1
|
Xu T, Li C, Liao Y, Zhang X. Causal relationship between circulating levels of cytokines and bone mineral density: A mendelian randomization study. Cytokine 2024; 182:156729. [PMID: 39126768 DOI: 10.1016/j.cyto.2024.156729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Numerous studies have shown that various cytokines are important factors affecting bone mineral density (BMD), but the causality between the two remains uncertain. METHODS Genetic variants associated with 41 circulating cytokines from a genome-wide association study (GWAS) in 8,293 Finns were used as instrumental variables (IVs) for a two-sample Mendelian randomization (MR) analysis. Inverse variance weighting (IVW) was employed as the primary method to investigate whether the 41 cytokines were causally associated with BMD at five different sites [total body bone mineral density (TB-BMD), heel bone mineral density (HE-BMD), forearm bone mineral density (FA-BMD), femoral neck bone mineral density (FN-BMD), and lumbar spine bone mineral density (LS-BMD)]. Weighted median and MR-Egger were chosen to further confirm the robustness of the results. We performed MR pleiotropy residual sum and outlier test (MR-PRESSO), MR-Egger regression, and Cochran's Q test to detect pleiotropy and sensitivity testing. RESULTS After Bonferroni correction, two circulating cytokines had a strong causality with BMD at corresponding sites. Genetically predicted circulating hepatocyte growth factor (HGF) levels and HE-BMD were negatively correlated [β (95 % CI) -0.035(-0.055, -0.016), P=0.00038]. Circulating macrophage inflammatory protein-1α (MIP-1α) levels and TB-BMD were negatively correlated [β(95 %CI): -0.058(-0.092, -0.024), P=0.00074]. Weighted median and MR-Egger results were in line with the IVW results. We also found suggestive causal relationship (IVW P<0.05) between seven circulating cytokines and BMD at corresponding sites. No significant pleiotropy or heterogeneity was observed in our study. CONCLUSION Our MR analyses indicated a causal effect between two circulating cytokines and BMD at corresponding sites (HGF and HE-BMD, MIP-1α and TB-BMD), along with suggestive evidence of a potential causality between seven cytokines and BMD at the corresponding sites. These findings would provide insights into the prevention and treatment of osteoporosis, especially immunoporosis.
Collapse
Affiliation(s)
- Taichuan Xu
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu 214072, China
| | - Chao Li
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu 214072, China
| | - Yitao Liao
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu 214072, China
| | - Xian Zhang
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu 214072, China.
| |
Collapse
|
2
|
Liu F, Wang X, Xu J, Lu Y, Bai Y, Lv J. Preliminary study on the mechanism by which exosomes derived from human exfoliated deciduous teeth improve the proliferation and osteogenic inhibitory effect of glucocorticoid-induced BMSCs. Gene 2024; 923:148575. [PMID: 38762017 DOI: 10.1016/j.gene.2024.148575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (SONFH) is a disease characterized by a collapsed femoral head caused by the overuse of glucocorticoids. Dysfunction of bone marrow mesenchymal stem cells (BMSCs) is an important pathological feature of SONFH. In this study, we investigated whether exosomes from SHEDs (stem cells from human exfoliated deciduous teeth) have a therapeutic effect on glucocorticoid-induced inhibition of proliferation and osteogenesis in BMSCs, and elucidated the underlying mechanisms involved. METHODS Primary dental pulp cells were isolated and cultured from human deciduous tooth pulp, SHEDs were isolated and purified by the limiting dilution method and exosomes were isolated from the supernatants of SHEDs by ultracentrifugation. The cell surface markers CD31, CD34, CD45, CD73, CD90 and CD105 were detected by flow cytometry. A Cell-Counting-Kit-8 assay was used to detect cell activity. ALP and Alizarin Red staining were used to identify osteogenic differentiation ability, and exosomes were identified using transmission electron microscopy, NanoFCM and Western blotting. PKH67 fluorescence was used to track the uptake of exosomes by BMSCs. Transcriptome analysis combined with quantitative real-time PCR was used to explore the underlying mechanism involved. RESULTS Exosomes secreted by SHEDs can be endocytosed by BMSCs, and can partially reverse the inhibitory effects of glucocorticoids on the viability and osteogenic differentiation of BMSCs. Transcriptome sequencing analysis revealed that the differentially expressed mRNAs regulated by SHED-derived exosomes were enriched mainly in signaling pathways such as the apoptosis pathway, the PI3K-Akt signaling pathway, the Hippo signaling pathway and the p53 signaling pathway. qPCR showed that SHED-derived exosomes reversed the dexamethasone-induced upregulation of HGF and ITGB8 expression and the inhibition of EFNA1 expression, but further increased the dexamethasone-induced downregulation of IL7 expression. In conclusion, SHED-derived exosomes partially reversed the inhibitory effects of glucocorticoids on BMSC proliferation and osteogenesis by inhibiting the expression of HGF, ITGB8 and IL7, and upregulating the expression of EFNA1.
