1
|
Liu Z, Lu C, Ma L, Li C, Luo H, Liu Y, Liu X, Li H, Cui Y, Zeng J, Bottasso‐Arias N, Sinner D, Li L, Wang J, Stainier DYR, Yin W. The T-Type Calcium Channel CACNA1H is Required for Smooth Muscle Cytoskeletal Organization During Tracheal Tubulogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308622. [PMID: 39360593 PMCID: PMC11600216 DOI: 10.1002/advs.202308622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/23/2024] [Indexed: 10/04/2024]
Abstract
Abnormalities of tracheal smooth muscle (SM) formation are associated with several clinical disorders including tracheal stenosis and tracheomalacia. However, the cellular and molecular mechanisms underlying tracheal SM formation remain poorly understood. Here, it is shown that the T-type calcium channel CACNA1H is a novel regulator of tracheal SM formation and contraction. Cacna1h in an ethylnitrosourea forward genetic screen for regulators of respiratory disease using the mouse as a model is identified. Cacna1h mutants exhibit tracheal stenosis, disorganized SM and compromised tracheal contraction. CACNA1H is essential to maintain actin polymerization, which is required for tracheal SM organization and tube formation. This process appears to be partially mediated through activation of the actin regulator RhoA, as pharmacological increase of RhoA activity ameliorates the Cacna1h-mutant trachea phenotypes. Analysis of human tracheal tissues indicates that a decrease in CACNA1H protein levels is associated with congenital tracheostenosis. These results provide insight into the role for the T-type calcium channel in cytoskeletal organization and SM formation during tracheal tube formation and suggest novel targets for congenital tracheostenosis intervention.
Collapse
Affiliation(s)
- Ziying Liu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
- Guangzhou National LaboratoryGuangzhou International Bio IslandNo. 9 XingDaoHuanBei RoadGuangzhouGuangdong Province510005P. R. China
| | - Chunyan Lu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Li Ma
- Heart center & Department of Pediatric SurgeryGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdong510623P. R. China
| | - Changjiang Li
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Haiyun Luo
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Yiqi Liu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Xinyuan Liu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Haiqing Li
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Yachao Cui
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Jiahang Zeng
- Department of Thoracic SurgeryGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623P. R. China
| | - Natalia Bottasso‐Arias
- Division of Neonatology and Pulmonary BiologyCCHMCCollege of MedicineUniversity of CincinnatiCincinnatiOH45221USA
| | - Debora Sinner
- Division of Neonatology and Pulmonary BiologyCCHMCCollege of MedicineUniversity of CincinnatiCincinnatiOH45221USA
| | - Le Li
- Department of Thoracic SurgeryGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623P. R. China
| | - Jian Wang
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Didier Y. R. Stainier
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL)61231Bad NauheimGermany
| | - Wenguang Yin
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
- Guangzhou National LaboratoryGuangzhou International Bio IslandNo. 9 XingDaoHuanBei RoadGuangzhouGuangdong Province510005P. R. China
- Key Laboratory of Biological Targeting DiagnosisTherapy and Rehabilitation of Guangdong Higher Education Institutesthe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510005P. R. China
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| |
Collapse
|
2
|
Koyanagi M, Ogido R, Moriya A, Saigo M, Ihida S, Teranishi T, Kawada J, Katsuno T, Matsubara K, Terada T, Yamashita A, Imai S. Development of a 3-dimensional organotypic model with characteristics of peripheral sensory nerves. CELL REPORTS METHODS 2024; 4:100835. [PMID: 39116883 PMCID: PMC11384078 DOI: 10.1016/j.crmeth.2024.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
We developed a rat dorsal root ganglion (DRG)-derived sensory nerve organotypic model by culturing DRG explants on an organoid culture device. With this method, a large number of organotypic cultures can be produced simultaneously with high reproducibility simply by seeding DRG explants derived from rat embryos. Unlike previous DRG explant models, this organotypic model consists of a ganglion and an axon bundle with myelinated A fibers, unmyelinated C fibers, and stereo-myelin-forming nodes of Ranvier. The model also exhibits Ca2+ signaling in cell bodies in response to application of chemical stimuli to nerve terminals. Further, axonal transection increases the activating transcription factor 3 mRNA level in ganglia. Axons and myelin are shown to regenerate 14 days following transection. Our sensory organotypic model enables analysis of neuronal excitability in response to pain stimuli and tracking of morphological changes in the axon bundle over weeks.
Collapse
Affiliation(s)
- Madoka Koyanagi
- Department of Medical Neuropharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Ryosuke Ogido
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Akari Moriya
- Department of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Mamiko Saigo
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Satoshi Ihida
- New Business Promotion Division, Business Development Unit, Panel Semicon Laboratories, Sharp Corporation, Tenri, Nara 632-8567, Japan
| | - Tomoko Teranishi
- New Business Promotion Division, Business Development Unit, Panel Semicon Laboratories, Sharp Corporation, Tenri, Nara 632-8567, Japan
| | - Jiro Kawada
- Jiksak Bioengineering, Inc., Kawasaki, Kanagawa 210-0821, Japan
| | - Tatsuya Katsuno
- Division of Electron Microscopic Study, Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuo Matsubara
- School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Tomohiro Terada
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Akira Yamashita
- Department of Medical Neuropharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Satoshi Imai
- Department of Medical Neuropharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan; Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto 606-8507, Japan.
| |
Collapse
|
3
|
Song T, Hui W, Huang M, Guo Y, Yu M, Yang X, Liu Y, Chen X. Dynamic Changes in Ion Channels during Myocardial Infarction and Therapeutic Challenges. Int J Mol Sci 2024; 25:6467. [PMID: 38928173 PMCID: PMC11203447 DOI: 10.3390/ijms25126467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
In different areas of the heart, action potential waveforms differ due to differences in the expressions of sodium, calcium, and potassium channels. One of the characteristics of myocardial infarction (MI) is an imbalance in oxygen supply and demand, leading to ion imbalance. After MI, the regulation and expression levels of K+, Ca2+, and Na+ ion channels in cardiomyocytes are altered, which affects the regularity of cardiac rhythm and leads to myocardial injury. Myocardial fibroblasts are the main effector cells in the process of MI repair. The ion channels of myocardial fibroblasts play an important role in the process of MI. At the same time, a large number of ion channels are expressed in immune cells, which play an important role by regulating the in- and outflow of ions to complete intracellular signal transduction. Ion channels are widely distributed in a variety of cells and are attractive targets for drug development. This article reviews the changes in different ion channels after MI and the therapeutic drugs for these channels. We analyze the complex molecular mechanisms behind myocardial ion channel regulation and the challenges in ion channel drug therapy.
Collapse
Affiliation(s)
- Tongtong Song
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
| | - Wenting Hui
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Min Huang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Yan Guo
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Meiyi Yu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Xiaoyu Yang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Yanqing Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| |
Collapse
|
4
|
Sánchez JD, Gómez-Carpintero J, González JF, Menéndez JC. Twenty-first century antiepileptic drugs. An overview of their targets and synthetic approaches. Eur J Med Chem 2024; 272:116476. [PMID: 38759456 DOI: 10.1016/j.ejmech.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
The therapeutic use of the traditional drugs against epilepsy has been hindered by their toxicity and low selectivity. These limitations have stimulated the design and development of new generations of antiepileptic drugs. This review explores the molecular targets and synthesis of the antiepileptic drugs that have entered the market in the 21st century, with a focus on manufacturer synthesis.
Collapse
Affiliation(s)
- J Domingo Sánchez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Jorge Gómez-Carpintero
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Juan F González
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Alexander SPH, Mathie AA, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Davies JA, Aldrich RW, Attali B, Baggetta AM, Becirovic E, Biel M, Bill RM, Caceres AI, Catterall WA, Conner AC, Davies P, De Clerq K, Delling M, Di Virgilio F, Falzoni S, Fenske S, Fortuny-Gomez A, Fountain S, George C, Goldstein SAN, Grimm C, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Hu M, Ijzerman AP, Jabba SV, Jarvis M, Jensen AA, Jordt SE, Kaczmarek LK, Kellenberger S, Kennedy C, King B, Kitchen P, Liu Q, Lynch JW, Meades J, Mehlfeld V, Nicke A, Offermanns S, Perez-Reyes E, Plant LD, Rash L, Ren D, Salman MM, Sieghart W, Sivilotti LG, Smart TG, Snutch TP, Tian J, Trimmer JS, Van den Eynde C, Vriens J, Wei AD, Winn BT, Wulff H, Xu H, Yang F, Fang W, Yue L, Zhang X, Zhu M. The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. Br J Pharmacol 2023; 180 Suppl 2:S145-S222. [PMID: 38123150 PMCID: PMC11339754 DOI: 10.1111/bph.16178] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Alistair A Mathie
- School of Engineering, Arts, Science and Technology, University of Suffolk, Ipswich, IP4 1QJ, UK
| | - John A Peters
- Neurosci-ence Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Emma L Veale
- Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Jörg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jane F Armstrong
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Elena Faccenda
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Simon D Harding
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Jamie A Davies
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | | | | | | | | | - Martin Biel
- Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | | | - Paul Davies
- Tufts University School of Medicine, Boston, USA
| | | | - Markus Delling
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | - Chandy George
- Nanyang Technological University, Singapore, Singapore
| | | | | | | | - Kotdaji Ha
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Annette Nicke
- Ludwig Maximilian University of Munich, Munich, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research/JW Goethe University, Bad Nauheim/Frankfurt, Germany
| | | | | | | | - Dejian Ren
- University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | - Jinbin Tian
- University of Texas at Houston, Houston, USA
| | | | | | | | | | | | | | | | | | | | - Lixia Yue
- University of Connecticut, Farmington, USA
| | | | - Michael Zhu
- University of Texas at Houston, Houston, USA
| |
Collapse
|
6
|
Sanyal SK, Awasthi M, Ranjan P, Sharma S, Pandey GK, Kateriya S. Characterization of Chlamydomonas voltage-gated calcium channel and its interaction with photoreceptor support VGCC modulated photobehavioral response in the green alga. Int J Biol Macromol 2023; 245:125492. [PMID: 37343610 DOI: 10.1016/j.ijbiomac.2023.125492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Calcium (Ca2+) signaling plays a major role in regulating multiple processes in living cells. The photoreceptor potential in Chlamydomonas triggers the generation of all or no flagellar Ca2+ currents that cause membrane depolarization across the eyespot and flagella. Modulation in membrane potential causes changes in the flagellar waveform, and hence, alters the beating patterns of Chlamydomonas flagella. The rhodopsin-mediated eyespot membrane potential is generated by the photoreceptor Ca2+ current or P-current however, the flagellar Ca2+ currents are mediated by unidentified voltage-gated calcium (VGCC or CaV) and potassium channels (VGKC). The voltage-gated ion channel that associates with ChRs to generate Ca2+ influx across the flagella and its cellular distribution has not yet been identified. Here, we identified putative VGCCs from algae and predicted their novel properties through insilico analysis. We further present experimental evidence on Chlamydomonas reinhardtii VGCCs to predict their novel physiological roles. Our experimental evidences showed that CrVGCC4 localizes to the eyespot and flagella of Chlamydomonas and associates with channelrhodopsins (ChRs). Further in silico interactome analysis of CrVGCCs suggested that they putatively interact with photoreceptor proteins, calcium signaling, and intraflagellar transport components. Expression analysis indicated that these VGCCs and their putative interactors can be perturbed by light stimuli. Collectively, our data suggest that VGCCs in general, and VGCC4 in particular, might be involved in the regulation of the photobehavioral response of Chlamydomonas.
