1
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
2
|
Chaudhary PK, Kim S, Kim S. An Insight into Recent Advances on Platelet Function in Health and Disease. Int J Mol Sci 2022; 23:ijms23116022. [PMID: 35682700 PMCID: PMC9181192 DOI: 10.3390/ijms23116022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Platelets play a variety of roles in vascular biology and are best recognized as primary hemostasis and thrombosis mediators. Platelets have a large number of receptors and secretory molecules that are required for platelet functionality. Upon activation, platelets release multiple substances that have the ability to influence both physiological and pathophysiological processes including inflammation, tissue regeneration and repair, cancer progression, and spreading. The involvement of platelets in the progression and seriousness of a variety of disorders other than thrombosis is still being discovered, especially in the areas of inflammation and the immunological response. This review represents an integrated summary of recent advances on the function of platelets in pathophysiology that connects hemostasis, inflammation, and immunological response in health and disease and suggests that antiplatelet treatment might be used for more than only thrombosis.
Collapse
|
3
|
Yue M, Hu M, Fu F, Ruan H, Wu C. Emerging Roles of Platelets in Allergic Asthma. Front Immunol 2022; 13:846055. [PMID: 35432313 PMCID: PMC9010873 DOI: 10.3389/fimmu.2022.846055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/21/2023] Open
Abstract
Allergic asthma is a complex chronic inflammatory disease of the airways, driven by Th2 immune responses and characterized by eosinophilic pulmonary inflammation, airway hyperresponsiveness, excessive mucus production, and airway remodeling. Overwhelming evidence from studies in animal models and allergic asthmatic patients suggests that platelets are aberrantly activated and recruited to the lungs. It has been established that platelets can interact with other immune cells and secrete various biochemical mediators to promote allergic sensitization and airway inflammatory response, and platelet deficiency may alleviate the pathological features and symptoms of allergic asthma. However, the comprehensive roles of platelets in allergic asthma have not been fully clarified, leaving attempts to treat allergic asthma with antiplatelet agents questionable. In this review, we summarize the role of platelet activation and pulmonary accumulation in allergic asthma; emphasis is placed on the different interactions between platelets with crucial immune cell types and the contribution of platelet-derived mediators in this context. Furthermore, clinical antiplatelet approaches to treat allergic asthma are discussed. This review provides a clearer understanding of the roles of platelets in the pathogenesis of allergic asthma and could be informative in the development of novel strategies for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Ming Yue
- Department of Physiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengjiao Hu
- Department of Immunology and Microbiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Hongfeng Ruan,
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Wu Y, Zeng Z, Guo Y, Song L, Weatherhead JE, Huang X, Zeng Y, Bimler L, Chang CY, Knight JM, Valladolid C, Sun H, Cruz MA, Hube B, Naglik JR, Luong AU, Kheradmand F, Corry DB. Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity 2021; 54:2595-2610.e7. [PMID: 34506733 DOI: 10.1016/j.immuni.2021.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/19/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
Fungal airway infection (airway mycosis) is an important cause of allergic airway diseases such as asthma, but the mechanisms by which fungi trigger asthmatic reactions are poorly understood. Here, we leverage wild-type and mutant Candida albicans to determine how this common fungus elicits characteristic Th2 and Th17 cell-dependent allergic airway disease in mice. We demonstrate that rather than proteinases that are essential virulence factors for molds, C. albicans instead promoted allergic airway disease through the peptide toxin candidalysin. Candidalysin activated platelets through the Von Willebrand factor (VWF) receptor GP1bα to release the Wnt antagonist Dickkopf-1 (Dkk-1) to drive Th2 and Th17 cell responses that correlated with reduced lung fungal burdens. Platelets simultaneously precluded lethal pulmonary hemorrhage resulting from fungal lung invasion. Thus, in addition to hemostasis, platelets promoted protection against C. albicans airway mycosis through an antifungal pathway involving candidalysin, GP1bα, and Dkk-1 that promotes Th2 and Th17 responses.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zhimin Zeng
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yubiao Guo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lizhen Song
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jill E Weatherhead
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xinyan Huang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuying Zeng
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lynn Bimler
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Cheng-Yen Chang
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Translational Biology and Molecular Medicine Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - John M Knight
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Christian Valladolid
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA
| | - Hua Sun
- Department of Otolaryngology, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Miguel A Cruz
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI), Jena 07745, Germany; Institute of Microbiology, Friedrich Schiller University, Jena 07737, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Amber U Luong
- Department of Otolaryngology, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Farrah Kheradmand
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA
| | - David B Corry
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA.
| |
Collapse
|
5
|
Chebbo M, Duez C, Alessi MC, Chanez P, Gras D. Platelets: a potential role in chronic respiratory diseases? Eur Respir Rev 2021; 30:30/161/210062. [PMID: 34526315 PMCID: PMC9488457 DOI: 10.1183/16000617.0062-2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Platelets are small anucleate cells known for their role in haemostasis and thrombosis. In recent years, an increasing number of observations have suggested that platelets are also immune cells and key modulators of immunity. They express different receptors and molecules that allow them to respond to pathogens, and to interact with other immune cells. Platelets were linked to the pathogenesis of some inflammatory disorders including respiratory diseases such as asthma and idiopathic pulmonary fibrosis. Here, we discuss the involvement of platelets in different immune responses, and we focus on their potential role in various chronic lung diseases. In addition to their essential role in haemostasis and thrombosis, platelets are strong modulators of different immune responses, and could be involved in the physiopathology of several chronic airway diseaseshttps://bit.ly/3cB6Xnj
Collapse
Affiliation(s)
| | | | - Marie C Alessi
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France.,APHM, CHU de la Timone, Laboratoire d'hématologie, Marseille, France
| | - Pascal Chanez
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France.,APHM, Hôpital NORD, Clinique des Bronches, Allergie et Sommeil, Marseille, France
| | - Delphine Gras
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France
| |
Collapse
|
6
|
Platelets, Not an Insignificant Player in Development of Allergic Asthma. Cells 2021; 10:cells10082038. [PMID: 34440807 PMCID: PMC8391764 DOI: 10.3390/cells10082038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is a chronic and heterogeneous pulmonary disease in which platelets can be activated in an IgE-mediated pathway and migrate to the airways via CCR3-dependent mechanism. Activated platelets secrete IL-33, Dkk-1, and 5-HT or overexpress CD40L on the cell surfaces to induce Type 2 immune response or interact with TSLP-stimulated myeloid DCs through the RANK-RANKL-dependent manner to tune the sensitization stage of allergic asthma. Additionally, platelets can mediate leukocyte infiltration into the lungs through P-selectin-mediated interaction with PSGL-1 and upregulate integrin expression in activated leukocytes. Platelets release myl9/12 protein to recruit CD4+CD69+ T cells to the inflammatory sites. Bronchoactive mediators, enzymes, and ROS released by platelets also contribute to the pathogenesis of allergic asthma. GM-CSF from platelets inhibits the eosinophil apoptosis, thus enhancing the chronic inflammatory response and tissue damage. Functional alterations in the mitochondria of platelets in allergic asthmatic lungs further confirm the role of platelets in the inflammation response. Given the extensive roles of platelets in allergic asthma, antiplatelet drugs have been tested in some allergic asthma patients. Therefore, elucidating the role of platelets in the pathogenesis of allergic asthma will provide us with new insights and lead to novel approaches in the treatment of this disease.
Collapse
|
7
|
Shah SA, Kanabar V, Riffo-Vasquez Y, Mohamed Z, Cleary SJ, Corrigan C, James AL, Elliot JG, Shute JK, Page CP, Pitchford SC. Platelets Independently Recruit into Asthmatic Lungs and Models of Allergic Inflammation via CCR3. Am J Respir Cell Mol Biol 2021; 64:557-568. [PMID: 33556295 PMCID: PMC8086046 DOI: 10.1165/rcmb.2020-0425oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Platelet activation and pulmonary recruitment occur in patients with asthma and in animal models of allergic asthma, in which leukocyte infiltration, airway remodeling, and hyperresponsiveness are suppressed by experimental platelet depletion. These observations suggest the importance of platelets to various characteristics of allergic disease, but the mechanisms of platelet migration and location are not understood. The aim of this study was to assess the mechanism of platelet recruitment to extravascular compartments of lungs from patients with asthma and after allergen challenge in mice sensitized to house dust mite (HDM) extract (contains the DerP1 [Dermatophagoides pteronyssinus extract peptidase 1] allergen); in addition, we assessed the role of chemokines in this process. Lung sections were immunohistochemically stained for CD42b+ platelets. Intravital microscopy in allergic mice was used to visualize platelets tagged with an anti-mouse CD49b-PE (phycoerythrin) antibody. Platelet-endothelial interactions were measured in response to HDM (DerP1) exposure in the presence of antagonists to CCR3, CCR4, and CXCR4. Extravascular CD42b+ platelets were detected in the epithelium and submucosa in bronchial biopsy specimens taken from subjects with steroid-naive mild asthma. Platelets were significantly raised in the lung parenchyma from patients with fatal asthma compared with postmortem control-lung tissue. Furthermore, in DerP1-sensitized mice, subsequent HDM exposure induced endothelial rolling, endothelial adhesion, and recruitment of platelets into airway walls, compared with sham-sensitized mice, via a CCR3-dependent mechanism in the absence of aggregation or interactions with leukocytes. Localization of singular, nonaggregated platelets occurs in lungs of patients with asthma. In allergic mice, platelet recruitment occurs via recognized vascular adhesive and migratory events, independently of leukocytes via a CCR3-dependent mechanism.
