-amino acids in irritable bowel syndrome. World J Gastroenterol 2022; 28:4471-4474. [PMID: 36159020 PMCID: PMC9453761 DOI: 10.3748/wjg.v28.i31.4471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/14/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is an important health care concern. Alterations in the microbiota of the gut-brain axis may be linked to the pathophysiology of IBS. Some dietary intake could contribute to produce various metabolites including D-amino acids by the fermentation by the gut microbiota. D-amino acids are the enantiomeric counterparts of L-amino acids, in general, which could play key roles in cellular physiological processes against various oxidative stresses. Therefore, the presence of D-amino acids has been shown to be linked to the protection of several organs in the body. In particular, the gut microbiota could play significant roles in the stability of emotion via the action of D-amino acids. Here, we would like to shed light on the roles of D-amino acids, which could be used for the treatment of IBS.
Collapse
Affiliation(s)
- Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Haruka Sawamura
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
31
|
Li S, Hoefnagel SJM, Read M, Meijer S, van Berge Henegouwen MI, Gisbertz SS, Bonora E, Liu DSH, Phillips WA, Calpe S, Correia ACP, Sancho-Serra MDC, Mattioli S, Krishnadath KK. Selective targeting BMP2 and 4 in SMAD4 negative esophageal adenocarcinoma inhibits tumor growth and aggressiveness in preclinical models. Cell Oncol (Dordr) 2022; 45:639-658. [PMID: 35902550 PMCID: PMC9333053 DOI: 10.1007/s13402-022-00689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Abnormalities within the Sonic Hedgehog (SHH), Bone Morphogenetic Protein (BMP) and SMAD4 signalling pathways have been associated with the malignant behavior of esophageal adenocarcinoma (EAC). We recently developed two specific llama-derived antibodies (VHHs), C4C4 and C8C8, which target BMP4 and BMP2/4, respectively. Here we aimed to demonstrate the feasibility of the VHHs for the treatment of EAC and to elucidate its underlying mechanism. METHODS Gene Set Enrichment Analysis (GSEA) was performed on a TCGA dataset, while expression of SHH, BMP2/4 and SMAD4 was validated in a cohort of EAC patients. The effects of the VHHs were tested on the recently established SMAD4(-) ISO76A primary EAC cell line and its counterpart SMAD4(+) ISO76A. In a patient-derived xenograft (PDX) model, the VHHs were evaluated for their ability to selectively target tumor cells and for their effects on tumor growth and survival. RESULTS High expression of BMP2/4 was detected in all SMAD4 negative EACs. SHH upregulated BMP2/4 expression and induced p38 MAPK signaling in the SMAD4(-) ISO76A cells. Inhibition of BMP2/4 by VHHs decreased the aggressive and chemo-resistant phenotype of the SMAD4(-) ISO76A but not of the SMAD4(+) ISO76A cells. In the PDX model, in vivo imaging indicated that VHHs effectively targeted tumor cells. Both VHHs significantly inhibited tumor growth and acted synergistically with cisplatin. Furthermore, we found that C8C8 significantly improved survival of the mice. CONCLUSIONS Our data indicate that increased BMP2/4 expression triggers aggressive non-canonical BMP signaling in SMAD4 negative EAC. Inhibiting BMP2/4 decreases malignant behavior and improves survival. Therefore, VHHs directed against BMP2/4 hold promise for the treatment of SMAD4 negative EAC.
Collapse
Affiliation(s)
- Shulin Li
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sanne J M Hoefnagel
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Matthew Read
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sybren Meijer
- Department of Pathology, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark I van Berge Henegouwen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Suzanne S Gisbertz
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - David S H Liu
- Upper Gatrointestinal Unit, Department of Surgery, Austin Health, Heidelberg, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Silvia Calpe
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ana C P Correia
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria D C Sancho-Serra
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sandro Mattioli
- Department of Medical and Surgical Sciences, University of Bologna, U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Division of Thoracic Surgery, Maria Cecilia Hospital, GVM Care & Research Group, Cotignola, 48022, Ravenna, Italy
| | - Kausilia K Krishnadath
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp, Belgium.
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
32
|
Zhang X, Liu W, Zhang S, Wang J, Yang X, Wang R, Yan T, Wu B, Du Y, Jia Y. Wei-Tong-Xin ameliorates functional dyspepsia via inactivating TLR4/MyD88 by regulating gut microbial structure and metabolites. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154180. [PMID: 35613516 DOI: 10.1016/j.phymed.2022.154180] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Wei-Tong-Xin (WTX) is a traditional Chinese medicine (TCM) that has been screened and improved in accordance with the famous ancient Chinese formula "Wan Ying Yuan". It has been shown to be clinically effective in treating gastric dysmotility, but its underlying molecular mechanism remains unclear. PURPOSE This study primarily dealt with the effects and mechanisms of WTX on functional dyspepsia (FD) induced by chemotherapeutic drug cisplatin (CIS). METHODS Firstly, the UPLC fingerprint and multi-component determination of WTX were established. In vivo, gastrointestinal motility of mice was detected by charcoal propulsion test. Besides, H&E, western blot and qRT-PCR were performed to evaluate the occurrence of gastric antral inflammation. ROS-DHE staining was used to detect ROS levels. Further, the gut microbiota were subjected to sequencing by 16S rRNA, and the levels of bacterial metabolites short-chain fatty acids (SCFAs) and lipopolysaccharide (LPS) were detected by GC-MS and Limulus kits, respectively. The levels of GLP-1 in gastric antrum were assessed by ELISA kits. Finally, siRNA-FFAR2 experiment was performed in Raw 264.7 cells. RESULTS 23 common peaks were obtained from the UPLC fingerprint, and the content of 10 target components was determined. WTX increased the relative abundance of Firmicutes and decreased the number of Verrucomicrobia, accompanied by changes in the levels of SCFAs and LPS. By mediating the expression changes of free fatty acid receptor 2 (FFAR2) and toll-like receptor 4 (TLR4), WTX inhibited the phosphorylation of nuclear factor-κB (NF-κB), JNK and P38, decreased the levels of IL-1β, inducible nitric oxide synthase (iNOS) and ROS, increased the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), IL-4 and arginase-1 (Arg-1). Decreased expressions of glucagon-like peptide 1 (GLP-1) induced by WTX promoted gastric motility in FD mice. In vitro, siRNA-FFAR2 of Raw 264.7 cells eliminated the effects of WTX on TLR4 signaling pathway. CONCLUSIONS In this study, the chemical profile of WTX was first reported. Based on remodeling the gut microbiota structure and adjusting the levels of metabolites (SCFAs and LPS), WTX inactivated the TLR4/MyD88 signaling pathway to inhibit the occurrence of gastric antral inflammation, which reversed the inhibitory effect of GLP-1 on gastric motility, and improved CIS-induced FD symptoms.