Collapse
Affiliation(s)
- Sibaji K Sanyal
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mayanka Awasthi
- Department of Biochemistry, the University of Delhi South Campus, New Delhi 110021, India
| | - Peeyush Ranjan
- Department of Biochemistry, the University of Delhi South Campus, New Delhi 110021, India
| | - Sunita Sharma
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, the University of Delhi South Campus, New Delhi 110021, India.
| | - Suneel Kateriya
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biochemistry, the University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
7
|
Kang Y, Xu L, Dong J, Huang Y, Yuan X, Li R, Chen L, Wang Z, Ji X. Calcium-based nanotechnology for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Frederick CE, Zenisek D. Ribbon Synapses and Retinal Disease: Review. Int J Mol Sci 2023; 24:5090. [PMID: 36982165 PMCID: PMC10049380 DOI: 10.3390/ijms24065090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Synaptic ribbons are presynaptic protein complexes that are believed to be important for the transmission of sensory information in the visual system. Ribbons are selectively associated with those synapses where graded changes in membrane potential drive continuous neurotransmitter release. Defective synaptic transmission can arise as a result of the mutagenesis of a single ribbon component. Visual diseases that stem from malfunctions in the presynaptic molecular machinery of ribbon synapses in the retina are rare. In this review, we provide an overview of synaptopathies that give rise to retinal malfunction and our present understanding of the mechanisms that underlie their pathogenesis and discuss muscular dystrophies that exhibit ribbon synapse involvement in the pathology.
Collapse
Affiliation(s)
| | - David Zenisek
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208026, New Haven, CT 06510, USA
| |
Collapse
|
9
|
Morales A, Mohan R, Chen X, Coffman BL, Bendahmane M, Watch L, West JL, Bakshi S, Traynor JR, Giovannucci DR, Kammermeier PJ, Axelrod D, Currie KP, Smrcka AV, Anantharam A. PACAP and acetylcholine cause distinct Ca2+ signals and secretory responses in chromaffin cells. J Gen Physiol 2023; 155:e202213180. [PMID: 36538657 PMCID: PMC9770323 DOI: 10.1085/jgp.202213180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/22/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
The adrenomedullary chromaffin cell transduces chemical messages into outputs that regulate end organ function throughout the periphery. At least two important neurotransmitters are released by innervating preganglionic neurons to stimulate exocytosis in the chromaffin cell-acetylcholine (ACh) and pituitary adenylate cyclase activating polypeptide (PACAP). Although PACAP is widely acknowledged as an important secretagogue in this system, the pathway coupling PACAP stimulation to chromaffin cell secretion is poorly understood. The goal of this study is to address this knowledge gap. Here, it is shown that PACAP activates a Gαs-coupled pathway that must signal through phospholipase C ε (PLCε) to drive Ca2+ entry and exocytosis. PACAP stimulation causes a complex pattern of Ca2+ signals in chromaffin cells, leading to a sustained secretory response that is kinetically distinct from the form stimulated by ACh. Exocytosis caused by PACAP is associated with slower release of peptide cargo than exocytosis stimulated by ACh. Importantly, only the secretory response to PACAP, not ACh, is eliminated in cells lacking PLCε expression. The data show that ACh and PACAP, acting through distinct signaling pathways, enable nuanced and variable secretory outputs from chromaffin cells.
Collapse
Affiliation(s)
- Alina Morales
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Ramkumar Mohan
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaohuan Chen
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | | | - Lester Watch
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua L. West
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Shreeya Bakshi
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - John R. Traynor
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | | | - Paul J. Kammermeier
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Daniel Axelrod
- Department of Physics and LSA Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Kevin P.M. Currie
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
10
|
Sharma A, Rahman G, Gorelik J, Bhargava A. Voltage-Gated T-Type Calcium Channel Modulation by Kinases and Phosphatases: The Old Ones, the New Ones, and the Missing Ones. Cells 2023; 12:461. [PMID: 36766802 PMCID: PMC9913649 DOI: 10.3390/cells12030461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Calcium (Ca2+) can regulate a wide variety of cellular fates, such as proliferation, apoptosis, and autophagy. More importantly, changes in the intracellular Ca2+ level can modulate signaling pathways that control a broad range of physiological as well as pathological cellular events, including those important to cellular excitability, cell cycle, gene-transcription, contraction, cancer progression, etc. Not only intracellular Ca2+ level but the distribution of Ca2+ in the intracellular compartments is also a highly regulated process. For this Ca2+ homeostasis, numerous Ca2+ chelating, storage, and transport mechanisms are required. There are also specialized proteins that are responsible for buffering and transport of Ca2+. T-type Ca2+ channels (TTCCs) are one of those specialized proteins which play a key role in the signal transduction of many excitable and non-excitable cell types. TTCCs are low-voltage activated channels that belong to the family of voltage-gated Ca2+ channels. Over decades, multiple kinases and phosphatases have been shown to modulate the activity of TTCCs, thus playing an indirect role in maintaining cellular physiology. In this review, we provide information on the kinase and phosphatase modulation of TTCC isoforms Cav3.1, Cav3.2, and Cav3.3, which are mostly described for roles unrelated to cellular excitability. We also describe possible potential modulations that are yet to be explored. For example, both mitogen-activated protein kinase and citron kinase show affinity for different TTCC isoforms; however, the effect of such interaction on TTCC current/kinetics has not been studied yet.
Collapse
Affiliation(s)
- Ankush Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Ghazala Rahman
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Julia Gorelik
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| |
Collapse
|
11
|
Vitamin C Modes of Action in Calcium-Involved Signaling in the Brain. Antioxidants (Basel) 2023; 12:antiox12020231. [PMID: 36829790 PMCID: PMC9952025 DOI: 10.3390/antiox12020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Vitamin C (ascorbic acid) is well known for its potent antioxidant properties, as it can neutralize ROS and free radicals, thereby protecting cellular elements from oxidative stress. It predominantly exists as an ascorbate anion and after oxidation to dehydroascorbic acid and further breakdown, is removed from the cells. In nervous tissue, a progressive decrease in vitamin C level or its prolonged deficiency have been associated with an increased risk of disturbances in neurotransmission, leading to dysregulation in brain function. Therefore, understanding the regulatory function of vitamin C in antioxidant defence and identification of its molecular targets deserves more attention. One of the key signalling ions is calcium and a transient rise in its concentration is crucial for all neuronal processes. Extracellular Ca2+ influx (through specific ion channels) or Ca2+ release from intracellular stores (endoplasmic reticulum, mitochondria) are precisely controlled. Ca2+ regulates the functioning of the CNS, including growth, development, myelin formation, synthesis of catecholamines, modulation of neurotransmission and antioxidant protection. A growing body of evidence indicates a unique role for vitamin C in these processes. In this short review, we focus on vitamin C in the regulation of calcium-involved pathways under physiological and stress conditions in the brain.
Collapse
|
12
|
Goyal S, Goyal S, Goins AE, Alles SR. Plant-derived natural products targeting ion channels for pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100128. [PMID: 37151956 PMCID: PMC10160805 DOI: 10.1016/j.ynpai.2023.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Chronic pain affects approximately one-fifth of people worldwide and reduces quality of life and in some cases, working ability. Ion channels expressed along nociceptive pathways affect neuronal excitability and as a result modulate pain experience. Several ion channels have been identified and investigated as potential targets for new medicines for the treatment of a variety of human diseases, including chronic pain. Voltage-gated channels Na+ and Ca2+ channels, K+ channels, transient receptor potential channels (TRP), purinergic (P2X) channels and acid-sensing ion channels (ASICs) are some examples of ion channels exhibiting altered function or expression in different chronic pain states. Pharmacological approaches are being developed to mitigate dysregulation of these channels as potential treatment options. Since natural compounds of plant origin exert promising biological and pharmacological properties and are believed to possess less adverse effects compared to synthetic drugs, they have been widely studied as treatments for chronic pain for their ability to alter the functional activity of ion channels. A literature review was conducted using Medline, Google Scholar and PubMed, resulted in listing 79 natural compounds/extracts that are reported to interact with ion channels as part of their analgesic mechanism of action. Most in vitro studies utilized electrophysiological techniques to study the effect of natural compounds on ion channels using primary cultures of dorsal root ganglia (DRG) neurons. In vivo studies concentrated on different pain models and were conducted mainly in mice and rats. Proceeding into clinical trials will require further study to develop new, potent and specific ion channel modulators of plant origin.