Collapse
Affiliation(s)
- Sajeel A Shah
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Varsha Kanabar
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Zainab Mohamed
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Simon J Cleary
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Christopher Corrigan
- MRC-Asthma UK Centre for Allergic Mechanisms in Asthma, Guy's Hospital-King's College London, London, United Kingdom
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - John G Elliot
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - Janis K Shute
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| |
Collapse
|
8
|
Liu J, Shen R, Feng L, Cheng S, Chen J, Xiao T, Zhao S. Proteomics study of Mycoplasma pneumoniae pneumonia reveals the Fc fragment of the IgG-binding protein as a serum biomarker and implicates potential therapeutic targets. Front Med 2021; 16:378-388. [PMID: 34241785 DOI: 10.1007/s11684-021-0840-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/24/2020] [Indexed: 10/20/2022]
Abstract
Macrolide and corticosteroid resistance has been reported in patients with Mycoplasma pneumoniae (MP) pneumonia (MPP). MP clearance is difficult to achieve through antibiotic treatment in sensitive patients with severe MPP (SMPP). SMPP in children might progress to airway remodeling and even bronchiolitis/bronchitis obliterans. Therefore, identifying serum biomarkers that indicate MPP progression and exploring new targeted drugs for SMPP treatment require urgency. In this study, serum samples were collected from patients with general MPP (GMPP) and SMPP to conduct proteomics profiling. The Fc fragment of the IgG-binding protein (FCGBP) was identified as the most promising indicator of SMPP. Biological enrichment analysis indicated uncontrolled inflammation in SMPP. ELISA results proved that the FCGBP level in patients with SMPP was substantially higher than that in patients with GMPP. Furthermore, the FCGBP levels showed a decreasing trend in patients with GMPP but the opposite trend in patients with SMPP during disease progression. Connectivity map analyses identified 25 possible targeted drugs for SMPP treatment. Among them, a mechanistic target of rapamycin kinase (mTOR) inhibitor, which is a macrolide compound and a cell proliferation inhibitor, was the most promising candidate for targeting SMPP. To our knowledge, this study was the first proteomics-based characterization of patients with SMPP and GMPP.
Collapse
Affiliation(s)
- Jinrong Liu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Rongfang Shen
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun Chen
- Beijing Engineering Research Center of Pediatric Surgery, Engineering and Transformation Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Shunying Zhao
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
9
|
Carrington R, Jordan S, Wong YJ, Pitchford SC, Page CP. A novel murine model of pulmonary fibrosis: the role of platelets in chronic changes induced by bleomycin. J Pharmacol Toxicol Methods 2021; 109:107057. [PMID: 33819606 DOI: 10.1016/j.vascn.2021.107057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease that causes scarring and destruction of lung tissue that is ultimately fatal. There is a need to develop improved treatments for IPF. One problem with identifying novel treatments of IPF is the poor predictability of current preclinical models. Few model investigate lung function changes, rather relying on histological changes which doesn't adequately reflect the complete clinical situation. The aim of this study was to establish a novel model of pulmonary fibrosis where we could investigate changes in lung function, and histology. We have also utilised this model to investigate the role of platelets in pulmonary fibrosis as platelets have been recognised as having a broader role than just facilitating haemostasis. Lung fibrosis was induced in male C57BL6/J mice by intranasal bleomycin on Days 0, 1, 2, 5, 6 and 7. Platelets were depleted by twice-weekly administration of anti-platelet antibodies. On Day 35 mice were assessed by examining lung function, platelet infiltration into lung tissues and bronchoalveolar lavage fluid (BAL), levels of BAL Tissue growth factor (TGF)-β levels, and the degree of fibrosis evaluated histologically. Repeated bleomycin administration caused loss of lung function associated with fibrosis assessed histologically. Platelet depletion resulted in a reduction in fibrosis and modest inhibition of lung function changes. We have established a novel model of pulmonary fibrosis that is associated with a decline in lung function similar to the clinical setting. Furthermore, platelet depletion resulted in a less severe fibrosis suggesting that targeting platelets maybe worth further investigation.
Collapse
Affiliation(s)
- R Carrington
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom; Department of Pharmacology, Covance Laboratories Ltd, Woolley Road, Alconbury, Huntingdon, Cambs PE28 4HS, United Kingdom.
| | - S Jordan
- Department of Pharmacology, Covance Laboratories Ltd, Woolley Road, Alconbury, Huntingdon, Cambs PE28 4HS, United Kingdom
| | - Y J Wong
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - S C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - C P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| |
Collapse
|
10
|
Chaudhary PK, Kim S. The GRKs Reactome: Role in Cell Biology and Pathology. Int J Mol Sci 2021; 22:ijms22073375. [PMID: 33806057 PMCID: PMC8036551 DOI: 10.3390/ijms22073375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptor kinases (GRKs) are protein kinases that function in concert with arrestins in the regulation of a diverse class of G protein-coupled receptors (GPCRs) signaling. Although GRKs and arrestins are key participants in the regulation of GPCR cascades, the complex regulatory mechanisms of GRK expression, its alternation, and their function are not thoroughly understood. Several studies together with the work from our lab in recent years have revealed the critical role of these kinases in various physiological and pathophysiological processes, including cardiovascular biology, inflammation and immunity, neurodegeneration, thrombosis, and hemostasis. A comprehensive understanding of the mechanisms underlying functional interactions with multiple receptor proteins and how these interactions take part in the development of various pathobiological processes may give rise to novel diagnostic and therapeutic strategies. In this review, we summarize the current research linking the role of GRKs to various aspects of cell biology, pathology, and therapeutics, with a particular focus on thrombosis and hemostasis.
Collapse
|
11
|
Sagar S, Kapoor H, Chaudhary N, Roy SS. Cellular and mitochondrial calcium communication in obstructive lung disorders. Mitochondrion 2021; 58:184-199. [PMID: 33766748 DOI: 10.1016/j.mito.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+) signalling is well known to dictate cellular functioning and fate. In recent years, the accumulation of Ca2+ in the mitochondria has emerged as an important factor in Chronic Respiratory Diseases (CRD) such as Asthma and Chronic Obstructive Pulmonary Disease (COPD). Various reports underline an aberrant increase in the intracellular Ca2+, leading to mitochondrial ROS generation, and further activation of the apoptotic pathway in these diseases. Mitochondria contribute to Ca2+ buffering which in turn regulates mitochondrial metabolism and ATP production. Disruption of this Ca2+ balance leads to impaired cellular processes like apoptosis or necrosis and thus contributes to the pathophysiology of airway diseases. This review highlights the key role of cytoplasmic and mitochondrial Ca2+ signalling in regulating CRD, such as asthma and COPD. A better understanding of the dysregulation of mitochondrial Ca2+ homeostasis in these diseases could provide cues for the development of advanced therapeutic interventions in these diseases.
Collapse
Affiliation(s)
- Shakti Sagar
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himanshi Kapoor
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Nisha Chaudhary
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Miglio A, Falcinelli E, Mezzasoma AM, Cappelli K, Mecocci S, Gresele P, Antognoni MT. Effect of First Long-Term Training on Whole Blood Count and Blood Clotting Parameters in Thoroughbreds. Animals (Basel) 2021; 11:447. [PMID: 33572086 PMCID: PMC7915801 DOI: 10.3390/ani11020447] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023] Open
Abstract
Training has a strong effect on the physiology of hematological parameters and blood coagulation, both in humans and in horses. Several blood changes have been reported after exercise in horses but available data differ. We aimed to investigate modifications in complete blood count and some hemostatic parameters induced by the first training period in young untrained Thoroughbred racehorses to detect a possible labile blood coagulability in racehorses. Twenty-nine untrained 2-year-old Thoroughbreds were followed during their incremental 4-month sprint exercise schedule. Blood collection was performed once a month, five times (T-30, T0, T30, T60 and T90), before and during the training period for measurement of complete blood count (CBC) and blood clotting parameters (prothrombin time-PT, activated partial prothrombin time-APTT, thrombin clotting time-TCT, fibrinogen-Fb, thrombin-antithrombin complex-TAT). Differences among the time points for each parameter were analyzed (ANOVA, Kruskal-Wallis one-way analysis of variance, p < 0.05). In Thoroughbreds, the first long-term exercise workout period was found to induce a statistical increase in red blood cell indexes and lymphocytes, eosinophils and platelet counts, as well as a hypercoagulability state evident at 30 days of training, which returned to basal levels after 90 days. Regular physical exercise seems to blunt the negative effects of acute efforts on hematological and clotting parameters, an effect that may be attributed to the training condition.
Collapse
Affiliation(s)
- Arianna Miglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (K.C.); (S.M.); (M.T.A.)
| | - Emanuela Falcinelli
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.M.M.); (P.G.)
| | - Anna Maria Mezzasoma
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.M.M.); (P.G.)
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (K.C.); (S.M.); (M.T.A.)
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (K.C.); (S.M.); (M.T.A.)
| | - Paolo Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.M.M.); (P.G.)
| | - Maria Teresa Antognoni
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (K.C.); (S.M.); (M.T.A.)
| |
Collapse
|
13
|
Kim S, Jung H, Kim M, Moon J, Ban G, Kim SJ, Yoo H, Park H. Ceramide/sphingosine-1-phosphate imbalance is associated with distinct inflammatory phenotypes of uncontrolled asthma. Allergy 2020; 75:1991-2004. [PMID: 32072647 DOI: 10.1111/all.14236] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Asthma is associated with inflammatory dysregulation, but the underlying metabolic signatures are unclear. This study aimed to classify asthma inflammatory phenotypes based on cellular and metabolic features. METHODS To determine cellular and metabolic profiles, we assessed inflammatory cell markers using flow cytometry, sphingolipid (SL) metabolites using LC-MS/MS, and serum cytokines using ELISA. Targeted gene polymorphisms were determined to identify genetic predispositions related to the asthma inflammatory phenotype. RESULTS In total, 137 patients with asthma and 20 healthy controls (HCs) were enrolled. Distinct cellular and metabolic profiles were found between them; patients with asthma showed increased expressions of inflammatory cell markers and higher levels of SL metabolites compared to HCs (P < .05 for all). Cellular markers (CD66+ neutrophils, platelet-adherent eosinophils) and SL metabolic markers (C16:0 and C24:0 ceramides) for uncontrolled asthma were also identified; higher levels were observed in uncontrolled asthma compared to controlled asthma (P < .05 for all). Asthmatics patients with higher levels of CD66+ neutrophils had lower FEV1(%), higher ACQ (but lower AQLO) scores, and higher sphingosine and C16:0 ceramide levels compared to those with low levels of CD66+ neutrophils. Asthmatics patients with higher levels of platelet-adherent eosinophils had higher S1P levels compared to those with lower levels of platelet-adherent eosinophils. Patients carrying TT genotype of ORMDL3 had more CD66+ neutrophils; those with AG/ GG genotypes of SGMS1 exhibited higher platelet-adherent eosinophils. CONCLUSION Patients with uncontrolled asthma possess distinct inflammatory phenotypes including increased CD66+ neutrophils and platelet-adherent eosinophils, with an imbalanced ceramide/S1P rheostat, potentially involving ORMDL3 and SGMS1 gene polymorphisms. Ceramide/S1P synthesis could be targeted to control airway inflammation.
