1
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Antioxidant Therapies in the Treatment of Multiple Sclerosis. Biomolecules 2024; 14:1266. [PMID: 39456199 PMCID: PMC11506420 DOI: 10.3390/biom14101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Several studies have proposed a potential role for oxidative stress in the development of multiple sclerosis (MS). For this reason, it seems tentative to think that treatment with antioxidant substances could be useful in the treatment of this disease. In this narrative review, we provide a summary of the current findings on antioxidant treatments, both in experimental models of MS, especially in experimental autoimmune encephalomyelitis (EAE) and in the cuprizone-induced demyelination model, and clinical trials in patients diagnosed with MS. Practically all the antioxidants tested in experimental models of MS have shown improvement in clinical parameters, in delaying the evolution of the disease, and in improving histological and biochemical parameters, including decreased levels of markers of inflammation and oxidative stress in the central nervous system and other tissues. Only a few clinical trials have been carried out to investigate the potential efficacy of antioxidant substances in patients with MS, most of them in the short term and involving a short series of patients, so the results of these should be considered inconclusive. In this regard, it would be desirable to design long-term, randomized, multicenter clinical trials with a long series of patients, assessing several antioxidants that have demonstrated efficacy in experimental models of MS.
Collapse
Grants
- PI18/00540 Fondo de Investigación Sanitaria, Instituto de Salud Carlos, Madrid, Spain
- PI21/01683 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain
- IB20134 Junta de Extremadura, Mérida, Spain
- GR21073 Junta de Extremadura, Mérida, Spain
Collapse
Affiliation(s)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
2
|
Abdelalim LR, Elnaggar YSR, Abdallah OY. Pectin-stabilized nanoceria double coated with lactoferrin/chitosan for management of experimental autoimmune encephalomyelitis. Colloids Surf B Biointerfaces 2024; 245:114271. [PMID: 39353349 DOI: 10.1016/j.colsurfb.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Cerium oxide nanoparticles are a unique antioxidant mimicking the activity of natural antioxidant enzymes. Previous research showed its' promising effect mitigating free radical damage in neurodegenerative disorders. However, there is still unmet therapeutic needs due to poor BBB penetration, a high accumulation in liver, kidney and spleen. This study aimed to synthesize and optimize nanoceria stabilized by natural bioactive polymers suitable for intranasal administration to manage multiple sclerosis. Among the different employed biopolymers, pectin-stabilized nanoceria exhibited the ideal properties with small particles size 87.20 ± 3.43 nm, high zeta potential -56.37 ± 2.39 mV and high free radical scavenging activity 85.27 ± 0.07 %. Then coating was achieved for the first time by two biopolymers: lactoferrin and chitosan producing a double coated cationic nanoceria. Biological assessment involved using experimental autoimmune encephalomyelitis animal model treated in a dose of 1 mg/kg nanoceria for 15 days. Motor function testing in rats revealed 6- and 17-folds increase in latency time in rotating rod and hanging wire tests, respectively. Biochemical analysis revealed significant reduction in lipid peroxidation along with about 1-fold upgrading of the intrinsic antioxidant system. Moreover, histologic examination disclosed decreased degeneration of the brain and spinal cord of treated rats and much decreased liver toxicity.
Collapse
Affiliation(s)
- Lamiaa R Abdelalim
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Mustafa AM, Shaheen AM, Zaki HF, Rabie MA. Nicorandil and carvedilol mitigates motor deficits in experimental autoimmune encephalomyelitis-induced multiple sclerosis: Role of TLR4/TRAF6/MAPK/NF-κB signalling cascade. Int Immunopharmacol 2024; 127:111387. [PMID: 38134593 DOI: 10.1016/j.intimp.2023.111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating neurodegenerative disease that negatively affects neurotransmission. It can be pathologically mimicked by experimental autoimmune encephalomyelitis (EAE) animal model. ATP-sensitive potassium channels (KATP) plays a crucial role in the control of neuronal damage, however their role in MS are still obscure. Additionally, Carvedilol showed a promising neuroprotective activity against several neurological disorders. Therefore, the present study aimed to investigate the potential neuroprotective effect of KATP channel opener (nicorandil) as well as α and β adrenoceptor antagonist (Carvedilol) against EAE induced neurodegeneration in mice. Mice was treated with nicorandil (6 mg/kg/day; p.o.) and carvedilol (10 mg/kg/day; p.o.) for 14 days. Nicorandil and carvedilol showed improvement in clinical scoring, behaviour and motor coordination as established by histopathological investigation and immunohistochemical detection of MBP. Furthermore, both treatments downregulated the protein expression of TLR4/ MYD88/TRAF6 signalling cascade with downstream inhibition of (pT183/Y185)-JNK/p38 (pT180/Y182)-MAPK axis leading to reduction of neuroinflammatory status, as witnessed by reduction of NF-κB, TNF-α, IL-1β and IL-6 contents. Moreover, nicorandil and carvedilol attenuated oxidative damage by increasing Nrf2 content and SOD activity together with reduction of MDA content. In addition, an immunomodulating effect via inhibiting the gene expression of CD4, TGF-β, and IL-17 as well as TGF-β, IL-17, and IL-23 contents along with anti-apoptotic effect by decreasing Bax protein expression and Caspase-3 content and increasing Bcl-2 protein expression was observed with nicorandil and carvedilol treatments. In conclusion, nicorandil and carvedilol exerted a neuroprotective activity against EAE induced neuronal loss via inhibition of TLR4/MYD88/TRAF6/JNK/p38-MAPK axis besides antioxidant and anti-apoptotic effects.
Collapse
Affiliation(s)
- Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Aya M Shaheen
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
4
|
Khalatbari Mohseni G, Hosseini SA, Majdinasab N, Cheraghian B. Effects of N-acetylcysteine on oxidative stress biomarkers, depression, and anxiety symptoms in patients with multiple sclerosis. Neuropsychopharmacol Rep 2023; 43:382-390. [PMID: 37386885 PMCID: PMC10496087 DOI: 10.1002/npr2.12360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
AIM N-acetylcysteine (NAC), a thiol-containing antioxidant and glutathione (GSH) precursor, attenuates oxidative stress, and possibly improves psychiatric disorders. This study aimed to evaluate the effects of oral NAC on oxidative stress, depression, and anxiety symptoms in patients with multiple sclerosis (MS). METHODS This clinical trial was conducted on 42 MS patients randomly assigned to intervention (n = 21) and control (n = 21) groups. The intervention group received 600 mg of NAC twice daily for 8 weeks, and the control group received a placebo with the same prescription form. An analysis of serum malondialdehyde (MDA), serum nitric oxide (NO), and erythrocyte GSH was carried out on both groups, along with a complete blood count. The Hospital Anxiety and Depression Scale (HADS) was used to assess symptoms of depression (HADS-D) and anxiety (HADS-A). RESULTS Compared to the control group, NAC consumption significantly decreased serum MDA concentrations (-0.33 [-5.85-2.50] vs. 2.75 [-0.25-5.22] μmol/L; p = 0.03) and HADS-A scores (-1.6 ± 2.67 vs. 0.33 ± 2.83; p = 0.02). No significant changes were observed in serum NO concentrations, erythrocyte GSH levels, and HADS-D scores (p > 0.05). CONCLUSIONS Based on the findings of the present study, NAC supplementation for 8 weeks decreased lipid peroxidation and improved anxiety symptoms in MS patients. The aforementioned results suggest that adjunctive therapy with NAC can be considered an effective strategy for MS management. Further randomized controlled studies are warranted.