Collapse
Affiliation(s)
- Sachin Goyal
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Shivali Goyal
- School of Pharmacy, Abhilashi University, Chail Chowk, Mandi, HP 175045, India
| | - Aleyah E. Goins
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Sascha R.A. Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
- Corresponding author.
| |
Collapse
|
13
|
Chen X, An M, Ye S, Yang Z, Ding Z. The α 2δ Calcium Channel Subunit Accessorily and Independently Affects the Biological Function of Ditylenchus destructor. Int J Mol Sci 2022; 23:12999. [PMID: 36361788 PMCID: PMC9657823 DOI: 10.3390/ijms232112999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 01/24/2024] Open
Abstract
The α2δ subunit is a high-voltage activated (HVA) calcium channel (Cav1 and Cav2) auxiliary subunit that increases the density and function of HVA calcium channels in the plasma membrane of mammals. However, its function in plant parasitic nematodes remains unknown. In this study, we cloned the full-length cDNA sequence of the voltage-gated calcium channel (VGCC) α2δ subunit (named DdCavα2δ) in Ditylenchus destructor. We found that DdCavα2δ tends to be expressed in the egg stage, followed by the J3 stage. RNA-DIG in situ hybridization experiments showed that the DdCavα2δ subunit was expressed in the body wall, esophageal gland, uterus, post uterine, and spicules of D. destructor. The in vitro application of RNA interference (RNAi) affected the motility, reproduction, chemotaxis, stylet thrusting, and protein secretion of D. destructor to different degrees by targeting DdCα1D, DdCα1A, and DdCavα2δ in J3 stages, respectively. Based on the results of RNAi experiments, it was hypothesized that L-type VGCC may affect the motility, chemotaxis, and stylet thrusting of D. destructor. Non-L-type VGCC may affect the protein secretion and reproduction of D. destructor. The DdCavα2δ subunit gene also affected the motility, chemotaxis, and reproduction of D. destructor. These findings reveal the independent function of the VGCC α2δ subunit in D. destructor as well as give a theoretical foundation for future research on plant parasitic nematode VGCC.
Collapse
Affiliation(s)
| | | | | | - Zhuhong Yang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zhong Ding
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
14
|
Immanuel T, Li J, Green TN, Bogdanova A, Kalev-Zylinska ML. Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential. Front Oncol 2022; 12:1010506. [PMID: 36330491 PMCID: PMC9623116 DOI: 10.3389/fonc.2022.1010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in the introduction. We describe different Ca2+-toolkit components and summarize the unique relationship between extracellular Ca2+ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+ channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca2+-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation. To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.
Collapse
Affiliation(s)
- Tracey Immanuel
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China
| | - Taryn N. Green
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
15
|
Hodges SL, Bouza AA, Isom LL. Therapeutic Potential of Targeting Regulated Intramembrane Proteolysis Mechanisms of Voltage-Gated Ion Channel Subunits and Cell Adhesion Molecules. Pharmacol Rev 2022; 74:1028-1048. [PMID: 36113879 PMCID: PMC9553118 DOI: 10.1124/pharmrev.121.000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/13/2022] [Indexed: 10/03/2023] Open
Abstract
Several integral membrane proteins undergo regulated intramembrane proteolysis (RIP), a tightly controlled process through which cells transmit information across and between intracellular compartments. RIP generates biologically active peptides by a series of proteolytic cleavage events carried out by two primary groups of enzymes: sheddases and intramembrane-cleaving proteases (iCLiPs). Following RIP, fragments of both pore-forming and non-pore-forming ion channel subunits, as well as immunoglobulin super family (IgSF) members, have been shown to translocate to the nucleus to function in transcriptional regulation. As an example, the voltage-gated sodium channel β1 subunit, which is also an IgSF-cell adhesion molecule (CAM), is a substrate for RIP. β1 RIP results in generation of a soluble intracellular domain, which can regulate gene expression in the nucleus. In this review, we discuss the proposed RIP mechanisms of voltage-gated sodium, potassium, and calcium channel subunits as well as the roles of their generated proteolytic products in the nucleus. We also discuss other RIP substrates that are cleaved by similar sheddases and iCLiPs, such as IgSF macromolecules, including CAMs, whose proteolytically generated fragments function in the nucleus. Importantly, dysfunctional RIP mechanisms are linked to human disease. Thus, we will also review how understanding RIP events and subsequent signaling processes involving ion channel subunits and IgSF proteins may lead to the discovery of novel therapeutic targets. SIGNIFICANCE STATEMENT: Several ion channel subunits and immunoglobulin superfamily molecules have been identified as substrates of regulated intramembrane proteolysis (RIP). This signal transduction mechanism, which generates polypeptide fragments that translocate to the nucleus, is an important regulator of gene transcription. RIP may impact diseases of excitability, including epilepsy, cardiac arrhythmia, and sudden death syndromes. A thorough understanding of the role of RIP in gene regulation is critical as it may reveal novel therapeutic strategies for the treatment of previously intractable diseases.
Collapse
Affiliation(s)
- Samantha L Hodges
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexandra A Bouza
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Lori L Isom
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
16
|
Chen Y, Wu Q, Jin Z, Qin Y, Meng F, Zhao G. Systematic Review of Voltage-Gated Calcium Channel α2δ Subunit Ligands for the Treatment of Chronic Neuropathic Pain and Insight into Structure-Activity Relationship (SAR) by Pharmacophore Modeling. Curr Med Chem 2022; 29:5097-5112. [PMID: 35392779 DOI: 10.2174/0929867329666220407093727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neuropathic pain (NP) is a complex symptom related to the nerve damage. The discovery of new drugs for treating chronic NP has been continuing for several decades, while more progress is still needed to be made because of the unsatisfactory efficacy and the side effects of the currently available drugs. Among all the approved drugs for chronic NP, voltage-gated calcium channel (VGCC) α2δ subunit ligands, also known as gabapentinoids, are among the first-line treatment and represent a class of efficacious and relatively safe therapeutic agents. However, new strategies are still needed to be explored due to the unsatisfied response rate. OBJECTIVES To review the latest status of the discovery and development of gabapentinoids for the treatment of chronic NP by covering both the marketed and the preclinical/clinical ones. To analyze the structure-activity relationship (SAR) of gabapentinoids to facilitate the future design of structurally novel therapeutic agents targeting VGCC α2δ subunit. METHODS We searched PubMed Central, Embase, Cochrane Library, Web of Science, Scopus and Espacenet for the literature and patents of diabetic peripheral neuropathic pain, postherpetic neuralgia, fibromyalgia, voltage-gated calcium channel α2δ subunit and related therapeutic agents from incipient to June 10, 2021. The SAR of gabapentinoids were analyzed by pharmacophore modeling using Phase module in Schrödinger suite. RESULTS A variety of gabapentinoids were identified as VGCC α2δ ligands that have ever been under development for the treatment of chronic NP. Among them, four gabapentinoids are marketed, one is at the active late clinical trials, and eight have been discontinued. Pharmacophore models were generated by using Phase module in Schrödinger suite, and common pharmacophores were predicted based on pharmacophoric features and analyzed. CONCLUSION The latest progress of the discovery and development of gabapentinoids for the treatment of chronic NP was reviewed. Moreover, the structure-activity relationship (SAR) of gabapentinoids is analyzed by pharmacophore modeling, which will be valuable for the future design of structurally novel therapeutic agents targeting VGCC α2δ subunit.
Collapse
Affiliation(s)
- Yuting Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Qingqing Wu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Zhengsheng Jin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yanlan Qin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Fancui Meng
- Tianjin Institute of Pharmaceutical Research, Tianjin 300301, China
| | - Guilong Zhao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
17
|
Aoyama BB, Zanetti GG, Dias EV, Athié MCP, Lopes-Cendes I, Schwambach Vieira A. Transcriptomic analysis of dorsal and ventral subiculum after induction of acute seizures by electric stimulation of the perforant pathway in rats. Hippocampus 2022; 32:436-448. [PMID: 35343006 DOI: 10.1002/hipo.23417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/09/2022]
Abstract
Preconditioning is a mechanism in which injuries induced by non-lethal hypoxia or seizures trigger cellular resistance to subsequent events. Norwood et al., in a 2010 study, showed that an 8-h-long period of electrical stimulation of the perforant pathway in rats is required for the induction of hippocampal sclerosis. However, in order to avoid generalized seizures, status epilepticus (SE), and death, a state of resistance to seizures must be induced in the hippocampus by a preconditioning paradigm consisting of two daily 30-min stimulation periods. Due to the importance of the subiculum in the hippocampal formation, this study aims to investigate differential gene expression patterns in the dorsal and ventral subiculum using RNA-sequencing, after induction of a preconditioning protocol by electrical stimulation of the perforant pathway. The dorsal (dSub) and ventral (vSub) subiculum regions were collected by laser-microdissection 24 h after preconditioning protocol induction in rats. RNA sequencing was performed in a Hiseq 4000 platform, reads were aligned using the STAR and DESEq2 statistics package was used to estimate gene expression. We identified 1176 differentially expressed genes comparing control to preconditioned subiculum regions, 204 genes were differentially expressed in dSub and 972 in vSub. The gene ontology enrichment analysis showed that the most significant common enrichment pathway considering up-regulated genes in dSub and vSub was steroid metabolism. In contrast, the most significant enrichment pathway considering down-regulated genes in vSub was axon guidance. Our results indicate that preconditioning induces changes in the expression of genes related to synaptic reorganization, increased cholesterol metabolism, and astrogliosis in both dSub and vSub. Both regions also presented a decrease in the expression of genes related to glutamatergic transmission and an increase in expression of genes related to complement system activation and GABAergic transmission. The down-regulation of proapoptotic and axon guidance genes in the ventral subiculum suggests that preconditioning may induce a neuroprotective environment in this region.