Collapse
Affiliation(s)
- Xiaoying Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Wenjuan Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Shuanglin Zhang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Jinyu Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Xihan Yang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ruixuan Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bo Wu
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Yiyang Du
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
33
|
Brain Protection by Methylene Blue and Its Derivative, Azur B, via Activation of the Nrf2/ARE Pathway in Cisplatin-Induced Cognitive Impairment. Pharmaceuticals (Basel) 2022; 15:ph15070815. [PMID: 35890114 PMCID: PMC9320109 DOI: 10.3390/ph15070815] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is a cytotoxic chemotherapeutic drug that leads to DNA damage and is used in the treatment of various types of tumors. However, cisplatin has several serious adverse effects, such as deterioration in cognitive ability. The aim of our work was to study neuroprotectors capable of preventing cisplatin-induced neurotoxicity. Methylene blue (MB) and AzurB (AzB) are able to neutralize the neurotoxicity caused by cisplatin by protecting nerve cells as a result of the activation of the Ntf2 signaling pathway. We have shown that cisplatin impairs learning in the Morris water maze. This is due to an increase in the amount of mtDNA damage, a decrease in the expression of most antioxidant genes, the main determinant of the induction of which is the Nrf2/ARE signaling pathway, and genes involved in mitophagy regulation in the cortex. The expression of genes involved in long-term potentiation was suppressed in the hippocampus of cisplatin-injected mice. MB in most cases prevented cisplatin-induced impairment of learning and decrease of gene expression in the cortex. AzB prevented the cisplatin-induced decrease of genes in the hippocampus. Also, cisplatin induced disbalance in the gut microbiome, decreased levels of Actinotalea and Prevotella, and increased levels of Streptococcus and Veillonella. MB and AzB also prevented cisplatin-induced changes in the bacterial composition of the gut microbiome.
Collapse
|
34
|
Rodrigues LA, Panisson JC, Kpogo LA, González-Vega JC, Htoo JK, Van Kessel AG, Columbus DA. Functional amino acid supplementation postweaning mitigates the response of normal birth weight more than for low birth weight pigs to a subsequent Salmonella challenge. Animal 2022; 16:100566. [PMID: 35714386 DOI: 10.1016/j.animal.2022.100566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022] Open
Abstract
Previous work has shown that dietary supplementation with key functional amino acids (FAA) improves growth performance and immune status of disease-challenged normal birth weight (NBW) pigs. It is not known whether FAA supplementation attenuates the effects of a subsequent disease challenge or whether this response is similar in low birth weight (LBW) pigs. The objective was to determine the effects of birth weight and FAA supplementation during the postweaning period in Salmonella-challenged pigs. Thirty-two LBW (1.08 ± 0.11 kg) and NBW (1.58 ± 0.11 kg) pigs were assigned to a nursery feeding program at weaning (25 d) for 31 days in a 2 × 2 factorial arrangement. Factors were birth weight category (LBW vs. NBW) and basal (FAA-) or supplemented FAA profile (FAA+; Thr, Met, and Trp at 120% of requirements). At d 31, pigs were placed onto a common grower diet and, after a 7-d adaptation period, were inoculated with Salmonella Typhimurium (ST; 2.2 × 109 colony-forming units/mL) and monitored for 7-d postinoculation. Growth performance, rectal temperature, fecal score, indicators of gut health, ST shedding score in feces, intestinal ST colonization and translocation, and blood parameters of acute-phase response and antioxidant balance were measured pre- and postinoculation. Inoculation with ST increased temperature and fecal score, and the overall rectal temperature was higher in LBW compared to NBW pigs (P < 0.05). Postinoculation (d 7), reduced:oxidized glutathione was increased in NBW compared to LBW pigs (P < 0.05). Salmonella shedding and translocation to spleen were lower in NBW-FAA+ compared to NBW-FAA- pigs (P < 0.05). Postinoculation average daily gain was higher in NBW-FAA+ (P < 0.05) compared to the other groups. Postinoculation haptoglobin, superoxide dismutase, and colonic myeloperoxidase were increased in LBW-FAA- pigs (P < 0.05). Ileal alkaline phosphatase was decreased in LBW compared to NBW (P < 0.05). Overall, FAA supplementation represents a potential strategy to mitigate the effect of enteric disease challenge in NBW, but not LBW pigs.