Collapse
Affiliation(s)
- Golsa Khalatbari Mohseni
- Nutrition and Metabolic Diseases Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Nutrition, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Nutrition, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Nastaran Majdinasab
- Department of Neurology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Bahman Cheraghian
- Department of Statistics and Epidemiology, School of Public HealthAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
5
|
The Multiple Sclerosis Modulatory Potential of Natural Multi-Targeting Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238402. [PMID: 36500494 PMCID: PMC9740750 DOI: 10.3390/molecules27238402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Multiple sclerosis (MS) is a complex neurodegenerative disease. Although its pathogenesis is rather vague in some aspects, it is well known to be an inflammatory process characterized by inflammatory cytokine release and oxidative burden, resulting in demyelination and reduced remyelination and axonal survival together with microglial activation. Antioxidant compounds are gaining interest towards the manipulation of MS, since they offer, in most of the cases, many benefits, due to their pleiotropical activity, that mainly derives from the oxidative stress decrease. This review analyzes research articles, of the last decade, which describe biological in vitro, in vivo and clinical evaluation of various categories of the most therapeutically applied natural antioxidant compounds, and some of their derivatives, with anti-MS activity. It also summarizes some of the main characteristics of MS and the role the reactive oxygen and nitrogen species may have in its progression, as well as their relation with the other mechanistic aspects of the disease, in order for the multi-targeting potential of those antioxidants to be defined and the source of origination of such activity explained. Antioxidant compounds with specific characteristics are expected to affect positively some aspects of the disease, and their potential may render them as effective candidates for neurological impairment reduction in combination with the MS treatment regimen. However, more studies are needed in order such antioxidants to be established as recommended treatment to MS patients.
Collapse
|
6
|
Sanchez JMS, DePaula-Silva AB, Libbey JE, Fujinami RS. Role of diet in regulating the gut microbiota and multiple sclerosis. Clin Immunol 2022; 235:108379. [PMID: 32156562 PMCID: PMC7483914 DOI: 10.1016/j.clim.2020.108379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/18/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Robert S. Fujinami
- Corresponding author at: University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA. (R.S. Fujinami)
| |
Collapse
|
7
|
Dąbrowska-Bouta B, Strużyńska L, Sidoryk-Węgrzynowicz M, Sulkowski G. Memantine Modulates Oxidative Stress in the Rat Brain following Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2021; 22:11330. [PMID: 34768760 PMCID: PMC8583197 DOI: 10.3390/ijms222111330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model most commonly used in research on the pathomechanisms of multiple sclerosis (MS). The inflammatory processes, glutamate excitotoxicity, and oxidative stress have been proposed as determinants accompanying demyelination and neuronal degeneration during the course of MS/EAE. The aim of the current study was to characterize the role of NMDA receptors in the induction of oxidative stress during the course of EAE. The effect of memantine, the uncompetitive NMDA receptor antagonist, on modulation of neurological deficits and oxidative stress in EAE rats was analyzed using several experimental approaches. We demonstrated that the expression of antioxidative enzymes (superoxide dismutases SOD1 and SOD2) were elevated in EAE rat brains. Under the same experimental conditions, we observed alterations in oxidative stress markers such as increased levels of malondialdehyde (MDA) and decreased levels of sulfhydryl (-SH) groups, both protein and non-protein (indicating protein damage), and a decline in reduced glutathione. Importantly, pharmacological inhibition of ionotropic NMDA glutamate receptors by their antagonist memantine improved the physical activity of EAE rats, alleviated neurological deficits such as paralysis of tail and hind limbs, and modulated oxidative stress parameters (MDA, -SH groups, SOD's). Furthermore, the current therapy aiming to suppress NMDAR-induced oxidative stress was partially effective when NMDAR's antagonist was administered at an early (asymptomatic) stage of EAE.
Collapse
Affiliation(s)
| | | | | | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland; (B.D.-B.); (L.S.); (M.S.-W.)
| |
Collapse
|
8
|
A novel fatty acid-binding protein 5 and 7 inhibitor ameliorates oligodendrocyte injury in multiple sclerosis mouse models. EBioMedicine 2021; 72:103582. [PMID: 34624687 PMCID: PMC8502714 DOI: 10.1016/j.ebiom.2021.103582] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease characterised by the demyelination of mature oligodendrocytes in the central nervous system. Recently, several studies have indicated the vital roles of fatty acid-binding proteins (FABPs) 5 and 7 in regulating the immune response. METHODS We assessed a novel FABP5/FABP7 inhibitor, FABP ligand 6 (MF 6), as a potential therapeutic for MS therapy. In vivo, we established MOG35-55-administered experimental autoimmune encephalomyelitis (EAE) mice as an MS mouse model, followed by prophylactic and symptomatic treatment with MF 6. The therapeutic effect of MF 6 was determined using behavioural and biochemical analyses. In vitro, MF 6 effects on astrocytes and oligodendrocytes were examined using both astrocyte primary culture and KG-1C cell lines. FINDINGS Prophylactic and symptomatic MF 6 therapy reduced myelin loss and clinical EAE symptoms. Furthermore, oxidative stress levels and GFAP-positive and ionised calcium-binding adaptor protein-1-positive cells were reduced in the spinal cord of MF 6-treated mice. In addition, MF 6 attenuated lipopolysaccharide-stimulated interleukin-1β and tumour necrosis factor-α accumulation in primary astrocyte culture. Moreover, MF 6 indicated a powerful protective function for the mitochondria in the oligodendrocytes of EAE mice via FABP5 inhibition. INTERPRETATIONS MF 6 is a potent inhibitor of FABP5 and FABP7; targeted inhibition of the two proteins may confer potential therapeutic effects in MS via immune inhibition and oligodendrocyte protection. FUNDING This work was supported by the Strategic Research Program for Brain Sciences from the Japan Agency for Medical Research and Development (JP17dm0107071, JP18dm0107071, JP19dm0107071, and JP20dm0107071).