Collapse
Affiliation(s)
- Beatriz B Aoyama
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Gabriel G Zanetti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Elayne V Dias
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Maria C P Athié
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil.,Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Iscia Lopes-Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil.,Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André Schwambach Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
18
|
Lanzetti S, Di Biase V. Small Molecules as Modulators of Voltage-Gated Calcium Channels in Neurological Disorders: State of the Art and Perspectives. Molecules 2022; 27:1312. [PMID: 35209100 PMCID: PMC8879281 DOI: 10.3390/molecules27041312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are widely expressed in the brain, heart and vessels, smooth and skeletal muscle, as well as in endocrine cells. VGCCs mediate gene transcription, synaptic and neuronal structural plasticity, muscle contraction, the release of hormones and neurotransmitters, and membrane excitability. Therefore, it is not surprising that VGCC dysfunction results in severe pathologies, such as cardiovascular conditions, neurological and psychiatric disorders, altered glycemic levels, and abnormal smooth muscle tone. The latest research findings and clinical evidence increasingly show the critical role played by VGCCs in autism spectrum disorders, Parkinson's disease, drug addiction, pain, and epilepsy. These findings outline the importance of developing selective calcium channel inhibitors and modulators to treat such prevailing conditions of the central nervous system. Several small molecules inhibiting calcium channels are currently used in clinical practice to successfully treat pain and cardiovascular conditions. However, the limited palette of molecules available and the emerging extent of VGCC pathophysiology require the development of additional drugs targeting these channels. Here, we provide an overview of the role of calcium channels in neurological disorders and discuss possible strategies to generate novel therapeutics.
Collapse
Affiliation(s)
| | - Valentina Di Biase
- Institute of Pharmacology, Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Peter-Mayr Strasse 1, A-6020 Innsbruck, Austria;
| |
Collapse
|
19
|
Berlansky S, Sallinger M, Grabmayr H, Humer C, Bernhard A, Fahrner M, Frischauf I. Calcium Signals during SARS-CoV-2 Infection: Assessing the Potential of Emerging Therapies. Cells 2022; 11:253. [PMID: 35053369 PMCID: PMC8773957 DOI: 10.3390/cells11020253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). This respiratory illness was declared a pandemic by the world health organization (WHO) in March 2020, just a few weeks after being described for the first time. Since then, global research effort has considerably increased humanity's knowledge about both viruses and disease. It has also spawned several vaccines that have proven to be key tools in attenuating the spread of the pandemic and severity of COVID-19. However, with vaccine-related skepticism being on the rise, as well as breakthrough infections in the vaccinated population and the threat of a complete immune escape variant, alternative strategies in the fight against SARS-CoV-2 are urgently required. Calcium signals have long been known to play an essential role in infection with diverse viruses and thus constitute a promising avenue for further research on therapeutic strategies. In this review, we introduce the pivotal role of calcium signaling in viral infection cascades. Based on this, we discuss prospective calcium-related treatment targets and strategies for the cure of COVID-19 that exploit viral dependence on calcium signals.
Collapse
Affiliation(s)
| | | | | | | | | | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| |
Collapse
|
20
|
Pellegrini JR, Munshi R, Tiwana MS, Abraham T, Tahir H, Sayedy N, Iqbal J. "Feeling the Blues": A Case of Calcium Channel Blocker Overdose Managed With Methylene Blue. Cureus 2021; 13:e19114. [PMID: 34868762 PMCID: PMC8627593 DOI: 10.7759/cureus.19114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Amlodipine is a dihydropyridine calcium channel blocker (CCB) commonly used to treat hypertension. In the United States, approximately 9,500 cases of CCB intoxication due to deliberate or inadvertent overdose were reported to poison centers in 2002. We present a case of a patient who presented with CCB overdose complicated by acute respiratory distress syndrome (ARDS) and recalcitrant shock all of which resolved with methylene blue therapy. We present a case of a 56-year-old African American woman who presented to the emergency department (ED) after intentional ingestion of large amounts of multiple pills likely consisting of cyclobenzaprine, amlodipine, losartan, and ibuprofen following an argument with her boyfriend. Treatment included insulin drip, 10% dextrose, and norepinephrine drip which was titrated up. First insulin drip and 10% dextrose were titrated up; however, vasopressor-resistant hypotension persisted, and the decision was made to administer methylene blue. Over 9,500 cases of CCB toxicity were reported to poison centers in the US in 2002. Although no definitive treatment is outlined, first-line therapy consists of IV calcium, high-dose insulin, and vasopressor support with either norepinephrine or epinephrine. Traditionally, methylene blue is used for methemoglobinemia and in cardiothoracic ICUs for post coronary artery bypass vasoplegia. It acts by selectively inhibiting nitric oxide-activated cyclic guanylate cyclase leading to decreased vasodilation of arteriolar smooth muscles improving vascular tone and systemic vascular resistance. In severe amlodipine overdose, experimental models demonstrate methylene blue improves HR and mean arterial pressure (MAP), improving survival rate. With few adverse side effects (green-tinged discoloration of urine, saliva, tears, and bodily fluids), methylene blue should be explored and implemented in the treatment of CCB overdose with refractory hypotension and ARDS.
Collapse
Affiliation(s)
| | - Rezwan Munshi
- Internal Medicine, Nassau University Medical Center, East Meadow, USA
| | - Muhammad S Tiwana
- Internal Medicine, Nassau University Medical Center, East Meadow, USA
| | - Tinu Abraham
- Internal Medicine, Nassau University Medical Center, East Meadow, USA
| | - Hira Tahir
- Internal Medicine, Nassau University Medical Center, East Meadow, USA
| | - Najia Sayedy
- Pulmonary and Critical Care, Nassau University Medical Center, East Meadow, USA
| | - Javed Iqbal
- Pulmonary and Critical Care, Nassau University Medical Center, East Meadow, USA
| |
Collapse
|
21
|
Panda S, Chatterjee O, Roy L, Chatterjee S. Targeting Ca 2+ signaling: A new arsenal against cancer. Drug Discov Today 2021; 27:923-934. [PMID: 34793973 DOI: 10.1016/j.drudis.2021.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/24/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
The drug resistance of cancer cells is a major concern in medical oncology, resulting in the failure of chemotherapy. Ca2+ plays a pivotal role in inducing multidrug resistance in cancer cells. Calcium signaling is a critical regulator of many cancer hallmarks, such as angiogenesis, invasiveness, and migration. In this review, we describe the involvement of Ca2+ signaling and associated proteins in cancer progression and in the development of multidrug resistance in cancer cells. We also highlight the possibilities and challenges of targeting the Ca2+ channels, transporters, and pumps involved in Ca2+ signaling in cancer cells through structure-based drug design. This work will open a new therapeutic window to be used against cancer in upcoming years.
Collapse
Affiliation(s)
- Suman Panda
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Oishika Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Laboni Roy
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India.
| |
Collapse
|
22
|
Jayakar S, Shim J, Jo S, Bean BP, Singeç I, Woolf CJ. Developing nociceptor-selective treatments for acute and chronic pain. Sci Transl Med 2021; 13:eabj9837. [PMID: 34757806 PMCID: PMC9964063 DOI: 10.1126/scitranslmed.abj9837] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite substantial efforts dedicated to the development of new, nonaddictive analgesics, success in treating pain has been limited. Clinically available analgesic agents generally lack efficacy and may have undesirable side effects. Traditional target-based drug discovery efforts that generate compounds with selectivity for single targets have a high rate of attrition because of their poor clinical efficacy. Here, we examine the challenges associated with the current analgesic drug discovery model and review evidence in favor of stem cell–derived neuronal-based screening approaches for the identification of analgesic targets and compounds for treating diverse forms of acute and chronic pain.
Collapse
Affiliation(s)
- Selwyn Jayakar
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Jaehoon Shim
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH); Bethesda, MD 20892, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| |
Collapse
|
23
|
Sadras F, Monteith GR, Roberts-Thomson SJ. An Emerging Role for Calcium Signaling in Cancer-Associated Fibroblasts. Int J Mol Sci 2021; 22:ijms222111366. [PMID: 34768796 PMCID: PMC8583802 DOI: 10.3390/ijms222111366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/30/2022] Open
Abstract
Tumors exist in a complex milieu where interaction with their associated microenvironment significantly contributes to disease progression. Cancer-associated fibroblasts (CAFs) are the primary component of the tumor microenvironment and participate in complex bidirectional communication with tumor cells. CAFs support the development of various hallmarks of cancer through diverse processes, including direct cell-cell contact, paracrine signaling, and remodeling and deposition of the extracellular matrix. Calcium signaling is a key second messenger in intra- and inter-cellular signaling pathways that contributes to cancer progression; however, the links between calcium signaling and CAFs are less well-explored. In this review, we put into context the role of calcium signaling in interactions between cancer cells and CAFs, with a focus on migration, proliferation, chemoresistance, and genetic instability.