Collapse
Affiliation(s)
- Seung‐Hyun Kim
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Hae‐Won Jung
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Minji Kim
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Ji‐Young Moon
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Ga‐Young Ban
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
- Department of Pulmonary, Allergy, and Critical Care Medicine Kangdong Sacred Heart HospitalHallym University College of Medicine Institute for Life Sciences Seoul South Korea
| | - Su Jung Kim
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Hyun‐Ju Yoo
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Hae‐Sim Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| |
Collapse
|
14
|
Cleary SJ, Rauzi F, Smyth E, Correia A, Hobbs C, Emerson M, Page CP, Pitchford SC. Radiolabelling and immunohistochemistry reveal platelet recruitment into lungs and platelet migration into airspaces following LPS inhalation in mice. J Pharmacol Toxicol Methods 2019; 102:106660. [PMID: 31838234 DOI: 10.1016/j.vascn.2019.106660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/21/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Platelets are under investigation for their role in host defence and inflammatory lung diseases and have been demonstrated to be recruited to the lung. However, the mechanisms and consequences of platelet recruitment into lungs are poorly understood. We have utilised a murine model to investigate the mechanisms of platelet involvement in lung inflammation induced by intranasal administration of LPS. OBJECTIVES Our aim was to characterise lung platelet recruitment following LPS inhalation in mice using immunohistochemistry, and non-invasive and invasive radiolabelled platelet tracking techniques. RESULTS Intranasal administration of LPS caused an increase in lung platelet staining in lung tissue and elicited the recruitment of radiolabelled platelets into the lung. Prior to these responses in the lung, we observed an earlier decrease in blood platelet counts, temporally associated with platelet recruitment to the liver and spleen. Non-invasive measurements of thoracic radioactivity reflected changes in blood counts rather than extravascular lung platelet recruitment. However, both in situ counting of radiolabelled platelets and immunostaining for platelet surface markers showed LPS-induced increases in extravascular platelets into lung airspaces suggesting that some of the platelets recruited to the lung enter air spaces. CONCLUSIONS Intranasal administration of LPS activates the innate immune response which includes a fall in peripheral blood platelet counts with subsequent platelet recruitment to the lung, spleen and liver, measured by immunohistochemistry and radiolabelling techniques.
Collapse
Affiliation(s)
- S J Cleary
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| | - F Rauzi
- National Heart & Lung Institute, Imperial College London, London, UK
| | - E Smyth
- National Heart & Lung Institute, Imperial College London, London, UK
| | - A Correia
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| | - C Hobbs
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - M Emerson
- National Heart & Lung Institute, Imperial College London, London, UK
| | - C P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| | - S C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK.
| |
Collapse
|
15
|
Matsuda A. Platelets: Pivotal Player in Primary Sensitization to Allergen? Am J Respir Cell Mol Biol 2019; 59:7-8. [PMID: 29957053 DOI: 10.1165/rcmb.2018-0048ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Akio Matsuda
- 1 National Research Institute for Child Health and Development Tokyo, Japan
| |
Collapse
|
16
|
Amison RT, Cleary SJ, Riffo-Vasquez Y, Bajwa M, Page CP, Pitchford SC. Platelets Play a Central Role in Sensitization to Allergen. Am J Respir Cell Mol Biol 2019; 59:96-103. [PMID: 29365287 DOI: 10.1165/rcmb.2017-0401oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Platelet activation occurs in patients with allergic inflammation, and platelets can be activated directly by allergen via an IgE-dependent process. Platelets have been shown to activate APCs such as CD11c+ dendritic cells in vitro. Although CD11c+ dendritic cells are a requisite for allergen sensitization, the role of platelets in this process is unknown. In this study, we investigated whether platelets were necessary for allergen sensitization. Balb/c mice sensitized to ovalbumin were exposed to subsequent aerosolized allergen (ovalbumin challenge). We analyzed lung CD11c+ cell activation, colocalization with platelets, and some other indices of inflammation. The role of platelets at the time of allergen sensitization was assessed through platelet depletion experiments restricted to the period of sensitization. Platelets colocalized with airway CD11c+ cells, and this association increased after allergen sensitization as well as after subsequent allergen exposure. Temporary platelet depletion (>95%) at the time of allergen sensitization led to a suppression of IgE and IL-4 synthesis and to a decrease in the pulmonary recruitment of eosinophils, macrophages, and lymphocytes after subsequent allergen exposure. Furthermore, in mice previously depleted of platelets at the time of sensitization, the recovered platelet population was shown to have reduced expression of FcεRI. Pulmonary CD11c+ cell recruitment was suppressed in these mice after allergen challenge, suggesting that the migration of CD11c+ cells in vivo may be dependent on direct platelet recognition of allergen. We conclude that platelets are necessary for efficient host sensitization to allergen. This propagates the subsequent inflammatory response during secondary allergen exposure and increases platelet association with airway CD11c+ cells.
Collapse
Affiliation(s)
- Richard T Amison
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon J Cleary
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Maidda Bajwa
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Understanding Platelets in Infectious and Allergic Lung Diseases. Int J Mol Sci 2019; 20:ijms20071730. [PMID: 30965568 PMCID: PMC6480134 DOI: 10.3390/ijms20071730] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence suggests that platelets, cytoplasmic fragments derived from megakaryocytes, can no longer be considered just as mediators in hemostasis and coagulation processes, but as key modulators of immunity. Platelets have received increasing attention as the emergence of new methodologies has allowed the characterization of their components and functions in the immune continuum. Platelet activation in infectious and allergic lung diseases has been well documented and associated with bacterial infections reproduced in several animal models of pulmonary bacterial infections. Direct interactions between platelets and bacteria have been associated with increased pulmonary platelet accumulation, whereas bacterial-derived toxins have also been reported to modulate platelet function. Recently, platelets have been found extravascular in the lungs of patients with asthma, and in animal models of allergic lung inflammation. Their ability to interact with immune and endothelial cells and secrete immune mediators makes them one attractive target for biomarker identification that will help characterize their contribution to lung diseases. Here, we present an original review of the last advances in the platelet field with a focus on the contribution of platelets to respiratory infections and allergic-mediated diseases.
Collapse
|
18
|
Pan S, Conaway S, Deshpande DA. Mitochondrial regulation of airway smooth muscle functions in health and pulmonary diseases. Arch Biochem Biophys 2019; 663:109-119. [PMID: 30629957 DOI: 10.1016/j.abb.2019.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/28/2018] [Accepted: 01/04/2019] [Indexed: 12/24/2022]
Abstract
Mitochondria are important for airway smooth muscle physiology due to their diverse yet interconnected roles in calcium handling, redox regulation, and cellular bioenergetics. Increasing evidence indicates that mitochondria dysfunction is intimately associated with airway diseases such as asthma, IPF and COPD. In these pathological conditions, increased mitochondrial ROS, altered bioenergetics profiles, and calcium mishandling contribute collectively to changes in cellular signaling, gene expression, and ultimately changes in airway smooth muscle contractile/proliferative properties. Therefore, understanding the basic features of airway smooth muscle mitochondria and their functional contribution to airway biology and pathology are key to developing novel therapeutics for airway diseases. This review summarizes the recent findings of airway smooth muscle mitochondria focusing on calcium homeostasis and redox regulation, two key determinants of physiological and pathological functions of airway smooth muscle.
Collapse
Affiliation(s)
- Shi Pan
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Stanley Conaway
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Deepak A Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
19
|
Eisinger F, Patzelt J, Langer HF. The Platelet Response to Tissue Injury. Front Med (Lausanne) 2018; 5:317. [PMID: 30483508 PMCID: PMC6242949 DOI: 10.3389/fmed.2018.00317] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, various studies have increasingly explained platelet functions not only in their central role as a regulator in cellular hemostasis and coagulation. In fact, there is growing evidence that under specific conditions, platelets act as a mediator between the vascular system, hemostasis, and the immune system. Therefore, they are essential in many processes involved in tissue remodeling and tissue reorganization after injury or inflammatory responses. These processes include the promotion of inflammatory processes, the contribution to innate and adaptive immune responses during bacterial and viral infections, the modulation of angiogenesis, and the regulation of cell apoptosis in steady-state tissue homeostasis or after tissue breakdown. All in all platelets may contribute to the control of tissue homeostasis much more than generally assumed. This review summarizes the current knowledge of platelets as part of the tissue remodeling network and seeks to provide possible translational implications for clinical therapy.
