1
|
Bréchot N, Rutault A, Marangon I, Germain S. Blood endothelium transition and phenotypic plasticity: A key regulator of integrity/permeability in response to ischemia. Semin Cell Dev Biol 2024; 155:16-22. [PMID: 37479554 DOI: 10.1016/j.semcdb.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023]
Abstract
In the human body, the 1013 blood endothelial cells (ECs) which cover a surface of 500-700 m2 (Mai et al., 2013) are key players of tissue homeostasis, remodeling and regeneration. Blood vessel ECs play a major role in the regulation of metabolic and gaz exchanges, cell trafficking, blood coagulation, vascular tone, blood flow and fluid extravasation (also referred to as blood vascular permeability). ECs are heterogeneous in various capillary beds and have the exquisite capacity to cope with environmental changes by regulating their gene expression. Ischemia has major detrimental effects on the endothelium and ischemia-induced regulation of vascular integrity is of paramount importance for human health, as small amounts of fluid accumulation in the interstitium may be responsible for major effects on organ functions and patients outcome. In this review, we will here focus on the stimuli and the molecular mechanisms that control blood endothelium maintenance and phenotypic plasticity/transition involved in controlling blood capillary leakage that might open new avenues for therapeutic applications.
Collapse
Affiliation(s)
- Nicolas Bréchot
- Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, Paris, France; Intensive Care Medicine Department, Université de Paris Cité, Hôpital européen Georges-Pompidou, AP-HP, AP-HP.CUP, 75015 Paris, France.
| | - Alexandre Rutault
- Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, Paris, France
| | - Iris Marangon
- Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, Paris, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, Paris, France.
| |
Collapse
|
2
|
Wang V, Pober JS, Manes TD. Transendothelial Migration of Human B Cells: Chemokine versus Antigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:923-931. [PMID: 37530585 PMCID: PMC10529164 DOI: 10.4049/jimmunol.2200887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
B cells, like T cells, can infiltrate sites of inflammation, but the processes and B cell subsets involved are poorly understood. Using human cells and in vitro assays, we find only a very small number of B cells will adhere to TNF-activated (but not to resting) human microvascular endothelial cells (ECs) under conditions of venular flow and do so by binding to ICAM-1 and VCAM-1. CXCL13 and, to a lesser extent, CXCL10 bound to the ECs can increase adhesion and induce transendothelial migration (TEM) of adherent naive and memory B cells in 10-15 min through a process involving cell spreading, translocation of the microtubule organizing center (MTOC) into a trailing uropod, and interacting with EC activated leukocyte cell adhesion molecule. Engagement of the BCR by EC-bound anti-κ L chain Ab also increases adhesion and TEM of κ+ but not λ+ B cells. BCR-induced TEM takes 30-60 min, requires Syk activation, is initiated by B cell rounding up and translocation of the microtubule organizing center to the region of the B cell adjacent to the EC, and also uses EC activated leukocyte cell adhesion molecule for TEM. BCR engagement reduces the number of B cells responding to chemokines and preferentially stimulates TEM of CD27+ B cells that coexpress IgD, with or without IgM, as well as CD43. RNA-sequencing analysis suggests that peripheral blood CD19+CD27+CD43+IgD+ cells have increased expression of genes that support BCR activation as well as innate immune properties in comparison with total peripheral blood CD19+ cells.
Collapse
Affiliation(s)
| | - Jordan S Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Thomas D Manes
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
3
|
Manes TD, Wang V, Pober JS. Costimulators expressed on human endothelial cells modulate antigen-dependent recruitment of circulating T lymphocytes. Front Immunol 2022; 13:1016361. [PMID: 36275645 PMCID: PMC9582530 DOI: 10.3389/fimmu.2022.1016361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial cells (ECs) can present antigens to circulating effector memory T cells (TEM) and to regulatory T cells (T regs), triggering antigen-specific extravasation at specific sites where foreign antigens are introduced, e.g. by infection or transplantation. We model human antigen-induced transendothelial migration (TEM) using presentation of superantigen by cultured human dermal microvascular (HDM)ECs to isolated resting human peripheral blood T cell subpopulations or to T effector cells activated in vitro. T cell receptor (TCR)-mediated cytokine synthesis, a common assay of T cell activation by antigen, is modulated by antigen-independent signals provided by various positive or negative costimulator proteins (the latter known as checkpoint inhibitors) expressed by antigen presenting cells, including ECs. We report here that some EC-expressed costimulators also modulate TCR-TEM, but effects differ between TEM and cytokine production and among some T cell types. Blocking EC LFA-3 interactions with TEM CD2 boosts TEM but reduces cytokine production. Blocking EC ICOS-L interactions with TEM CD28 (but not ICOS) reduces both responses but these involve distinct CD28-induced signals. Activated CD4+ T effector cells no longer undergo TCR-TEM. Engagement of T cell CD28 by EC ICOS-L increases TCR-TEM by activated CD8 effectors while engagement of OX40 promotes TCR-TEM by activated CD4 T regs. B7-H3 mostly affects TEM of resting TEM and some checkpoint inhibitors affect cytokine synthesis or TEM depending upon subtype. Our data suggest that blockade or mimicry of costimulators/checkpoint inhibitors in vivo, clinically used to modulate immune responses, may act in part by modulating T cell homing.
Collapse
|
4
|
Abstract
Blood vessel endothelial cells (ECs) have long been known to modulate inflammation by regulating immune cell trafficking, activation status and function. However, whether the heterogeneous EC populations in various tissues and organs differ in their immunomodulatory capacity has received insufficient attention, certainly with regard to considering them for alternative immunotherapy. Recent single-cell studies have identified specific EC subtypes that express gene signatures indicative of phagocytosis or scavenging, antigen presentation and immune cell recruitment. Here we discuss emerging evidence suggesting a tissue-specific and vessel type-specific immunomodulatory role for distinct subtypes of ECs, here collectively referred to as 'immunomodulatory ECs' (IMECs). We propose that IMECs have more important functions in immunity than previously recognized, and suggest that these might be considered as targets for new immunotherapeutic approaches.
Collapse
|
5
|
Controlling Cell Trafficking: Addressing Failures in CAR T and NK Cell Therapy of Solid Tumours. Cancers (Basel) 2022; 14:cancers14040978. [PMID: 35205725 PMCID: PMC8870056 DOI: 10.3390/cancers14040978] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
The precision guiding of endogenous or adoptively transferred lymphocytes to the solid tumour mass is obligatory for optimal anti-tumour effects and will improve patient safety. The recognition and elimination of the tumour is best achieved when anti-tumour lymphocytes are proximal to the malignant cells. For example, the regional secretion of soluble factors, cytotoxic granules, and cell-surface molecule interactions are required for the death of tumour cells and the suppression of neovasculature formation, tumour-associated suppressor, or stromal cells. The resistance of individual tumour cell clones to cellular therapy and the hostile environment of the solid tumours is a major challenge to adoptive cell therapy. We review the strategies that could be useful to overcoming insufficient immune cell migration to the tumour cell mass. We argue that existing 'competitive' approaches should now be revisited as complementary approaches to improve CAR T and NK cell therapy.
Collapse
|
6
|
Chioh FW, Fong SW, Young BE, Wu KX, Siau A, Krishnan S, Chan YH, Carissimo G, Teo LL, Gao F, Tan RS, Zhong L, Koh AS, Tan SY, Tambyah PA, Renia L, Ng LF, Lye DC, Cheung C. Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation. eLife 2021; 10:64909. [PMID: 33752798 PMCID: PMC7987341 DOI: 10.7554/elife.64909] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Numerous reports of vascular events after an initial recovery from COVID-19 form our impetus to investigate the impact of COVID-19 on vascular health of recovered patients. We found elevated levels of circulating endothelial cells (CECs), a biomarker of vascular injury, in COVID-19 convalescents compared to healthy controls. In particular, those with pre-existing conditions (e.g., hypertension, diabetes) had more pronounced endothelial activation hallmarks than non-COVID-19 patients with matched cardiovascular risk. Several proinflammatory and activated T lymphocyte-associated cytokines sustained from acute infection to recovery phase, which correlated positively with CEC measures, implicating cytokine-driven endothelial dysfunction. Notably, we found higher frequency of effector T cells in our COVID-19 convalescents compared to healthy controls. The activation markers detected on CECs mapped to counter receptors found primarily on cytotoxic CD8+ T cells, raising the possibility of cytotoxic effector cells targeting activated endothelial cells. Clinical trials in preventive therapy for post-COVID-19 vascular complications may be needed.