Collapse
Affiliation(s)
- Francisco Sadras
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; (F.S.); (G.R.M.)
| | - Gregory R. Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; (F.S.); (G.R.M.)
- Mater Research, Translational Research Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sarah J. Roberts-Thomson
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; (F.S.); (G.R.M.)
- Correspondence:
| |
Collapse
|
24
|
Estrada-Soto S, Rendón-Vallejo P, Villalobos-Molina R, Millán-Pacheco C, Vázquez M, Hernández-Borja F, Hernández-Núñez E. 6-Amino-3-Methyl-4-(2-nitrophenyl)-1,4-Dihydropyrano[2,3-c]Pyrazole-5-Carbonitrile Shows Antihypertensive and Vasorelaxant Action via Calcium Channel Blockade. Drug Res (Stuttg) 2021; 72:53-60. [PMID: 34662917 DOI: 10.1055/a-1616-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Several 4H-pyran derivatives were designed and synthesized previously as vasorelaxant agents for potential antihypertensive drugs. In this context, the objective of the present investigation was to determine the functional mechanism of vasorelaxant action of 6-amino-3-methyl-4-(2-nitrophenyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (1: ) and its in vivo antihypertensive effect. Thus, compound 1: showed significant vasorelaxant action on isolated aorta rat rings pre-contracted with serotonin or noradrenaline, and the effect was not endothelium-dependent. Compound 1: induced a significant relaxant effect when aortic rings were contracted with KCl (80 mM), indicating that the main mechanism of action is related to L-type calcium channel blockade. Last was corroborated since compound 1: induced a significant concentration-dependent lowering of contraction provoked by cumulative CaCl2 adding. Moreover, compound 1: was capable to block the contraction induced by FPL 64176, a specific L-type calcium channel agonist, in a concentration-dependent manner. On the other hand, docking studies revealed that compound 1: interacts on two possible sites of the L-type calcium channel and it had better affinity energy (-7.80+/-0.00 kcal/mol on the best poses) than nifedipine (-6.86+/-0.14 kcal/mol). Finally, compound 1: (50 mg/kg) showed significant antihypertensive activity, lowering the systolic and diastolic blood pressure on spontaneously hypertensive rats (SHR) without modifying heart rate.
Collapse
Affiliation(s)
- Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Priscila Rendón-Vallejo
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Rafael Villalobos-Molina
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - César Millán-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - MiguelA Vázquez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, México
| | - Fernando Hernández-Borja
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, México
| | - Emanuel Hernández-Núñez
- Cátedra CONACyT, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, Yucatán, Mexico
| |
Collapse
|
25
|
Boczek T, Zylinska L. Receptor-Dependent and Independent Regulation of Voltage-Gated Ca 2+ Channels and Ca 2+-Permeable Channels by Endocannabinoids in the Brain. Int J Mol Sci 2021; 22:ijms22158168. [PMID: 34360934 PMCID: PMC8348342 DOI: 10.3390/ijms22158168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
The activity of specific populations of neurons in different brain areas makes decisions regarding proper synaptic transmission, the ability to make adaptations in response to different external signals, as well as the triggering of specific regulatory pathways to sustain neural function. The endocannabinoid system (ECS) appears to be a very important, highly expressed, and active system of control in the central nervous system (CNS). Functionally, it allows the cells to respond quickly to processes that occur during synaptic transmission, but can also induce long-term changes. The endocannabinoids (eCBs) belong to a large family of bioactive lipid mediators that includes amides, esters, and ethers of long-chain polyunsaturated fatty acids. They are produced “on demand” from the precursors located in the membranes, exhibit a short half-life, and play a key role as retrograde messengers. eCBs act mainly through two receptors, CB1R and CB2R, which belong to the G-protein coupled receptor superfamily (GPCRs), but can also exert their action via multiple non-receptor pathways. The action of eCBs depends on Ca2+, but eCBs can also regulate downstream Ca2+ signaling. In this short review, we focus on the regulation of neuronal calcium channels by the most effective members of eCBs-2-arachidonoylglycerol (2-AG), anandamide (AEA) and originating from AEA-N-arachidonoylglycine (NAGly), to better understand the contribution of ECS to brain function under physiological conditions.
Collapse
|
26
|
Papazoglou A, Henseler C, Broich K, Daubner J, Weiergräber M. Breeding of Ca v2.3 deficient mice reveals Mendelian inheritance in contrast to complex inheritance in Ca v3.2 null mutant breeding. Sci Rep 2021; 11:13972. [PMID: 34234221 PMCID: PMC8263769 DOI: 10.1038/s41598-021-93391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
High voltage-activated Cav2.3 R-type Ca2+ channels and low voltage-activated Cav3.2 T-type Ca2+ channels were reported to be involved in numerous physiological and pathophysiological processes. Many of these findings are based on studies in Cav2.3 and Cav3.2 deficient mice. Recently, it has been proposed that inbreeding of Cav2.3 and Cav3.2 deficient mice exhibits significant deviation from Mendelian inheritance and might be an indication for potential prenatal lethality in these lines. In our study, we analyzed 926 offspring from Cav3.2 breedings and 1142 offspring from Cav2.3 breedings. Our results demonstrate that breeding of Cav2.3 deficient mice shows typical Mendelian inheritance and that there is no indication of prenatal lethality. In contrast, Cav3.2 breeding exhibits a complex inheritance pattern. It might be speculated that the differences in inheritance, particularly for Cav2.3 breeding, are related to other factors, such as genetic specificities of the mutant lines, compensatory mechanisms and altered sperm activity.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.
| |
Collapse
|
27
|
Weiss N, Zamponi GW. Opioid Receptor Regulation of Neuronal Voltage-Gated Calcium Channels. Cell Mol Neurobiol 2021; 41:839-847. [PMID: 32514826 DOI: 10.1007/s10571-020-00894-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/29/2020] [Indexed: 12/28/2022]
Abstract
Neuronal voltage-gated calcium channels play a pivotal role in the conversion of electrical signals into calcium entry into nerve endings that is required for the release of neurotransmitters. They are under the control of a number of cellular signaling pathways that serve to fine tune synaptic activities, including G-protein coupled receptors (GPCRs) and the opioid system. Besides modulating channel activity via activation of second messengers, GPCRs also physically associate with calcium channels to regulate their function and expression at the plasma membrane. In this mini review, we discuss the mechanisms by which calcium channels are regulated by classical opioid and nociceptin receptors. We highlight the importance of this regulation in the control of neuronal functions and their implication in the development of disease conditions. Finally, we present recent literature concerning the use of novel μ-opioid receptor/nociceptin receptor modulators and discuss their use as potential drug candidates for the treatment of pain.
Collapse
Affiliation(s)
- Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
28
|
Meyer JO, Dolphin AC. Rab11-dependent recycling of calcium channels is mediated by auxiliary subunit α 2δ-1 but not α 2δ-3. Sci Rep 2021; 11:10256. [PMID: 33986433 PMCID: PMC8119971 DOI: 10.1038/s41598-021-89820-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
N-type voltage-gated calcium channels (CaV2.2) are predominantly expressed at presynaptic terminals, and their function is regulated by auxiliary α2δ and β subunits. All four mammalian α2δ subunits enhance calcium currents through CaV1 and CaV2 channels, and this increase is attributed, in part, to increased CaV expression at the plasma membrane. In the present study we provide evidence that α2δ-1, like α2δ-2, is recycled to the plasma membrane through a Rab11a-dependent endosomal recycling pathway. Using a dominant-negative Rab11a mutant, Rab11a(S25N), we show that α2δ-1 increases plasma membrane CaV2.2 expression by increasing the rate and extent of net forward CaV2.2 trafficking in a Rab11a-dependent manner. Dominant-negative Rab11a also reduces the ability of α2δ-1 to increase CaV2.2 expression on the cell-surface of hippocampal neurites. In contrast, α2δ-3 does not enhance rapid forward CaV2.2 trafficking, regardless of whether Rab11a(S25N) is present. In addition, whole-cell CaV2.2 currents are reduced by co-expression of Rab11a(S25N) in the presence of α2δ-1, but not α2δ-3. Taken together these data suggest that α2δ subtypes participate in distinct trafficking pathways which in turn influence the localisation and function of CaV2.2.
Collapse
Affiliation(s)
- James O Meyer
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
29
|
Lo Y, Lin LY, Tsai TF. Use of calcium channel blockers in dermatology: a narrative review. Expert Rev Clin Pharmacol 2021; 14:481-489. [PMID: 33612036 DOI: 10.1080/17512433.2021.1894128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Calcium channel blockers (CCB) are commonly used for cardiovascular diseases. The evidence supporting the use of CCB in dermatology is mostly anecdotal and limited to case reports or small case series.Areas covered: This review article is divided into two parts. The first part discusses the therapeutic use of CCB in dermatology. The second part focuses on mucocutaneous adverse reactions due to the administration of CCB.Expert opinion: The use of CCB in dermatology is mainly based on its properties as a vasodilator and the inhibition of muscle contractions, such as pernio, anal fissures, facial wrinkles, and painful leiomyoma. However, there remain other modes of action to explain its clinical use in calcinosis, keloid, pressure ulcer, and fibromatosis. Compared to oral CCB, the lack of systemic side effects would make topical use of CCB an attractive alternative in the treatment of skin diseases, but the evidence for topical CCB is still limited, and there is a lack of standardized topical formulation. The main mucocutaneous adverse effects of CCB include gingival hyperplasia, phototoxicity, eczema, psoriasis and risk of skin cancers. Plausible factors for these adverse events include CCB's photoinstability, aldosterone synthesis inhibition, disturbed calcium homeostasis and immunosuppressive properties.