Collapse
Affiliation(s)
- Felix Eisinger
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Johannes Patzelt
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Harald F. Langer
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
20
|
Iwaszko A, Borowicz H, Graczyk S, Slowikowska M, Pliszczak-Krol A, Niedzwiedz A. Effect of antigen challenge on dynamics of CD62P and CD41/61 expression on platelets in horses with recurrent airway obstruction (RAO). Vet Immunol Immunopathol 2018; 202:172-180. [PMID: 30078592 DOI: 10.1016/j.vetimm.2018.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/30/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
Recurrent airway obstruction (RAO), also known as heaves, is an allergic respiratory condition that develops in horses following an exposure to aeroallergens in hay and straw. This is manifested by airway hyperreactivity, inflammation, bronchoconstriction, as well as a leukocyte and platelet infiltration into the airways. Platelet activation and an increase in circulating platelet-leukocyte aggregates may lead to airway remodeling. The aim of this study was to explore the effect of seven-day antigen challenge on dynamics of platelet indices and CD41/61 and CD62 P expression on platelets in horses with RAO. Ten RAO-affected horses and ten healthy horses were included in this study. All horses were exposed to 7 days hay and straw challenge. Blood samples were collected prior to the challenge (Pre-challenge) and 1, 2, 3, 7 and 14 days after the initiating the antigen challenge. Blood samples were obtained to determine the platelet count (PLT), mean platelet volume (MPV) and platelet large cell ratio (P-LCR). Expression of CD62 P and CD41/61 was detected by flow cytometry on activated platelets. Antigen challenge resulted in a significant gradual decrease of PLT in RAO horses, but not in controls. MPV and P-LCR in control and RAO-affected horses remained unchanged after antigen challenge. The expression of CD62 P and CD41/61 in RAO horses was significantly higher compared to control horses. The antigen challenge resulted in an increase expression of CD62 P and CD41/61 on the platelets of RAO-affected horses, while did not lead to significant changes in the control group. An increased expression of CD62 P and CD41/61 indicates platelet activation what may contribute to the formation of platelet aggregates in their respiratory system.
Collapse
Affiliation(s)
- Alicja Iwaszko
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| | - Hieronim Borowicz
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| | - Stanislaw Graczyk
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| | - Malwina Slowikowska
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| | - Aleksandra Pliszczak-Krol
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| | - Artur Niedzwiedz
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| |
Collapse
|
21
|
Takeda T, Morita H, Saito H, Matsumoto K, Matsuda A. Recent advances in understanding the roles of blood platelets in the pathogenesis of allergic inflammation and bronchial asthma. Allergol Int 2018; 67:326-333. [PMID: 29242144 DOI: 10.1016/j.alit.2017.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/12/2017] [Accepted: 11/19/2017] [Indexed: 12/28/2022] Open
Abstract
Platelets play an essential role in hemostasis to minimize blood loss due to traumatic injury. In addition, they contain various immune-associated molecules and contribute to immunological barrier formation at sites of vascular injury, thereby protecting against invading pathogens. Platelets are also crucially involved in development of allergic diseases, including bronchial asthma. Platelets in asthmatics are more activated than those in healthy individuals. By using a murine asthma model, platelets were shown to be actively involved in progression of the disease, including in airway eosinophilia and airway remodeling. In the asthmatic airway, pathological microvascular angiogenesis, a component of airway remodeling, is commonly observed, and the degree of abnormality is significantly associated with disease severity. Therefore, in order to repair the newly formed and structurally fragile blood vessels under inflammatory conditions, platelets may be continuously activated in asthmatics. Importantly, platelets constitutively express IL-33 protein, an alarmin cytokine that is essential for development of bronchial asthma. Meanwhile, the concept of development of allergic diseases has recently changed dramatically, and allergy researchers now share a belief in the centrality of epithelial barrier functions. In particular, IL-33 released from epithelial barrier tissue at sites of eczema can activate the antigen-non-specific innate immune system as an alarmin that is believed to be necessary for subsequent antigen-specific acquired immunological responses. From this perspective, we propose in this review a possible mechanism for how activated platelets act as an alarmin in development of bronchial asthma.
Collapse
Affiliation(s)
- Tomohiro Takeda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Health Sciences, Kansai University of Health Sciences, Osaka, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akio Matsuda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
22
|
Abstract
Immunoglobulin E-mediated food allergy is rapidly developing into a global health problem. Publicly available therapeutic intervention strategies are currently restricted to allergen avoidance and emergency treatments. To gain a better understanding of the disease pathophysiology so that new therapies can be developed, major research efforts have been put into studying food allergy in mice. Animal models should reflect the human pathology as closely as possible to allow for a rapid translation of basic science observations to the bedside. In this regard, experimental models of food allergy provide significant challenges for research because of discrepancies between the presentation of disease in humans and mice. The goal of this review is to give a summary of commonly used murine disease models and to discuss how they relate to the human condition. We will focus on epicutaneous sensitization models, on mouse strains that sensitize spontaneously to food as seen in humans, and on models in humanized animals. In summary, expanding the research toolbox of experimental food allergy provides an important step toward closing gaps in our understanding of the derailing immune mechanism that underlies the human disease. The availability of additional experimental models will provide exciting opportunities to discover new intervention points for the treatment of food allergies. (Cell Mol Gastroenterol Hepatol 2018;x:x).
Collapse
Key Words
- Allergen Challenge
- Allergen Sensitization
- Anaphylaxis
- EPIT, epicutaneous immunotherapy
- Epictutaneous Sensitization
- FCER1A, high-affinity immunoglobulin epsilon receptor subunit alpha
- FCERIA
- FcεRI, high-affinity immunoglobulin E receptor
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HSC, hematopoietic stem cell
- Humanized Model
- IL, interleukin
- Ig, immunoglobulin
- IgE
- LCT, long chain triglycerides
- MCPT, mouse mast cell protease
- MCT, medium chain triglycerides
- Murine Models of Food Allergy
- OIT, oral immunotherapy
- PBMC, peripheral blood mononuclear cell
- Spontaneous Sensitization
- TSLP, thymic stromal lymphopoietin
- Th, T helper
- Treg, regulatory T cell
- WASP, Wiskott–Aldrich syndrome protein
Collapse
|
23
|
Cardenas EI, Breaux K, Da Q, Flores JR, Ramos MA, Tuvim MJ, Burns AR, Rumbaut RE, Adachi R. Platelet Munc13-4 regulates hemostasis, thrombosis and airway inflammation. Haematologica 2018; 103:1235-1244. [PMID: 29674495 PMCID: PMC6029531 DOI: 10.3324/haematol.2017.185637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/12/2018] [Indexed: 01/15/2023] Open
Abstract
Platelet degranulation is crucial for hemostasis and may participate in inflammation. Exocytosis in platelets is mediated by SNARE proteins and should be controlled by Munc13 proteins. We found that platelets express Munc13-2 and -4. We assessed platelet granule exocytosis in Munc13-2 and -4 global and conditional knockout (KO) mice, and observed that deletion of Munc13-4 ablates dense granule release and indirectly impairs alpha granule exocytosis. We found no exocytic role for Munc13-2 in platelets, not even in the absence of Munc13-4. In vitro, Munc13-4-deficient platelets exhibited defective aggregation at low doses of collagen. In a flow chamber assay, we observed that Munc13-4 acted as a rate-limiting factor in the formation of thrombi. In vivo, we observed a dose-dependency between Munc13-4 expression in platelets and both venous bleeding time and time to arterial thrombosis. Finally, in a model of allergic airway inflammation, we found that platelet-specific Munc13-4 KO mice had a reduction in airway hyper-responsiveness and eosinophilic inflammation. Taken together, our results indicate that Munc13-4-dependent platelet dense granule release plays essential roles in hemostasis, thrombosis and allergic inflammation.
Collapse
Affiliation(s)
- Eduardo I Cardenas
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Mexico
| | - Keegan Breaux
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Da
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jose R Flores
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marco A Ramos
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alan R Burns
- College of Optometry, University of Houston, TX, USA
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Roberto Adachi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Walker JKL, Theriot BS, Ghio M, Trempus CS, Wong JE, McQuade VL, Liang J, Jiang D, Noble PW, Garantziotis S, Kraft M, Ingram JL. Targeted HAS2 Expression Lessens Airway Responsiveness in Chronic Murine Allergic Airway Disease. Am J Respir Cell Mol Biol 2017; 57:702-710. [PMID: 28787175 PMCID: PMC5765419 DOI: 10.1165/rcmb.2017-0095oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/24/2017] [Indexed: 01/02/2023] Open
Abstract
Hyaluronan (HA), a major component of the extracellular matrix, is secreted by airway structural cells. Airway fibroblasts in allergic asthma secrete elevated levels of HA in association with increased HA synthase 2 (HAS2) expression. Thus, we hypothesized that HA accumulation in the airway wall may contribute to airway remodeling and hyperresponsiveness in allergic airways disease. To examine this hypothesis, transgenic mice in which the α-smooth muscle actin (α-SMA) promoter drives HAS2 expression were generated. Mixed male and female α-SMA-HAS2 mice (HAS2+ mice, n = 16; HAS2- mice, n = 13) were sensitized via intraperitoneal injection and then chronically challenged with aerosolized ovalbumin (OVA) for 6 weeks. To test airway responsiveness, increasing doses of methacholine were delivered intravenously and airway resistance was measured using the forced oscillation technique. HA, cytokines, and cell types were analyzed in bronchoalveolar lavage fluid, serum, and whole lung homogenates. Lung sections were stained using antibodies specific for HA-binding protein (HABP) and α-SMA, as well as Masson's trichrome stain. Staining of lung tissue demonstrated significantly increased peribronchial HA, α-SMA, and collagen deposition in OVA-challenged α-SMA-HAS2+ mice compared with α-SMA-HAS2- mice. Unexpectedly, OVA-challenged α-SMA-HAS2+ mice displayed significantly reduced airway responsiveness to methacholine compared with similarly treated α-SMA-HAS2- mice. The total numbers of inflammatory cell types in the bronchoalveolar lavage fluid did not differ significantly between OVA-challenged α-SMA-HAS2+ mice and α-SMA-HAS2- mice. We conclude that allergen-challenged mice that overexpress HAS2 in myofibroblasts and smooth muscle cells develop increased airway fibrosis, which lessens airway hyperresponsiveness to bronchoconstrictors.