Collapse
Affiliation(s)
- Florence Wj Chioh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Siew-Wai Fong
- A*STAR ID Labs, Agency for Science, Technology and Research, Singapore, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Barnaby E Young
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,National Centre for Infectious Diseases, Singapore, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kan-Xing Wu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Anthony Siau
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Shuba Krishnan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Yi-Hao Chan
- A*STAR ID Labs, Agency for Science, Technology and Research, Singapore, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Guillaume Carissimo
- A*STAR ID Labs, Agency for Science, Technology and Research, Singapore, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Louis Ly Teo
- National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Fei Gao
- National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Ru San Tan
- National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Liang Zhong
- National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Angela S Koh
- National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Seow-Yen Tan
- Department of Infectious Diseases, Changi General Hospital, Singapore, Singapore
| | - Paul A Tambyah
- Department of Medicine, National University Hospital, Singapore, Singapore
| | - Laurent Renia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,A*STAR ID Labs, Agency for Science, Technology and Research, Singapore, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Lisa Fp Ng
- A*STAR ID Labs, Agency for Science, Technology and Research, Singapore, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - David C Lye
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,National Centre for Infectious Diseases, Singapore, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
7
|
Masoud AG, Lin J, Azad AK, Farhan MA, Fischer C, Zhu LF, Zhang H, Sis B, Kassiri Z, Moore RB, Kim D, Anderson CC, Vederas JC, Adam BA, Oudit GY, Murray AG. Apelin directs endothelial cell differentiation and vascular repair following immune-mediated injury. J Clin Invest 2020; 130:94-107. [PMID: 31738185 DOI: 10.1172/jci128469] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/18/2019] [Indexed: 01/06/2023] Open
Abstract
Sustained, indolent immune injury of the vasculature of a heart transplant limits long-term graft and recipient survival. This injury is mitigated by a poorly characterized, maladaptive repair response. Vascular endothelial cells respond to proangiogenic cues in the embryo by differentiation to specialized phenotypes, associated with expression of apelin. In the adult, the role of developmental proangiogenic cues in repair of the established vasculature is largely unknown. We found that human and minor histocompatibility-mismatched donor mouse heart allografts with alloimmune-mediated vasculopathy upregulated expression of apelin in arteries and myocardial microvessels. In vivo, loss of donor heart expression of apelin facilitated graft immune cell infiltration, blunted vascular repair, and worsened occlusive vasculopathy in mice. In vitro, an apelin receptor agonist analog elicited endothelial nitric oxide synthase activation to promote endothelial monolayer wound repair and reduce immune cell adhesion. Thus, apelin acted as an autocrine growth cue to sustain vascular repair and mitigate the effects of immune injury. Treatment with an apelin receptor agonist after vasculopathy was established markedly reduced progression of arterial occlusion in mice. Together, these initial data identify proangiogenic apelin as a key mediator of coronary vascular repair and a pharmacotherapeutic target for immune-mediated injury of the coronary vasculature.
Collapse
Affiliation(s)
| | - Jiaxin Lin
- Department of Surgery.,Department of Medical Microbiology and Immunology, and
| | | | | | - Conrad Fischer
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Hao Zhang
- Department of Medicine.,Mazankowski Heart Institute, Edmonton, Alberta, Canada
| | - Banu Sis
- Department of Laboratory Medicine and Pathology and
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Colin C Anderson
- Department of Surgery.,Department of Medical Microbiology and Immunology, and
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Gavin Y Oudit
- Department of Medicine.,Mazankowski Heart Institute, Edmonton, Alberta, Canada
| | | |
Collapse
|
8
|
Snelgrove SL, Abeynaike LD, Thevalingam S, Deane JA, Hickey MJ. Regulatory T Cell Transmigration and Intravascular Migration Undergo Mechanistically Distinct Regulation at Different Phases of the Inflammatory Response. THE JOURNAL OF IMMUNOLOGY 2019; 203:2850-2861. [PMID: 31653684 DOI: 10.4049/jimmunol.1900447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/20/2019] [Indexed: 01/13/2023]
Abstract
Regulatory T cells (Tregs) play important roles in limiting inflammatory responses in the periphery. During these responses, Treg abundance in affected organs increases and interfering with their recruitment results in exacerbation of inflammation. However, the mechanisms whereby Tregs enter the skin remain poorly understood. The aim of this study was to use intravital microscopy to investigate adhesion and transmigration of Tregs in the dermal microvasculature in a two-challenge model of contact sensitivity. Using intravital confocal microscopy of Foxp3-GFP mice, we visualized endogenous Tregs and assessed their interactions in the dermal microvasculature. Four hours after hapten challenge, Tregs underwent adhesion with ∼25% of these cells proceeding to transmigration, a process dependent on CCR4. At 24 h, Tregs adhered but no longer underwent transmigration, instead remaining in prolonged contact with the endothelium, migrating over the endothelial surface. Four hours after a second challenge, Treg transmigration was restored, although in this case transmigration was CCR4 independent, instead involving the CCR6/CCL20 pathway. Notably, at 24 h but not 4 h after challenge, endothelial cells expressed MHC class II (MHC II). Moreover, at this time of peak MHC II expression, inhibition of MHC II reduced Treg adhesion, demonstrating an unexpected role for MHC II in Treg attachment to the endothelium. Together these data show that Treg adhesion and transmigration can be driven by different molecular mechanisms at different stages of an Ag-driven inflammatory response. In addition, Tregs can undergo prolonged migration on the inflamed endothelium.
Collapse
Affiliation(s)
- Sarah L Snelgrove
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Latasha D Abeynaike
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Sukarnan Thevalingam
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - James A Deane
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia; and.,Monash University Department of Obstetrics and Gynecology, Monash Medical Centre, Melbourne, Victoria 3168, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia;
| |
Collapse
|
9
|
Lane RS, Lund AW. Non-hematopoietic Control of Peripheral Tissue T Cell Responses: Implications for Solid Tumors. Front Immunol 2018; 9:2662. [PMID: 30498499 PMCID: PMC6249380 DOI: 10.3389/fimmu.2018.02662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
In response to pathological challenge, the host generates rapid, protective adaptive immune responses while simultaneously maintaining tolerance to self and limiting immune pathology. Peripheral tissues (e.g., skin, gut, lung) are simultaneously the first site of pathogen-encounter and also the location of effector function, and mounting evidence indicates that tissues act as scaffolds to facilitate initiation, maintenance, and resolution of local responses. Just as both effector and memory T cells must adapt to their new interstitial environment upon infiltration, tissues are also remodeled in the context of acute inflammation and disease. In this review, we present the biochemical and biophysical mechanisms by which non-hematopoietic stromal cells and extracellular matrix molecules collaborate to regulate T cell behavior in peripheral tissue. Finally, we discuss how tissue remodeling in the context of tumor microenvironments impairs T cell accumulation and function contributing to immune escape and tumor progression.
Collapse
Affiliation(s)
- Ryan S Lane
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States.,Department of Dermatology, Oregon Health and Science University, Portland, OR, United States.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
10
|
Westhorpe CLV, Norman MU, Hall P, Snelgrove SL, Finsterbusch M, Li A, Lo C, Tan ZH, Li S, Nilsson SK, Kitching AR, Hickey MJ. Effector CD4 + T cells recognize intravascular antigen presented by patrolling monocytes. Nat Commun 2018; 9:747. [PMID: 29467472 PMCID: PMC5821889 DOI: 10.1038/s41467-018-03181-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/24/2018] [Indexed: 01/04/2023] Open
Abstract
Although effector CD4+ T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4+ T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4+ T cells. Following intravascular deposition of antigen in glomeruli, effector CD4+ T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII+ immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4+ T-cell-dependent glomerular inflammation. These findings indicate that MHCII+ monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4+ T cells within glomerular capillaries, leading to antigen-dependent inflammation. Monocytes constitutively adhere and crawl along the glomerular endothelium and are thought to contribute to glomerulonephritis. Here the authors use multiphoton microscopy to show local antigen presentation by MHCII+ monocytes to T cells in glomerular capillaries of mice.
Collapse
Affiliation(s)
- Clare L V Westhorpe
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd., Clayton, VIC, 3168, Australia
| | - M Ursula Norman
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd., Clayton, VIC, 3168, Australia
| | - Pam Hall
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd., Clayton, VIC, 3168, Australia
| | - Sarah L Snelgrove
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd., Clayton, VIC, 3168, Australia
| | - Michaela Finsterbusch
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd., Clayton, VIC, 3168, Australia.,Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Anqi Li
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd., Clayton, VIC, 3168, Australia
| | - Camden Lo
- Monash Micro Imaging, Monash University, Wellington Rd., Clayton, VIC, 3800, Australia
| | - Zhe Hao Tan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd., Clayton, VIC, 3168, Australia
| | - Songhui Li
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Wellington Rd., Clayton, VIC, 3800, Australia
| | - Susan K Nilsson
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Wellington Rd., Clayton, VIC, 3800, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd., Clayton, VIC, 3168, Australia.,Departments of Nephrology and Pediatric Nephrology, Monash Medical Centre, 246 Clayton Rd., Clayton, VIC, 3168, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd., Clayton, VIC, 3168, Australia.
| |
Collapse
|
11
|
Solhjou Z, Uehara M, Bahmani B, Maarouf OH, Ichimura T, Brooks CR, Xu W, Yilmaz M, Elkhal A, Tullius SG, Guleria I, McGrath M, Abdi R. Novel Application of Localized Nanodelivery of Anti-Interleukin-6 Protects Organ Transplant From Ischemia-Reperfusion Injuries. Am J Transplant 2017; 17:2326-2337. [PMID: 28296000 PMCID: PMC5573642 DOI: 10.1111/ajt.14266] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/03/2017] [Accepted: 02/25/2017] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury (IRI) evokes intragraft inflammatory responses, which markedly augment alloimmune responses against the graft. Understanding the mechanisms underlying these responses is fundamental to develop therapeutic regimens to prevent/ameliorate organ IRI. Here, we demonstrate that IRI results in a marked increase in mitochondrial damage and autophagy in dendritic cells (DCs). While autophagy is a survival mechanism for ischemic DCs, it also augments their production of interleukin (IL)-6. Allograft-derived dendritic cells (ADDCs) lacking autophagy-related gene 5 (Atg5) showed higher death rates posttransplantation. Transplanted ischemic hearts from CD11cCre/Atg5 conditional knockout mice showed marked reduction in intragraft expression of IL-6 compared with controls. To antagonize the effect of IL-6 locally in the heart, we synthesized novel anti-IL-6 nanoparticles with capacity for controlled release of anti-IL-6 over time. Compared with systemic delivery of anti-IL-6, localized delivery of anti-IL-6 significantly reduced chronic rejection with a markedly lower amount administered. Despite improved allograft histology, there were no changes to splenic T cell populations, illustrating the importance of local IL-6 in driving chronic rejection after IRI. These data carry potential clinical significance by identifying an innovative, targeted strategy to manipulate organs before transplantation to diminish inflammation, leading to improved long-term outcomes.