Collapse
|
9
|
Chatterji A, Banerjee D, Billiar TR, Sengupta R. Understanding the role of S-nitrosylation/nitrosative stress in inflammation and the role of cellular denitrosylases in inflammation modulation: Implications in health and diseases. Free Radic Biol Med 2021; 172:604-621. [PMID: 34245859 DOI: 10.1016/j.freeradbiomed.2021.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
S-nitrosylation is a very fundamental post-translational modification of protein and non-protein thiols due the involvement of it in a variety of cellular processes including activation/inhibition of several ion channels such as ryanodine receptor in the cardiovascular system; blood vessel dilation; cGMP signaling and neurotransmission. S-nitrosothiol homeostasis in the cell is tightly regulated and perturbations in homeostasis result in an altered redox state leading to a plethora of disease conditions. However, the exact role of S-nitrosylated proteins and nitrosative stress metabolites in inflammation and in inflammation modulation is not well-reviewed. The cell utilizes its intricate defense mechanisms i.e. cellular denitrosylases such as Thioredoxin (Trx) and S-nitrosoglutathione reductase (GSNOR) systems to combat nitric oxide (NO) pathology which has also gained current attraction as novel anti-inflammatory molecules. This review attempts to provide state-of-the-art knowledge from past and present research on the mechanistic role of nitrosative stress intermediates (RNS, OONO-, PSNO) in pulmonary and autoimmune diseases and how cellular denitrosylases particularly GSNOR and Trx via imparting opposing effects can modulate and reduce inflammation in several health and disease conditions. This review would also bring into notice the existing gaps in current research where denitrosylases can be utilized for ameliorating inflammation that would leave avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Ajanta Chatterji
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Debasmita Banerjee
- Department of Molecular Biology and Biotechnology, University of Kalyani, Block C, Nadia, Kalyani, West Bengal, 741235, India
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 5213, USA
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
10
|
Shahrampour S, Heholt J, Wang A, Vedaei F, Mohamed FB, Alizadeh M, Wang Z, Zabrecky G, Wintering N, Bazzan AJ, Leist TP, Monti DA, Newberg AB. N-acetyl cysteine administration affects cerebral blood flow as measured by arterial spin labeling MRI in patients with multiple sclerosis. Heliyon 2021; 7:e07615. [PMID: 34377857 PMCID: PMC8327674 DOI: 10.1016/j.heliyon.2021.e07615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 07/14/2021] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND The purpose of this study was to explore if administration of N-acetyl-cysteine (NAC) in patients with multiple sclerosis (MS) resulted in altered cerebral blood flow (CBF) based on Arterial Spin Labeling (ASL) magnetic resonance imaging (MRI). METHODS Twenty-three patients with mild to moderate MS, (17 relapsing remitting and 6 primary progressive) were randomized to either NAC plus standard of care (N = 11), or standard of care only (N = 12). The experimental group received NAC intravenously (50 mg/kg) once per week and orally (500mg 2x/day) the other six days. Patients in both groups were evaluated initially and after 2 months (of receiving the NAC or waitlist control) with ASL MRI to measure CBF. Clinical symptom questionnaires were also completed at both time points. RESULTS The CBF data showed significant differences in several brain regions including the pons, midbrain, left temporal and frontal lobe, left thalamus, right middle frontal lobe and right temporal/hippocampus (p < 0.001) in the MS group after treatment with NAC, when compared to the control group. Self-reported scores related to cognition and attention were also significantly improved in the NAC group as compared to the control group. CONCLUSIONS The results of this study suggest that NAC administration alters resting CBF in MS patients, and this is associated with qualitative improvements in cognition and attention. Given these findings, large scale efficacy studies will be of value to determine the potential clinical impact of NAC over the course of illness in patients with MS, as well as the most effective dosages and differential effects across subpopulations.
Collapse
Affiliation(s)
- Shiva Shahrampour
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Justin Heholt
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew Wang
- Charles E. Schmidt College of Medicine, Marcus Institute of Integrative Health at FAU Medicine, Florida Atlantic University, Boca Raton, FL USA
| | - Faezeh Vedaei
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Feroze B. Mohamed
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mahdi Alizadeh
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ze Wang
- Department of Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anthony J. Bazzan
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Thomas P. Leist
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Daniel A. Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew B. Newberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Mohammadi H, Daryabor G, Ghaffarian Bahraman A, Keshavarzi M, Kalantar K, Mohammadi-Bardbori A. Aryl hydrocarbon receptor engagement during redox alteration determines the fate of CD4 + T cells in C57BL/6 mice. J Biochem Mol Toxicol 2021; 35:e22821. [PMID: 34036678 DOI: 10.1002/jbt.22821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/09/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023]
Abstract
The preservation of the redox homeostasis is critical for cell survival and functionality. Redox imbalance is an essential inducer of several pathological states. CD4+ /helper T cells are highly dependent on the redox state of their surrounding milieu. The potential of the aryl hydrocarbon receptor (AhR) engagement in controlling CD4+ T-cell fate during redox alteration is still challenging. C57BL/6 mice were treated with AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ), AhR antagonist CH223191, an inhibitor of glutathione biosynthesis buthionine sulfoximine (BSO), and the antioxidant N-acetylcysteine (NAC) alone or in combination. Six days later, splenocytes were evaluated for the expression of the redox-related genes and the possible changes in T-cell subsets. FICZ like BSO significantly elevated the expression of HMOX1, GCLC, and GCLM genes but it failed to increase the expression of the Nrf2 gene. Moreover, FICZ + BSO increased while FICZ + CH223191 or NAC decreased the expression of these genes. FICZ also significantly increased Th1 cell numbers but decreased Tregs in a dose-dependent manner. Furthermore, a high dose of FICZ + CH223191 + NAC significantly enhanced Th1, Th17, and Treg cells but its low dose in such a situation increased Th2 and Th17 while decreased Treg cells. AhR engagement during redox alteration can determine the fate of CD4 + T cells, so, AhR agonists or antagonists might be useful in assessing immune responses. However, these results need further verifications in vitro and in animal models of various diseases.
Collapse
Affiliation(s)
- Hamidreza Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ghaffarian Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Majid Keshavarzi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Candadai AA, Liu F, Fouda AY, Alfarhan M, Palani CD, Xu Z, Caldwell RB, Narayanan SP. Deletion of arginase 2 attenuates neuroinflammation in an experimental model of optic neuritis. PLoS One 2021; 16:e0247901. [PMID: 33735314 PMCID: PMC7971528 DOI: 10.1371/journal.pone.0247901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Vision impairment due to optic neuritis (ON) is one of the major clinical presentations in Multiple Sclerosis (MS) and is characterized by inflammation and degeneration of the optic nerve and retina. Currently available treatments are only partially effective and have a limited impact on the neuroinflammatory pathology of the disease. A recent study from our laboratory highlighted the beneficial effect of arginase 2 (A2) deletion in suppressing retinal neurodegeneration and inflammation in an experimental model of MS. Utilizing the same model, the present study investigated the impact of A2 deficiency on MS-induced optic neuritis. Experimental autoimmune encephalomyelitis (EAE) was induced in wild-type (WT) and A2 knockout (A2-/-) mice. EAE-induced cellular infiltration, as well as activation of microglia and macrophages, were reduced in A2-/- optic nerves. Axonal degeneration and demyelination seen in EAE optic nerves were observed to be reduced with A2 deletion. Further, the lack of A2 significantly ameliorated astrogliosis induced by EAE. In conclusion, our findings demonstrate a critical involvement of arginase 2 in mediating neuroinflammation in optic neuritis and suggest the potential of A2 blockade as a targeted therapy for MS-induced optic neuritis.
Collapse
Affiliation(s)
- Amritha A. Candadai
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
| | - Fang Liu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Abdelrahman Y. Fouda
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Moaddey Alfarhan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
| | - Chithra D. Palani
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Zhimin Xu
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Ruth B. Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| |
Collapse
|
13
|
Compensatory Neuroprotective Response of Thioredoxin Reductase against Oxidative-Nitrosative Stress Induced by Experimental Autoimmune Encephalomyelitis in Rats: Modulation by Theta Burst Stimulation. Molecules 2020; 25:molecules25173922. [PMID: 32867364 PMCID: PMC7503723 DOI: 10.3390/molecules25173922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Cortical theta burst stimulation (TBS) structured as intermittent (iTBS) and continuous (cTBS) could prevent the progression of the experimental autoimmune encephalomyelitis (EAE). The interplay of brain antioxidant defense systems against free radicals (FRs) overproduction induced by EAE, as well as during iTBS or cTBS, have not been entirely investigated. This study aimed to examine whether oxidative-nitrogen stress (ONS) is one of the underlying pathophysiological mechanisms of EAE, which may be changed in terms of health improvement by iTBS or cTBS. Dark Agouti strain female rats were tested for the effects of EAE and TBS. The rats were randomly divided into the control group, rats specifically immunized for EAE and nonspecifically immuno-stimulated with Complete Freund's adjuvant. TBS or sham TBS was applied to EAE rats from 14th-24th post-immunization day. Superoxide dismutase activity, levels of superoxide anion (O2•-), lipid peroxidation, glutathione (GSH), nicotinamide adenine dinucleotide phosphate (NADPH), and thioredoxin reductase (TrxR) activity were analyzed in rat spinal cords homogenates. The severity of EAE clinical coincided with the climax of ONS. The most critical result refers to TrxR, which immensely responded against the applied stressors of the central nervous system (CNS), including immunization and TBS. We found that the compensatory neuroprotective role of TrxR upregulation is a positive feedback mechanism that reduces the harmfulness of ONS. iTBS and cTBS both modulate the biochemical environment against ONS at a distance from the area of stimulation, alleviating symptoms of EAE. The results of our study increase the understanding of FRs' interplay and the role of Trx/TrxR in ONS-associated neuroinflammatory diseases, such as EAE. Also, our results might help the development of new ideas for designing more effective medical treatment, combining neuropsychological with noninvasive neurostimulation-neuromodulation techniques to patients living with MS.