Collapse
Affiliation(s)
- Julia K. L. Walker
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- School of Nursing, Duke University, Durham, North Carolina; and
| | - Barbara S. Theriot
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Michael Ghio
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Carol S. Trempus
- Laboratory of Immunity, Inflammation and Disease, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Jordan E. Wong
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Victoria L. McQuade
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jiurong Liang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Dianhua Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Paul W. Noble
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Stavros Garantziotis
- Laboratory of Immunity, Inflammation and Disease, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Monica Kraft
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jennifer L. Ingram
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
25
|
Tuleta I, Skowasch D, Aurich F, Eckstein N, Schueler R, Pizarro C, Schahab N, Nickenig G, Schaefer C, Pingel S. Asthma is associated with atherosclerotic artery changes. PLoS One 2017; 12:e0186820. [PMID: 29073174 PMCID: PMC5658104 DOI: 10.1371/journal.pone.0186820] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022] Open
Abstract
Asthma is a chronic airway inflammation with a potential systemic impact. Atherosclerosis is a chronic inflammatory artery disease. The aim of our study was to prove if there is a correlation between the occurrence of asthma and increased atherosclerotic vessel disorders. Vessel status was compared between mild-to-moderate, severe allergic asthma and matched controls. Measurements of artery stiffness were calculated by central pulse wave velocity, ultrasonographic strain imaging and ankle-brachial index. Atherosclerotic plaque burden was assessed by colour-coded duplex sonography. Additionally, analysis of cardiovascular and asthma blood markers was conducted. Arterial stiffness expressed as an increased central pulse wave velocity and decreased circumferential and radial strains as well as the prevalence of media sclerosis were significantly higher among asthma patients compared to controls. Atherosclerotic plaque burden was relevantly increased in asthma groups vs. controls (severe asthma: 43.1%, mild-to-moderate asthma: 25.0%, control: 14.3% of study participants). Except for the elevated IgE and fibrinogen concentrations as well as leukocyte number there were no relevant differences in the blood parameters between the groups. Allergic asthma is associated with distinct atherosclerotic artery changes compared to the respectively matched control collective. The severity of asthma correlates with more pronounced pathological vessel alternations.
Collapse
Affiliation(s)
- Izabela Tuleta
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
- * E-mail:
| | - Dirk Skowasch
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Florian Aurich
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Nicolas Eckstein
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Robert Schueler
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Carmen Pizarro
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Nadjib Schahab
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Christian Schaefer
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Simon Pingel
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
Shah SA, Page CP, Pitchford SC. Platelet-Eosinophil Interactions As a Potential Therapeutic Target in Allergic Inflammation and Asthma. Front Med (Lausanne) 2017; 4:129. [PMID: 28848732 PMCID: PMC5550710 DOI: 10.3389/fmed.2017.00129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/24/2017] [Indexed: 01/24/2023] Open
Abstract
The importance of platelet activation during hemostasis is well understood. An understanding of these mechanisms has led to the use of several classes of anti-platelet drugs to inhibit aggregation for the prevention of thrombi during cardiovascular disease. It is now also recognized that platelets can function very differently during inflammation, as part of their role in the innate immune response against pathogens. This dichotomy in platelet function occurs through distinct physiological processes and alternative signaling pathways compared to that of hemostasis (leading to platelet aggregation) and is manifested as increased rheological interactions with leukocytes, the ability to undergo chemotaxis, communication with antigen-presenting cells, and direct anti-pathogen responses. Mounting evidence suggests platelets are also critical in the pathogenesis of allergic diseases such as asthma, where they have been associated with antigen presentation, bronchoconstriction, bronchial hyperresponsiveness, airway inflammation, and airway remodeling in both clinical and experimental studies. In particular, platelets have been reported bound to eosinophils in the blood of patients with asthma and the incidence of these events increases after both spontaneous asthma attacks in a biphasic manner, or after allergen challenge in the clinic. Platelet depletion in animal models of allergic airway inflammation causes a profound reduction in eosinophil recruitment to the lung, suggesting that the association of platelets with eosinophils is indeed an important event during eosinophil activation. Furthermore, in cases of severe asthma, and in animal models of allergic airways inflammation, platelet–eosinophil complexes move into the lung through a platelet P-selectin-mediated, eosinophil β1-integrin activation-dependent process, while platelets increase adherence of eosinophils to the vascular endothelium in vitro, demonstrating a clear interaction between these cell types in allergic inflammatory diseases. This review will explore non-thrombotic platelet activation in the context of allergy and the association of platelets with eosinophils, to reveal how these phenomena may lead to the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Sajeel A Shah
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
27
|
Abstract
The role of platelets as inflammatory cells is now well established. Given the peculiar characteristics of the lung circulation, with a broad capillary bed, platelets are especially involved with the physiology of the lungs and play a key role in a number of inflammatory lung disorders. The platelet precursors, megakaryocytes, are detected in the lung microcirculation; moreover platelets with their endothelium-protective and vascular reparative activities contribute to the lung capillary blood barrier integrity. Given the function of the lungs as first wall against pathogen invasion, platelets participate in immune defence of the normal lung. On the other hand, platelets may turn into effectors of the inflammatory reaction of the lungs to allergens, to infectious agents, to chemical agents and may contribute strongly to the perpetuation of chronic inflammatory reactions, largely by their ability to interact with other inflammatory cells and the endothelium. In this chapter we provide an overview of the role of platelets in several inflammatory lung disorders discussing the pathophysiologic bases of platelet involvement in these conditions and the experimental and clinical evidence for a role of platelets in lung diseases.
Collapse
|
28
|
Zhan Y, Lu R, Meng H, Wang X, Sun X, Hou J. The role of platelets in inflammatory immune responses in generalized aggressive periodontitis. J Clin Periodontol 2017; 44:150-157. [PMID: 27883202 DOI: 10.1111/jcpe.12657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Yalin Zhan
- Department of Periodontology; Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology; Beijing China
| | - Ruifang Lu
- Department of Periodontology; Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology; Beijing China
| | - Huanxin Meng
- Department of Periodontology; Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology; Beijing China
| | - Xian'e Wang
- Department of Periodontology; Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology; Beijing China
| | - Xiaojun Sun
- Department of Stomatology; The First Hospital of Shanxi Medical University; Taiyuan Shanxi China
| | - Jianxia Hou
- Department of Periodontology; Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology; Beijing China
| |
Collapse
|
29
|
Yu Z, Saito H, Otsuka H, Shikama Y, Funayama H, Sakai M, Murai S, Nakamura M, Yokochi T, Takada H, Sugawara S, Endo Y. Pulmonary platelet accumulation induced by catecholamines: Its involvement in lipopolysaccharide-induced anaphylaxis-like shock. Int Immunopharmacol 2016; 43:40-52. [PMID: 27939824 DOI: 10.1016/j.intimp.2016.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/29/2016] [Accepted: 11/29/2016] [Indexed: 11/15/2022]
Abstract
Intravenously injected lipopolysaccharides (LPS) rapidly induce pulmonary platelet accumulation (PPA) and anaphylaxis-like shock (ALS) in mice. Macrophages reportedly release catecholamines rapidly upon stimulation with LPS. Here, we examined the involvement of macrophage-derived catecholamines in LPS-induced PPA and ALS. A catecholamine or Klebsiella O3 (KO3) LPS was intravenously injected into mice, with 5-hydroxytryptamine in the lung being measured as a platelet marker. The tested catecholamines induced PPA, leading to shock. Their minimum shock-inducing doses were at the nmol/kg level. The effects of epinephrine and norepinephrine were inhibited by prazosin (α1 antagonist) and by yohimbine (α2 antagonist), while dopamine's were inhibited only by prazosin. Use of synthetic adrenergic α1- and/or α2-agonists, platelet- or macrophage-depleted mice, a complement C5 inhibitor and C5-deficient mice revealed that (a) α2-receptor-mediated PPA and shock depend on both macrophages and complements, while α1-receptor-mediated PPA and shock depend on neither macrophages nor complements, (b) the PPA and ALS induced by KO3-LPS depend on α1- and α2-receptors, macrophages, and complements, and (c) KO3-LPS-induced PPA is preceded by catecholamines decreasing in serum. Together, these results suggest the following. (i) Catecholamines may stimulate macrophages and release complement C5 via α2-receptors. (ii) Macrophage-derived catecholamines may mediate LPS-induced PPA and ALS. (iii) Moderate PPA may serve as a defense mechanism to remove excess catecholamines from the circulation by promoting their rapid uptake, thus preventing excessive systemic effects. (iv) The present findings might provide an insight into possible future pharmacological strategies against such diseases as shock and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Zhiqian Yu
- Division of Molecular Regulation, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Hiroko Saito
- Laboratory of Pharmacology, Faculty of Pharmaceutical Science, Aomori University, 2-3-1 Koubata, Aomori 030-0943, Japan
| | - Hirotada Otsuka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yosuke Shikama
- Division of Molecular Regulation, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hiromi Funayama
- Division of Molecular Regulation, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Division of Microbiology and Immunology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Mai Sakai
- Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shigeo Murai
- Laboratory of Pharmacology, Faculty of Pharmaceutical Science, Aomori University, 2-3-1 Koubata, Aomori 030-0943, Japan
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takashi Yokochi
- Department of Microbiology and Immunology, Aichi Medical University, Nagakute, Aichi 48-1955, Japan
| | - Haruhiko Takada
- Division of Microbiology and Immunology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shunji Sugawara
- Division of Molecular Regulation, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yasuo Endo
- Division of Molecular Regulation, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
30
|
Kanabar V, Tedaldi L, Jiang J, Nie X, Panina I, Descroix K, Man F, Pitchford SC, Page CP, Wagner GK. Base-modified UDP-sugars reduce cell surface levels of P-selectin glycoprotein 1 (PSGL-1) on IL-1β-stimulated human monocytes. Glycobiology 2016; 26:1059-1071. [PMID: 27233805 PMCID: PMC5072147 DOI: 10.1093/glycob/cww053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/07/2016] [Accepted: 04/22/2016] [Indexed: 12/26/2022] Open
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1, CD162) is a cell-surface glycoprotein that is expressed, either constitutively or inducibly, on all myeloid and lymphoid cell lineages. PSGL-1 is implicated in cell-cell interactions between platelets, leukocytes and endothelial cells, and a key mediator of inflammatory cell recruitment and transmigration into tissues. Here, we have investigated the effects of the β-1,4-galactosyltransferase inhibitor 5-(5-formylthien-2-yl) UDP-Gal (5-FT UDP-Gal, compound 1: ) and two close derivatives on the cell surface levels of PSGL-1 on human peripheral blood mononuclear cells (hPBMCs). PSGL-1 levels were studied both under basal conditions, and upon stimulation of hPBMCs with interleukin-1β (IL-1β). Between 1 and 24 hours after IL-1β stimulation, we observed initial PSGL-1 shedding, followed by an increase in PSGL-1 levels on the cell surface, with a maximal window between IL-1β-induced and basal levels after 72 h. All three inhibitors reduce PSGL-1 levels on IL-1β-stimulated cells in a concentration-dependent manner, but show no such effect in resting cells. Compound 1: also affects the cell surface levels of adhesion molecule CD11b in IL-1β-stimulated hPBMCs, but not of glycoproteins CD14 and CCR2. This activity profile may be linked to the inhibition of global Sialyl Lewis presentation on hPBMCs by compound 1: , which we have also observed. Although this mechanistic explanation remains hypothetical at present, our results show, for the first time, that small molecules can discriminate between IL-1β-induced and basal levels of cell surface PSGL-1. These findings open new avenues for intervention with PSGL-1 presentation on the cell surface of primed hPBMCs and may have implications for anti-inflammatory drug development.