Collapse
Affiliation(s)
- Zhabiz Solhjou
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Baharak Bahmani
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Omar H. Maarouf
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig R. Brooks
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wanlong Xu
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mine Yilmaz
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdala Elkhal
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan G. Tullius
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Indira Guleria
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martina McGrath
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA,Address correspondence to: Reza Abdi, MD, Transplant Research Center, Brigham and Women's Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254,
| |
Collapse
|
12
|
Mondino A, Vella G, Icardi L. Targeting the tumor and its associated stroma: One and one can make three in adoptive T cell therapy of solid tumors. Cytokine Growth Factor Rev 2017. [DOI: 10.1016/j.cytogfr.2017.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Cognate antigen engagement on parenchymal cells stimulates CD8 + T cell proliferation in situ. Nat Commun 2017; 8:14809. [PMID: 28401883 PMCID: PMC5394288 DOI: 10.1038/ncomms14809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/31/2017] [Indexed: 12/30/2022] Open
Abstract
T-cell responses are initiated upon cognate presentation by professional antigen presenting cells in lymphoid tissue. T cells then migrate to inflamed tissues, but further T-cell stimulation in these parenchymal target sites is not well understood. Here we show that T-cell expansion within inflamed tissues is a distinct phase that is neither a classical primary nor classical secondary response. This response, which we term ‘the mezzanine response', commences within days after initial antigen encounter, unlike the secondary response that usually occurs weeks after priming. A further distinction of this response is that T-cell proliferation is driven by parenchymal cell antigen presentation, without requiring professional antigen presenting cells, but with increased dependence on IL-2. The mezzanine response might, therefore, be a new target for inhibiting T-cell responses in allograft rejection and autoimmunity or for enhancing T-cell responses in the context of microbial or tumour immunity. Professional antigen presenting cells (APC) are the major activator of T cells that then hone to sites of inflammation. Using islet cell grafts, here the authors show that parenchymal cells can present antigen to activate CD8+ T cells at inflammatory sites, coining this a ‘mezzanine response' distinct from primary and secondary responses associated with professional APCs.
Collapse
|
14
|
Ward EJ, Fu H, Marelli-Berg F. Monitoring Migration of Activated T Cells to Antigen-Rich Non-lymphoid Tissue. Methods Mol Biol 2017; 1591:215-224. [PMID: 28349485 DOI: 10.1007/978-1-4939-6931-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Effective immunity requires appropriate recirculation of naïve T cells through secondary lymphoid organs and migration of antigen-specific T cells to sites of inflammation. Leukocyte migration is a highly regulated process requiring specific interactions between leukocytes and endothelial cells (EC) termed collectively as the leukocyte adhesion cascade. Recruitment and retention of activated T cells to antigen-rich sites of inflammation is a key event in the immune response, which relies in part on local antigen presentation particularly by EC of inflamed vessels. Here we describe methods to assess the contributions of different molecules on antigen-dependent T cell migration, by utilizing IFN-γ to upregulate MHC molecules on EC and local antigen presentation, both in vitro and in vivo.
Collapse
Affiliation(s)
- Eleanor Jayne Ward
- William Harvey Research Institute-Heart Centre Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Hongmei Fu
- William Harvey Research Institute-Heart Centre Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Federica Marelli-Berg
- William Harvey Research Institute-Heart Centre Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
15
|
Homing to solid cancers: a vascular checkpoint in adoptive cell therapy using CAR T-cells. Biochem Soc Trans 2016; 44:377-85. [PMID: 27068943 PMCID: PMC5264496 DOI: 10.1042/bst20150254] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 12/13/2022]
Abstract
The success of adoptive T-cell therapies for the treatment of cancer patients depends on transferred T-lymphocytes finding and infiltrating cancerous tissues. For intravenously transferred T-cells, this means leaving the bloodstream (extravasation) from tumour blood vessels. In inflamed tissues, a key event in extravasation is the capture, rolling and arrest of T-cells inside blood vessels which precedes transmigration across the vessel wall and entry into tissues. This depends on co-ordinated signalling of selectins, integrins and chemokine receptors on T-cells by their respective ligands which are up-regulated on inflamed blood vessels. Clinical data and experimental studies in mice suggest that tumour blood vessels are anergic to inflammatory stimuli and the recruitment of cytotoxic CD8+ T-lymphocytes is not very efficient. Interestingly, and somewhat counter-intuitively, anti-angiogenic therapy can promote CD8+ T-cell infiltration of tumours and increase the efficacy of adoptive CD8+ T-cell therapy. Rather than inhibit tumour angiogenesis, anti-angiogenic therapy ‘normalizes’ (matures) tumour blood vessels by promoting pericyte recruitment, increasing tumour blood vessel perfusion and sensitizing tumour blood vessels to inflammatory stimuli. A number of different approaches are currently being explored to increase recruitment by manipulating the expression of homing-associated molecules on T-cells and tumour blood vessels. Future studies should address whether these approaches improve the efficacy of adoptive T-cell therapies for solid, vascularized cancers in patients.
Collapse
|
16
|
Manzo T, Sturmheit T, Basso V, Petrozziello E, Hess Michelini R, Riba M, Freschi M, Elia AR, Grioni M, Curnis F, Protti MP, Schumacher TN, Debets R, Swartz MA, Corti A, Bellone M, Mondino A. T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors. Cancer Res 2016; 77:658-671. [PMID: 27872095 DOI: 10.1158/0008-5472.can-16-0725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 11/16/2022]
Abstract
Donor-derived allogeneic T cells evoke potent graft versus tumor (GVT) effects likely due to the simultaneous recognition of tumor-specific and host-restricted minor histocompatibility (H) antigens. Here we investigated whether such effects could be reproduced in autologous settings by TCR gene-engineered lymphocytes. We report that T cells redirected either to a broadly expressed Y-encoded minor H antigen or to a tumor-associated antigen, although poorly effective if individually transferred, when simultaneously administered enabled acute autochthonous tumor debulking and resulted in durable clinical remission. Y-redirected T cells proved hyporesponsive in peripheral lymphoid organs, whereas they retained effector function at the tumor site, where in synergy with tumor-redirected lymphocytes, they instructed TNFα expression, endothelial cell activation, and intratumoral T-cell infiltration. While neutralizing TNFα hindered GVT effects by the combined T-cell infusion, a single injection of picogram amounts of NGR-TNF, a tumor vessel-targeted TNFα derivative currently in phase III clinical trials, substituted for Y-redirected cells and enabled tumor debulking by tumor-redirected lymphocytes. Together, our results provide new mechanistic insights into allogeneic GVT, validate the importance of targeting the tumor and its associated stroma, and prove the potency of a novel combined approach suitable for immediate clinical implementation. Cancer Res; 77(3); 658-71. ©2016 AACR.
Collapse
Affiliation(s)
- Teresa Manzo
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Tabea Sturmheit
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Veronica Basso
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Petrozziello
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Rodrigo Hess Michelini
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Michela Riba
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Freschi
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Angela R Elia
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Grioni
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Flavio Curnis
- Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Protti
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Ton N Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Melody A Swartz
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute for Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Angelo Corti
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Bellone
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
17
|
Fu H, Ward EJ, Marelli-Berg FM. Mechanisms of T cell organotropism. Cell Mol Life Sci 2016; 73:3009-33. [PMID: 27038487 PMCID: PMC4951510 DOI: 10.1007/s00018-016-2211-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
Abstract
Protective immunity relies upon T cell differentiation and subsequent migration to target tissues. Similarly, immune homeostasis requires the localization of regulatory T cells (Tregs) to the sites where immunity takes place. While naïve T lymphocytes recirculate predominantly in secondary lymphoid tissue, primed T cells and activated Tregs must traffic to the antigen rich non-lymphoid tissue to exert effector and regulatory responses, respectively. Following priming in draining lymph nodes, T cells acquire the 'homing receptors' to facilitate their access to specific tissues and organs. An additional level of topographic specificity is provided by T cells receptor recognition of antigen displayed by the endothelium. Furthermore, co-stimulatory signals (such as those induced by CD28) have been shown not only to regulate T cell activation and differentiation, but also to orchestrate the anatomy of the ensuing T cell response. We here review the molecular mechanisms supporting trafficking of both effector and regulatory T cells to specific antigen-rich tissues.