Collapse
Affiliation(s)
- Fei Liu
- The 2th Department of Orthopaedics, The First Hospital Of Qinhuangdao, Qinghuangdao, Heibei, China.
| | - Xinmin Wang
- The 2th Department of Orthopaedics, The First Hospital Of Qinhuangdao, Qinghuangdao, Heibei, China
| | - Jie Xu
- The 2th Department of Orthopaedics, The First Hospital Of Qinhuangdao, Qinghuangdao, Heibei, China
| | - Yang Lu
- The 2th Department of Orthopaedics, The First Hospital Of Qinhuangdao, Qinghuangdao, Heibei, China
| | - Yuxi Bai
- The 2th Department of Orthopaedics, The First Hospital Of Qinhuangdao, Qinghuangdao, Heibei, China
| | - Jian Lv
- The 2th Department of Orthopaedics, The First Hospital Of Qinhuangdao, Qinghuangdao, Heibei, China
| |
Collapse
|
3
|
Lu Q, Yang D, Li H, Niu T, Tong A. Multiple myeloma: signaling pathways and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:25. [PMID: 38961036 PMCID: PMC11222366 DOI: 10.1186/s43556-024-00188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy of plasma cells, characterized by osteolytic bone lesions, anemia, hypercalcemia, renal failure, and the accumulation of malignant plasma cells. The pathogenesis of MM involves the interaction between MM cells and the bone marrow microenvironment through soluble cytokines and cell adhesion molecules, which activate various signaling pathways such as PI3K/AKT/mTOR, RAS/MAPK, JAK/STAT, Wnt/β-catenin, and NF-κB pathways. Aberrant activation of these pathways contributes to the proliferation, survival, migration, and drug resistance of myeloma cells, making them attractive targets for therapeutic intervention. Currently, approved drugs targeting these signaling pathways in MM are limited, with many inhibitors and inducers still in preclinical or clinical research stages. Therapeutic options for MM include non-targeted drugs like alkylating agents, corticosteroids, immunomodulatory drugs, proteasome inhibitors, and histone deacetylase inhibitors. Additionally, targeted drugs such as monoclonal antibodies, chimeric antigen receptor T cells, bispecific T-cell engagers, and bispecific antibodies are being used in MM treatment. Despite significant advancements in MM treatment, the disease remains incurable, emphasizing the need for the development of novel or combined targeted therapies based on emerging theoretical knowledge, technologies, and platforms. In this review, we highlight the key role of signaling pathways in the malignant progression and treatment of MM, exploring advances in targeted therapy and potential treatments to offer further insights for improving MM management and outcomes.
Collapse
Affiliation(s)
- Qizhong Lu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hexian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
4
|
Deng Y, Chen L, Zhang Q, Xu Y. PPFIBP1 activates NF-κB signaling to enhance chemoresistance of multiple myeloma. Transl Oncol 2023; 37:101765. [PMID: 37619524 PMCID: PMC10458954 DOI: 10.1016/j.tranon.2023.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Easily developed chemoresistance is a major characteristic of multiple myeloma (MM) and the main obstacle in curing MM in the clinic, but the key regulators have not been fully identified. In the current study, we find that PPFIA Binding Protein 1 (PPFIBP1) is highly expressed in the plasma cells from MM patients, and higher PPFIBP1 expression predicts poorer outcomes. PPFPIBP1 enhances chemoresistance of MM cells to the treatment of bortezomib (BTZ), a proteasome inhibitor, and manipulation of PPFPIBP1 can alter chemosensitivity of MM cells to BTZ. Mechanistic studies reveal that PPFPIBP1 directly binds and stabilizes RelA, promotes the cyto-nuclear translocation of RelA, and activates NF-κB signaling pathway. Targeting PPFPIBP1 in a xenograft mouse model of MM prohibits tumor growth and prolongs overall survival of mice. Taken together, our findings suggest that PPFIBP1 is a crucial regulator of chemoresistance to PIs in MM cells, and shed light on developing therapeutic strategies to overcome chemoresistance by targeting PPFIBP1.
Collapse
Affiliation(s)
- Yi Deng
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lanting Chen
- Department of Hematology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Qiguo Zhang
- Department of Hematology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, China; Department of Hematology, Chuzhou First People's Hospital of Anhui Medical University, Chuzhou, Anhui, China
| | - Yinyin Xu
- Clinical Laboratory of Yongchuan Hospital, Chongqing Medical University, No.439 Xuanhua Rd, Chongqing 402160, China.