Collapse
Affiliation(s)
- Yang Lo
- Department of Dermatology, Cathay General Hospital, Taipei, Taiwan
| | - Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
30
|
Müller WE, Sillani G, Schuwald A, Friedland K. Pharmacological basis of the anxiolytic and antidepressant properties of Silexan®, an essential oil from the flowers of lavender. Neurochem Int 2020; 143:104899. [PMID: 33181239 DOI: 10.1016/j.neuint.2020.104899] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Silexan®, a proprietary essential oil manufactured by steam distillation from Lavandula angustifolia flowers showed pronounced anxiolytic effects in patients with subthreshold anxiety disorders and was also efficacious in patients with Generalized Anxiety disorder (GAD). Moreover, evidences for antidepressant-like properties of Silexan® have been observed in anxious patients suffering from comorbid depressive symptoms and in patients with mixed anxiety-depression disorder (ICD-10 F41.2). In accordance with the clinical data Silexan® is active in several behavioral models in rodents at rather low concentrations indicating potent anxiolytic and antidepressive properties. As possible mechanism of action a moderate inhibition of voltage dependent calcium channels (VDCC) has been found showing some similarities to the anxiolytic drug pregabalin. However, while pregabalin mainly inhibits P/Q-type channels by binding to a modulatory subunit, Silexan® moderately inhibits mainly T-type and N-type channels and to some extent P/Q-type channels. Unlike pregabalin Silexan® is free of hypnotic or sedative side effects and seems to be devoid of any abuse potential. With respect to its specific antidepressant like properties Silexan® improves several aspects of neuroplasticity which seems to be the common final pathway of all antidepressant drugs. As a potential mechanism of its effects on neuroplasticity an activation of the transcription factor CREB via activation of intracellular signaling kinases like PKA and MAPK has been found. Since the concentrations of Silexan® needed to inhibit VDCC function and to improve neuroplasticity are quite similar, the effects of Silexan® on PKA or MAPK could constitute a common intracellular signaling cascade leading to VDCC modulation as well as CREB activation and improved neuroplasticity.
Collapse
Affiliation(s)
- Walter E Müller
- Department of Pharmacology, Biocenter, Goethe-University Frankfurt, Germany.
| | - Giacomo Sillani
- Department of Pharmacology, Biocenter, Goethe-University Frankfurt, Germany
| | - Anita Schuwald
- Department of Pharmacology, Biocenter, Goethe-University Frankfurt, Germany
| | - Kristina Friedland
- Pharmacology and Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Germany
| |
Collapse
|
31
|
Lisek M, Zylinska L, Boczek T. Ketamine and Calcium Signaling-A Crosstalk for Neuronal Physiology and Pathology. Int J Mol Sci 2020; 21:ijms21218410. [PMID: 33182497 PMCID: PMC7665128 DOI: 10.3390/ijms21218410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Ketamine is a non-competitive antagonist of NMDA (N-methyl-D-aspartate) receptor, which has been in clinical practice for over a half century. Despite recent data suggesting its harmful side effects, such as neuronal loss, synapse dysfunction or disturbed neural network formation, the drug is still applied in veterinary medicine and specialist anesthesia. Several lines of evidence indicate that structural and functional abnormalities in the nervous system caused by ketamine are crosslinked with the imbalanced activity of multiple Ca2+-regulated signaling pathways. Due to its ubiquitous nature, Ca2+ is also frequently located in the center of ketamine action, although the precise mechanisms underlying drug’s negative or therapeutic properties remain mysterious for the large part. This review seeks to delineate the relationship between ketamine-triggered imbalance in Ca2+ homeostasis and functional consequences for downstream processes regulating key aspects of neuronal function.
Collapse
|
32
|
Duan HZ, Wu CW, Shen SL, Zhang JY, Li L. Neuroprotective Effects of Early Brain Injury after Subarachnoid Hemorrhage in Rats by Calcium Channel Mediating Hydrogen Sulfide. Cell Mol Neurobiol 2020; 41:1707-1714. [PMID: 32804313 DOI: 10.1007/s10571-020-00940-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/08/2020] [Indexed: 11/26/2022]
Abstract
The present study explored the modulating apoptosis effect of hydrogen sulfide (H2S) in subarachnoid hemorrhage (SAH) rats and its exact mechanism. A rat SAH model established by intravascular puncturing was used for the present study. After giving NaHS (donor of H2S), an L-type calcium channel opener (Bay K8644), or a calcium channel agonist (nifedipine), the neurological function of the rats, associated pathological changes, and expression of apoptosis-related proteins (Bcl-2, Bax, and caspase-3) and microtubule-associated protein (MAP-2) were examined. The concentration of H2S and expression of cystathionine beta synthase in the hippocampus changed upon early brain injury (EBI) after SAH. Compared with the SAH group, the neurological function of the rats and microstructure observed by electron microscopy were better in the SAH + NaHS group and SAH + Bay K8644 group. It was observed that apoptosis was more obvious in the SAH group than in the control group and was alleviated in the SAH + NaHS group. Furthermore, the alleviating effect of NaHS was partially weakened by nifedipine, indicating that the effect of anti-apoptosis in H2S might be correlated with the calcium channel. The expression of Bax and caspase-3 was elevated, while the expression of Bcl-2 decreased in the SAH group but improved in the SAH + NaHS and SAH + Bay K8644 group. Compared with the SAH + NaHS group, the expression of pro-apoptotic proteins was higher in the SAH + NaHS + nifedipine group. Therefore, upon EBI following SAH, the H2S system plays an important neurological protective effect by modulating the function of the L-type calcium channel and inhibiting apoptosis.
Collapse
Affiliation(s)
- Hong-Zhou Duan
- Department of Neurosurgery, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Chong-Wei Wu
- Department of Neurosurgery, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Sheng-Li Shen
- Department of Neurosurgery, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Jia-Yong Zhang
- Department of Neurosurgery, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Liang Li
- Department of Neurosurgery, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| |
Collapse
|
33
|
Different functions of two putative Drosophila α 2δ subunits in the same identified motoneurons. Sci Rep 2020; 10:13670. [PMID: 32792569 PMCID: PMC7426832 DOI: 10.1038/s41598-020-69748-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
Voltage gated calcium channels (VGCCs) regulate neuronal excitability and translate activity into calcium dependent signaling. The α1 subunit of high voltage activated (HVA) VGCCs associates with α2δ accessory subunits, which may affect calcium channel biophysical properties, cell surface expression, localization and transport and are thus important players in calcium-dependent signaling. In vertebrates, the functions of the different combinations of the four α2δ and the seven HVA α1 subunits are incompletely understood, in particular with respect to partially redundant or separate functions in neurons. This study capitalizes on the relatively simpler situation in the Drosophila genetic model containing two neuronal putative α2δ subunits, straightjacket and CG4587, and one Cav1 and Cav2 homolog each, both with well-described functions in different compartments of identified motoneurons. Straightjacket is required for normal Cav1 and Cav2 current amplitudes and correct Cav2 channel function in all neuronal compartments. By contrast, CG4587 does not affect Cav1 or Cav2 current amplitudes or presynaptic function, but is required for correct Cav2 channel allocation to the axonal versus the dendritic domain. We suggest that the two different putative α2δ subunits are required in the same neurons to regulate different functions of VGCCs.
Collapse
|
34
|
Kirchner MK, Armstrong WE, Guan D, Ueta Y, Foehring RC. PIP 2 alters of Ca 2+ currents in acutely dissociated supraoptic oxytocin neurons. Physiol Rep 2020; 7:e14198. [PMID: 31444865 PMCID: PMC6708058 DOI: 10.14814/phy2.14198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022] Open
Abstract
Magnocellular neurosecretory cells (MNCs) occupying the supraoptic nucleus (SON) contain voltage‐gated Ca2+ channels that provide Ca2+ for triggering vesicle release, initiating signaling pathways, and activating channels, such as the potassium channels underlying the afterhyperpolarization (AHP). Phosphotidylinositol 4,5‐bisphosphate (PIP2) is a phospholipid membrane component that has been previously shown to modulate Ca2+ channels, including in the SON in our previous work. In this study, we further investigated the ways in which PIP2 modulates these channels, and for the first time show how PIP2 modulates CaV channel currents in native membranes. Using whole cell patch clamp of genetically labeled dissociated neurons, we demonstrate that PIP2 depletion via wortmannin (0.5 μmol/L) inhibits Ca2+ channel currents in OT but not VP neurons. Additionally, it hyperpolarizes voltage‐dependent activation of the channels by ~5 mV while leaving the slope of activation unchanged, properties unaffected in VP neurons. We also identified key differences in baseline currents between the cell types, wherein VP whole cell Ca2+ currents display more inactivation and shorter deactivation time constants. Wortmannin accelerates inactivation of Ca2+ channels in OT neurons, which we show to be mostly an effect on N‐type Ca2+ channels. Finally, we demonstrate that wortmannin prevents prepulse‐induced facilitation of peak Ca2+ channel currents. We conclude that PIP2 is a modulator that enhances current through N‐type channels. This has implications for the afterhyperpolarization (AHP) of OT neurons, as previous work from our laboratory demonstrated the AHP is inhibited by wortmannin, and that its primary activation is from intracellular Ca2+ contributed by N‐type channels.