Collapse
Affiliation(s)
- Hongmei Fu
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Eleanor Jayne Ward
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Federica M Marelli-Berg
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
18
|
Baltadzhiev IG, Pavlov PI. T-Lymphocyte Subset Absolute Counts in the Peripheral Blood of Mediterranean Spotted Fever Patients: Relations to Disease Severity. Folia Med (Plovdiv) 2016; 57:93-103. [PMID: 26933778 DOI: 10.1515/folmed-2015-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 02/18/2015] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Mediterranean spotted fever (MSF) in Bulgaria is caused by Rickettsia conorii conorii. AIM This study aims at investigating the absolute counts of T-lymphocyte subsets in the peripheral blood of patients with MSF in order to establish relationships with disease severity. MATERIALS AND METHODS The absolute counts of T-lymphocyte subsets were tested in the blood of 62 patients in the acute stage of MSF. They were assigned into three age and sex matched groups, based on the severity of disease - with mild, moderate or severe forms. Controls were 32 age and sex matched healthy individuals. The diagnosis was confirmed by an immunofluorescence assay. Immunophenotyping was performed using Epics XL-MCL Coulter, USA flow-cytometer. RESULTS The absolute counts of immune competent (CD3+) cells, as well as the counts of helper/inducer (CD3+ CD4+) and suppressor/ cytotoxic (CD3+ CD8+) T-cell subsets decreased in parallel with disease severity. Naïve (CD4+ CD45RA+) and activated memory (CD4+ CD45RO+) T-cell subsets were reduced, particularly in severe MSF. Taken as a whole, the counts of activated (CD3+ HLA-DR+) and that of presenting accessory (CD28+) or stimulatory (CD38+) molecules Т-cell subsets was increased, but in the first two subsets the trend from mild to severe forms of the disease was descending. CONCLUSION Reduced T-lymphocyte subset counts are likely related to trans-migration into perivascular inflammatory foci. The increased number of T-lymphocytes bearing activation molecules reflects a mobilization of the cell-mediated immune response. An important issue of this study is the possible prognostic value of T-cell subsets counting, predicting the evolution of a clinical condition to clinical forms, according to the disease severity.
Collapse
Affiliation(s)
| | - Pavel I Pavlov
- Department of Clinical Laboratory, Faculty of Pharmacy, St. George University Hospital, Medical University, Plovdiv, Bulgaria
| |
Collapse
|
19
|
Carman CV, Martinelli R. T Lymphocyte-Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity. Front Immunol 2015; 6:603. [PMID: 26635815 PMCID: PMC4657048 DOI: 10.3389/fimmu.2015.00603] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/10/2015] [Indexed: 12/26/2022] Open
Abstract
Antigen-specific immunity requires regulated trafficking of T cells in and out of diverse tissues in order to orchestrate lymphocyte development, immune surveillance, responses, and memory. The endothelium serves as a unique barrier, as well as a sentinel, between the blood and the tissues, and as such it plays an essential locally tuned role in regulating T cell migration and information exchange. While it is well established that chemoattractants and adhesion molecules are major determinants of T cell trafficking, emerging studies have now enumerated a large number of molecular players as well as a range of discrete cellular remodeling activities (e.g., transmigratory cups and invadosome-like protrusions) that participate in directed migration and pathfinding by T cells. In addition to providing trafficking cues, intimate cell-cell interaction between lymphocytes and endothelial cells provide instruction to T cells that influence their activation and differentiation states. Perhaps the most intriguing and underappreciated of these "sentinel" roles is the ability of the endothelium to act as a non-hematopoietic "semiprofessional" antigen-presenting cell. Close contacts between circulating T cells and antigen-presenting endothelium may play unique non-redundant roles in shaping adaptive immune responses within the periphery. A better understanding of the mechanisms directing T cell trafficking and the antigen-presenting role of the endothelium may not only increase our knowledge of the adaptive immune response but also empower the utility of emerging immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Christopher V Carman
- Center for Vascular Biology Research, Department of Medicine and Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Roberta Martinelli
- Center for Vascular Biology Research, Department of Medicine and Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
20
|
Oelkrug C, Ramage JM. Enhancement of T cell recruitment and infiltration into tumours. Clin Exp Immunol 2014; 178:1-8. [PMID: 24828133 PMCID: PMC4360188 DOI: 10.1111/cei.12382] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2014] [Indexed: 12/22/2022] Open
Abstract
Studies have documented that cancer patients with tumours which are highly infiltrated with cytotoxic T lymphocytes show enhanced survival rates. The ultimate goal of cancer immunotherapy is to elicit high-avidity tumour-specific T cells to migrate and kill malignant tumours. Novel antibody therapies such as ipilumimab (a cytotoxic T lymphocyte antigen-4 blocking antibody) show enhanced T cell infiltration into the tumour tissue and increased survival. More conventional therapies such as chemotherapy or anti-angiogenic therapy and recent therapies with oncolytic viruses have been shown to alter the tumour microenvironment and thereby lead to enhanced T cell infiltration. Understanding the mechanisms involved in the migration of high-avidity tumour-specific T cells into tumours will support and provide solutions for the optimization of therapeutic options in cancer immunotherapy.
Collapse
Affiliation(s)
- C Oelkrug
- Academic Unit of Oncology, University of Nottingham, Nottingham, UK; Cell Tharapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | | |
Collapse
|
21
|
Fu H, Kishore M, Gittens B, Wang G, Coe D, Komarowska I, Infante E, Ridley AJ, Cooper D, Perretti M, Marelli-Berg FM. Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation. Nat Commun 2014; 5:3436. [PMID: 24625653 PMCID: PMC3959214 DOI: 10.1038/ncomms4436] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/12/2014] [Indexed: 02/06/2023] Open
Abstract
Localization of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells to lymphoid and non-lymphoid tissue is instrumental for the effective control of immune responses. Compared with conventional T cells, Treg cells constitute a minute fraction of the T-cell repertoire. Despite this numeric disadvantage, Tregs efficiently migrate to sites of immune responses reaching an optimal number for the regulation of T effector (Teff) cells. The array and levels of adhesion and chemokine receptor expression by Tregs do not explain their powerful migratory capacity. Here we show that recognition of self-antigens expressed by endothelial cells in target tissue is instrumental for efficient Treg recruitment in vivo. This event relies upon IFN-γ-mediated induction of MHC-class-II molecule expression by the endothelium and requires optimal PI3K p110δ activation by the T-cell receptor. We also show that, once in the tissue, Tregs inhibit Teff recruitment, further enabling a Teff:Treg ratio optimal for regulation.
Collapse
Affiliation(s)
- Hongmei Fu
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Madhav Kishore
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Beartice Gittens
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Guosu Wang
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - David Coe
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Izabela Komarowska
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Elvira Infante
- Randall Division of Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Dianne Cooper
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Mauro Perretti
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Federica M. Marelli-Berg
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
22
|
|
23
|
Mai J, Virtue A, Shen J, Wang H, Yang XF. An evolving new paradigm: endothelial cells--conditional innate immune cells. J Hematol Oncol 2013; 6:61. [PMID: 23965413 PMCID: PMC3765446 DOI: 10.1186/1756-8722-6-61] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/19/2013] [Indexed: 12/23/2022] Open
Abstract
Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies.
Collapse
Affiliation(s)
- Jietang Mai
- Centers of Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Anthony Virtue
- Centers of Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jerry Shen
- Department of Family Medicine, College of Community Health Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Hong Wang
- Centers of Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiao-Feng Yang
- Centers of Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
24
|
Lakkis FG, Lechler RI. Origin and biology of the allogeneic response. Cold Spring Harb Perspect Med 2013; 3:3/8/a014993. [PMID: 23906882 DOI: 10.1101/cshperspect.a014993] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The recognition by the immune system of nonself determinants on cells, tissues, or organs transplanted between genetically disparate members of the same species can lead to a potent allogeneic response that is responsible for rejection. We review here fundamental concepts that underlie the origins and biology of allorecognition in the mammalian immune system. We examine why and how T cells are alloreactive and discuss emerging evidence of allorecognition by innate immune cells. The nature of T cells (naïve vs. memory) and the alloantigen presentation pathways (direct, indirect, and semidirect) that initiate the allogeneic response are outlined.