| |
Collapse
|
5
|
Lungu O, Toscani D, Burroughs-Garcia J, Giuliani N. The Metabolic Features of Osteoblasts: Implications for Multiple Myeloma (MM) Bone Disease. Int J Mol Sci 2023; 24:ijms24054893. [PMID: 36902326 PMCID: PMC10003241 DOI: 10.3390/ijms24054893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The study of osteoblast (OB) metabolism has recently received increased attention due to the considerable amount of energy used during the bone remodeling process. In addition to glucose, the main nutrient for the osteoblast lineages, recent data highlight the importance of amino acid and fatty acid metabolism in providing the fuel necessary for the proper functioning of OBs. Among the amino acids, it has been reported that OBs are largely dependent on glutamine (Gln) for their differentiation and activity. In this review, we describe the main metabolic pathways governing OBs' fate and functions, both in physiological and pathological malignant conditions. In particular, we focus on multiple myeloma (MM) bone disease, which is characterized by a severe imbalance in OB differentiation due to the presence of malignant plasma cells into the bone microenvironment. Here, we describe the most important metabolic alterations involved in the inhibition of OB formation and activity in MM patients.
Collapse
Affiliation(s)
- Oxana Lungu
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Hematology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy
- Correspondence:
| |
Collapse
|
6
|
Teramachi J, Miki H, Nakamura S, Hiasa M, Harada T, Abe M. Myeloma bone disease: pathogenesis and management in the era of new anti-myeloma agents. J Bone Miner Metab 2023; 41:388-403. [PMID: 36856824 PMCID: PMC9975874 DOI: 10.1007/s00774-023-01403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 03/02/2023]
Abstract
INTRODUCTION Multiple myeloma (MM) is a malignancy of plasma cells with characteristic bone disease. Despite recent great strides achieved in MM treatment owing to the implementation of new anti-MM agents, MM is still incurable and bone destruction remains a serious unmet issue in patients with MM. APPROACH In this review, we will summarize and discuss the mechanisms of the formation of bone disease in MM and the available preclinical and clinical evidence on the treatment for MM bone disease. CONCLUSIONS MM cells produce a variety of cytokines to stimulate receptor activator of nuclear factor-κB ligand-mediated osteoclastogenesis and suppress osteoblastic differentiation from bone marrow stromal cells, leading to extensive bone destruction with rapid loss of bone. MM cells alter the microenvironment through bone destruction where they colonize, which in turn favors tumor growth and survival, thereby forming a vicious cycle between tumor progression and bone destruction. Denosumab or zoledronic acid is currently recommended to be administered at the start of treatment in newly diagnosed patients with MM with bone disease. Proteasome inhibitors and the anti-CD38 monoclonal antibody daratumumab have been demonstrated to exert bone-modifying activity in responders. Besides their anti-tumor activity, the effects of new anti-MM agents on bone metabolism should be more precisely analyzed in patients with MM. Because prognosis in patients with MM has been significantly improved owing to the implementation of new agents, the therapeutic impact of bone-modifying agents should be re-estimated in the era of these new agents.
Collapse
Affiliation(s)
- Jumpei Teramachi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
- Department of Oral Function and Anatomy, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University Graduate School, 2-5-1 Shikata, Okayama, 700-8525, Japan.
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, Tokushima, Japan
| | - Shingen Nakamura
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| |
Collapse
|
7
|
Okayama M, Fujimori K, Sato M, Samata K, Kurita K, Sugiyama H, Suto Y, Iwasaki G, Yamada T, Kiuchi F, Ichikawa D, Matsushita M, Hirao M, Kunieda H, Yamazaki K, Hattori Y. GTN057, a komaroviquinone derivative, induced myeloma cells' death in vivo and inhibited c-MET tyrosine kinase. Cancer Med 2023; 12:9749-9759. [PMID: 36825580 PMCID: PMC10166914 DOI: 10.1002/cam4.5691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVE Despite the development of newly developed drugs, most multiple myeloma (MM) patients with high-risk cytogenetic abnormalities such as t(4;14) or del17p relapse at anin early stage of their clinical course. We previously reported that a natural product,komaroviquinone (KQN), isolated from the perennial semi-shrub Dracocephalum komarovi, i.e., komaroviquinone (KQN) and its derivative GTN024 induced the apoptosis of MM cells by producing reactive oxygen species (ROS), but both exhibited significant hematological toxicity. Aim of this study is to clarify anti-tumor activity, safety and pharmacokinetics of GTN057, an optimization compound of KQN in vivo. METHODS ICR/SCID xenograft model of KMS11, a t(4;14) translocation-positive MM cell line, was used for in vivo study. Mice pharmacokinetics of GTN057 and the degradation products were analyzed by LC-MS/MS. RESULTS Herein, our in vitro experiments revealed that GTN057 is much less toxic to normal hematopoietic cells, induced the apoptosis of both MM cell lines andpatient samples, including those with high-risk cytogenetic changes. A xenograft model of a high-risk MM cell line demonstrated that GTN057 significantly delayed the tumor growth with no apparent hematological or systemic toxicities in vivo. The pathological examination of GTN057-treated tumors in vivoshowed revealed apoptosis of MM cells and anti-angiogenesis. In addition to the production of ROS, GTN057 inhibited the downstream signaling of c-MET, a receptor tyrosine kinase a receptor forand hepatocyte growth factor (HGF) receptor. Thus, GTN057 is less toxic and is able tomay be a candidate drug for treating MM patients, via multifunctional mechanisms. We have also extensively studied the pharmacologyical analysis of GTN057. The metabolites of GTN057, (e.g.,such as GTN054), may also have anti-tumorantitumor activity. CONCLUSION Natural products or and their derivatives can could be good sources of antineoplastic drugs even for high-risk cancer.