Collapse
Affiliation(s)
- L A Rodrigues
- Prairie Swine Centre, Inc., Box 21057, Saskatoon S7H 5N9, SK, Canada; Department of Animal and Poultry Science, College of Agriculture and Bioresources - University of Saskatchewan, Saskatoon S7N 5A8, SK, Canada
| | - J C Panisson
- Prairie Swine Centre, Inc., Box 21057, Saskatoon S7H 5N9, SK, Canada; Department of Animal and Poultry Science, College of Agriculture and Bioresources - University of Saskatchewan, Saskatoon S7N 5A8, SK, Canada
| | - L A Kpogo
- Department of Animal and Poultry Science, College of Agriculture and Bioresources - University of Saskatchewan, Saskatoon S7N 5A8, SK, Canada; Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine - University of Saskatchewan, Saskatoon S7N 5B4, SK, Canada
| | | | - J K Htoo
- Evonik Operations GmbH, Hanau-Wolfgang 63457, Germany
| | - A G Van Kessel
- Department of Animal and Poultry Science, College of Agriculture and Bioresources - University of Saskatchewan, Saskatoon S7N 5A8, SK, Canada
| | - D A Columbus
- Prairie Swine Centre, Inc., Box 21057, Saskatoon S7H 5N9, SK, Canada; Department of Animal and Poultry Science, College of Agriculture and Bioresources - University of Saskatchewan, Saskatoon S7N 5A8, SK, Canada.
| |
Collapse
|
35
|
Wang L, Liu Q, Chen Y, Zheng X, Wang C, Qi Y, Dong Y, Xiao Y, Chen C, Chen T, Huang Q, Zhai Z, Long C, Yang H, Li J, Wang L, Zhang G, Liao P, Liu YX, Huang P, Huang J, Wang Q, Chu H, Yin J, Yin Y. Antioxidant potential of Pediococcus pentosaceus strains from the sow milk bacterial collection in weaned piglets. MICROBIOME 2022; 10:83. [PMID: 35650642 PMCID: PMC9158380 DOI: 10.1186/s40168-022-01278-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/24/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND In modern animal husbandry, breeders pay increasing attention to improving sow nutrition during pregnancy and lactation to favor the health of neonates. Sow milk is a main food source for piglets during their first three weeks of life, which is not only a rich repository of essential nutrients and a broad range of bioactive compounds, but also an indispensable source of commensal bacteria. Maternal milk microorganisms are important sources of commensal bacteria for the neonatal gut. Bacteria from maternal milk may confer a health benefit on the host. METHODS Sow milk bacteria were isolated using culturomics followed by identification using 16S rRNA gene sequencing. To screen isolates for potential probiotic activity, the functional evaluation was conducted to assess their antagonistic activity against pathogens in vitro and evaluate their resistance against oxidative stress in damaged Drosophila induced by paraquat. In a piglet feeding trial, a total of 54 newborn suckling piglets were chosen from nine sows and randomly assigned to three treatments with different concentrations of a candidate strain. Multiple approaches were carried out to verify its antioxidant function including western blotting, enzyme activity analysis, metabolomics and 16S rRNA gene amplicon sequencing. RESULTS The 1240 isolates were screened out from the sow milk microbiota and grouped into 271 bacterial taxa based on a nonredundant set of 16S rRNA gene sequencing. Among 80 Pediococcus isolates, a new Pediococcus pentosaceus strain (SMM914) showed the best performance in inhibition ability against swine pathogens and in a Drosophila model challenged by paraquat. Pretreatment of piglets with SMM914 induced the Nrf2-Keap1 antioxidant signaling pathway and greatly affected the pathways of amino acid metabolism and lipid metabolism in plasma. In the colon, the relative abundance of Lactobacillus was significantly increased in the high dose SMM914 group compared with the control group. CONCLUSION P. pentosaceus SMM914 is a promising probiotic conferring antioxidant capacity by activating the Nrf2-Keap1 antioxidant signaling pathway in piglets. Our study provided useful resources for better understanding the relationships between the maternal microbiota and offspring. Video Abstract.
Collapse
Affiliation(s)
- Leli Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qihang Liu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuwei Chen
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xinlei Zheng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chuni Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yining Qi
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yachao Dong
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yue Xiao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cang Chen
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Taohong Chen
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiuyun Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cimin Long
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lei Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Gaihua Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yong-Xin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jialu Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huanhuan Chu
- Shandong Yihe Feed Co, Ltd, Yantai Hi-tech Industrial Development Zone, Yantai, Shandong, China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
| |
Collapse
|
36
|
The Intestinal Redox System and Its Significance in Chemotherapy-Induced Intestinal Mucositis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7255497. [PMID: 35585883 PMCID: PMC9110227 DOI: 10.1155/2022/7255497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a significant dose-limiting adverse reaction brought on by the cancer treatment. Multiple studies reported that reactive oxygen species (ROS) is rapidly produced during the initial stages of chemotherapy, when the drugs elicit direct damage to intestinal mucosal cells, which, in turn, results in necrosis, mitochondrial dysfunction, and ROS production. However, the mechanism behind the intestinal redox system-based induction of intestinal mucosal injury and necrosis of CIM is still undetermined. In this article, we summarized relevant information regarding the intestinal redox system, including the composition and regulation of redox enzymes, ROS generation, and its regulation in the intestine. We innovatively proposed the intestinal redox “Tai Chi” theory and revealed its significance in the pathogenesis of CIM. We also conducted an extensive review of the English language-based literatures involving oxidative stress (OS) and its involvement in the pathological mechanisms of CIM. From the date of inception till July 31, 2021, 51 related articles were selected. Based on our analysis of these articles, only five chemotherapeutic drugs, namely, MTX, 5-FU, cisplatin, CPT-11, and oxaliplatin were shown to trigger the ROS-based pathological mechanisms of CIM. We also discussed the redox system-mediated modulation of CIM pathogenesis via elaboration of the relationship between chemotherapeutic drugs and the redox system. It is our belief that this overview of the intestinal redox system and its role in CIM pathogenesis will greatly enhance research direction and improve CIM management in the future.