Collapse
Affiliation(s)
- Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15238, USA.
| | | |
Collapse
|
25
|
Walch JM, Zeng Q, Li Q, Oberbarnscheidt MH, Hoffman RA, Williams AL, Rothstein DM, Shlomchik WD, Kim JV, Camirand G, Lakkis FG. Cognate antigen directs CD8+ T cell migration to vascularized transplants. J Clin Invest 2013; 123:2663-71. [PMID: 23676459 DOI: 10.1172/jci66722] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 02/21/2013] [Indexed: 01/22/2023] Open
Abstract
The migration of effector or memory T cells to the graft is a critical event in the rejection of transplanted organs. The prevailing view is that the key steps involved in T cell migration - integrin-mediated firm adhesion followed by transendothelial migration - are dependent on the activation of Gαi-coupled chemokine receptors on T cells. In contrast to this view, we demonstrated in vivo that cognate antigen was necessary for the firm adhesion and transendothelial migration of CD8+ effector T cells specific to graft antigens and that both steps occurred independent of Gαi signaling. Presentation of cognate antigen by either graft endothelial cells or bone marrow-derived APCs that extend into the capillary lumen was sufficient for T cell migration. The adhesion and transmigration of antigen-nonspecific (bystander) effector T cells, on the other hand, remained dependent on Gαi, but required the presence of antigen-specific effector T cells. These findings underscore the primary role of cognate antigen presented by either endothelial cells or bone marrow-derived APCs in the migration of T cells across endothelial barriers and have important implications for the prevention and treatment of graft rejection.
Collapse
Affiliation(s)
- Jeffrey M Walch
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ma L, Cheung KCP, Kishore M, Nourshargh S, Mauro C, Marelli-Berg FM. CD31 exhibits multiple roles in regulating T lymphocyte trafficking in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:4104-11. [PMID: 22966083 PMCID: PMC3496211 DOI: 10.4049/jimmunol.1201739] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/13/2012] [Indexed: 12/20/2022]
Abstract
The role of CD31, an Ig-like molecule expressed by leukocytes and endothelial cells (ECs), in the regulation of T lymphocyte trafficking remains contentious. Using CD31-deficient mice, we show that CD31 regulates both constitutive and inflammation-induced T cell migration in vivo. Specifically, T cell:EC interactions mediated by CD31 molecules are required for efficient localization of naive T lymphocytes to secondary lymphoid tissue and constitutive recirculation of primed T cells to nonlymphoid tissues. In inflammatory conditions, T cell:EC CD31-mediated interactions facilitate T cell recruitment to Ag-rich sites. However, endothelial CD31 also provides a gate-keeping mechanism to limit the rate of Ag-driven T cell extravasation. This event contributes to the formation of Ag-specific effector T cell infiltrates and is induced by recognition of Ag on the endothelium. In this context, CD31 engagement is required for restoring endothelial continuity, which is temporarily lost upon MHC molecule ligation by migrating cognate T cells. We propose that integrated adhesive and signaling functions of CD31 molecules exert a complex regulation of T cell trafficking, a process that is differentially adapted depending on cell-specific expression, the presence of inflammatory conditions and the molecular mechanism facilitating T cell extravasation.
Collapse
Affiliation(s)
- Liang Ma
- Division of Medicine, Department of Immunology, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom; and
| | - Kenneth C. P. Cheung
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Madhav Kishore
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Claudio Mauro
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Federica M. Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
27
|
Kishore M, Ma L, Cornish G, Nourshargh S, Marelli-Berg FM. Primed T cell responses to chemokines are regulated by the immunoglobulin-like molecule CD31. PLoS One 2012; 7:e39433. [PMID: 22724015 PMCID: PMC3378580 DOI: 10.1371/journal.pone.0039433] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/22/2012] [Indexed: 01/22/2023] Open
Abstract
CD31, an immunoglobulin-like molecule expressed by leukocytes and endothelial cells, is thought to contribute to the physiological regulation T cell homeostasis due to the presence of two immunotyrosine-based inhibitory motifs in its cytoplasmic tail. Indeed, loss of CD31 expression leads to uncontrolled T cell-mediated inflammation in a variety of experimental models of disease and certain CD31 polymorphisms correlate with increased disease severity in human graft-versus-host disease and atherosclerosis. The molecular mechanisms underlying CD31-mediated regulation of T cell responses have not yet been clarified. We here show that CD31-mediated signals attenuate T cell chemokinesis both in vitro and in vivo. This effect selectively affects activated/memory T lymphocytes, in which CD31 is clustered on the cell membrane where it segregates to the leading edge. We provide evidence that this molecular segregation, which does not occur in naïve T lymphocytes, might lead to cis-CD31 engagement on the same membrane and subsequent interference with the chemokine-induced PI3K/Akt signalling pathway. We propose that CD31-mediated modulation of memory T cell chemokinesis is a key mechanism by which this molecule contributes to the homeostatic regulation of effector T cell immunity.
Collapse
Affiliation(s)
- Madhav Kishore
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Thommen DS, Schuster H, Keller M, Kapoor S, Weinzierl AO, Chennakesava CS, Wang X, Rohrer L, von Eckardstein A, Stevanovic S, Biedermann BC. Two preferentially expressed proteins protect vascular endothelial cells from an attack by peptide-specific CTL. THE JOURNAL OF IMMUNOLOGY 2012; 188:5283-92. [PMID: 22544926 DOI: 10.4049/jimmunol.1101506] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vascular endothelial cells (EC) are an exposed tissue with intimate contact with circulating Ag-specific CTL. Experimental in vitro and clinical data suggested that endothelial cells present a different repertoire of MHC class I-restricted peptides compared with syngeneic leukocytes or epithelial cells. This endothelial-specific peptide repertoire might protect EC from CTL-mediated cell death. The HLA-A*02-restricted peptide profile of human EC and syngeneic B lymphoblastoid cells was biochemically analyzed and compared. For EC selective peptides, source protein expression, peptide binding affinity, and peptide-HLA-A*02 turnover were measured. The significance of abundant peptide presentation for target cell recognition by immunodominant CTL was tested by small interfering RNA treatment of EC to knock down the source proteins. High amounts of two peptides, PTRF(56-64) and CD59(106-114), were consistently detected in EC. This predominance of two endothelial peptides was explained by cell type-specific source protein expression that compensated for poor HLA-A*02 binding affinity and short half-live of peptide/HLA-A*02 complexes. Knocking down the source proteins containing the abundant endothelial peptide motifs led to a nearly 100-fold increase of surface expression of SMCY(311-319), an immunodominant minor histocompatibility Ag, as detected by cytotoxicity assays using SMCY(311-319)-specific CTL. We conclude that EC express and present preferentially two distinct HLA-A*02-restricted peptides at extraordinary high levels. These abundant self-peptides may protect EC from CTL-mediated lysis by competing for HLA-A*02 binding sites with immunodominant scarcely expressed antigenic peptides.
Collapse
Affiliation(s)
- Daniela S Thommen
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ying H, Fu H, Rose ML, McCormack AM, Sarathchandra P, Okkenhaug K, Marelli-Berg FM. Genetic or pharmaceutical blockade of phosphoinositide 3-kinase p110δ prevents chronic rejection of heart allografts. PLoS One 2012; 7:e32892. [PMID: 22479345 PMCID: PMC3316549 DOI: 10.1371/journal.pone.0032892] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 02/07/2012] [Indexed: 11/18/2022] Open
Abstract
Chronic rejection is the major cause of long-term heart allograft failure, characterized by tissue infiltration by recipient T cells with indirect allospecificity. Phosphoinositol-3-kinase p110δ is a key mediator of T cell receptor signaling, regulating both T cell activation and migration of primed T cells to non-lymphoid antigen-rich tissue. We investigated the effect of genetic or pharmacologic inactivation of PI3K p110δ on the development of chronic allograft rejection in a murine model in which HY-mismatched male hearts were transplanted into female recipients. We show that suppression of p110δ activity significantly attenuates the development of chronic rejection of heart grafts in the absence of any additional immunosuppressive treatment by impairing the localization of antigen-specific T cells to the grafts, while not inducing specific T cell tolerance. p110δ pharmacologic inactivation is effective when initiated after transplantation. Targeting p110δ activity might be a viable strategy for the treatment of heart chronic rejection in humans.
Collapse
Affiliation(s)
- Huijun Ying
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Hongmei Fu
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Marlene L. Rose
- National Heart & Lung Institute, Division of Medicine, Imperial College London, Harefield Hospital, London, United Kingdom
| | - Ann M. McCormack
- National Heart & Lung Institute, Division of Medicine, Imperial College London, Harefield Hospital, London, United Kingdom
| | - Padmini Sarathchandra
- National Heart & Lung Institute, Division of Medicine, Imperial College London, Harefield Hospital, London, United Kingdom
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Federica M. Marelli-Berg
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
T cell trafficking and metabolism: novel mechanisms and targets for immunomodulation. Curr Opin Pharmacol 2012; 12:452-7. [PMID: 22436327 DOI: 10.1016/j.coph.2012.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 11/21/2022]
Abstract
Coordinated migratory events by naïve and memory T cells are key to effective immunity. Naïve T cells predominantly recirculate through secondary lymphoid tissue until antigen encounter, while primed T cells efficiently localize to antigen-rich lymphoid and non-lymphoid tissue. Tissue-selective targeting by primed T cells is achieved by a combination of inflammatory signals and tissue-selective homing receptors acquired by T cells during activation and differentiation. A large number of molecular mediators and interactions promoting memory T cell migration to non-lymphoid sites of inflammation have been identified. Recently, additional antigen-driven mechanisms have been proposed, which orchestrate the targeted delivery of memory T cells to antigen-rich tissue. Importantly, recent studies have revealed that the T cell metabolic status influences their differentiation and homing patterns. We here summarize these key observations and discuss their relevance for the manipulation of immune anatomy in therapeutic settings.