Collapse
Affiliation(s)
- Matthew K Kirchner
- Department of Anatomy and Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - William E Armstrong
- Department of Anatomy and Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dongxu Guan
- Department of Anatomy and Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Robert C Foehring
- Department of Anatomy and Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
35
|
Xu X, Ruan L, Tian X, Pan F, Yang C, Liu G. Calcium inhibitor inhibits high glucose‑induced hypertrophy of H9C2 cells. Mol Med Rep 2020; 22:1783-1792. [PMID: 32705176 PMCID: PMC7411357 DOI: 10.3892/mmr.2020.11275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to explore whether the hypertrophy of H9C2 cardiomyocytes was induced by high glucose, to investigate whether the calcium channel inhibitor (Norvasc) could inhibit this process and to clarify the possible signaling pathways. The morphology of H9C2 cells was observed under an optical microscope, and the cell surface area was measured by Image Pro Plus 6.1 software. Furthermore, fluorescence spectrophotometry was used to detect intracellular calcium concentration ([Ca2+]i). ELISA was performed to detect calcineurin (CaN) activity; reverse transcription-quantitative PCR and western blotting were performed to detect the mRNA and protein expression levels of CaN Aβ subunit (CnAβ), nuclear factor of activated T cells 3 (NFAT3) and β type myosin heavy chain (β-MHC). Cell size was increased with the increase in glucose concentration of culture medium at 48 and 72 h, respectively, and decreased with the addition of Norvasc compared with those without Norvasc (P<0.05). There was no significant difference in cell size with the addition of Norvasc compared with cells cultured with 5 mM glucose (P>0.05). The average [Ca2+]i activity of single cells in the 48- and 72-h culture groups treated with 50 mM glucose was significantly higher than cells treated with 5 mM glucose (P<0.05); and the fluorescent value of average [Ca2+]i activity of single cells was lower, following the addition of Norvasc than that without Norvasc (P<0.05). CaN activity in the 48- and 72-h culture group treated with 50 mM glucose was markedly higher than that treated with 5 mM glucose, and the activity of CaN notably decreased with the addition of Norvasc compared with those without Norvasc. The mRNA and protein expression levels of CnAβ, NFAT3 and β-MHC in the 48- and 72-h culture groups treated with 50 mM glucose were all significantly higher than those treated with 5 mM glucose (P<0.05). The mRNA and protein expression of CnAβ, NFAT3 and β-MHC cultured with 50 mM glucose were significantly decreased following the addition of Norvasc (P<0.05). Thus, the calcium channel inhibitor Norvasc may inhibit high glucose-induced hypertrophy of H9C2 cardiomyocytes by inhibiting the Ca2+-CaN-NFAT3 signaling pathway.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Pediatrics, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, Guangdong 510800, P.R. China
| | - Luoyang Ruan
- Department of Anesthesiology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, Guangdong 510800, P.R. China
| | - Xiaohua Tian
- Department of Pediatrics, Central Hospital of Guangdong Nongken, Zhanjiang, Guangdong 524002, P.R. China
| | - Fengjuan Pan
- Department of Pediatrics, Central Hospital of Guangdong Nongken, Zhanjiang, Guangdong 524002, P.R. China
| | - Cailan Yang
- Department of Pediatrics, Central Hospital of Guangdong Nongken, Zhanjiang, Guangdong 524002, P.R. China
| | - Guosheng Liu
- Department of Pediatrics, The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
36
|
Groome JR, Bayless-Edwards L. Roles for Countercharge in the Voltage Sensor Domain of Ion Channels. Front Pharmacol 2020; 11:160. [PMID: 32180723 PMCID: PMC7059764 DOI: 10.3389/fphar.2020.00160] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated ion channels share a common structure typified by peripheral, voltage sensor domains. Their S4 segments respond to alteration in membrane potential with translocation coupled to ion permeation through a central pore domain. The mechanisms of gating in these channels have been intensely studied using pioneering methods such as measurement of charge displacement across a membrane, sequencing of genes coding for voltage-gated ion channels, and the development of all-atom molecular dynamics simulations using structural information from prokaryotic and eukaryotic channel proteins. One aspect of this work has been the description of the role of conserved negative countercharges in S1, S2, and S3 transmembrane segments to promote sequential salt-bridge formation with positively charged residues in S4 segments. These interactions facilitate S4 translocation through the lipid bilayer. In this review, we describe functional and computational work investigating the role of these countercharges in S4 translocation, voltage sensor domain hydration, and in diseases resulting from countercharge mutations.
Collapse
Affiliation(s)
- James R. Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Landon Bayless-Edwards
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
- Oregon Health and Sciences University School of Medicine, Portland, OR, United States
| |
Collapse
|
37
|
Huang L, Chu Y, Huang X, Ma S, Lin K, Huang K, Sun H, Yang Z. Association between gene polymorphisms of voltage-dependent Ca 2+ channels and hypertension in the Dai people of China: a case-control study. BMC MEDICAL GENETICS 2020; 21:44. [PMID: 32111194 PMCID: PMC7049211 DOI: 10.1186/s12881-020-0982-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Abnormal calcium homeostasis related to the development of hypertension. As the key regulator of intracellular calcium concentration, voltage-dependent calcium channels (VDCCs), the variations in these genes may have important effects on the development of hypertension. Here we evaluate VDCCs variability with respect to hypertension in the Dai ethnic group of China. METHODS A total of 1034 samples from Dai individuals were collected, of which 495 were used as cases, and 539 were used as controls. Blood pressure was measured using a standard mercury measurement method, three times with a rest for 5 min, and the average was used for analyses. Seventeen single nucleotide polymorphisms (SNPs) in the four protein-coding genes (CACNA1A, CACNA1C, CACNA1S, CACNB2) of VDCCs were identified by multiplex PCR-SNP typing technique. Chi-square tests and regression models were used to analyse the associations of SNPs with hypertension. RESULTS The results of chi-square tests showed that the allele frequencies of 5 SNPs were significantly different between the case and the control groups (P < 0.05), but the statistical significance was lost after Bonferroni's correction. However, after adjusting for BMI, age, sex and other factors by logistic regression analyses, the results showed that 5 SNPs consistent with chi-square tests (rs2365293, rs17539088, rs16917217, rs61839222 and rs10425859) were still statistically positive. CONCLUSIONS This finding suggested that the significant association of these SNPs with hypertension may be noteworthy in future studies.
Collapse
Affiliation(s)
- Lifan Huang
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yan Chu
- Department of General Surgery of the 2nd People Hospital of Yunnan Province, Kunming, China
| | - Xiaoqin Huang
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Shaohui Ma
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Keqin Lin
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Kai Huang
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hao Sun
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| | - Zhaoqing Yang
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| |
Collapse
|
38
|
Ferron L, Novazzi CG, Pilch KS, Moreno C, Ramgoolam K, Dolphin AC. FMRP regulates presynaptic localization of neuronal voltage gated calcium channels. Neurobiol Dis 2020; 138:104779. [PMID: 31991246 PMCID: PMC7152798 DOI: 10.1016/j.nbd.2020.104779] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/09/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022] Open
Abstract
Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism, results from the loss of fragile X mental retardation protein (FMRP). We have recently identified a direct interaction of FMRP with voltage-gated Ca2+ channels that modulates neurotransmitter release. In the present study we used a combination of optophysiological tools to investigate the impact of FMRP on the targeting of voltage-gated Ca2+ channels to the active zones in neuronal presynaptic terminals. We monitored Ca2+ transients at synaptic boutons of dorsal root ganglion (DRG) neurons using the genetically-encoded Ca2+ indicator GCaMP6f tagged to synaptophysin. We show that knock-down of FMRP induces an increase of the amplitude of the Ca2+ transient in functionally-releasing presynaptic terminals, and that this effect is due to an increase of N-type Ca2+ channel contribution to the total Ca2+ transient. Dynamic regulation of CaV2.2 channel trafficking is key to the function of these channels in neurons. Using a CaV2.2 construct with an α-bungarotoxin binding site tag, we further investigate the impact of FMRP on the trafficking of CaV2.2 channels. We show that forward trafficking of CaV2.2 channels from the endoplasmic reticulum to the plasma membrane is reduced when co-expressed with FMRP. Altogether our data reveal a critical role of FMRP on localization of CaV channels to the presynaptic terminals and how its defect in a context of FXS can profoundly affect synaptic transmission. Loss of FMRP increases presynaptic Ca2+ transients. FMRP is a negative regulator of presynaptic Cav2.2 channel abundance. FMRP reduces the forward trafficking of Cav2.2 channels from ER to plasma membrane. Distal part of FMRP carboxy terminus is key for interaction with Cav2.2 channels.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| | - Cesare G Novazzi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Kjara S Pilch
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Cristian Moreno
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Krishma Ramgoolam
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
39
|
Interstitial serum albumin empowers osteosarcoma cells with FAIM2 transcription to obtain viability via dedifferentiation. In Vitro Cell Dev Biol Anim 2020; 56:129-144. [PMID: 31942726 DOI: 10.1007/s11626-019-00421-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
During hematogenous metastasis, cancer cells escape from primary lesions and enter into the circulatory system, and only a few can colonize distant organs. However, the mechanism of cell survival and metastasis in the hematopoietic environment remains unclear. Angiorrhea is the character of pathological neovascularization in malignant tumors and commonly detected in osteosarcoma (OS), a bone tumor that prefers circulatory metastasis. In the present study, we focused on the notable role of serum albumin, the highest content in blood plasma, on OS progression. Our results indicated that serum albumin might act as a barrier against exogenous cancer cells during hematogenous metastasis. OS cells with high metastatic potential could gradually obtain strong viability through dedifferentiation under the effect of serum albumin in the angiorrhea region. Further exploration showed that serum albumin could increase the intracellular calcium concentration by activating the voltage-dependent calcium channel Cav2.1 in OS cells to affect the cytoskeleton, sequentially leading to dedifferentiation. Dedifferentiated OS cells with increased FAS apoptosis inhibitory molecule 2 (FAIM2) expression would gradually acquire survival ability, whereas knockdown of FAIM2 caused apoptosis in serum albumin. Moreover, FAIM2 overexpression rescued the viability of OS cells with low metastatic potential in serum albumin. In clinical specimens, OS cells showed markedly stronger positive staining of FAIM2 in the angiorrhea area. Taken together, our findings indicate that serum albumin in the angiorrhea region is a critical substance during pulmonary metastasis of OS cells. Angiorrhea is a nonnegligible prognostic element and FAIM2 might serve as a promising therapeutic target.