Collapse
|
14
|
Suppression of the Reactive Oxygen Response Alleviates Experimental Autoimmune Uveitis in Mice. Int J Mol Sci 2020; 21:ijms21093261. [PMID: 32380695 PMCID: PMC7247341 DOI: 10.3390/ijms21093261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
Reactive oxygen species (ROS) are produced by host phagocytes and play an important role in antimicrobial actions against various pathogens. Autoimmune uveitis causes blindness and severe visual impairment in humans at all ages worldwide. However, the role of ROS in autoimmune uveitis remains unclear. We used ROS-deficient (Ncf1−/−) mice to investigate the role of ROS in experimental autoimmune uveitis (EAU). Besides, we also used the antioxidant N-acetylcysteine (NAC) treatment to evaluate the effect of suppression of ROS on EAU in mice. The EAU disease scores of Ncf1−/− mice were significantly lower than those of wild-type mice. EAU induction increased the levels of cytokines (interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-12, IL-17, and tumor necrosis factor (TNF)-α) and chemokines (monocyte chemoattractant protein (MCP)-1) in the retinas of wild-type mice but not in those of Ncf1−/− mice. EAU induction enhanced the level of NF-κB activity in wild-type mice. However, the level of NF-κB activity in Ncf1−/− mice with EAU induction was low. Treatment with the antioxidant NAC also decreased the severity of EAU in mice with reduced levels of oxidative stress, inflammatory mediators, and NF-κB activation in the retina. We successfully revealed a novel role of ROS in the pathogenesis of EAU and suggest a potential antioxidant role for the treatment of autoimmune uveitis in the future.
Collapse
|
15
|
Oppedisano F, Maiuolo J, Gliozzi M, Musolino V, Carresi C, Nucera S, Scicchitano M, Scarano F, Bosco F, Macrì R, Ruga S, Zito MC, Palma E, Muscoli C, Mollace V. The Potential for Natural Antioxidant Supplementation in the Early Stages of Neurodegenerative Disorders. Int J Mol Sci 2020; 21:ijms21072618. [PMID: 32283806 PMCID: PMC7177481 DOI: 10.3390/ijms21072618] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The neurodegenerative process is characterized by the progressive ultrastructural alterations of selected classes of neurons accompanied by imbalanced cellular homeostasis, a process which culminates, in the later stages, in cell death and the loss of specific neurological functions. Apart from the neuronal cell impairment in selected areas of the central nervous system which characterizes many neurodegenerative diseases (e.g., Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, etc.), some alterations may be found in the early stages including gliosis and the misfolding or unfolding accumulation of proteins. On the other hand, several common pathophysiological mechanisms can be found early in the course of the disease including altered oxidative metabolism, the loss of cross-talk among the cellular organelles and increased neuroinflammation. Thus, antioxidant compounds have been suggested, in recent years, as a potential strategy for preventing or counteracting neuronal cell death and nutraceutical supplementation has been studied in approaching the early phases of neurodegenerative diseases. The present review will deal with the pathophysiological mechanisms underlying the early stages of the neurodegenerative process. In addition, the potential of nutraceutical supplementation in counteracting these diseases will be assessed.
Collapse
Affiliation(s)
- Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-327-475-8007
| |
Collapse
|
16
|
Moderating effects of crocin on some stress oxidative markers in rat brain following demyelination with ethidium bromide. Heliyon 2019; 5:e01213. [PMID: 30815598 PMCID: PMC6378371 DOI: 10.1016/j.heliyon.2019.e01213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/22/2018] [Accepted: 02/01/2019] [Indexed: 12/27/2022] Open
Abstract
Background The purpose of this study was to investigate the effects of Crocin on oxidative markers (GPx, SOD, MDA) in animal model of demyelination with Ethidium bromide (EB). Methods Female Wistar rats were assigned in to 4 groups; Sham, with no receiving any agent (Sham), Sham Operated group with injection of EB into the brain received no agent (SO), Sham Treatment group with injection of EB and receiving PBS as vehicle and Treatment group with injection of EB and receiving Crocin (100 mg/kg). Demyelination was induced by single dose injection of 10 μl of EB 0.1% into the Cisterna magna of the brain. Crocin was diluted and applied to each animal for 21 days, once per day gavage. The levels of oxidative markers (GPx, SOD and MDA) were measured by related standard kits. Data were analyzed by paired t-test and ANOVA with post hoc test. Results The results showed that crocin decreases the levels of GPx and SOD significantly as well as MDA level after 21 days (α ≤ 0.05). In addition, results showed that there were significant differences in the GPx, SOD and MDA levels between all groups at post treatment phase (α ≤ 0.05). Conclusion It can be concluded that crocin can moderate the level of oxidative markers after demyelination of the brain cells in MS cases. Due to this effect, crocin can be considered as an effective anti-oxidant in management of degenerative nervous system diseases.
Collapse
|
17
|
Ahn M, Kim J, Yang W, Choi Y, Ekanayake P, Ko H, Jee Y, Shin T. Amelioration of experimental autoimmune encephalomyelitis by Ishige okamurae. Anat Cell Biol 2018; 51:292-298. [PMID: 30637164 PMCID: PMC6318454 DOI: 10.5115/acb.2018.51.4.292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 01/17/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a T-cell-mediated autoimmune central nervous system disease characterized by inflammation with oxidative stress. The aim of this study was to evaluate an anti-inflammatory effect of Ishige okamurae on EAE-induced paralysis in rats. An ethanolic extract of I. okamurae significantly delayed the first onset and reduced the duration and severity of hind-limb paralysis. The neuropathological and immunohistochemical findings in the spinal cord were in agreement with these clinical results. T-cell proliferation assay revealed that the ethyl-acetate fraction of I. okamurae suppressed the proliferation of myelin basic protein reactive T cells from EAE affected rats. Flow cytometric analysis showed TCRαβ+ T cells was significantly reduced in the spleen of EAE rats with I. okamurae treatment with concurrent decrease of inflammatory mediators including tumor necrosis factor-α and cyclooxygenase-2. Collectively, it is postulated that I. okamurae ameliorates EAE paralysis with suppression of T-cell proliferation as well as decrease of pro-inflammatory mediators as far as rat EAE is concerned.