Collapse
|
31
|
Coppieters KT, von Herrath MG. Viruses and cytotoxic T lymphocytes in type 1 diabetes. Clin Rev Allergy Immunol 2012; 41:169-78. [PMID: 21181304 DOI: 10.1007/s12016-010-8220-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histopathological studies on pancreas tissues from individuals with recent-onset type 1 diabetes (T1D) consistently find that CD8 T cells substantially contribute to the formation of islet lesions. CD8 T cells reactive against islet-associated antigens can also be found in blood samples from T1D patients. Mechanistic studies on the pathogenic role of this T cell subset have mostly focused on two animal models, i.e., the non-obese diabetic mouse and the virally induced rat insulin promoter-lymphocytic choriomeningitis virus model. Data were obtained in support of a role for viral infection in expanding a population of diabetogenic cytotoxic T lymphocytes. In view of the theorized association of viral infection with initiation of islet autoimmunity and progression to clinically overt disease, CD8 T cells thus represent an attractive target for immunotherapy. We will review here arguments in favor of a pivotal role for CD8 T cells in driving T1D development and speculate on etiologic agents that may provoke their aberrant activation.
Collapse
Affiliation(s)
- Ken T Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, CA, 92037, USA
| | | |
Collapse
|
32
|
Abstract
Solid organ transplantation is the standard treatment to improve both the quality of life and survival in patients with various end-stage organ diseases. The primary barrier against successful transplantation is recipient alloimmunity and the need to be maintained on immunosuppressive therapies with associated side effects. Despite such treatments in renal transplantation, after death with a functioning graft, chronic allograft dysfunction (CAD) is the most common cause of late allograft loss. Recipient recognition of donor histocompatibility antigens, via direct, indirect, and semidirect pathways, is critically dependent on the antigen-presenting cell (APC) and elicits effector responses dominated by recipient T cells. In allograft rejection, the engagement of recipient and donor cells results in recruitment of T-helper (Th) cells of the Th1 and Th17 lineage to the graft. In cases in which the alloresponse is dominated by regulatory T cells (Tregs), rejection can be prevented and the allograft tolerated with minimum or no immunosuppression. Here, we review the pathways of allorecognition that underlie CAD and the T-cell effector phenotypes elicited as part of the alloresponse. Future therapies including depletion of donor-reactive lymphocytes, costimulation blockade, negative vaccination using dendritic cell subtypes, and Treg therapy are inferred from an understanding of these mechanisms of allograft rejection.
Collapse
|
33
|
Kish DD, Volokh N, Baldwin WM, Fairchild RL. Hapten application to the skin induces an inflammatory program directing hapten-primed effector CD8 T cell interaction with hapten-presenting endothelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:2117-26. [PMID: 21239709 PMCID: PMC4388432 DOI: 10.4049/jimmunol.1002337] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Contact hypersensitivity is a CD8 T cell-mediated response to hapten sensitization and challenge of the skin. Effector CD8 T cell recruitment into the skin parenchyma to elicit the response to hapten challenge requires prior CXCL1/KC-directed neutrophil infiltration within 3-6 h after challenge and is dependent on IFN-γ and IL-17 produced by the hapten-primed CD8 T cells. Mechanisms directing hapten-primed CD8 T cell localization and activation in the Ag challenge site to induce this early CXCL1 production in response to 2,4-dinitrofluorobenzene were investigated. Both TNF-α and IL-17, but not IFN-γ, mRNA was detectable within 1 h of hapten challenge of sensitized mice and increased thereafter. Expression of ICAM-1 was observed by 1 h after challenge of sensitized and nonsensitized mice and was dependent on TNF-α. The induction of IL-17, IFN-γ, and CXCL1 in the challenge site was not observed when ICAM-1 was absent or neutralized by specific Ab. During the elicitation of the contact hypersensitivity response, endothelial cells expressed ICAM-1 and produced CXCL1 suggesting this as the site of CD8 T cell localization and activation. Endothelial cells isolated from challenged skin of naive and sensitized mice had acquired the hapten and the ability to activate hapten-primed CD8 T cell cytokine production. These results indicate that hapten application to the skin of sensitized animals initiates an inflammatory response promoting hapten-primed CD8 T cell localization to the challenge site through TNF-α-induced ICAM-1 expression and CD8 T cell activation to produce IFN-γ and IL-17 through endothelial cell presentation of hapten.
Collapse
Affiliation(s)
- Danielle D Kish
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | |
Collapse
|
34
|
Interference with islet-specific homing of autoreactive T cells: an emerging therapeutic strategy for type 1 diabetes. Drug Discov Today 2010; 15:531-9. [PMID: 20685342 DOI: 10.1016/j.drudis.2010.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 05/11/2010] [Accepted: 05/21/2010] [Indexed: 11/21/2022]
Abstract
Pathogenesis of type 1 diabetes involves the activation of autoimmune T cells, consequent homing of activated lymphocytes to the pancreatic islets and ensuing destruction of insulin-producing b cells. Interaction between activated lymphocytes and endothelial cells in the islets is the hallmark of the homing process. Initial adhesion, firm adhesion and diapedesis of lymphocytes are the three crucial steps involved in the homing process. Cell-surface receptors including integrins, selectins and hyaluronate receptor CD44 mediate the initial steps of homing. Diapedesis relies on a series of proteolytic events mediated by matrix metalloproteinases. Here, molecular mechanisms governing transendothelial migration of the diabetogenic effector cells are discussed and resulting pharmacological strategies are considered.
Collapse
|
35
|
Inman CF, Singha S, Lewis M, Bradley B, Stokes C, Bailey M. Dendritic cells interact with CD4 T cells in intestinal mucosa. J Leukoc Biol 2010; 88:571-8. [PMID: 20551210 DOI: 10.1189/jlb.0310161] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Absence of lymph nodes in nonmammalian species, expression of MHCII by APCs in the periphery, and the recent findings that T cells can change their polarization status after presentation in the lymph nodes imply a role for MHCII-mediated presentation outside the organized lymphoid tissue. This study shows that MHCII(+) ECs and DCs from the intestinal mucosa of the pig can present antigen to T cells in vitro. In vivo, APCs colocalize with T cells in pig and mouse intestinal mucosa. In the pig, endothelium is involved in these interactions in neonates but not in adults, indicating different roles for stromal and professional APCs in the neonate compared with the adult. The ratio of expression of DQ and DR MHCII locus products was lower on ECs than on other mucosal APCs, indicating that the two types of cells present different peptide sets. Adult nonendothelial APCs expressed a higher ratio of DQ/DR than in neonates. These results suggest that mucosal DCs can present antigen locally to primed T cells and that stromal APCs are recruited to these interactions in some cases. This raises the possibility that local presentation may influence T cell responses at the effector stage after initial presentation in the lymph node.
Collapse
Affiliation(s)
- Charlotte F Inman
- Division of Veterinary Pathology, Infection and Immunity, School of Clinical Veterinary Science, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Marelli-Berg FM, Fu H, Vianello F, Tokoyoda K, Hamann A. Memory T-cell trafficking: new directions for busy commuters. Immunology 2010; 130:158-65. [PMID: 20408895 PMCID: PMC2878460 DOI: 10.1111/j.1365-2567.2010.03278.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/12/2010] [Accepted: 03/02/2010] [Indexed: 12/29/2022] Open
Abstract
The immune system is unique in representing a network of interacting cells of enormous complexity and yet being based on single cells travelling around the body. The development of effective and regulated immunity relies upon co-ordinated migration of each cellular component, which is regulated by diverse signals provided by the tissue. Co-ordinated migration is particularly relevant to the recirculation of primed T cells, which, while performing continuous immune surveillance, need to promptly localize to antigenic sites, reside for a time sufficient to carry out their effector function and then efficiently leave the tissue to avoid bystander damage. Recent advances that have helped to clarify a number of key molecular mechanisms underlying the complexity and efficiency of memory T-cell trafficking, including antigen-dependent T-cell trafficking, the regulation of T-cell motility by costimulatory molecules, T-cell migration out of target tissue and fugetaxis, are reviewed in this article.
Collapse
Affiliation(s)
- Federica M Marelli-Berg
- Section of Immunobiology, Division of Infection and Immunity, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK.
| | | | | | | | | |
Collapse
|
37
|
In situ recognition of autoantigen as an essential gatekeeper in autoimmune CD8+ T cell inflammation. Proc Natl Acad Sci U S A 2010; 107:9317-22. [PMID: 20439719 DOI: 10.1073/pnas.0913835107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A current paradigm states that non-antigen-specific inflammatory cues attract noncognate, bystander T cell specificities to sites of infection and autoimmune inflammation. Here we show that cues emanating from a tissue undergoing spontaneous autoimmune inflammation cannot recruit naive or activated bystander T cell specificities in the absence of local expression of cognate antigen. We monitored the recruitment of CD8(+) T cells specific for the prevalent diabetogenic epitope islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)(206-214) in gene-targeted nonobese diabetic (NOD) mice expressing a T cell "invisible" IGRP(206-214) sequence. These mice developed islet inflammation and diabetes with normal incidence and kinetics, but their inflammatory lesions could recruit neither naive (endogenous or exogenous) nor ex vivo-activated IGRP(206-214)-reactive CD8(+) T cells. Conversely, IGRP(206-214)-reactive, but not nonautoreactive CD8(+) T cells rapidly homed to and accumulated in the inflamed islets of wild-type NOD mice. Our results indicate that CD8(+) T cell recruitment to a site of autoimmune inflammation results from an active process that is strictly dependent on local display of cognate pMHC and suggest that CD8(+) T cells contained in extralymphoid autoimmune lesions are largely autoreactive.