Collapse
|
37
|
Liu J, Ding L, Zhai X, Wang D, Xiao C, Hui X, Sun T, Yu M, Zhang Q, Li M, Xiao X. Maternal Dietary Betaine Prevents High-Fat Diet-Induced Metabolic Disorders and Gut Microbiota Alterations in Mouse Dams and Offspring From Young to Adult. Front Microbiol 2022; 13:809642. [PMID: 35479641 PMCID: PMC9037091 DOI: 10.3389/fmicb.2022.809642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022] Open
Abstract
Early life is a critical window for preventing the intergenerational transmission of metabolic diseases. Betaine has been proven to play a role in improving glucose and lipid metabolism disorders in animal models. However, whether maternal betaine supplementation plays a role in regulating gut microbiota in both dams and offspring remains unclear. In this study, C57BL/6 female mice were fed with control diet (Ctr), high-fat diet (HF), and high-fat with betaine supplementation (0.3% betaine in the diet, HFB) from 3 weeks prior to mating and lasted throughout pregnancy and lactation. After weaning, the offspring got free access to normal chow diet until 20 weeks of age. We found that maternal dietary betaine supplementation significantly improved glucose and insulin resistance, as well as reduced free fatty acid (FFA) concentration in dams and offspring from young to adult. When compared to the HF group, Intestinimonas and Acetatifactor were reduced by betaine supplementation in dams; Desulfovibrio was reduced in 4-week-old offspring of the HFB group; and Lachnoclostridium was enriched in 20-week-old offspring of the HFB group. Moreover, the persistent elevated genus Romboutsia in both dams and offspring in the HFB group was reported for the first time. Overall, maternal betaine could dramatically alleviate the detrimental effects of maternal overnutrition on metabolism in both dams and offspring. The persistent alterations in gut microbiota might play critical roles in uncovering the intergenerational metabolic benefits of maternal betaine, which highlights evidence for combating generational metabolic diseases.
Collapse
Affiliation(s)
- Jieying Liu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lu Ding
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Zhai
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongmei Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Cheng Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangyi Hui
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianshu Sun
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Deng L, Zhou X, Lan Z, Tang K, Zhu X, Mo X, Zhao Z, Zhao Z, Wu M. Simotang Alleviates the Gastrointestinal Side Effects of Chemotherapy by Altering Gut Microbiota. J Microbiol Biotechnol 2022; 32:405-418. [PMID: 35283422 PMCID: PMC9628794 DOI: 10.4014/jmb.2110.10018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Simotang oral liquid (SMT) is a traditional Chinese medicine (TCM) consisting of four natural plants and is used to alleviate gastrointestinal side effects after chemotherapy and functional dyspepsia (FD). However, the mechanism by which SMT helps cure these gastrointestinal diseases is still unknown. Here, we discovered that SMT could alleviate gastrointestinal side effects after chemotherapy by altering gut microbiota. C57BL/6J mice were treated with cisplatin (DDP) and SMT, and biological samples were collected. Pathological changes in the small intestine were observed, and the intestinal injury score was assessed. The expression levels of the inflammatory factors IL-1β and IL-6 and the adhesive factors Occludin and ZO-1 in mouse blood or small intestine tissue were also detected. Moreover, the gut microbiota was analyzed by high-throughput sequencing of 16S rRNA amplicons. SMT was found to effectively reduce gastrointestinal mucositis after DDP injection, which lowered inflammation and tightened the intestinal epithelial cells. Gut microbiota analysis showed that the abundance of the anti-inflammatory microbiota was downregulated and that the inflammatory microbiota was upregulated in DDP-treated mice. SMT upregulated anti-inflammatory and anticancer microbiota abundance, while the inflammatory microbiota was downregulated. An antibiotic cocktail (ABX) was also used to delete mice gut microbiota to test the importance of gut microbiota, and we found that SMT could not alleviate gastrointestinal mucositis after DDP injection, showing that gut microbiota might be an important mediator of SMT treatment. Our study provides evidence that SMT might moderate gastrointestinal mucositis after chemotherapy by altering gut microbiota.
Collapse
Affiliation(s)
- Lijing Deng
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Xingyi Zhou
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Zhifang Lan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Kairui Tang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Xiaoxu Zhu
- Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Xiaowei Mo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Zongyao Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zhiqiang Zhao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China,Corresponding authors Zhiqiang Zhao Phone: +86-20-8775-5766 E-mail:
| | - Mansi Wu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China,
Mansi Wu Phone: +86-20-8522-1543 E-mail:
| |
Collapse
|
39
|
Liu Y, Wang D, Zhao L, Zhang J, Huang S, Ma Q. Effect of Methionine Deficiency on the Growth Performance, Serum Amino Acids Concentrations, Gut Microbiota and Subsequent Laying Performance of Layer Chicks. Front Vet Sci 2022; 9:878107. [PMID: 35548049 PMCID: PMC9083200 DOI: 10.3389/fvets.2022.878107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022] Open
Abstract
This study was conducted to investigate the effect of methionine (Met) deficiency in the rearing period on the growth performance, amino acids metabolism, intestinal development and gut microbiome of egg-laying chicks and the continuous effects on the performance, egg quality, and serum amino acids metabolism of the subsequent development process. Three hundred sixty one-day-old chicks were randomly divided into two groups and fed on a basal diet (NC group, Met 0.46%) and Met deficiency diet (Met- group, Met 0.27%). Each group included six replicates with 30 chicks per replicate. The trial lasted 6 weeks (0–6 weeks), both groups were fed the same basal diet which met the needs of Met during the observation period (7–24 weeks). Results showed that Met deficiency significantly decreased (P < 0.05) body weight (BW), average daily weight gain (ADG), average daily feed intake (ADFI) and tibia length (TL) compared to the NC group during the trial period (0–6 weeks). Also, Met deficiency dramatically increased (P < 0.05) feed conversion ratio (FCR) during the trial and observation period (7–24 weeks). In addition, during the observation period, the BW and ADG were decreased (P < 0.05) in the Met- group. Moreover, Met- group decreased (P < 0.05) villi height and villi height/crypt depth ratio in jejunum at 6th weeks. In addition, the concentrations of serum main free amino acids (FAA) in the Met- group were significantly increased (P < 0.05) at 6th weeks, while were decreased at 16th weeks. Based on the α-diversity and PCoA analysis in β-diversity, there were no significant differences in the cecal microbial composition between NC and Met- groups. However, the LEfSe analysis revealed that differential genera were enriched in the NC or Met- groups. The Haugh unit, shell thickness and egg production in the Met- group were significantly lower (P < 0.05) than in the NC group. In conclusion, these results revealed that dietary supplementation of appropriate Met could substantially improve the growth performance, host amino acid metabolism and intestinal development and continuously improve the laying performance and thus boost the health of growing hens.