Collapse
Affiliation(s)
- Mikio Okayama
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan.,Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kota Fujimori
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Mariko Sato
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Koichi Samata
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Koki Kurita
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Hiromu Sugiyama
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Yutaka Suto
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Genji Iwasaki
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Taketo Yamada
- Department of Pathology, Saitama Medical University, Saitama, Japan
| | - Fumiyuki Kiuchi
- Division of Natural Medicines, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Daiju Ichikawa
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Maiko Matsushita
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Maki Hirao
- Department of Hematology, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Hisako Kunieda
- Department of Hematology, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Kohei Yamazaki
- Department of Hematology, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Yutaka Hattori
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan.,Department of Hematology, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| |
Collapse
|
8
|
Bertuglia G, Cani L, Larocca A, Gay F, D'Agostino M. Normalization of the Immunological Microenvironment and Sustained Minimal Residual Disease Negativity: Do We Need Both for Long-Term Control of Multiple Myeloma? Int J Mol Sci 2022; 23:15879. [PMID: 36555520 PMCID: PMC9781462 DOI: 10.3390/ijms232415879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Over the past two decades, the treatment landscape for multiple myeloma (MM) has progressed significantly, with the introduction of several new drug classes that have greatly improved patient outcomes. At present, it is well known how the bone marrow (BM) microenvironment (ME) exerts an immunosuppressive action leading to an exhaustion of the immune system cells and promoting the proliferation and sustenance of tumor plasma cells. Therefore, having drugs that can reconstitute a healthy BM ME can improve results in MM patients. Recent findings clearly demonstrated that achieving minimal residual disease (MRD) negativity and sustaining MRD negativity over time play a pivotal prognostic role. However, despite the achievement of MRD negativity, patients may still relapse. The understanding of immunologic changes in the BM ME during treatment, complemented by a deeper knowledge of plasma cell genomics and biology, will be critical to develop future therapies to sustain MRD negativity over time and possibly achieve an operational cure. In this review, we focus on the components of the BM ME and their role in MM, on the prognostic significance of MRD negativity and, finally, on the relative contribution of tumor plasma cell biology and BM ME to long-term disease control.
Collapse
Affiliation(s)
- Giuseppe Bertuglia
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Lorenzo Cani
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Alessandra Larocca
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Francesca Gay
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Mattia D'Agostino
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| |
Collapse
|
9
|
Molecular Features of the Mesenchymal and Osteoblastic Cells in Multiple Myeloma. Int J Mol Sci 2022; 23:ijms232415448. [PMID: 36555090 PMCID: PMC9779562 DOI: 10.3390/ijms232415448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a monoclonal gammopathy characterized by biological heterogeneity and unregulated proliferation of plasma cells (PCs) in bone marrow (BM). MM is a multistep process based on genomic instability, epigenetic dysregulation and a tight cross-talk with the BM microenvironment that plays a pivotal role supporting the proliferation, survival, drug-resistance and homing of PCs. The BM microenvironment consists of a hematopoietic and a non-hematopoietic compartment, which cooperate to create a tumor environment. Among the non-hematopoietic component, mesenchymal stromal cells (MSCs) and osteoblasts (OBs) appear transcriptionally and functionally different in MM patients compared to healthy donors (HDs) and to patients with pre-malignant monoclonal gammopathies. Alterations of both MSCs and OBs underly the osteolytic lesions that characterize myeloma-associated bone disease. In this review, we will discuss the different characteristics of MSCs and OBs in MM patients, analyzing the transcriptome, the deregulated molecular pathways and the role performed by miRNAs and exosome in the pathophysiology of MM.
Collapse
|
10
|
Andrews RE, Brown JE, Lawson MA, Chantry AD. Myeloma Bone Disease: The Osteoblast in the Spotlight. J Clin Med 2021; 10:jcm10173973. [PMID: 34501423 PMCID: PMC8432062 DOI: 10.3390/jcm10173973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Lytic bone disease remains a life-altering complication of multiple myeloma, with up to 90% of sufferers experiencing skeletal events at some point in their cancer journey. This tumour-induced bone disease is driven by an upregulation of bone resorption (via increased osteoclast (OC) activity) and a downregulation of bone formation (via reduced osteoblast (OB) activity), leading to phenotypic osteolysis. Treatments are limited, and currently exclusively target OCs. Despite existing bone targeting therapies, patients successfully achieving remission from their cancer can still be left with chronic pain, poor mobility, and reduced quality of life as a result of bone disease. As such, the field is desperately in need of new and improved bone-modulating therapeutic agents. One such option is the use of bone anabolics, drugs that are gaining traction in the osteoporosis field following successful clinical trials. The prospect of using these therapies in relation to myeloma is an attractive option, as they aim to stimulate OBs, as opposed to existing therapeutics that do little to orchestrate new bone formation. The preclinical application of bone anabolics in myeloma mouse models has demonstrated positive outcomes for bone repair and fracture resistance. Here, we review the role of the OB in the pathophysiology of myeloma-induced bone disease and explore whether novel OB targeted therapies could improve outcomes for patients.