Collapse
|
38
|
Abstract
The vascular endothelium is the main target of a limited number of infectious agents, Rickettsia, Ehrlichia ruminantium, and Orientia tsutsugamushi are among them. These arthropod-transmitted obligately-intracellular bacteria cause serious systemic diseases that are not infrequently lethal. In this review, we discuss the bacterial biology, vector biology, and clinical aspects of these conditions with particular emphasis on the interactions of these bacteria with the vascular endothelium and how it responds to intracellular infection. The study of these bacteria in relevant in vivo models is likely to offer new insights into the physiology of the endothelium that have not been revealed by other models.
Collapse
Affiliation(s)
- Gustavo Valbuena
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0609, USA.
| | | |
Collapse
|
39
|
von Oppen N, Schurich A, Hegenbarth S, Stabenow D, Tolba R, Weiskirchen R, Geerts A, Kolanus W, Knolle P, Diehl L. Systemic antigen cross-presented by liver sinusoidal endothelial cells induces liver-specific CD8 T-cell retention and tolerization. Hepatology 2009; 49:1664-72. [PMID: 19205034 DOI: 10.1002/hep.22795] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED Peripheral CD8 T-cell tolerance can be generated outside lymphatic tissue in the liver, but the course of events leading to tolerogenic interaction of hepatic cell populations with circulating T-cells remain largely undefined. Here we demonstrate that preferential uptake of systemically circulating antigen by murine liver sinusoidal endothelial cells (LSECs), and not by other antigen-presenting cells in the liver or spleen, leads to cross-presentation on major histocompatibility complex (MHC) I molecules, which causes rapid antigen-specific naïve CD8 T-cell retention in the liver but not in other organs. Using bone-marrow chimeras and a novel transgenic mouse model (Tie2-H-2K(b) mice) with endothelial cell-specific MHC I expression, we provide evidence that cross-presentation by organ-resident and radiation-resistant LSECs in vivo was both essential and sufficient to cause antigen-specific retention of naïve CD8 T-cells under noninflammatory conditions. This was followed by sustained CD8 T-cell proliferation and expansion in vivo, but ultimately led to the development of T-cell tolerance. CONCLUSION Our results show that cross-presentation of circulating antigens by LSECs caused antigen-specific retention of naïve CD8 T-cells and identify antigen-specific T-cell adhesion as the first step in the induction of T-cell tolerance.
Collapse
Affiliation(s)
- Nanette von Oppen
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Aachen, Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
T-lymphocyte trafficking is targeted to specific organs by selective molecular interactions depending on their differentiation and functional properties. Specific chemokine receptors have been associated with organ-specific trafficking of memory and effector T-cells, as well as the recirculation of naïve T-cells to secondary lymphoid organs. In addition to the acquisition of tissue-selective integrins and chemokine receptors, an additional level of specificity for T-cell trafficking into the tissue is provided by specific recognition of antigen displayed by the endothelium involving the TCRs (T-cell antigen receptors) and co-stimulatory receptors. Activation of PI3K (phosphoinositide 3-kinase) is a robust signalling event shared by most chemokine receptors as well as the TCR and co-stimulatory receptors, contributing to several aspects of T-lymphocyte homing as well as actin reorganization and other components of the general migratory machinery. Accordingly, inhibition of PI3K has been considered seriously as a potential therapeutic strategy by which to combat various T-lymphocyte-dependent pathologies, including autoimmune and inflammatory diseases, as well as to prevent transplant rejection. However, there is substantial evidence for PI3K-independent mechanisms that facilitate T-lymphocyte migration. In this regard, several other signalling-pathway components, including small GTPases, PLC (phospholipase C) and PKC (protein kinase C) isoforms, have also been implicated in T-lymphocyte migration in response to chemokine stimulation. The present review will therefore examine the PI3K-dependent and -independent signal-transduction pathways involved in T-cell migration during distinct modes of T-cell trafficking in response to either chemokines or the TCR and co-stimulatory molecules.
Collapse
|
41
|
Lozanoska-Ochser B, Klein NJ, Huang GC, Alvarez RA, Peakman M. Expression of CD86 on human islet endothelial cells facilitates T cell adhesion and migration. THE JOURNAL OF IMMUNOLOGY 2009; 181:6109-16. [PMID: 18941200 DOI: 10.4049/jimmunol.181.9.6109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pancreatic islet endothelial cells (ECs) form the barrier across which autoreactive T cells transmigrate during the development of islet inflammation in type 1 diabetes. Little is known about the immune phenotype of islet ECs that might shape their molecular interaction with autoreactive T cells before and during the development of islet inflammation. In this study we examined the expression and functional significance of costimulatory molecules by human islet ECs. Freshly isolated human islet ECs constitutively expressed CD86 (B7-2) and ICOS ligand but not CD80 (B7-1) or CD40 costimulatory molecules. The functional activity of islet EC-expressed CD86 was examined by coculture of resting islet ECs with CD4 T cells stimulated by CD3 ligation alone. Marked T cell proliferation in the coculture was completely abrogated by mAb blockade of CD86, confirming that costimulatory properties are conferred on ECs by CD86 expression. In view of its location on the vasculature, we hypothesized a role for CD86 in T cell adhesion/transmigration. In keeping with this, adhesion/transmigration of activated (CD3 ligated) memory (CD45R0(+)) CD4 T cells across islet ECs was completely inhibited in the presence of CD86 blocking mAb. Identical results were obtained for T cell adhesion using either CTLA-4 blocking mAb or CTLA-4Ig (abatacept), indicating CTLA-4 as the T cell ligand for these CD86-mediated effects. These data suggest a novel role for CD86 expression on the microvasculature, whereby ligation of CTLA-4 on CD4 T cells by CD86 on islet ECs is key to the adhesion of recently activated T cells.
Collapse
|
42
|
Schenk AD, Gorbacheva V, Rabant M, Fairchild RL, Valujskikh A. Effector functions of donor-reactive CD8 memory T cells are dependent on ICOS induced during division in cardiac grafts. Am J Transplant 2009; 9:64-73. [PMID: 18976292 PMCID: PMC3289995 DOI: 10.1111/j.1600-6143.2008.02460.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alloreactive T-cell memory is present in every transplant recipient and endangers graft survival. Even in the absence of known sensitizing exposures, heterologous immunity and homeostatic T-cell proliferation generate 'endogenous' memory T cells with donor-reactivity. We have recently shown that endogenous donor-reactive CD8 memory T cells infiltrate murine cardiac allografts within hours of reperfusion and amplify early posttransplant inflammation by producing IFN-gamma. Here, we have tested the role of ICOS co-stimulation in eliciting effector function from these memory T cells. ICOS is not expressed on the cell surface of circulating CD8 memory T cells but is rapidly upregulated during cell division within the allograft parenchyma. Donor-reactive CD8 memory T-cell infiltration, proliferation and ICOS expression are regulated by donor class I MHC molecule expression. ICOS blockade significantly reduced IFN-gamma production and other proinflammatory functions of the activated CD8 memory T cells. Our data demonstrate that this induction of ICOS expression within peripheral tissues is an important feature of CD8 memory T-cell activation and identify ICOS as a specific target for neutralizing proinflammatory functions of endogenous CD8 memory T cells.
Collapse
Affiliation(s)
- A. D. Schenk
- Department of Pathology, Case Western Reserve University, Cleveland, OH,Glickman Urological Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH,Corresponding author: Austin Schenk,
| | - V. Gorbacheva
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH
| | - M. Rabant
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH,Service de Transplantation Renale, H^opital Necker, Paris Cedex, France
| | - R. L. Fairchild
- Department of Pathology, Case Western Reserve University, Cleveland, OH,Glickman Urological Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH
| | - A. Valujskikh
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH
| |
Collapse
|
43
|
T-cell receptor- and CD28-induced Vav1 activity is required for the accumulation of primed T cells into antigenic tissue. Blood 2008; 113:3696-705. [PMID: 19060239 DOI: 10.1182/blood-2008-09-176511] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Localization of primed T cells to antigenic tissue is essential for the development of effective immunity. Together with tissue-selective homing molecules, T-cell receptor (TCR)- and CD28-mediated signals have been shown to promote transendothelial migration of specific T cells into nonlymphoid antigen-rich tissue. However, the cellular and molecular requirements for T-cell accumulation to target tissue following their recruitment are largely undefined. The guanine nucleotide exchange factor (GEF) Vav1 has an integral role in coupling TCR and CD28 to signaling pathways that regulate T-cell activation and migration. Here, we have investigated the contribution of TCR- and CD28-induced Vav1 activity to the trafficking and localization of primed HY-specific CD4(+) T cells to antigenic sites. Severe migratory defects displayed by Vav1(-/-) T cells in vitro were fully compensated by a combination of shear flow and chemokines, leading to normal recruitment of Vav1(-/-) T cells in vivo. In contrast, Vav1(-/-) T-cell retention into antigen-rich tissue was severely impaired, reflecting T cells' inability to engage in sustained TCR- and CD28-mediated interactions with tissue-resident antigen-presenting cells (APCs). This novel function of APC-induced, and TCR- and CD28-mediated Vav1 activity in the regulation of effector T-cell immunity highlights its potential as a therapeutic target in T cell-mediated tissue damage.