Collapse
Affiliation(s)
- Varsha Kanabar
- Sackler Institute of Pulmonary Pharmacology
- Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London SE1 9NH, UK
| | - Lauren Tedaldi
- Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London SE1 9NH, UK
- Department of Chemistry, Faculty of Natural & Mathematical Sciences, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Jingqian Jiang
- Department of Chemistry, Faculty of Natural & Mathematical Sciences, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Xiaodan Nie
- Sackler Institute of Pulmonary Pharmacology
- Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London SE1 9NH, UK
| | - Irina Panina
- Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London SE1 9NH, UK
| | - Karine Descroix
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Francis Man
- Sackler Institute of Pulmonary Pharmacology
- Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London SE1 9NH, UK
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology
- Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London SE1 9NH, UK
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology
- Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London SE1 9NH, UK
| | - Gerd K Wagner
- Department of Chemistry, Faculty of Natural & Mathematical Sciences, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| |
Collapse
|
31
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
32
|
Can mean platelet volume be used as a biomarker for asthma? Postepy Dermatol Alergol 2016; 33:182-7. [PMID: 27512352 PMCID: PMC4969408 DOI: 10.5114/pdia.2015.52737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/13/2015] [Indexed: 12/20/2022] Open
Abstract
Introduction Platelets play important roles in airway inflammation and are activated in inflammatory lung diseases, including asthma. Aim We evaluated the mean platelet volume (MPV), used as a marker of platelet activation, in asthmatic patients during asymptomatic periods and exacerbations compared to healthy controls to determine whether MPV can be used as an indicator of inflammation. Material and methods Our patient group consisted of 95 children with exacerbation of asthma who were admitted to our allergy clinic. The control group consisted of 100 healthy children matched for age, gender, and ethnicity. Mean platelet volume values of the patient group obtained during exacerbation of asthma were compared to those of the same group during the asymptomatic period and with the control group. We investigated factors that can affect the MPV values of asthma patients, including infection, atopy, immunotherapy treatment, and severity of asthma exacerbation. Results The patient group consisted of 50 (52.6%) boys and 45 (47.4%) girls with a mean age of 125 ±38 months old. Mean MPV values in the exacerbation period, the healthy period, and in the control group were 8.1 ±0.8 fl, 8.1 ±1.06 fl, and 8.2 ±0.9 fl, respectively; there were no significant differences between groups (p > 0.05). The severity of asthma, severity of asthma exacerbation, immunotherapy, coinfection, eosinophil count, and IgE level also had no effect on MPV (p > 0.05). Conclusions Although platelets play a role in the pathophysiology of asthma, MPV measurement is insufficient to detect inflammation through platelets.
Collapse
|
33
|
Yu C, Zhang S, Wang Y, Zhang S, Luo L, Thorlacius H. Platelet-Derived CCL5 Regulates CXC Chemokine Formation and Neutrophil Recruitment in Acute Experimental Colitis. J Cell Physiol 2016; 231:370-6. [PMID: 26089223 DOI: 10.1002/jcp.25081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/15/2015] [Indexed: 01/30/2023]
Abstract
Accumulating data suggest that platelets not only regulate thrombosis and haemostasis but also inflammatory processes. Platelets contain numerous potent pro-inflammatory compounds, including the chemokines CCL5 and CXCL4, although their role in acute colitis remains elusive. The aim of this study is to examine the role of platelets and platelet-derived chemokines in acute colitis. Acute colitis is induced in female Balb/c mice by administration of 5% dextran sodium sulfate (DSS) for 5 days. Animals receive a platelet-depleting, anti-CCL5, anti-CXCL4, or a control antibody prior to DSS challenge. Colonic tissue is collected for quantification of myeloperoxidase (MPO) activity, CXCL5, CXCL2, interleukin-6 (IL-6), and CCL5 levels as well as morphological analyses. Platelet depletion reduce tissue damage and clinical disease activity index in DSS-exposed animals. Platelet depletion not only reduces levels of CXCL2 and CXCL5 but also levels of CCL5 in the inflamed colon. Immunoneutralization of CCL5 but not CXCL4 reduces tissue damage, CXC chemokine expression, and neutrophil recruitment in DSS-treated animals. These findings show that platelets play a key role in acute colitis by regulating CXC chemokine generation, neutrophil infiltration, and tissue damage in the colon. Moreover, our results suggest that platelet-derived CCL5 is an important link between platelet activation and neutrophil recruitment in acute colitis.
Collapse
Affiliation(s)
- Changhui Yu
- Department of Clinical Sciences Section of Surgery, Malmö Lund University, Malmö, Sweden.,Department of Gastroenterology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Songen Zhang
- Department of Clinical Sciences Section of Surgery, Malmö Lund University, Malmö, Sweden
| | - Yongzhi Wang
- Department of Clinical Sciences Section of Surgery, Malmö Lund University, Malmö, Sweden
| | - Su Zhang
- Department of Clinical Sciences Section of Surgery, Malmö Lund University, Malmö, Sweden
| | - Lingtao Luo
- Department of Clinical Sciences Section of Surgery, Malmö Lund University, Malmö, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences Section of Surgery, Malmö Lund University, Malmö, Sweden
| |
Collapse
|
34
|
Platelets constitutively express IL-33 protein and modulate eosinophilic airway inflammation. J Allergy Clin Immunol 2016; 138:1395-1403.e6. [PMID: 27056266 DOI: 10.1016/j.jaci.2016.01.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/29/2015] [Accepted: 01/07/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although platelets play a key role in allergic inflammation in addition to their well-established role in hemostasis, the precise mechanisms of how platelets modulate allergic inflammation are not fully understood. IL-33 is an essential regulator of innate immune responses and allergic inflammation. OBJECTIVE We sought to determine the expression of IL-33 protein by platelets and its functional significance in airway inflammation. METHODS IL-33 protein in human platelets, the human megakaryocyte cell line MEG-01, and bone marrow-derived mouse megakaryocytes was detected by using Western blot analysis and fluorescent immunostaining. We examined the functional relevance of IL-33 protein in platelets by comparing platelet-intact and platelet-depleted groups in a murine model of IL-33-dependent airway eosinophilia elicited by intranasal administration of papain. We further compared the additive effect of administration of platelets derived from wild-type versus IL-33-deficient mice on the papain-induced eosinophilia. RESULTS Platelets and their progenitor cells, megakaryocytes, constitutively expressed IL-33 protein (31 kDa). Papain-induced IL-33-dependent airway eosinophilia in mice was significantly attenuated by platelet depletion. Conversely, concomitant administration of platelets derived from wild-type mice but not IL-33-deficient mice enhanced the papain-induced airway eosinophilia. CONCLUSIONS Our novel findings suggest that platelets might be important cellular sources of IL-33 protein in vivo and that platelet-derived IL-33 might play a role in airway inflammation. Therefore platelets might become an attractive novel therapeutic target for asthma and probably allergic inflammation.
Collapse
|
35
|
Idzko M, Pitchford S, Page C. Role of platelets in allergic airway inflammation. J Allergy Clin Immunol 2015; 135:1416-23. [PMID: 26051948 DOI: 10.1016/j.jaci.2015.04.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 01/14/2023]
Abstract
Increasing evidence suggests an important role for platelets and their products (e.g., platelet factor 4, β-thromboglobulin, RANTES, thromboxane, or serotonin) in the pathogenesis of allergic diseases. A variety of changes in platelet function have been observed in patients with asthma, such as alterations in platelet secretion, expression of surface molecules, aggregation, and adhesion. Moreover, platelets have been found to actively contribute to most of the characteristic features of asthma, including bronchial hyperresponsiveness, bronchoconstriction, airway inflammation, and airway remodeling. This review brings together the current available data from both experimental and clinical studies that have investigated the role of platelets in allergic airway inflammation and asthma. It is anticipated that a better understanding of the role of platelets in the pathogenesis of asthma might lead to novel promising therapeutic approaches in the treatment of allergic airway diseases.
Collapse
Affiliation(s)
- Marco Idzko
- Department of Pulmonary Medicine, University Hospital Freiburg, Freiburg, Germany.
| | - Simon Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
36
|
Laidlaw TM, Boyce JA. Platelets in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2015; 135:1407-14; quiz 1415. [PMID: 26051947 DOI: 10.1016/j.jaci.2015.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/26/2015] [Accepted: 02/04/2015] [Indexed: 12/12/2022]
Abstract
Aspirin-exacerbated respiratory disease (AERD) is a chronic inflammatory disease characterized clinically by the triad of asthma, nasal polyposis, and pathognomonic respiratory reactions after ingestion of aspirin. It is a distinct syndrome associated with eosinophilic infiltration of respiratory tissues and excessive production of cysteinyl leukotrienes. Despite the consistent clinical phenotype of the respiratory disease, the underlying pathogenesis of the disease remains unclear. In addition to their role in hemostasis, platelets have the capacity to influence the activation state and function of other immune cells during inflammation and to facilitate granulocyte recruitment into the tissues. Platelets also possess a repertoire of potent preformed mediators of inflammation that are released on activation and are a rich source of newly synthesized lipid mediators that alter vascular permeability and smooth muscle tone. Accordingly, platelet activity has been linked to diverse inflammatory diseases, including asthma. Both human and animal studies strongly suggest that platelet activity is uniquely associated with the pathophysiology of AERD. This article summarizes the evidence supporting an effector role for platelets in asthmatic patients in general and in patients with AERD in particular and considers the potential therapeutic implications.