Collapse
|
40
|
Dong A, Lin CW, Echeveste CE, Huang YW, Oshima K, Yearsley M, Chen X, Yu J, Wang LS. Protocatechuic Acid, a Gut Bacterial Metabolite of Black Raspberries, Inhibits Adenoma Development and Alters Gut Microbiome Profiles in Apc Min/+ Mice. J Cancer Prev 2022; 27:50-57. [PMID: 35419306 PMCID: PMC8984655 DOI: 10.15430/jcp.2022.27.1.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/06/2022] Open
Abstract
Administration of black raspberries (BRBs) and their anthocyanin metabolites, including protocatechuic acid (PCA), has been demonstrated to exert chemopreventive effects against colorectal cancer through alteration of innate immune cell trafficking, modulation of metabolic and inflammatory pathways, etc. Previous research has shown that the gut microbiome is important in the effectiveness of chemoprevention of colorectal cancer. This study aimed to assess the potency of PCA versus BRB dietary administration for colorectal cancer prevention using an Apc Min/+ mouse model and determine how bacterial profiles change in response to PCA and BRBs. A control AIN-76A diet supplemented with 5% BRBs, 500 ppm PCA, or 1,000 ppm PCA was administered to Apc Min/+ mice. Changes in incidence, polyp number, and polyp size regarding adenomas of the small intestine and colon were assessed after completion of the diet regimen. There were significant decreases in adenoma development by dietary administration of PCA and BRBs in the small intestine and the 5% BRB-supplemented diet in the colon. Pro-inflammatory bacterial profiles were replaced with anti-inflammatory bacteria in all treatments, with the greatest effects in the 5% BRB and 500 ppm PCA-supplemented diets accompanied by decreased COX-2 and prostaglandin E2 levels in colonic mucosa. We further showed that 500 ppm PCA, but not 1,000 ppm PCA, increased IFN-γ and SMAD4 levels in primary cultured human natural killer cells. These results suggest that both BRBs and a lower dose PCA can benefit colorectal cancer patients by inhibiting the growth and proliferation of adenomas and promoting a more favorable gut microbiome condition.
Collapse
Affiliation(s)
- Athena Dong
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, WI, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, WI, USA
| | - Carla Elena Echeveste
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, WI, USA
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Xiao Chen
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, WI, USA
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, WI, USA
| |
Collapse
|
41
|
Cen K, Chen M, He M, Li Z, Song Y, Liu P, Jiang Q, Xu S, Jia Y, Shen P. Sporoderm-Broken Spores of Ganoderma lucidum Sensitizes Ovarian Cancer to Cisplatin by ROS/ERK Signaling and Attenuates Chemotherapy-Related Toxicity. Front Pharmacol 2022; 13:826716. [PMID: 35264959 PMCID: PMC8900012 DOI: 10.3389/fphar.2022.826716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/28/2022] [Indexed: 11/15/2022] Open
Abstract
Although platinum-based chemotherapeutics such as cisplatin are the cornerstone of treatment for ovarian cancer, their clinical application is profoundly limited due to chemoresistance and severe adverse effects. Sporoderm-broken spores of Ganoderma lucidum (SBSGL) have been reported to possess antitumor effects. However, the function and mechanism of SBSGL and its essential composition, ganoderic acid D (GAD), in the cisplatin therapy on ovarian cancer have yet to be investigated. Here, we investigated the combined effect of SBSGL and cisplatin in an ovarian tumor xenograft model. The results showed that combining SBSGL with cisplatin reduced tumor growth and ameliorated cisplatin-induced intestinal injury and myelosuppression. We also confirmed that GAD could enhance the therapeutic effect of cisplatin in SKOV3 and cisplatin-resistant SKOV3/DDP cells by increasing the intracellular reactive oxygen species (ROS). Mechanistically, we proved that ROS-mediated ERK signaling inhibition played an important role in the chemo-sensitization effect of GAD on cisplatin in ovarian cancer. Taken together, combining SBSGL with cisplatin provides a novel therapeutic strategy against ovarian cancer.
Collapse
Affiliation(s)
- Kaili Cen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengye He
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenhao Li
- Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd., Hangzhou, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pu Liu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Suzhen Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Abstract
Chemotherapy-induced gastrointestinal dysfunction is a common occurrence associated with many different classes of chemotherapeutic agents. Gastrointestinal toxicity includes mucositis, diarrhea, and constipation, and can often be a dose-limiting complication, induce cessation of treatment and could be life threatening. The gastrointestinal epithelium is rich in rapidly dividing cells and hence is a prime target for chemotherapeutic drugs. The incidence of gastrointestinal toxicity, including diarrhea and mucositis, is extremely high for a wide array of chemotherapeutic and radiation regimens. In fact, 60%-100% of patients on high-dose chemotherapy suffer from gastrointestinal side effects. Unfortunately, treatment options are limited, and therapy is often restricted to palliative care. Therefore, there is a great unmet therapeutic need for preventing and treating chemotherapy-induced gastrointestinal toxicities in the clinic. In this review, we discuss our current understanding of the mechanisms underlying chemotherapy-induced diarrhea and mucositis, and emerging mechanisms involving the enteric nervous system, smooth muscle cells and enteric immune cells. Recent evidence has also implicated gut dysbiosis in the pathogenesis of not only chemotherapy-induced mucositis and diarrhea, but also chemotherapy-induced peripheral neuropathy. Oxidative stress induced by chemotherapeutic agents results in post-translational modification of ion channels altering neuronal excitability. Thus, investigating how chemotherapy-induced changes in the gut- microbiome axis may lead to gut-related toxicities will be critical in the discovery of new drug targets for mitigating adverse gastrointestinal effects associated with chemotherapy treatment.