Collapse
|
44
|
|
45
|
Manes TD, Pober JS. Antigen presentation by human microvascular endothelial cells triggers ICAM-1-dependent transendothelial protrusion by, and fractalkine-dependent transendothelial migration of, effector memory CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:8386-92. [PMID: 18523306 DOI: 10.4049/jimmunol.180.12.8386] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
TCR engagement on adherent human effector memory CD4(+) T cells by TNF-treated HUVECs under flow induces formation of a transendothelial protrusion (TEP) by the T cell but fails to induce transendothelial migration (TEM). In contrast, TCR engagement of the same T cell populations by TNF-treated human dermal microvascular cells (HDMEC) not only induces TEP formation, but triggers TEM at or near the interendothelial cell junctions via a process in which TEP formation appears to be the first step. Transduction of adhesion molecules in unactivated HDMEC and use of blocking Abs as conducted with TNF-activated HDMEC indicate that ICAM-1 plays a nonredundant role in TCR-driven TEP formation and TEM, and that TCR-driven TEM is also dependent upon fractalkine. TEP formation, dependence on ICAM-1, and dependence on fractalkine distinguish TCR-induced TEM from IP-10-induced TEM. These in vitro observations suggest that presentation of Ag by human microvascular endothelial cells to circulating CD4(+) effector memory T cells may function to initiate recall responses in peripheral tissues.
Collapse
Affiliation(s)
- Thomas D Manes
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
46
|
Dazzi F, Marelli-Berg FM. Mesenchymal stem cells for graft-versus-host disease: close encounters with T cells. Eur J Immunol 2008; 38:1479-82. [PMID: 18493977 DOI: 10.1002/eji.200838433] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells (MSC) have recently received centre stage attention because of their potent immunosuppressive effect which has also been successfully exploited in the clinical setting to treat graft-versus-host disease (GVHD); however, the path to clinical efficacy is hindered by the limited understanding of how MSC work and how best to use their potential. In this issue of the European Journal of Immunology, it is shown, using an animal model, that MSC can treat GVHD only if administered in the presence of active disease and that this requirement is strictly related to the presence of IFN-gamma. Here we summarise the knowledge regarding MSC mediated tolerance and the evidence supporting the notion that MSC must be 'licensed' to exert their effects. We also propose the idea that the instrumental effect of IFN-gamma activity on MSC-mediated immunomodulation relies upon IFN-gamma's ability to gather and retain suppressive and effector cells in the same anatomical compartment.
Collapse
Affiliation(s)
- Francesco Dazzi
- Stem Cell Biology Section, Division of Investigative Sciences, Kennedy Institute, Imperial College London, London, UK.
| | | |
Collapse
|
47
|
Nomura S, Ishii K, Inami N, Kimura Y, Uoshima N, Ishida H, Yoshihara T, Urase F, Maeda Y, Hayashi K. Evaluation of angiopoietins and cell-derived microparticles after stem cell transplantation. Biol Blood Marrow Transplant 2008; 14:766-74. [PMID: 18541195 DOI: 10.1016/j.bbmt.2008.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 04/10/2008] [Indexed: 02/07/2023]
Abstract
Although stem cell transplantation (SCT) is being used for hematopoietic reconstitution following high-dose chemotherapy for malignancy, it involves certain serious transplant-related complications such as graft-versus-host disease (GVHD). Angiopoietins play important roles in angiogenesis. However, the role of angiopoietins after SCT is poorly understood. In this study, 52 patients underwent SCT; 26 patients received allogeneic SCT, while the remaining 26 received autologous SCT. In 48 of 52 patients, levels of angiopoietins, cytokines, and soluble factors were measured by enzyme-linked immunosorbent assay. Soluble Fas ligand (sFasL) and endothelial cell-derived microparticle (EDMP) exhibited significant elevation in the early phase (2-3 weeks) after SCT. In addition, the elevation of interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, and sIL-2 receptor (sIL-2R), which are GVHD markers after allogeneic SCT was observed. The level of angiopoietin (Ang)-2 in allogeneic SCT continued to increase for up to 4 weeks, although the level of Ang-1 did not show significant changes. The patients with high Ang-2 exhibited significant increase of sFasL and EDMP compared with those with low Ang-2. In addition, the patients with high-grade GVHD exhibited a significant increase in Ang-2 compared to patients with low-grade GVHD. In the in vitro experiment using endothelial cells, the suppressive effect of Ang-1 on EDMP generation by TNF-alpha was partially inhibited by the addition of Ang-2. Furthermore, multivariate regression analysis showed that EDMP and sFasL were significant factors in Ang-2 elevation. Our results suggest that Ang-2 generation after allogeneic SCT relates to GVHD.
Collapse
Affiliation(s)
- Shosaku Nomura
- Division of Hematology, Kishiwada City Hospital, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Marelli-Berg FM, Cannella L, Dazzi F, Mirenda V. The highway code of T cell trafficking. J Pathol 2008; 214:179-89. [PMID: 18161751 DOI: 10.1002/path.2269] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Coordinated migratory events are required for the development of effective and regulated immunity. Naïve T lymphocytes are programmed to recirculate predominantly in secondary lymphoid tissue by non-specific stimuli. In contrast, primed T cells must identify specific sites of antigen location in non-lymphoid tissue to exert targeted effector responses. Following priming, T cells acquire the ability to establish molecular interactions mediated by tissue-selective integrins and chemokine receptors (homing receptors) that allow their access to specific organs, such as the skin and the gut. Recent studies have shown that an additional level of specificity is provided by the induction of specific T cell migration into the tissue following recognition of antigen displayed by the endothelium. In addition, co-stimulatory signals (such as those induced by CD28 and CTLA-4 molecules) have been shown not only to regulate T cell activation and differentiation, but also to orchestrate the anatomy of the ensuing T cell response.
Collapse
Affiliation(s)
- F M Marelli-Berg
- Department of Immunology, Division of Medicne, Hammersmith Hospital Campus, Imperial College London, UK.
| | | | | | | |
Collapse
|
49
|
Jarmin SJ, David R, Ma L, Chai JG, Dewchand H, Takesono A, Ridley AJ, Okkenhaug K, Marelli-Berg FM. T cell receptor-induced phosphoinositide-3-kinase p110delta activity is required for T cell localization to antigenic tissue in mice. J Clin Invest 2008; 118:1154-64. [PMID: 18259608 PMCID: PMC2230659 DOI: 10.1172/jci33267] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 12/12/2007] [Indexed: 11/17/2022] Open
Abstract
The establishment of T cell-mediated inflammation requires the migration of primed T lymphocytes from the blood stream and their retention in antigenic sites. While naive T lymphocyte recirculation in the lymph and blood is constitutively regulated and occurs in the absence of inflammation, the recruitment of primed T cells to nonlymphoid tissue and their retention at the site are enhanced by various inflammatory signals, including TCR engagement by antigen-displaying endothelium and resident antigen-presenting cells. In this study, we investigated whether signals downstream of TCR ligation mediated by the phosphoinositide-3-kinase (PI3K) subunit p110delta contributed to the regulation of these events. T lymphocytes from mice expressing catalytically inactive p110delta displayed normal constitutive trafficking and migratory responses to nonspecific stimuli. However, these cells lost susceptibility to TCR-induced migration and failed to localize efficiently to antigenic tissue. Importantly, we showed that antigen-induced T cell trafficking and subsequent inflammation was abrogated by selective pharmacological inhibition of PI3K p110delta activity. These observations suggest that pharmacological targeting of p110delta activity is a viable strategy for the therapy of T cell-mediated pathology.
Collapse
Affiliation(s)
- Sarah J. Jarmin
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Rachel David
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Liang Ma
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Jan-Guo Chai
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Hamlata Dewchand
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Aya Takesono
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Anne J. Ridley
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Klaus Okkenhaug
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Federica M. Marelli-Berg
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
50
|
Abstract
Migration of primed T-cells to the antigenic site is an essential event in the development of effective immunity. This process is tightly regulated in order to ensure efficient and specific responses. Most studies have focused on non-specific mediators of T-cell migration, including integrins and chemokines. However, recent studies have highlighted the key role of the T-cell receptor and co-stimulatory molecules in guiding T-cell access to antigenic tissue. Here, we review the experimental evidence for an essential contribution of co-stimulation-mediated molecular interactions regulating T-cell migration in the development of T-cell immunity and tolerance.
Collapse
|