Collapse
Affiliation(s)
- Tanya M Laidlaw
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass.
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass
| |
Collapse
|
37
|
Abstract
Platelets are anucleate blood cells, long known to be critically involved in hemostasis and thrombosis. In addition to their role in blood clots, increasing evidence reveals significant roles for platelets in inflammation and immunity. However, the notion that platelets represent immune cells is not broadly recognized in the field of Physiology. This article reviews the role of platelets in inflammation and immune responses, and highlights their interactions with other immune cells, including examples of major functional consequences of these interactions.
Collapse
Affiliation(s)
- Fong W Lam
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - K Vinod Vijayan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| |
Collapse
|
38
|
Morris A, Wang B, Waern I, Venkatasamy R, Page C, Schmidt EP, Wernersson S, Li JP, Spina D. The role of heparanase in pulmonary cell recruitment in response to an allergic but not non-allergic stimulus. PLoS One 2015; 10:e0127032. [PMID: 26039697 PMCID: PMC4454641 DOI: 10.1371/journal.pone.0127032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/11/2015] [Indexed: 01/08/2023] Open
Abstract
Heparanase is an endo-β-glucuronidase that specifically cleaves heparan sulfate proteoglycans in the extracellular matrix. Expression of this enzyme is increased in several pathological conditions including inflammation. We have investigated the role of heparanase in pulmonary inflammation in the context of allergic and non-allergic pulmonary cell recruitment using heparanase knockout (Hpa-/-) mice as a model. Following local delivery of LPS or zymosan, no significant difference was found in the recruitment of neutrophils to the lung between Hpa-/- and wild type (WT) control. Similarly neutrophil recruitment was not inhibited in WT mice treated with a heparanase inhibitor. However, in allergic inflammatory models, Hpa-/- mice displayed a significantly reduced eosinophil (but not neutrophil) recruitment to the airways and this was also associated with a reduction in allergen-induced bronchial hyperresponsiveness, indicating that heparanase expression is associated with allergic reactions. This was further demonstrated by pharmacological treatment with a heparanase inhibitor in the WT allergic mice. Examination of lung specimens from patients with different severity of chronic obstructive pulmonary disease (COPD) found increased heparanase expression. Thus, it is established that heparanase contributes to allergen-induced eosinophil recruitment to the lung and could provide a novel therapeutic target for the development of anti-inflammatory drugs for the treatment of asthma and other allergic diseases.
Collapse
Affiliation(s)
- Abigail Morris
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Bo Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, Uppsala, Sweden
| | - Radhakrishnan Venkatasamy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Eric P. Schmidt
- Program in Translational Lung Research, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Uppsala, Sweden
| | - Domenico Spina
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Abstract
Irrefutable clinical evidence demonstrates the activation of platelets in allergic diseases, including asthma, allergic rhinitis, and eczema. Indeed, experimental models of allergic disease have now shown that platelets play a fundamental role in the tissue recruitment of leucocytes following exposure to allergens. Furthermore, the extravascular presence of platelets in lungs of patients with asthma, and in animal models of allergic lung inflammation suggests that platelets may also contribute directly to allergic inflammation, through alterations in lung function, or by modulating processes involved in airway wall remodelling. Despite significant platelet activation in patients with allergic diseases, it is of note that these patients have been described as having a mild haemostastic defect, rather than an increased incidence of thrombosis. This suggests a dichotomy exists in platelet activation during inflammation compared to haemostasis, and that hitherto undiscovered platelet activation pathways might be exploited to create novel anti-inflammatory therapies without affecting the critical function of platelets in haemostasis.
Collapse
Affiliation(s)
- C Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| | | |
Collapse
|
40
|
Expression of surface platelet receptors (CD62P and CD41/61) in horses with recurrent airway obstruction (RAO). Vet Immunol Immunopathol 2015; 164:87-92. [PMID: 25665521 DOI: 10.1016/j.vetimm.2015.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/01/2014] [Accepted: 01/06/2015] [Indexed: 12/23/2022]
Abstract
Recurrent airway obstruction (RAO) is an allergic disease of horses similar to human asthma, which is characterized by airway inflammation and activation of neutrophils, lymphocytes and platelets. Platelet activation and an increase in circulating platelet-leukocyte aggregates may lead to airway remodeling. The aim of this study was to investigate platelet status in RAO-affected horses based on the platelet morphology and platelet surface expression of CD41/61 and CD62P. Ten RAO-affected horses and ten healthy horses were included in this study. Blood samples were obtained to determine the platelet count (PLT), mean platelet volume (MPV) and platelet large cell ratio (P-LCR). Expression of CD62P and CD41/61 was detected by flow cytometry on activated platelets. The median PLT was significantly reduced in horses with RAO compared to the controls. The MPV and the P-LCR values were significantly higher in RAO horses than controls. Expression of CD41/61 on platelets was increased in RAO horses, while CD62P expression was reduced. This study demonstrated the morphological changes in platelets and expression of platelet surface receptors. Despite the decrease of CD62P expression, the observed increased surface expression of CD41/61 on platelets in horses with RAO may contribute to the formation of platelet aggregates in their respiratory system.
Collapse
|
41
|
Cattaneo M. The platelet P2 receptors in inflammation. Hamostaseologie 2015; 35:262-6. [PMID: 25579761 DOI: 10.5482/hamo-14-09-0044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/18/2014] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED In addition to their well characterized and established role in haemostasis and thrombosis, platelets contribute to the pathogenesis of inflammation. Adenine nucleotides are signalling molecules that regulate the function of virtually every cell in the body, by interacting with P2 receptors. Their important role in inflammation is well established. In the last few years, the pro-inflammatory roles of adenine nucleotides interacting with their platelet P2 receptors has emerged. In particular, it was shown that the platelet P2Y12 receptor for ADP significantly contributed to the pro-inflammatory effects of cysteinyl leukotrienes (CysLT) in experimental models of asthma in mice. More importantly, it was recently shown that P2Y12 variants were associated with lung function in a large family-based asthma cohort and that the P2Y12 antagonist prasugrel tended to decrease bronchial hyper-reactivity to mannitol in patients with allergic bronchial asthma in a randomized, placebo controlled trial. CONCLUSION These data strongly suggest that P2Y12 may represent an important pharmacological target for the treatment of patients with allergic bronchial asthma.
Collapse
Affiliation(s)
- M Cattaneo
- Marco Cattaneo, MD, Divisione di Medicina Generale III, Azienda Ospedaliera San Paolo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via di Rudinì, 8, 20142 Milano, Italy, Tel. +39/02 50 32 30-95, Fax -89
| |
Collapse
|
42
|
Lussana F, Di Marco F, Terraneo S, Parati M, Razzari C, Scavone M, Femia EA, Moro A, Centanni S, Cattaneo M. Effect of prasugrel in patients with asthma: results of PRINA, a randomized, double-blind, placebo-controlled, cross-over study. J Thromb Haemost 2015; 13:136-41. [PMID: 25387888 DOI: 10.1111/jth.12779] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Although experimental studies have demonstrated that platelets are proinflammatory cells, no randomized studies have tested the anti-inflammatory effect of antiplatelet agents in humans. The platelet P2Y12 receptors mediated bronchial inflammation in a mouse model of asthma, suggesting that P2Y12 represents a pharmacologic target for asthma. OBJECTIVES In this proof-of concept, placebo-controlled, randomized, cross-over study, we tested the effects of the P2Y12 antagonist prasugrel on bronchial hyperreactivity of asthmatic patients. PATIENTS/METHODS Twenty-six asthmatic patients were randomly and blindly allocated to prasugrel (10 mg once daily) or placebo for 15 days. After a ≥ 15-day wash-out, patients were crossed over to the alternative treatment. Before and after each treatment, patients underwent a bronchial provocation test with mannitol and measurement of fractional exhaled nitric oxide (FeNO). Inhibition of P2Y12 -dependent platelet reactivity (platelet reactivity index [PRI]) was measured with the vasodilator-stimulated phosphoprotein phosphorylation assay. RESULTS The provocative dose of mannitol causing a 15% drop in forced expiratory volume in 1 s increased from 142 mg (95% confidence interval [CI] 82-202) to 187 mg (95% CI 113-262) after prasugrel treatment (P = 0.09), and did not change after placebo treatment (136 mg [95% CI 76-196] and 144 mg [95% CI 84-204], P = 0.65). FeNO did not change after either treatment. The PRI decreased from 80% (95% CI 77-83) to 23% (95% CI 7-29) after prasugrel treatment (P < 0.001) and remained unchanged after placebo. CONCLUSIONS Our proof-of-concept, randomized, controlled study is the first one to test in vivo the anti-inflammatory effects of platelet inhibition in human patients. The results suggest that pharmacologic inhibition of P2Y12 receptors may slightly reduce the bronchial inflammatory burden, and lay the groundwork for further studies, with clinical endpoints.