Collapse
Affiliation(s)
- Meejung Ahn
- Department of Veterinary Anatomy, Veterinary Medical Research Institute, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - Jeongtae Kim
- Department of Veterinary Anatomy, Veterinary Medical Research Institute, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - Wonjun Yang
- Department of Veterinary Anatomy, Veterinary Medical Research Institute, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - Yuna Choi
- Department of Veterinary Anatomy, Veterinary Medical Research Institute, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - Poornima Ekanayake
- Department of Veterinary Anatomy, Veterinary Medical Research Institute, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - Hyunju Ko
- Department of Veterinary Anatomy, Veterinary Medical Research Institute, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - Youngheun Jee
- Department of Veterinary Histology, Veterinary Medical Research Institute, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, Veterinary Medical Research Institute, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| |
Collapse
|
18
|
Lubina-Dąbrowska N, Stepień A, Sulkowski G, Dąbrowska-Bouta B, Langfort J, Chalimoniuk M. Effects of IFN-β1a and IFN-β1b treatment on the expression of cytokines, inducible NOS (NOS type II), and myelin proteins in animal model of multiple sclerosis. Arch Immunol Ther Exp (Warsz) 2017; 65:325-338. [PMID: 28299403 PMCID: PMC5511332 DOI: 10.1007/s00005-017-0458-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 02/09/2017] [Indexed: 12/28/2022]
Abstract
The aim of this study was to investigate the effects of interferon (IFN)-β1a and IFN-β1b treatment on inflammatory factors and myelin protein levels in the brain cortex of the Lewis rat experimental autoimmune encephalomyelitis (EAE), animal model of multiple sclerosis. To induce EAE, rat were immunized with inoculums containing spinal cord guinea pig homogenized in phosphate-buffered saline and emulsified in Freund's complete adjuvant containing 110 µg of the appropriate antigen in 100 µl of an emulsion and additionally 4-mg/ml Mycobacterium tuberculosis (H37Ra). The rats were treated three times per week with subcutaneous applications of 300,000 units IFN-β1a or IFN-β1b. The treatments were started 8 days prior to immunization and continued until day 14 after immunization. The rats were killed on the 14th day of the experiment. EAE induced dramatic increase in interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-concentrations and inducible nitric oxide synthase (iNOS) expression in the brain, which closely corresponded to the course of neurological symptoms and the loss of weight. Both IFN-β1b and IFN-β1a treatments inhibited the pro-inflammatory cytokines (IL-6, IL-1β, TNF-α and IFN-γ), decreased the activation of astrocytes, increased the myelin protein level in the brain cortex, and improved the neurological status of EAE rats by different mechanisms; IFN-β1a reduced iNOS expression, at least in part, by the enhancement of IL-10, while IFN-β1b diminished IL-10 concentration and did not decrease EAE-induced iNOS expression.
Collapse
Affiliation(s)
- Natalia Lubina-Dąbrowska
- Neurology Clinic, Military Institute of Medicine, Warsaw, Poland
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Adam Stepień
- Neurology Clinic, Military Institute of Medicine, Warsaw, Poland
| | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Józef Langfort
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Department of Sports Training, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Małgorzata Chalimoniuk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|
19
|
Rajda C, Pukoli D, Bende Z, Majláth Z, Vécsei L. Excitotoxins, Mitochondrial and Redox Disturbances in Multiple Sclerosis. Int J Mol Sci 2017; 18:ijms18020353. [PMID: 28208701 PMCID: PMC5343888 DOI: 10.3390/ijms18020353] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). There is increasing evidence that MS is not only characterized by immune mediated inflammatory reactions, but also by neurodegenerative processes. There is cumulating evidence that neurodegenerative processes, for example mitochondrial dysfunction, oxidative stress, and glutamate (Glu) excitotoxicity, seem to play an important role in the pathogenesis of MS. The alteration of mitochondrial homeostasis leads to the formation of excitotoxins and redox disturbances. Mitochondrial dysfunction (energy disposal failure, apoptosis, etc.), redox disturbances (oxidative stress and enhanced reactive oxygen and nitrogen species production), and excitotoxicity (Glu mediated toxicity) may play an important role in the progression of the disease, causing axonal and neuronal damage. This review focuses on the mechanisms of mitochondrial dysfunction (including mitochondrial DNA (mtDNA) defects and mitochondrial structural/functional changes), oxidative stress (including reactive oxygen and nitric species), and excitotoxicity that are involved in MS and also discusses the potential targets and tools for therapeutic approaches in the future.
Collapse
Affiliation(s)
- Cecilia Rajda
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Dániel Pukoli
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- Department of Neurology, Vaszary Kolos Hospital, 2500 Esztergom, Hungary.
| | - Zsuzsanna Bende
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - László Vécsei
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- MTA-SZTE Neuroscience Research Group, 6725 Szeged, Hungary.
| |
Collapse
|
20
|
Escribano BM, Medina-Fernández FJ, Aguilar-Luque M, Agüera E, Feijoo M, Garcia-Maceira FI, Lillo R, Vieyra-Reyes P, Giraldo AI, Luque E, Drucker-Colín R, Túnez I. Lipopolysaccharide Binding Protein and Oxidative Stress in a Multiple Sclerosis Model. Neurotherapeutics 2017; 14:199-211. [PMID: 27718209 PMCID: PMC5233624 DOI: 10.1007/s13311-016-0480-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent findings in experimental autoimmune encephalomyelitis (EAE) suggest that altering certain bacterial populations present in the gut may lead to a proinflammatory condition, that could result in the development of multiple sclerosis (MS). Also, Reactive Oxygen Species seem to be involved in the course of MS. In this study, it has been aimed to relate all these variables starting from an analysis of the lipopolysaccharide (LPS) and LPS-binding protein (LBP) with the determination of parameters related to oxidative stress in the blood, brain and spinal cord. For this purpose, samples obtained from EAE rats and relapsing-remitting (RRMS) MS patients were used. In addition, EAE rats were treated with Natalizumab, N-acetyl-cysteine and dimethyl fumarate. Natalizumab was also employed in RRMS. The results of this study revealed an improvement in the clinical symptoms of the EAE and MS with the treatments, as well as a reduction in the oxidative stress parameters and in LBP. Correlations between the clinical variables of the disease, i.e. oxidative damage and LBP, were established. Although the conclusions of this research are indeed relevant, further investigation would be necessary to establish the intrinsic mechanisms of the MS-oxidative stress-microbiota relationship.
Collapse
Affiliation(s)
- Begoña M Escribano
- Departamento de Biologia Celular, Fisiologia e Inmunologia, Facultad de Veterinaria, Universidad de Cordoba, Cordoba, Spain
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
| | - Francisco J Medina-Fernández
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba, Cordoba, Spain
| | - Macarena Aguilar-Luque
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba, Cordoba, Spain
| | - Eduardo Agüera
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
- Servicio de Neurología, Hospital Universitario Reina Sofía de Cordoba, Cordoba, Spain
| | - Montserrat Feijoo
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba, Cordoba, Spain
| | | | - Rafael Lillo
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
- Departamento de Ciencias Sociosanitarias y Radiologia y Medicina Fisica, Seccion de Psiquiatria, Facultad de Medicina, Universidad de Cordoba, Cordoba, Spain
| | - Patricia Vieyra-Reyes
- Departamento Neurofisiología de la Conducta, Facultad de Medicina, Universidad Autonoma del Estado de México, Toluca, Estado de Mexico, Mexico
| | - Ana I Giraldo
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba, Cordoba, Spain
| | - Evelio Luque
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
- Departamento de Ciencias Morfologicas, Seccion Histologia, Facultad de Medicina, Universidad de Cordoba, Cordoba, Spain
| | - René Drucker-Colín
- Departamento de Neuropatologia Molecular, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad de Mexico, D.F., Mexico
| | - Isaac Túnez
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain.