Collapse
Affiliation(s)
- Hamid I Akbarali
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.
| | - Karan H Muchhala
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Donald K Jessup
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Stanley Cheatham
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
43
|
Rodrigues LA, Wellington MO, González-Vega JC, Htoo JK, Van Kessel AG, Columbus DA. Ileal alkaline phosphatase is upregulated following functional amino acid supplementation in Salmonella Typhimurium-challenged pigs. J Anim Sci 2021; 100:6485855. [PMID: 34962518 PMCID: PMC8846338 DOI: 10.1093/jas/skab376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022] Open
Abstract
We recently showed that functional amino acid (FAA) supplementation improves growth performance and immune status of Salmonella Typhimurium (ST)-challenged pigs, which was further improved by a longer adaptation period. It is expected that the effects are associated with increased activity of intestinal alkaline phosphatase (IAP). The objective of this study was to evaluate the effects of FAA supplementation and adaptation period on the ileal, cecal, and colonic activity of IAP in weaned pigs challenged with ST. In experiment 1, a total of 32 mixed-sex weanling pigs were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement with low (LP) or high protein (HP) content and basal (FAA-) or FAA profile (FAA+; Thr, Met, and Trp at 120% of requirements) as factors. In experiment 2, a total of 32 mixed-sex weanling pigs were randomly assigned to one of four dietary treatments, being FAA- fed throughout the experimental period (FAA-) or an FAA profile fed only in the post-inoculation (FAA + 0), for 1 wk pre- and post-inoculation (FAA + 1), or throughout the experimental period (FAA + 2). In experiments 1 and 2, after a 7- and 14-d adaptation period, respectively, pigs were inoculated with saline solution containing ST (3.3 and 2.2 × 109 CFU/mL, respectively). Plasma alkaline phosphatase was measured on days 0 and 7 post-inoculation in experiment 1, and IAP (ileum, cecum, and colon) was measured in experiments 1 and 2. Correlations among ileal IAP and serum albumin and haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), and reduced:oxidized glutathione, ileal myeloperoxidase, ST shedding and ileal colonization, and post-inoculation average daily gain, feed intake (ADFI), and gain:feed were also analyzed. In experiment 1, plasma alkaline phosphatase was decreased with ST inoculation and the overall content was increased in LP-FAA+ compared with LP-FAA- (P < 0.05). Moreover, ileal IAP was increased in FAA+ compared with FAA- pigs in both studies (P < 0.05) regardless of adaptation time (P > 0.05). IAP was positively correlated with MDA and ADFI and negatively correlated with SOD and ST shedding in experiment 1 (P < 0.05). These results demonstrate a positive effect of FAA supplementation, but not adaptation period, on ileal alkaline phosphatase activity in Salmonella-challenged pigs, which may be associated with improvements in antioxidant balance.
Collapse
Affiliation(s)
- Lucas A Rodrigues
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Michael O Wellington
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | | | - John K Htoo
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | - Andrew G Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Daniel A Columbus
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada,Corresponding author:
| |
Collapse
|
44
|
Fu C, Yang Z, Yu J, Wei M. The interaction between gut microbiome and anti-tumor drug therapy. Am J Cancer Res 2021; 11:5812-5832. [PMID: 35018227 PMCID: PMC8727820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 06/14/2023] Open
Abstract
A large number of symbiotic gut microbiome exists in the human gastrointestinal micro-ecosystem. The daily diet, lifestyle, and body constitution influence the type and quantity of gut microbiome in the body. Increasing evidence demonstrates that the gut microbiome can affect tumor development and progress. We discuss in this paper how the gut microbiome impacts tumor pathology through DNA damage, production of dietary and microbial metabolites, altered cellular signaling pathways, immune system suppression, and involvement in pro-inflammatory pathways changing gut microbiome composition. The gut microbiome acts on different types of the anti-tumor drug through bacterial translocation, immuno-modulation, metabolic modulation, enzymatic degradation, and reduction of microbial diversity. This article summarized the aforementioned by reviewing recent studies on the interaction among the gut microbiome, tumor development, and antitumor drugs.
Collapse
Affiliation(s)
- Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, P. R. China
| | - Ziting Yang
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, P. R. China
| | - Jiankun Yu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityShenyang 110122, P. R. China
- Liaoning Medical Diagnosis and Treatment CenterShenyang 110000, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityShenyang 110122, P. R. China
- Liaoning Medical Diagnosis and Treatment CenterShenyang 110000, P. R. China
| |
Collapse
|
45
|
Huang X, Li M, Hou S, Tian B. Role of the microbiome in systemic therapy for pancreatic ductal adenocarcinoma (Review). Int J Oncol 2021; 59:101. [PMID: 34738624 PMCID: PMC8577795 DOI: 10.3892/ijo.2021.5281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
A large body of evidence has revealed that the microbiome serves a role in all aspects of cancer, particularly cancer treatment. To date, studies investigating the relationship between the microbiome and systemic therapy for pancreatic ductal adenocarcinoma (PDAC) are lacking. PDAC is a high‑mortality malignancy (5‑year survival rate; <9% for all stages). Systemic therapy is one of the most important treatment choices for all patients; however, resistance or toxicity can affect its efficacy. Studies have supported the hypothesis that the microbiome is closely associated with the response to systemic therapy in PDAC, including the induction of drug resistance, or toxicity and therapy‑related changes in microbiota composition. The present review comprehensively summarized the role of the microbiome in systemic therapy for PDAC and the associated molecular mechanisms in an attempt to provide a novel direction for the improvement of treatment response and proposed potential directions for in‑depth research.