Collapse
Affiliation(s)
- Rebecca E. Andrews
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
- Correspondence:
| | - Janet E. Brown
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| | - Michelle A. Lawson
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
| | - Andrew D. Chantry
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| |
Collapse
|
11
|
Maiso P, Mogollón P, Ocio EM, Garayoa M. Bone Marrow Mesenchymal Stromal Cells in Multiple Myeloma: Their Role as Active Contributors to Myeloma Progression. Cancers (Basel) 2021; 13:2542. [PMID: 34067236 PMCID: PMC8196907 DOI: 10.3390/cancers13112542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy of plasma cells that proliferate and accumulate within the bone marrow (BM). Work from many groups has made evident that the complex microenvironment of the BM plays a crucial role in myeloma progression and response to therapeutic agents. Within the cellular components of the BM, we will specifically focus on mesenchymal stromal cells (MSCs), which are known to interact with myeloma cells and the other components of the BM through cell to cell, soluble factors and, as more recently evidenced, through extracellular vesicles. Multiple structural and functional abnormalities have been found when characterizing MSCs derived from myeloma patients (MM-MSCs) and comparing them to those from healthy donors (HD-MSCs). Other studies have identified differences in genomic, mRNA, microRNA, histone modification, and DNA methylation profiles. We discuss these distinctive features shaping MM-MSCs and propose a model for the transition from HD-MSCs to MM-MSCs as a consequence of the interaction with myeloma cells. Finally, we review the contribution of MM-MSCs to several aspects of myeloma pathology, specifically to myeloma growth and survival, drug resistance, dissemination and homing, myeloma bone disease, and the induction of a pro-inflammatory and immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Patricia Maiso
- University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, 39008 Santander, Spain
| | - Pedro Mogollón
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (P.M.); (M.G.)
| | - Enrique M. Ocio
- University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, 39008 Santander, Spain
| | - Mercedes Garayoa
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (P.M.); (M.G.)
| |
Collapse
|
12
|
Deminger A, Klingberg E, Nurkkala M, Geijer M, Carlsten H, Jacobsson LTH, Forsblad-d'Elia H. Elevated serum level of hepatocyte growth factor predicts development of new syndesmophytes in men with ankylosing spondylitis. Rheumatology (Oxford) 2021; 60:1804-1813. [PMID: 33106846 PMCID: PMC8023989 DOI: 10.1093/rheumatology/keaa460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/03/2020] [Indexed: 11/14/2022] Open
Abstract
Objectives To study baseline serum hepatocyte growth factor (s-HGF) as a predictor of spinal radiographic progression overall and by sex and to analyse factors correlated to changes in s-HGF in patients with AS. Methods At baseline and the 5-year follow-up, s-HGF was analysed with ELISA. Spinal radiographs were graded according to modified Stoke Ankylosing Spondylitis Spinal Score. Radiographic progression was defined as ≥2 modified Stoke Ankylosing Spondylitis Spinal Score units/5 years or development of ≥1 syndesmophyte. Logistic regression analyses were used. Results Of 204 baseline participants, 163 (80%) completed all examinations at the 5-year follow-up (54% men). Baseline s-HGF was significantly higher in men who developed ≥1 syndesmophyte compared with non-progressors, median (interquartile range) baseline s-HGF 1551 (1449–1898) vs 1436 (1200–1569) pg/ml, P = 0.003. The calculated optimal cut-off point for baseline s-HGF ≥1520 pg/ml showed a sensitivity of 70%, a specificity of 69% and univariate odds radio (95% CI) of 5.25 (1.69, 14.10) as predictor of development of ≥1 new syndesmophyte in men. Baseline s-HGF ≥1520 pg/ml remained significantly associated with development of ≥1 new syndesmophyte in men in an analysis adjusted for the baseline variables age, smoking, presence of syndesmophytes and CRP, odds radio 3.97 (1.36, 11.60). In women, no association with HGF and radiographic progression was found. Changes in s-HGF were positively correlated with changes in ESR and CRP. Conclusion In this prospective cohort study elevated s-HGF was shown to be associated with development of new syndesmophytes in men with AS.