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba, Cordoba, Spain.
- Red Tematica de Investigacion Cooperativa en Envejecimiento y Fragilidad (RETICEF), Cordoba, Spain.
| |
Collapse
|
21
|
Sex Difference in Oxidative Stress Parameters in Spinal Cord of Rats with Experimental Autoimmune Encephalomyelitis: Relation to Neurological Deficit. Neurochem Res 2016; 42:481-492. [PMID: 27812760 DOI: 10.1007/s11064-016-2094-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/26/2016] [Accepted: 10/27/2016] [Indexed: 01/02/2023]
Abstract
The study examined (a) whether there is sex difference in spinal cord and plasma oxidative stress profiles in Dark Agouti rats immunised for experimental autoimmune encephalomyelitis (EAE), the principal experimental model of multiple sclerosis, and (b) whether there is correlation between the oxidative stress in spinal cord and neurological deficit. Regardless of rat sex, with the disease development xanthine oxidase (XO) activity and inducible nitric oxide synthase (iNOS) mRNA expression increased in spinal cord, whereas glutathione levels decreased. This was accompanied by the rise in spinal cord malondialdehyde level. On the other hand, with EAE development superoxide dismutase (SOD) activity decreased, while O2- concentration increased only in spinal cord of male rats. Consequently, SOD activity was lower, whereas O2- concentration was higher in spinal cord of male rats with clinically manifested EAE. XO activity and iNOS mRNA expression were also elevated in their spinal cord. Consistently, in the effector phase of EAE the concentration of advanced oxidation protein product (AOPP) was higher in spinal cord of male rats, which exhibit more severe neurological deficit than their female counterparts. In as much as data obtained in the experimental models could be translated to humans, the findings may be relevant for designing sex-specific antioxidant therapeutic strategies. Furthermore, the study indicated that the increased pro-oxidant-antioxidant balance in plasma may be an early indicator of EAE development. Moreover, it showed that plasma AOPP level may indicate not only actual activity of the disease, but also serve to predict severity of its course.
Collapse
|
22
|
Pathak S, Stern C, Vambutas A. N-Acetylcysteine attenuates tumor necrosis factor alpha levels in autoimmune inner ear disease patients. Immunol Res 2016; 63:236-45. [PMID: 26392121 DOI: 10.1007/s12026-015-8696-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune inner ear disease (AIED) is a poorly understood disease marked by bilateral, rapidly progressive hearing loss triggered by unknown stimuli, which is corticosteroid responsive in 60 % of patients. Although the mechanism of the disease is not precisely understood, a complex interaction of cytokines is believed to contribute toward the inflammatory disease process and hearing loss. Previously, we showed the role of TNF-α in steroid-sensitive and IL-1β in steroid-resistant immune-mediated hearing loss. N-Acetylcysteine (NAC), a broad spectrum antioxidant, has been effective in other autoimmune disorders. Other studies have shown NAC to have a protective adjunct role in human idiopathic sudden hearing loss, where the addition of NAC resulted in better hearing recovery than with steroids alone, although the mechanism of this protection was not elucidated. In the present study, we observed PBMCs from AIED patients exhibited higher baseline TNF-α and MPO levels compared with normal healthy controls. NAC effectively abrogates LPS-mediated TNF-α release from PBMC of both AIED patients and controls. We demonstrated that in AIED patients, the TNF-α downstream signaling pathway appears aberrantly regulated, influencing both MPO and IL-8 expression. Given that NAC effectively abrogated LPS-mediated TNF-α release and exerted minimal effects on the downstream targets of this pathway, we feel NAC may be a rational adjunct therapy for this enigmatic disease, worthy of clinical exploration.
Collapse
Affiliation(s)
- Shresh Pathak
- The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Department of Otolaryngology, Hofstra North Shore-LIJ School of Medicine at Hofstra University, Hempstead, NY, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Corey Stern
- The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Andrea Vambutas
- The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- The Apelian Cochlear Implant Center, Department of Otolaryngology, North Shore-LIJ Health System, New Hyde Park, NY, USA.
- Department of Otolaryngology, Hofstra North Shore-LIJ School of Medicine at Hofstra University, Hempstead, NY, USA.
- Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine at Hofstra University, Hempstead, NY, USA.
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
23
|
Ibitoye R, Kemp K, Rice C, Hares K, Scolding N, Wilkins A. Oxidative stress-related biomarkers in multiple sclerosis: a review. Biomark Med 2016; 10:889-902. [PMID: 27416337 DOI: 10.2217/bmm-2016-0097] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To provide an up-to-date review of oxidative stress biomarkers in multiple sclerosis and thus identify candidate molecules with greatest promise as biomarkers of diagnosis, disease activity or prognosis. METHOD A semi-systematic literature search using PubMed and other databases. RESULTS Nitric oxide metabolites, superoxide dismutase, catalase, glutathione reductase, inducible nitric oxide synthase, protein carbonyl, 3-nitrotyrosine, isoprostanes, malondialdehyde and products of DNA oxidation have been identified across multiple studies as having promise as diagnostic, therapeutic or prognostic markers in MS. CONCLUSION Heterogeneity of study design, particularly patient selection, limits comparability across studies. Further cohort studies are needed, and we would recommend promising markers be incorporated into future clinical trials to prospectively validate their potential.
Collapse
Affiliation(s)
- Richard Ibitoye
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Kevin Kemp
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Claire Rice
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Kelly Hares
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Neil Scolding
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Alastair Wilkins
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| |
Collapse
|
24
|
Prinsen H, de Graaf RA, Mason GF, Pelletier D, Juchem C. Reproducibility measurement of glutathione, GABA, and glutamate: Towards in vivo neurochemical profiling of multiple sclerosis with MR spectroscopy at 7T. J Magn Reson Imaging 2016; 45:187-198. [PMID: 27351712 DOI: 10.1002/jmri.25356] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To determine the reproducibility of a comprehensive single-session measurement of glutathione (GSH), γ-aminobutyric acid (GABA), glutamate, and other biochemicals implicated in the pathophysiology of multiple sclerosis (MS) in the human brain with 1 H magnetic resonance spectroscopy (MRS). MATERIALS AND METHODS Five healthy subjects were studied twice in separate 1-hour sessions at 7T. One MS patient was also scanned once. GSH and GABA were measured with J-difference editing using a semilocalized by adiabatic selective refocusing sequence (semi-LASER, TE = 72 msec). A stimulated echo acquisition mode sequence (STEAM, TE = 10 msec) was used to detect glutamate along with the overall biochemical profile. Spectra were quantified with LCModel. Quantification accuracy was assessed through Cramer-Rao lower bounds (CRLB). Reproducibility of the metabolite quantification was tested using coefficients of variation (CoV). RESULTS CRLB were ≤7% for GSH, GABA, and glutamate and average CoV of 7.8 ± 3.2%, 9.5 ± 7.0%, and 3.2 ± 1.7% were achieved, respectively. The average test/retest concentration differences at this measurement reproducibility and quantification accuracy were smaller for GABA and glutamate than intersubject variations in metabolite content with CoV ratios of 0.6 and 0.8, respectively. As proof of principle, GSH, GABA, and glutamate were also detected in an MS patient. CONCLUSION GSH, GABA, glutamate, and other metabolites relevant in MS can be quantified at 7T with high accuracy and reproducibility in a single 1-hour session. This methodology might serve as a clinical research tool to investigate biochemical markers associated with MS. LEVEL OF EVIDENCE 2 J. Magn. Reson. Imaging 2017;45:187-198.