Collapse
Affiliation(s)
| | | | - Shengzhong Hou
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
46
|
Ye G, Zhang X, Yan C, Lin Y, Huang Q. Polystyrene microplastics induce microbial dysbiosis and dysfunction in surrounding seawater. ENVIRONMENT INTERNATIONAL 2021; 156:106724. [PMID: 34161907 DOI: 10.1016/j.envint.2021.106724] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 05/20/2023]
Abstract
Microplastics are ubiquitously present in the environment, accumulate in aquaculture water, and cause toxicological effects on aquatic organisms. Besides, microplastics provide ecological niches for microorganisms in aquatic environments. However, the effects of microplastics on microbial balance and function in surrounding water are still unclear, especially for aquaculture water. Therefore, 16S rRNA gene sequencing was employed to uncover polystyrene microplastics (PS)-induced microbial dysbiosis in surrounding seawater cultivating marine medaka (Oryzias melastigmas) and to screen related potential bacterial biomarkers. We found that Proteobacteria and Bacteroidetes were the dominant phyla in each group, accounting for more than 95% of the total abundance, and that 26 bacterial taxa belonging to Proteobacteria and Bacteroidetes were significantly altered in surrounding seawater after 10- and 200-µm PS exposure. Functional analysis revelated that photosynthesis, carbon metabolism (such as carbon fixation, glycolysis, tricarboxylic acid cycle, and glycan biosynthesis and metabolism), amino acid metabolism, lipid synthesis, and nucleotide metabolism were decreased, while environmental stress responses, such as xenobiotics biodegradation and metabolism, glutathione metabolism, and taurine and hypotaurine metabolism, were increased in surrounding seawater microbiota after separate 10- and 200-µm PS exposure. Pathway analysis and correlation networks demonstrated that changes in relative abundances of bacterial taxa belonging to Proteobacteria and Bacteroidetes were highly correlated with those in the liver metabolism of marine medaka. Subsequently, 8 bacterial taxa were discovered to be able to be used separately as the potential biomarker for assessing the surrounding seawater microbial dysbiosis and metabolic responses of marine medaka, with a diagnostic accuracy of 100.0%. This study provides novel insights into toxicological effects of microplastics on microbial dysbiosis and function in surrounding water and ecosystems, and suggests potential roles of biomarkers involved in surrounding microbial dysbiosis in assessing microplastic ecotoxicology, microbial dysbiosis, and the health status of organisms at higher trophic levels.
Collapse
Affiliation(s)
- Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Xu Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yi Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Qiansheng Huang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
47
|
Wu Y, Wu J, Lin Z, Wang Q, Li Y, Wang A, Shan X, Liu J. Administration of a Probiotic Mixture Ameliorates Cisplatin-Induced Mucositis and Pica by Regulating 5-HT in Rats. J Immunol Res 2021; 2021:9321196. [PMID: 34568500 PMCID: PMC8461230 DOI: 10.1155/2021/9321196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/24/2022] Open
Abstract
Probiotic-based therapies have been shown to be beneficial for chemotherapy-induced mucositis. Previous research has demonstrated that a probiotic mixture (Bifidobacterium brevis, Lactobacillus acidophilus, Lactobacillus casei, and Streptococcus thermophilus) can ameliorate chemotherapy-induced mucositis and dysbiosis in rats, but the underlying mechanism has not been completely elucidated. We aimed to determine the inhibitory effects of the probiotic mixture on cisplatin-induced mucositis and pica and the underlying mechanism, focusing on the levels of 5-hydroxytryptamine (5-HT, serotonin) regulated by the gut microbiota. A rat model of mucositis and pica was established by daily intraperitoneal injection of cisplatin (6 mg/kg) for 3 days. In the probiotic+cisplatin group, predaily intragastric injection of the probiotic mixture (1 × 109 CFU/kg BW) was administrated for 1 week before cisplatin injection. This was then followed by further daily probiotic injections for 6 days. Histopathology, pro-/anti-inflammatory cytokines, oxidative status, and 5-HT levels were assessed on days 3 and 6. The structure of the gut microbiota was analyzed by 16S rRNA gene sequencing and quantitative PCR. Additionally, 5-HT levels in enterochromaffin (EC) cells (RIN-14B cell line) treated with cisplatin and/or various probiotic bacteria were also determined. The probiotic mixture significantly attenuated kaolin consumption, inflammation, oxidative stress, and the increase in 5-HT concentrations in rats with cisplatin-induced intestinal mucositis and pica. Cisplatin markedly increased the relative abundances of Enterobacteriaceae_other, Blautia, Clostridiaceae_other, and members of Clostridium clusters IV and XIVa. These levels were significantly restored by the probiotic mixture. Importantly, most of the genera increased by cisplatin were significantly positively correlated with colonic 5-HT. Furthermore, in vitro, the probiotic mixture had direct inhibitory effects on the 5-HT secretion by EC cells. The probiotic mixture protects against cisplatin-induced intestine injury, exhibiting both anti-inflammatory and antiemetic properties. These results were closely related to the reestablishment of intestinal microbiota ecology and normalization of the dysbiosis-driven 5-HT overproduction.