Collapse
|
40
|
Noyer L, Lemonnier L, Mariot P, Gkika D. Partners in Crime: Towards New Ways of Targeting Calcium Channels. Int J Mol Sci 2019; 20:ijms20246344. [PMID: 31888223 PMCID: PMC6940757 DOI: 10.3390/ijms20246344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
The characterization of calcium channel interactome in the last decades opened a new way of perceiving ion channel function and regulation. Partner proteins of ion channels can now be considered as major components of the calcium homeostatic mechanisms, while the reinforcement or disruption of their interaction with the channel units now represents an attractive target in research and therapeutics. In this review we will focus on the targeting of calcium channel partner proteins in order to act on the channel activity, and on its consequences for cell and organism physiology. Given the recent advances in the partner proteins’ identification, characterization, as well as in the resolution of their interaction domain structures, we will develop the latest findings on the interacting proteins of the following channels: voltage-dependent calcium channels, transient receptor potential and ORAI channels, and inositol 1,4,5-trisphosphate receptor.
Collapse
Affiliation(s)
- Lucile Noyer
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France; (L.N.); (L.L.); (P.M.)
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Loic Lemonnier
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France; (L.N.); (L.L.); (P.M.)
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Pascal Mariot
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France; (L.N.); (L.L.); (P.M.)
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Dimitra Gkika
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France; (L.N.); (L.L.); (P.M.)
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, 59655 Villeneuve d’Ascq, France
- Correspondence: ; Tél.: +33-(0)3-2043-6838
| |
Collapse
|
41
|
Robinson BL, Gu Q, Tryndyak V, Ali SF, Dumas M, Kanungo J. Nifedipine toxicity is exacerbated by acetyl l-carnitine but alleviated by low-dose ketamine in zebrafish in vivo. J Appl Toxicol 2019; 40:257-269. [PMID: 31599005 DOI: 10.1002/jat.3901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
Calcium channel blocker (CCB) poisoning is a common and sometimes life-threatening emergency. Our previous studies have shown that acetyl l-carnitine (ALCAR) prevents cardiotoxicity and developmental toxicity induced by verapamil, a CCB used to treat patients with hypertension. Here, we tested whether toxicities of nifedipine, a dihydropyridine CCB used to treat hypertension, can also be mitigated by co-treatment with ALCAR. In the zebrafish embryos at three different developmental stages, nifedipine induced developmental toxicity with pericardial sac edema in a dose-dependent manner, which were surprisingly exacerbated with ALCAR co-treatment. Even with low-dose nifedipine (5 μm), when the pericardial sac looked normal, ALCAR co-treatment showed pericardial sac edema. We hypothesized that toxicity by nifedipine, a vasodilator, may be prevented by ketamine, a known vasoconstrictor. Nifedipine toxicity in the embryos was effectively prevented by co-treatment with low (subanesthetic) doses (25-100 μm added to the water) of ketamine, although a high dose of ketamine (2 mm added to the water) partially prevented the toxicity.As expected of a CCB, nifedipine either in the presence or absence of ketamine-reduced metabolic reactive oxygen species (ROS), a downstream product of calcium signaling, in the rapidly developing digestive system. However, nifedipine induced ROS in the trunk region that showed significantly stunted growth indicating that the tissues under stress potentially produced pathologic ROS. To the best of our knowledge, these studies for the first time show that nifedipine and the dietary supplement ALCAR together induce adverse effects while providing evidence on the therapeutic efficacy of subanesthetic doses of ketamine against nifedipine toxicity in vivo.
Collapse
Affiliation(s)
- Bonnie L Robinson
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| | - Qiang Gu
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Syed F Ali
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| | | | - Jyotshna Kanungo
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
42
|
Huntula S, Saegusa H, Wang X, Zong S, Tanabe T. Involvement of N-type Ca 2+ channel in microglial activation and its implications to aging-induced exaggerated cytokine response. Cell Calcium 2019; 82:102059. [PMID: 31377554 DOI: 10.1016/j.ceca.2019.102059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
Voltage-dependent calcium channel (VDCC) is generally believed to be active only in excitable cells. However, we have reported recently that N-type VDCC (Cav2.2) could become functional in non-excitable cells under pathological conditions. In the present study, we show that Cav2.2 channels are also functional in physiological microglial activation process. By using a mouse microglial cell line (MG6), we examined the effects of a Cav2.2 blocker on the activation of MG6 cells, when treated with lipopolysaccharide (LPS) / interferon γ (IFNγ) or with interleukin-4 (IL-4). As a result, blocking the activation of Cav2.2 enhanced so-called alternative activation process of microglia (transition to neuroprotective M2 microglia) without changing the efficacy of the transition to neuroinflammatory M1 microglia. This enhanced M2 transition involved the activation of a transcription factor hypoxia inducible factor 2 (HIF-2), since a specific blocker of HIF-2 completely abolished this enhancement. We then examined whether Cav2.2 activation was involved in aging-related neuroinflammation. Using primary culture of microglia, we found that the efficacy of microglial M1 transition was enhanced but that M2 transition was reduced by aging, in agreement with a general notion that aging induces enhanced neuroinflammation. Finally, we show here that the moderate blockade of Cav2.2 expression in microglia restores this age-dependent reduction of microglial M2 transition and reduces the aging-induced exaggerated cytokine response, as revealed by a fast recovery from depressive-like behaviors in microglia-specific Cav2.2 deficient mice. These results suggest a critical role for microglial Cav2.2 channel in the aging-related neuroinflammation.
Collapse
Affiliation(s)
- Soontaraporn Huntula
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hironao Saegusa
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Xinshuang Wang
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shuqin Zong
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tsutomu Tanabe
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
43
|
Morales Duque H, Campos Dias S, Franco OL. Structural and Functional Analyses of Cone Snail Toxins. Mar Drugs 2019; 17:md17060370. [PMID: 31234371 PMCID: PMC6628382 DOI: 10.3390/md17060370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cone snails are marine gastropod mollusks with one of the most powerful venoms in nature. The toxins, named conotoxins, must act quickly on the cone snails´ prey due to the fact that snails are extremely slow, reducing their hunting capability. Therefore, the characteristics of conotoxins have become the object of investigation, and as a result medicines have been developed or are in the trialing process. Conotoxins interact with transmembrane proteins, showing specificity and potency. They target ion channels and ionotropic receptors with greater regularity, and when interaction occurs, there is immediate physiological decompensation. In this review we aimed to evaluate the structural features of conotoxins and the relationship with their target types.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS 79.117-900, Brazil.
| |
Collapse
|
44
|
Molecular and Cellular Mechanisms Underlying Somatostatin-Based Signaling in Two Model Neural Networks, the Retina and the Hippocampus. Int J Mol Sci 2019; 20:ijms20102506. [PMID: 31117258 PMCID: PMC6566141 DOI: 10.3390/ijms20102506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Neural inhibition plays a key role in determining the specific computational tasks of different brain circuitries. This functional "braking" activity is provided by inhibitory interneurons that use different neurochemicals for signaling. One of these substances, somatostatin, is found in several neural networks, raising questions about the significance of its widespread occurrence and usage. Here, we address this issue by analyzing the somatostatinergic system in two regions of the central nervous system: the retina and the hippocampus. By comparing the available information on these structures, we identify common motifs in the action of somatostatin that may explain its involvement in such diverse circuitries. The emerging concept is that somatostatin-based signaling, through conserved molecular and cellular mechanisms, allows neural networks to operate correctly.
Collapse
|
45
|
Taghizadehghalehjoughi A, Sezen S, Hacimuftuoglu A, Güllüce M. Vincristine combination with Ca +2 channel blocker increase antitumor effects. Mol Biol Rep 2019; 46:2523-2528. [PMID: 30903573 DOI: 10.1007/s11033-019-04706-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/15/2019] [Indexed: 11/29/2022]
Abstract
In this study, it was aimed to determine the effects of Amlodipine, a calcium channel blocker and vincristine (VCR) an antineoplastic, on human neuroblastomas using different doses. The cytotoxicity assays of the study were performed using the MTT method depending on time and concentration. After obtaining the mixture (up to 85% for SH-SY5Y) and sufficient branches (cortex neurons), the cells were treated with amlodipine (10 µM) and vincristine (0.5, 1 and 2 µg) at different concentrations for 24 h. MTT assay was performed by the commercially available kit (Sigma Aldrich, USA). Cells were harvested, washed and stained with PI and Annexin V, respectively, according to the manufacturer's protocol (Biovision, USA). Than analyzes were carried out. The results were quite impressive. When amlodipine (10 µM) was administered alone there was little change compared to the control. However, all doses of amlodipine (10 µM) and vincristine (0.5, 1 and 2 µg) were greater than the deaths in the doses alone (0.5, 1 and 2 µg) of vincristine alone. (P < 0.05). As a result, the combination of vincristine and amlodipine is more effective than vincristine alone in reducing the viability of cancer cells.
Collapse
Affiliation(s)
- Ali Taghizadehghalehjoughi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erzurum, Turkey.,Department of Medical Pharmacology, Atatürk Univeristy, Erzurum, Turkey
| | - Selma Sezen
- Department of Medical Pharmacology, Atatürk Univeristy, Erzurum, Turkey.
| | | | - Medine Güllüce
- Department of Biology, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|