Collapse
Affiliation(s)
- Hetty Prinsen
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Graeme F Mason
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA.,Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Daniel Pelletier
- Department of Neurology, Yale University, New Haven, Connecticut, USA
| | - Christoph Juchem
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA.,Department of Neurology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
25
|
Tolerability and Safety of Combined Glatiramer Acetate and N-Acetylcysteine in Relapsing-Remitting Multiple Sclerosis. Clin Neuropharmacol 2016; 38:127-31. [PMID: 26166235 DOI: 10.1097/wnf.0000000000000090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system where inflammation and neurodegeneration play key roles. Mounting evidence implicates oxidative stress in the development of irreversible neuronal and glial injury in this condition. N-acetylcysteine (NAC) is a sulfhydryl amino acid derivative with antioxidant and antiapoptotic properties. Administration of NAC to mice attenuated the induction of or improved experimental autoimmune encephalomyelitis (an MS model). METHODS We performed an open-label study to explore the tolerability and safety of the combination of glatiramer acetate (GA) and NAC in patients with relapsing-remitting multiple sclerosis at the outpatient MS clinics of the Jewish General Hospital and Hôpital Charles Lemoyne, Montreal, Canada. Seven patients with relapsing-remitting multiple sclerosis with at least one T1 gadolinium-enhancing lesion on screening magnetic resonance imaging were recruited. Treatment consisted of a 10-week run-in period followed by 36-week treatment with a combination of GA 20 mg subcutaneously once daily plus NAC 2.5 g orally twice daily. Outcome measures included safety and tolerability, redox biochemistry, and magnetic resonance imaging effect. RESULTS Treatment with the combination of GA and NAC was safe and well tolerated. CONCLUSIONS In light of the favorable safety profile, an efficacy-demonstrating study may be considered.
Collapse
|
26
|
The Use of Agmatine Provides the New Insight in an Experimental Model of Multiple Sclerosis. Neurochem Res 2015; 40:1719-27. [DOI: 10.1007/s11064-015-1655-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/26/2015] [Accepted: 06/28/2015] [Indexed: 10/23/2022]
|
27
|
Hesperidin, a Citrus Flavonoid, Has the Ameliorative Effects Against Experimental Autoimmune Encephalomyelitis (EAE) in a C57BL/J6 Mouse Model. Neurochem Res 2015; 40:1111-20. [PMID: 25859982 DOI: 10.1007/s11064-015-1571-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/25/2015] [Accepted: 04/01/2015] [Indexed: 12/14/2022]
Abstract
The aim of this study was determined the effects of Hesperidin (HP) on neuronal damage in brain tissue caused by Experimental allergic encephalomyelitis (EAE), an established model of multiple sclerosis in C57BL/J6 mice. To explore 40 mice were equally divided into four groups: (1) Control, (2) EAE, (3) HP, and (4) HP + EAE. 14 days after induction of EAE with MOG35-55 and pertussis toxin, the mice treated with HP at the doses of 50 mg/kg/day for 7 days subcutaneously. To our results HP treatment prevents the oxidative stress caused by EAE via a decrease in lipid peroxidations and increase in elements of the antioxidant defense systems in brain tissue. Also, EAE elevate the IL-17, express the pro-inflammatory cytokines, and caspase-3-like immunreactivity, show apoptosis, staining in EAE mice brain and increased the incidence of histopathological damage. However, immonohistochemical and histological changes were reversed with HP. Moreover, elevated TNF-α and IL-1β levels, a result of EAE, were decreased in serum and neurological deficits as clinical signs were reversed with HP treatment in EAE mice, given HP. In conclusion, HP treatment effectively prevents oxidative, immunological and histological damage in the brain caused by EAE. It was thought that the beneficial effects of HP are likely a result of its strong antioxidant and anti-inflammatory properties.
Collapse
|
28
|
Ljubisavljevic S, Stojanovic I. Neuroinflammation and demyelination from the point of nitrosative stress as a new target for neuroprotection. Rev Neurosci 2015; 26:49-73. [DOI: 10.1515/revneuro-2014-0060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/30/2014] [Indexed: 12/30/2022]
Abstract
AbstractThe role of nitrosative stress in the early pathogenesis of neuroinflammation and demyelination is undoubtedly wide. This review summarizes and integrates the results, found in previously performed studies, which have evaluated nitrosative stress participation in neuroinflammation. The largest number of studies indicates that the supply of nitrosative stress inhibitors has led to the opposite clinical effects in experimental studies. Some results claim that attributing the protective role to nitric oxide, outside the total changes of redox oxidative processes and without following the clinical and paraclinical correlates of neuroinflammation, is an overrated role of this mediator. The fact is that the use of nitrosative stress inhibitors would be justified in the earlier phases of neuroinflammation. The ideal choice would be a specific inducible nitric oxide synthase (iNOS) inhibitor, because its use would preserve the physiological features of nitric oxide produced by the effects of constitutive NOS. This review discusses the antinitrosative therapy as a potential mode of therapy that aims to control neuroinflammation in early phases, delaying its later phases, which are accompanied with irreversible neurological disabilities. Some parameters of nitrosative stress might serve as surrogate biomarkers for neuroinflammation intensity and its radiological and clinical correlates.
Collapse
|
29
|
Carvalho AN, Lim JL, Nijland PG, Witte ME, Van Horssen J. Glutathione in multiple sclerosis: More than just an antioxidant? Mult Scler 2014; 20:1425-31. [DOI: 10.1177/1352458514533400] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxidative stress has been strongly implicated in both the inflammatory and neurodegenerative pathological mechanisms in multiple sclerosis (MS). In response to oxidative stress, cells increase and activate their cellular antioxidant mechanisms. Glutathione (GSH) is the major antioxidant in the brain, and as such plays a pivotal role in the detoxification of reactive oxidants. Previous research has shown that GSH homeostasis is altered in MS. In this review, we provide a comprehensive overview on GSH metabolism in brain cells, with a focus on its involvement in MS. The potential of GSH as an in vivo biomarker in MS is discussed, along with a short overview of improvements in imaging methods that allow non-invasive quantification of GSH in the brain. These methods might be instrumental in providing real-time measures of GSH, allowing the assessment of the oxidative state in MS patients and the monitoring of disease progression. Finally, the therapeutic potential of GSH in MS is discussed.
Collapse
Affiliation(s)
- Andreia N Carvalho
- Vrije Universiteit (VU) University Medical Center Amsterdam, The Netherlands
| | - Jamie L Lim
- Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| | - Philip G Nijland
- Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| | - Maarten E Witte
- Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| | - Jack Van Horssen
- Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Miljković D, Spasojević I. Multiple sclerosis: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2013; 19:2286-334. [PMID: 23473637 PMCID: PMC3869544 DOI: 10.1089/ars.2012.5068] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/09/2012] [Accepted: 03/09/2013] [Indexed: 12/15/2022]
Abstract
The pathophysiology of multiple sclerosis (MS) involves several components: redox, inflammatory/autoimmune, vascular, and neurodegenerative. All of them are supported by the intertwined lines of evidence, and none of them should be written off. However, the exact mechanisms of MS initiation, its development, and progression are still elusive, despite the impressive pace by which the data on MS are accumulating. In this review, we will try to integrate the current facts and concepts, focusing on the role of redox changes and various reactive species in MS. Knowing the schedule of initial changes in pathogenic factors and the key turning points, as well as understanding the redox processes involved in MS pathogenesis is the way to enable MS prevention, early treatment, and the development of therapies that target specific pathophysiological components of the heterogeneous mechanisms of MS, which could alleviate the symptoms and hopefully stop MS. Pertinent to this, we will outline (i) redox processes involved in MS initiation; (ii) the role of reactive species in inflammation; (iii) prooxidative changes responsible for neurodegeneration; and (iv) the potential of antioxidative therapy.