Collapse
Affiliation(s)
- Yuanhang Wu
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jianlin Wu
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhikun Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qian Wang
- Liaoning CapitalBio Technology Co., Ltd., Dalian, China
| | - Ying Li
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Aman Wang
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiu Shan
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiwei Liu
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
48
|
Meng Q, Bi P, Zhang G, Li Y, Chen S, Nie K. Forsythiae Fructus aqueous extract attenuates cisplatin-induced kaolin consumption (pica) by inhibiting NLRP3 inflammasome activation in rats. Biosci Biotechnol Biochem 2021; 85:2054-2064. [PMID: 34232292 DOI: 10.1093/bbb/zbab126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022]
Abstract
The present study was conducted to evaluate the effect of Forsythiae Fructus aqueous extract (FAE) against cisplatin-induced emesis and to explore the antiemetic mechanism of FAE by focusing on NLRP3 inflammasome activation in a rat pica model. Our results showed that FAE significantly ameliorated cisplatin-induced acute and delayed pica in rats. Moreover, FAE improved the gastrointestinal histopathological injury and reduced the levels of serum ROS, IL-1β, and IL-18 in cisplatin-treated rats. In addition, the expressions of NLRP3, ASC, caspase-1, and IL-1β and the colocalization of the NLRP3 with ASC or caspase-1 in rat gastric antrum and ileum were also suppressed by FAE. Taken together, our findings indicate that FAE has a therapeutic effect against CINV, which may be related to its inhibition of the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Qi Meng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pingping Bi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guanglong Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yaqi Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Siqi Chen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ke Nie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
49
|
Administration of Lactobacillus reuteri Combined with Clostridium butyricum Attenuates Cisplatin-Induced Renal Damage by Gut Microbiota Reconstitution, Increasing Butyric Acid Production, and Suppressing Renal Inflammation. Nutrients 2021; 13:nu13082792. [PMID: 34444952 PMCID: PMC8402234 DOI: 10.3390/nu13082792] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023] Open
Abstract
Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota. Wistar rats were given different treatments: control, cisplatin (Cis), cisplatin + C. butyricum and L. reuteri (Cis+LCs), and C. butyricum and L. reuteri (LCs). We observed that cisplatin-treated rats supplemented with LCs exhibited significantly decreased renal inflammation (KIM-1, F4/80, and MPO), oxidative stress, fibrosis (collagen IV, fibronectin, and a-SMA), apoptosis, concentration of blood endotoxin and indoxyl sulfate, and increased fecal butyric acid production compared with those without supplementation. In addition, LCs improved the cisplatin-induced microbiome dysbiosis by maintaining a healthy gut microbiota structure and diversity; depleting Escherichia-Shigella and the Enterobacteriaceae family; and enriching probiotic Bifidobacterium, Ruminococcaceae, Ruminiclostridium_9, and Oscillibacter. Moreover, the LCs intervention alleviated the cisplatin-induced intestinal epithelial barrier impairment. This study indicated LCs probiotic serves as a mediator of the gut–kidney axis in cisplatin-induced nephrotoxicity to restore the intestinal microbiota composition, thereby suppressing uremic toxin production and enhancing butyrate production. Furthermore, the renoprotective effect of LCs is partially mediated by increasing the anti-inflammatory effects and maintaining the integrity of the intestinal barrier.
Collapse
|
50
|
Zhou H, Wu H, Chen Y, Zou W, Lu W, He Y. Administration of All-Trans Retinoic Acid to Pregnant Sows Alters Gut Bacterial Community of Neonatal Piglets With Different Hoxa1 Genotypes. Front Microbiol 2021; 12:712212. [PMID: 34381436 PMCID: PMC8350768 DOI: 10.3389/fmicb.2021.712212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022] Open
Abstract
Administration of all-trans retinoic acid (ATRA) to pregnant sows improves developmental defects of Hoxa1-/- fetal pigs, and this study aimed to explore the influence of maternal ATRA administration during pregnancy on gut microbiota of neonatal piglets. Samples of jejunal and ileal meconium of neonatal piglets before suckling were collected including 5 Hoxa1-/- and 20 non-Hoxa1-/- (Hoxa1+/+ and Hoxa1+/-) neonatal piglets from the control group and 5 Hoxa1-/- and 7 non-Hoxa1-/- neonatal piglets from the experimental group. Results indicated that Hoxa1 mutation shaped the bacterial composition of the jejunum and ileum of neonatal piglets and Hoxa1-/- neonatal piglets had significantly higher diversity and species richness, higher relative abundance of phylum Bacteroidetes, lower relative abundances of phylum Firmicutes and genus Lactobacillus, and lower ratio of Firmicutes to Bacteroidetes than non-Hoxa1-/- neonatal piglets. After maternal ATRA administration, Hoxa1-/- neonatal piglets had significantly higher diversity and species richness, higher relative abundances of two bacterial phyla (Bacteroidetes and Proteobacteria), and lower relative abundances of phylum Firmicutes and genus Lactobacillus in the jejunum than non-Hoxa1-/- neonatal piglets. Hoxa1-/- neonatal piglets delivered by sows with maternal ATRA administration had lower diversity and species richness and higher relative abundance of phylum Firmicutes in the jejunum than Hoxa1-/- neonatal piglets born by sows with no maternal ATRA administration. Non-Hoxa1-/- neonatal piglets delivered by sows with maternal ATRA administration had higher diversity and species richness and significantly lower relative abundances of phyla Firmicutes and Actinobacteria and genus Lactobacillus in the ileum than non-Hoxa1-/- neonatal piglets born by sows with no maternal ATRA administration. Hoxa1 mutation decreased the expression of bacterial genes involved in ABC transporters, purine metabolism, and aminoacyl-tRNA biosynthesis and increased the expression of bacterial genes involved in two-component system, starch and sucrose metabolism, and arginine and proline metabolism. Maternal ATRA administration decreased the expression of bacterial genes involved in arginine and proline metabolism, peptidoglycan biosynthesis, and fatty acid biosynthesis. Hoxa1 mutation resulted in bacterial dysbiosis of the small intestine of Hoaxa1-/- neonatal piglets, and maternal ATRA administration restored the bacterial dysbiosis of Hoxa1-/- neonatal piglets and altered the bacterial composition of the small intestine of non-Hoxa1-/- neonatal piglets.
Collapse
Affiliation(s)
- Haimei Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
- Department of Animal Science, Jiangxi Agricultural Engineering College, Zhangshu, China
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yixin Chen
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Wanjie Zou
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|