Collapse
Affiliation(s)
- Anna Deminger
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Rheumatology, Gothenburg, Sweden
| | - Eva Klingberg
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Rheumatology, Gothenburg, Sweden
| | - Merja Nurkkala
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Geijer
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Radiology, Gothenburg, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Hans Carlsten
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Rheumatology, Gothenburg, Sweden
| | - Lennart T H Jacobsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helena Forsblad-d'Elia
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Multiple Myeloma Bone Disease: Implication of MicroRNAs in Its Molecular Background. Int J Mol Sci 2021; 22:ijms22052375. [PMID: 33673480 PMCID: PMC7956742 DOI: 10.3390/ijms22052375] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) is a common hematological malignancy arising from terminally differentiated plasma cells. In the majority of cases, symptomatic disease is characterized by the presence of bone disease. Multiple myeloma bone disease (MMBD) is a result of an imbalance in the bone-remodeling process that leads to increased osteoclast activity and decreased osteoblast activity. The molecular background of MMBD appears intriguingly complex, as several signaling pathways and cell-to-cell interactions are implicated in the pathophysiology of MMBD. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate the expression of their target mRNAs. Numerous miRNAs have been witnessed to be involved in cancer and hematological malignancies and their role has been characterized either as oncogenic or oncosuppressive. Recently, scientific research turned towards miRNAs as regulators of MMBD. Scientific data support that miRNAs finely regulate the majority of the signaling pathways implicated in MMBD. In this review, we provide concise information regarding the molecular pathways with a significant role in MMBD and the miRNAs implicated in their regulation. Moreover, we discuss their utility as molecular biomarkers and highlight the putative usage of miRNAs as novel molecular targets for targeted therapy in MMBD.
Collapse
|
14
|
Current Understanding of Myelomatous Mesenchymal Stromal Cells Extended through Advances in Experimental Methods. Cancers (Basel) 2020; 13:cancers13010025. [PMID: 33374627 PMCID: PMC7793501 DOI: 10.3390/cancers13010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary As the amount of information available has grown, now it is known that many types of non-hematopoietic cells, including mesenchymal stem/progenitor cells, mature mesenchymal cells, and endothelial cells, as well as mature hematopoietic cells such as monocytes, macrophages, T-cells, and B-cells, have roles in the pathogenesis of multiple myeloma. This review focuses on the role of mesenchymal cells in the microenvironment of multiple myeloma. We summarize the experimental strategies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells. Abstract Multiple myeloma is an incurable cancer formed by malignant plasma cells. For the proliferation and survival of myeloma cells, as well as the occurrence of the complications, numerous intra- and extra-cellular mechanisms are involved. The interaction of myeloma cells with the microenvironment is known to be one of the most critical mechanisms. A specific microenvironment could affect the progression and growth of tumor cells, as well as drug resistance. Among various microenvironment components, such as hematological and non-hematological cells, and soluble factors (cytokines, chemokines, and extracellular matrix (ECM) proteins), in this review, we focus on the role of mesenchymal cells. We aimed to summarize the experimental strategies used for conducting studies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells.
Collapse
|
15
|
Diaz-delCastillo M, Chantry AD, Lawson MA, Heegaard AM. Multiple myeloma-A painful disease of the bone marrow. Semin Cell Dev Biol 2020; 112:49-58. [PMID: 33158730 DOI: 10.1016/j.semcdb.2020.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Multiple myeloma is a bone marrow neoplasia with an incidence of 6/100,000/year in Europe. While the disease remains incurable, the development of novel treatments such as autologous stem cell transplantation, proteasome inhibitors and monoclonal antibodies has led to an increasing subset of patients living with long-term myeloma. However, more than two thirds of patients suffer from bone pain, often described as severe, and knowledge on the pain mechanisms and its effect on their health-related quality of life (HRQoL) is limited. In this review, we discuss the mechanisms of myeloma bone disease, the currently available anti-myeloma treatments and the lessons learnt from clinical studies regarding HRQoL in myeloma patients. Moreover, we discuss the mechanisms of cancer-induced bone pain and the knowledge that animal models of myeloma-induced bone pain can provide to identify novel analgesic targets. To date, information regarding bone pain and HRQoL in myeloma patients is still scarce and an effort should be made to use standardised questionnaires to assess patient-reported outcomes that allow inter-study comparisons of the available clinical data.