Collapse
Affiliation(s)
- Djordje Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković,” University of Belgrade, Belgrade, Serbia
| | - Ivan Spasojević
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
31
|
Stevanovic I, Ninkovic M, Stojanovic I, Ljubisavljevic S, Stojnev S, Bokonjic D. Beneficial effect of agmatine in the acute phase of experimental autoimmune encephalomyelitis in iNOS-/- knockout mice. Chem Biol Interact 2013; 206:309-18. [PMID: 24070732 DOI: 10.1016/j.cbi.2013.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/20/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022]
Abstract
The aim of the study was to investigate the hypothesis that agmatine (AGM) provides protection against oxidative stress in experimental autoimmune encephalomyelitis (EAE). Wild-type (WT) and knockout (KO) CBA/H iNOS-/- 3 months old (15 ± 5 g) mice, were used for EAE induction by myelin basic protein (MBP), dissolved in Complete Freund's Adjuvant (CFA). The animals were divided into control, EAE, CFA, EAE+AGM and AGM groups. After the development of full clinical remission, animals were decapitated and oxidative stress parameters were determined in whole encephalitic mass (WEM) and cerebellum homogenates. The EAE clinical expression manifested to greater extent in WT than KO mice, was significantly decreased during AGM treatment. We demonstrated significant elevations of superoxide dismutase activity in WT and KO EAE animals, in WEM and cerebellum tissues, which were decreased during AGM treatment in both groups. Superoxide anion content was increased in WEM of both study groups, with a decrease during AGM treatment. The observed changes were more pronounced in WT than in KO animals. Also, the increased expressions of transferrin receptor and glial fibrillary acidic protein observed in WT and KO EAE mice were significantly decreased during AGM treatment. The results suggest potentially beneficial AGM effects in EAE, which might be used for a modified antioxidative approach in MS therapy.
Collapse
Affiliation(s)
- Ivana Stevanovic
- Military Medical Academy, Institute for Medical Research, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
32
|
Patten AR, Brocardo PS, Sakiyama C, Wortman RC, Noonan A, Gil-Mohapel J, Christie BR. Impairments in hippocampal synaptic plasticity following prenatal ethanol exposure are dependent on glutathione levels. Hippocampus 2013; 23:1463-75. [PMID: 23996467 DOI: 10.1002/hipo.22199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2013] [Indexed: 11/09/2022]
Abstract
Previous studies from our laboratory have shown that prenatal ethanol exposure (PNEE) causes a significant deficit in synaptic plasticity, namely long-term potentiation (LTP), in the dentate gyrus (DG) region of the hippocampus of male rats. PNEE has also been shown to induce an increase in oxidative stress and a reduction in antioxidant capacity in the brains of both male and female animals. In this study the interaction between LTP and the major antioxidant in the brain, glutathione (GSH), is examined. We show that depletion of the intracellular reserves of GSH with diethyl maleate (DEM) reduces LTP in control male, but not female animals, mirroring the effects of PNEE. Furthermore, treatment of PNEE animals with N-acetyl cysteine (NAC), a cysteine donor for the synthesis of GSH, increases GSH levels in the hippocampus and completely restores the deficits in LTP in PNEE males. These results indicate that in males GSH plays a major role in regulating LTP, and that PNEE may cause reductions in LTP by reducing the intracellular pool of this endogenous antioxidant.
Collapse
Affiliation(s)
- Anna R Patten
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada; Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Ljubisavljevic S, Stojanovic I, Pavlovic R, Stojnev S, Stevanovic I, Sokolovic D, Pavlovic D. The reduced glutathione and S-nitrosothiols levels in acute phase of experimental demyelination – Pathophysiological approach and possible clinical relevancy. Neuroscience 2012; 219:175-82. [DOI: 10.1016/j.neuroscience.2012.05.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 05/14/2012] [Accepted: 05/29/2012] [Indexed: 01/06/2023]
|
34
|
Ljubisavljevic S, Stojanovic I, Pavlovic R, Sokolovic D, Pavlovic D, Cvetkovic T, Stevanovic I. Modulation of nitric oxide synthase by arginase and methylated arginines during the acute phase of experimental multiple sclerosis. J Neurol Sci 2012; 318:106-11. [DOI: 10.1016/j.jns.2012.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
|
35
|
Abdel-Salam OM, Khadrawy YA, Mohammed NA. Neuroprotective effect of nitric oxide donor isosorbide-dinitrate against oxidative stress induced by ethidium bromide in rat brain. EXCLI JOURNAL 2012; 11:125-41. [PMID: 27385954 PMCID: PMC4932883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/27/2012] [Indexed: 11/10/2022]
Abstract
This study investigated the effect of systemic administration of isosorbide-dinitrate (ISDN) on oxidative stress and brain monoamines in a toxic model of brain demyelination evoked by intracerebral injection (i.c.i) of ethidium bromide (10 µl of 0.1 %). Rats received saline (control) or ISDN at 5 or 10 mg/kg for 10 days prior to injection of ethidium bromide. Rats were euthanized one day later, and then the levels of reduced glutathione (GSH), lipid peroxidation (malondialdehyde; MDA), nitric oxide (nitrite/nitrate), acetylcholinesterase (AChE) activity, paraoxonase activity as well as monoamine levels (serotonin, dopamine and noradrenaline) were assessed in the brain cortex in different treatment groups. The i.c.i of ethidium bromide resulted in increased oxidative stress in the cortex one day after its injection; (i) MDA increased by 36.9 %; (ii) GSH decreased by 20.8 %, while (iii) nitric oxide increased by 60.3 %; (iv) AChE and paraoxonase activities in cortex decreased by 35.9 % and 29.4 %, respectively; (v) serotonin was significantly increased. In ethidium bromide-treated rats, pretreatment with ISDN at 10 mg/kg decreased cortical MDA by 23.9 %. Reduced glutathione was increased by 25.1 % ISDN at 10 mg/kg, while nitric oxide showed a 32.8 and 41.7 % decrease after 5 and 10 mg/kg of ISDN, respectively. Acetylcholinesterase activity increased by 24.3 % by 10 mg/kg of ISDN. Paraoxonase activity showed further decrease by 72.2 and 83.8 % after treatment with 5 and 10 mg/kg of ISDN, respectively. The administration of ISDN decreased the level of serotonin and noradrenaline compared with the ethidium bromide only treated group. Overall, the present findings suggest neuroprotective effect of ISDN against oxidative stress in this model of chemical demyelination.
Collapse
Affiliation(s)
- Omar M.E. Abdel-Salam
- Department of Toxicology and Narcotics, National Research Centre, Cairo,*To whom correspondence should be addressed: Omar M.E. Abdel-Salam, Department of Toxicology and Narcotics, National Research Centre, Tahrir St., Dokki, Cairo, Egypt; FAX: 202-33370931, E-mail:
| | | | | |
Collapse
|