Collapse
Affiliation(s)
- F Lussana
- Divisione di Medicina Generale III, Ospedale San Paolo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy; Divisione di Ematologia, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Amison RT, Momi S, Morris A, Manni G, Keir S, Gresele P, Page CP, Pitchford SC. RhoA signaling through platelet P2Y₁ receptor controls leukocyte recruitment in allergic mice. J Allergy Clin Immunol 2014; 135:528-38. [PMID: 25445826 DOI: 10.1016/j.jaci.2014.09.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/21/2014] [Accepted: 09/19/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Clinical studies reveal platelet activation in patients with asthma, allergic rhinitis, and eczema. This is distinct from platelet aggregation, which is critical for the maintenance of hemostasis and in which a role for platelet purinergic receptors is well documented. However, purines are also essential for inflammatory cell trafficking in animal models of allergic lung inflammation, which are known to be platelet dependent, yet the role of purines in the platelet activation accompanying inflammation is unknown. OBJECTIVES We investigated whether the involvement of purine activation of platelets during allergic inflammation is distinct from purine involvement in platelet aggregation. METHODS BALB/c mice were sensitized to ovalbumin and subsequent airway ovalbumin challenge. Bronchoalveolar lavage fluid was analyzed for inflammatory cells, and blood samples were assessed for platelet activation. The role of platelet purinergic receptors and associated signaling mechanisms (RhoA) were assessed. RESULTS P2Y₁, but not P2Y₁₂ or P2X₁, antagonism inhibited pulmonary leukocyte recruitment. The formation of platelet-leukocyte complexes in vivo and platelet/P-selectin-dependent polymorphonuclear cell migration in vitro were exclusively platelet P2Y₁ receptor dependent. Furthermore, platelet P2Y₁ activation resulted in RhoA activity in vivo after allergen challenge, and RhoA signaling in platelets through P2Y₁ stimulation was required for platelet-dependent leukocyte chemotaxis in vitro. Leukocyte recruitment in thrombocytopenic mice remained suppressed after reinfusion of platelets pretreated with a P2Y₁ antagonist or a Rho-associated kinase 1 inhibitor, confirming the crucial role of platelet P2Y₁ receptor and subsequent activation of RhoA. CONCLUSION RhoA signaling downstream of platelet P2Y₁, but not P2Y₁₂, represents a clear dichotomy in platelet activation during allergic inflammation versus hemostasis.
Collapse
Affiliation(s)
- Richard T Amison
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Stefania Momi
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Abigail Morris
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Giorgia Manni
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Sandra Keir
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom.
| |
Collapse
|
44
|
Pazmiño FA, Navarrete Jiménez ML. Mecanismos inmunológicos implicados en la patología del asma alérgica. REVISTA DE LA FACULTAD DE MEDICINA 2014. [DOI: 10.15446/revfacmed.v62n2.45417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
45
|
Stoll P, Lommatzsch M. Platelets in asthma: does size matter? Respiration 2014; 88:22-3. [PMID: 24903626 DOI: 10.1159/000362798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Paul Stoll
- Department of Pneumology and Critical Care Medicine, University of Rostock, Rostock, Germany
| | | |
Collapse
|
46
|
Nakanishi T, Inaba M, Inagaki-Katashiba N, Tanaka A, Vien PTX, Kibata K, Ito T, Nomura S. Platelet-derived RANK ligand enhances CCL17 secretion from dendritic cells mediated by thymic stromal lymphopoietin. Platelets 2014; 26:425-31. [PMID: 24867354 DOI: 10.3109/09537104.2014.920081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play an integral role in cellular cascade that initiate and maintain Th2 responses in allergy. In this study, we examined the interaction between platelets and DCs to determine the role of platelets in the intervention of immune responses through modulation of DC functions. Blood-purified myeloid DCs, which had been stimulated with thymic stromal lymphopoietin (TSLP-DCs), formed aggregates with activated platelets. TSLP-DC maturation was induced after the interaction with TRAP6-activated platelets as indicated by an increase in the expression of CD86, CD40, and CD83. In addition, production of a Th2 cell-attracting chemokine, CCL17, was clearly upregulated by coculture of TSLP-DCs with TRAP6-activated platelets. We further found that an expression of RANK ligand (RANKL) on platelets was upregulated by the TRAP6 activation, and that, using the neutralizing antibody against RANKL, the platelet-derived RANKL induces the activation of TSLP-DCs. Thus, activated platelets can intervene in adaptive immune responses through induction of functional modulation of TSLP-DCs. Platelets have the ability to enhance the DC-mediated Th2 response and may contribute to the allergic inflammation. In conclusion, our study provides new insights in platelet functions and the possible mechanism of allergic responses that stem from DCs.
Collapse
Affiliation(s)
- Takahisa Nakanishi
- First Department of Internal Medicine, Kansai Medical University , Osaka , Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kanaoka Y, Boyce JA. Cysteinyl leukotrienes and their receptors; emerging concepts. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2014; 6:288-95. [PMID: 24991451 PMCID: PMC4077954 DOI: 10.4168/aair.2014.6.4.288] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/02/2014] [Indexed: 01/11/2023]
Abstract
Cysteinyl leukotrienes (cys-LTs) are potent mediators of inflammation derived from arachidonic acid through the 5-lipoxygenase/leukotriene C4 synthase pathway. The derivation of their chemical structures and identification of their pharmacologic properties predated the cloning of their classical receptors and the development of drugs that modify their synthesis and actions. Recent studies have revealed unanticipated insights into the regulation of cys-LT synthesis, the function of the cys-LTs in innate and adaptive immunity and human disease, and the identification of a new receptor for the cys-LTs. This review highlights these studies and summarizes their potential pathobiologic and therapeutic implications.
Collapse
Affiliation(s)
- Yoshihide Kanaoka
- Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA, United States. ; Department of Medicine, Harvard Medical School; Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, United States
| | - Joshua A Boyce
- Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA, United States. ; Department of Medicine, Harvard Medical School; Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
48
|
Sun WX, Zhang JR, Cao ZG, Li Y, Wang RT. A decreased mean platelet volume is associated with stable and exacerbated asthma. Respiration 2014; 88:31-7. [PMID: 24854778 DOI: 10.1159/000360296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 01/29/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Systemic inflammation is related to disease progression in asthma. Activated platelets play a critical role in atherogenesis, inflammation, and atherothrombosis. The mean platelet volume (MPV) is an early marker of platelet activation. OBJECTIVES The aim of this study is to clarify the relevance of MPV levels in patients with stable and exacerbated asthma. METHODS We investigated the peripheral blood cell count parameters, C-reactive protein (CRP), lung function parameters, and arterial blood gas in patients with asthma and control subjects. Eighty-five stable asthma patients and 85 asthmatics with exacerbations were investigated. Eighty-five controls matched for age, gender, body mass index (BMI), and smoking status were recruited. RESULTS Patients with exacerbated asthma had lower MPV and higher CRP levels and white blood cell (WBC) counts compared to patients with stable asthma and control subjects. Furthermore, the MPV was reduced in patients with stable asthma compared to control subjects. Negative correlations between MPV and CRP were present in stable and exacerbated asthma. Although there was no relationship between MPV and WBC count in stable asthma, there was an inverse relationship between MPV and WBC count in exacerbated asthma. CONCLUSIONS These findings show that patients with stable asthma had a lower MPV compared to controls and the MPV levels in asthmatic patients with exacerbations were lower compared to those in patients with stable asthma. Further investigations regarding the role of MPV in asthma may be beneficial in the search for therapeutic targets.
Collapse
Affiliation(s)
- Wen-Xue Sun
- Department of Respiratory Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin, PR China
| | | | | | | | | |
Collapse
|
49
|
Potaczek DP. Links between allergy and cardiovascular or hemostatic system. Int J Cardiol 2013; 170:278-85. [PMID: 24315352 DOI: 10.1016/j.ijcard.2013.11.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 11/03/2013] [Accepted: 11/17/2013] [Indexed: 12/28/2022]
Abstract
In addition to a well-known immunologic background of atherosclerosis and influences of inflammation on arterial and venous thrombosis, there is growing evidence for the presence of links between allergy and vascular or thrombotic disorders. In this interpretative review, five pretty well-documented areas of such overlap are described and discussed, including: (1) links between atherosclerosis and immunoglobulin E or atopy, (2) mutual effects of blood lipids and allergy, (3) influence of atopy and related disorders on venous thromboembolism, (4) the role of platelets in allergic diseases, and (5) the functions of protein C system in atopic disorders.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine, Philipps-Universität Marburg, Marburg, Germany; John Paul II Hospital, Krakow, Poland.
| |
Collapse
|
50
|
Plasma apolipoprotein H levels are different between aspirin induced respiratory diseases and aspirin tolerant asthma. Pulm Pharmacol Ther 2013; 27:184-9. [PMID: 24120690 DOI: 10.1016/j.pupt.2013.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 11/22/2022]
Abstract
Aspirin-exacerbated respiratory disease (AERD) has attracted a great deal of attention because of its association with increased asthma severity. To identify plasma biomarkers for the prediction of AERD, the six most abundant plasma proteins (albumin, IgG, antitrypsin, IgA, transferrin, and haptoglobin) in pooled plasma samples were removed using a multiple affinity removal system column. Two-dimensional gel electrophoresis (2DE) was used for differential display proteomic analysis of the pooled plasma. Proteins were identified by matrix assisted laser desorption ionization time-of-flight (MALDI-TOF)/TOF. Enzyme-linked immunosorbent assay (ELISA) was performed to identify and quantify apolipoprotein H (Apo H) in plasma from subjects with AERD and aspirin-tolerant asthma (ATA). Eight protein spots showed differences in relative intensity between pooled plasma from subjects with AERD (n = 8) and those with ATA (n = 8). MALDI-TOF/TOF analysis showed decreases in the levels of alpha-fibrinogen precursor, Apo H, fibrin beta, and proapolipoprotein in AERD as compared with ATA, and increases in chain A human complement component C3, 90-kDa heat shock protein, complement component C4a, and kininogen-1 isoform 2. Apo H concentrations were significantly increased in plasma from subjects with ATA than those with AERD and normal controls, as measured by ELISA (P < 0.01). AERD is characterized by changes in the levels of proteins involved in the coagulation and complement pathways. In addition, Apo H is up-regulated in ATA compared to AERD and normal controls, suggesting that Apo H may be involved in different pathogenesis of ATA from AERD.
Collapse
|