Collapse
Affiliation(s)
- Marta Diaz-delCastillo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, Copenhagen Ø DK-2100, Denmark; Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, UK.
| | - Andrew D Chantry
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, UK
| | - Michelle A Lawson
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, Copenhagen Ø DK-2100, Denmark
| |
Collapse
|
16
|
Tsubaki M, Seki S, Takeda T, Chihara A, Arai Y, Morii Y, Imano M, Satou T, Shimomura K, Nishida S. The HGF/Met/NF-κB Pathway Regulates RANKL Expression in Osteoblasts and Bone Marrow Stromal Cells. Int J Mol Sci 2020; 21:ijms21217905. [PMID: 33114380 PMCID: PMC7663721 DOI: 10.3390/ijms21217905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM)-induced bone disease occurs through hyperactivation of osteoclasts by several factors secreted by MM cells. MM cell-secreted factors induce osteoclast differentiation and activation via direct and indirect actions including enhanced expression of receptor activator of nuclear factor κB ligand (RANKL) in osteoblasts and bone marrow stromal cells (BMSCs). Hepatocyte growth factor (HGF) is elevated in MM patients and is associated with MM-induced bone disease, although the mechanism by which HGF promotes bone disease remains unclear. In the present study, we demonstrated that HGF induces RANKL expression in osteoblasts and BMSCs, and investigated the mechanism of induction. We found that HGF and MM cell supernatants induced RANKL expression in ST2 cells, MC3T3-E1 cells, and mouse BMSCs. In addition, HGF increased phosphorylation of Met and nuclear factor κB (NF-κB) in ST2 cells, MC3T3-E1 cells, or mouse BMSCs. Moreover, Met and NF-κB inhibitors suppressed HGF-induced RANKL expression in ST2 cells, MC3T3-E1 cells, and mouse BMSCs. These results indicated that HGF promotes RANKL expression in osteoblasts and BMSCs via the Met/NF-κB signaling pathway, and Met and NF-κB inhibitors suppressed HGF-induced RANKL expression. Our findings suggest that Met and NF-κB inhibitors are potentially useful in mitigating MM-induced bone disease in patients expressing high levels of HGF.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
| | - Shiori Seki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
| | - Akiko Chihara
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
| | - Yuuko Arai
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
| | - Yuusuke Morii
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
- Department of Pharmacy, Municipal Ikeda Hospital, Ikeda 563-0025, Japan;
| | - Motohiro Imano
- Department of Surgery, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-0014, Japan;
| | - Takao Satou
- Department of Pathology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-0014, Japan;
| | - Kazunori Shimomura
- Department of Pharmacy, Municipal Ikeda Hospital, Ikeda 563-0025, Japan;
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
- Correspondence: ; Tel.: +81-6-6721-2332
| |
Collapse
|
17
|
Hefka Blahnova V, Dankova J, Rampichova M, Filova E. Combinations of growth factors for human mesenchymal stem cell proliferation and osteogenic differentiation. Bone Joint Res 2020; 9:412-420. [PMID: 32864112 PMCID: PMC7437520 DOI: 10.1302/2046-3758.97.bjr-2019-0183.r2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aims Here we introduce a wide and complex study comparing effects of growth factors used alone and in combinations on human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation. Certain ways of cell behaviour can be triggered by specific peptides – growth factors, influencing cell fate through surface cellular receptors. Methods In our study transforming growth factor β (TGF-β), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF) were used in order to induce osteogenesis and proliferation of hMSCs from bone marrow. These cells are naturally able to differentiate into various mesodermal cell lines. Effect of each factor itself is pretty well known. We designed experimental groups where two and more growth factors were combined. We supposed cumulative effect would appear when more growth factors with the same effect were combined. The cellular metabolism was evaluated using MTS assay and double-stranded DNA (dsDNA) amount using PicoGreen assay. Alkaline phosphatase (ALP) activity, as early osteogenesis marker, was observed. Phase contrast microscopy was used for cell morphology evaluation. Results TGF-β and bFGF were shown to significantly enhance cell proliferation. VEGF and IGF-1 supported ALP activity. Light microscopy showed initial extracellular matrix mineralization after VEGF/IGF-1 supply. Conclusion A combination of more than two growth factors did not support the cellular metabolism level and ALP activity even though the growth factor itself had a positive effect. This is probably caused by interplay of various messengers shared by more growth factor signalling cascades. Cite this article: Bone Joint Res 2020;9(7):412–420.
Collapse
Affiliation(s)
- Veronika Hefka Blahnova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Dankova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Michala Rampichova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Eva Filova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Børset M, Sundan A, Waage A, Standal T. Why do myeloma patients have bone disease? A historical perspective. Blood Rev 2020; 41:100646. [DOI: 10.1016/j.blre.2019.100646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
|
19
|
Yin L, Yang Z, Wu Y, Denslin V, Yu CC, Tee CA, Lim CT, Han J, Lee EH. Label-free separation of mesenchymal stem cell subpopulations with distinct differentiation potencies and paracrine effects. Biomaterials 2020; 240:119881. [PMID: 32092592 DOI: 10.1016/j.biomaterials.2020.119881] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/23/2020] [Accepted: 02/11/2020] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cells (MSCs) have the capability to differentiate into multiple cell lineages, and produce trophic factors to facilitate tissue repair and regeneration, and disease regression. However, the heterogeneity of MSCs, whether inherent or developed during culture expansion, has a significant impact on their therapeutic efficacy. Therefore, the ability to identify and select an efficacious subpopulation of MSCs targeting specific tissue damage or disease holds great clinical significance. In this study, we separated three subpopulations from culture expanded human bone marrow derived MSCs according to cell size, using a high-throughput label-free microfluidic cell sorting technology. The size-sorted MSC subpopulations varied in tri-lineage differentiation potencies. The large MSCs showed the strongest osteogenesis, medium-size MSCs were advantageous in chondrogenesis and adipogenesis, and the small MSCs showed the weakest tri-lineage differentiation. The size-sorted MSC subpopulations also exhibited different secretome profiles. The large MSC secretome possessed highest levels of osteogenic promotor proteins and senescence-associated factors, but lower levels of osteogenic inhibitor proteins compared to the medium-size MSC secretome. The medium-size MSC secretome had high levels of chondrogenic promotor proteins, and contained lower levels of chondrogenic inhibitor proteins compared to the large MSC secretome. The secretome of size-sorted MSC subpopulations showed differences in paracrine effects. We found that the secretome of large MSCs enhanced osteogenic and adipogenic potencies during MSC culture expansion, but also induced cell senescence; and the secretome of medium-size MSCs promoted chondrogenesis. This study demonstrates size-dependent differentiation potency and secretome profile of MSC subpopulations, and provides an effective and practical technology to isolate the respective subpopulations, which may be used for more targeted tissue repair and regeneration.
Collapse
Affiliation(s)
- Lu Yin
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore
| | - Zheng Yang
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore; NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore 27 Medical Drive1, DSO (Kent Bridge) Building, Level 4, Singapore, 11751, Singapore; Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block 11, Singapore, 119288, Singapore
| | - Yingnan Wu
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore 27 Medical Drive1, DSO (Kent Bridge) Building, Level 4, Singapore, 11751, Singapore; Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block 11, Singapore, 119288, Singapore
| | - Vinitha Denslin
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore 27 Medical Drive1, DSO (Kent Bridge) Building, Level 4, Singapore, 11751, Singapore; Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block 11, Singapore, 119288, Singapore
| | - Chia Chen Yu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Ching Ann Tee
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore; Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block 11, Singapore, 119288, Singapore
| | - Chwee Teck Lim
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore; Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, T-Lab, #10-01, Singapore, 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore, 117583, Singapore; Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, #14-01, Singapore, 117599, Singapore
| | - Jongyoon Han
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore; Department of Electrical Engineering and Computer Science, Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Eng Hin Lee
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore; NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore 27 Medical Drive1, DSO (Kent Bridge) Building, Level 4, Singapore, 11751, Singapore; Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block 11, Singapore, 119288, Singapore.
| |
Collapse
|
20
|
Westhrin M, Holien T, Zahoor M, Moen SH, Buene G, Størdal B, Hella H, Yuan H, de Bruijn JD, Martens A, Groen RW, Bosch F, Smith U, Sponaas AM, Sundan A, Standal T. Bone Morphogenetic Protein 4 Gene Therapy in Mice Inhibits Myeloma Tumor Growth, But Has a Negative Impact on Bone. JBMR Plus 2019; 4:e10247. [PMID: 31956851 PMCID: PMC6957984 DOI: 10.1002/jbm4.10247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 02/03/2023] Open
Abstract
Multiple myeloma is characterized by accumulation of malignant plasma cells in the bone marrow. Most patients suffer from an osteolytic bone disease, caused by increased bone degradation and reduced bone formation. Bone morphogenetic protein 4 (BMP4) is important for both pre‐ and postnatal bone formation and induces growth arrest and apoptosis of myeloma cells. BMP4‐treatment of myeloma patients could have the potential to reduce tumor growth and restore bone formation. We therefore explored BMP4 gene therapy in a human‐mouse model of multiple myeloma where humanized bone scaffolds were implanted subcutaneously in RAG2−/− γC−/−mice. Mice were treated with adeno‐associated virus serotype 8 BMP4 vectors (AAV8‐BMP4) to express BMP4 in the liver. When mature BMP4 was detectable in the circulation, myeloma cells were injected into the scaffolds and tumor growth was examined by weekly imaging. Strikingly, the tumor burden was reduced in AAV8‐BMP4 mice compared with the AAV8‐CTRL mice, suggesting that increased circulating BMP4 reduced tumor growth. BMP4‐treatment also prevented bone loss in the scaffolds, most likely due to reduced tumor load. To delineate the effects of BMP4 overexpression on bone per se, without direct influence from cancer cells, we examined the unaffected, non‐myeloma femurs by μCT. Surprisingly, the AAV8‐BMP4 mice had significantly reduced trabecular bone volume, trabecular numbers, as well as significantly increased trabecular separation compared with the AAV8‐CTRL mice. There was no difference in cortical bone parameters between the two groups. Taken together, BMP4 gene therapy inhibited myeloma tumor growth, but also reduced the amount of trabecular bone in mice. Our data suggest that care should be taken when considering using BMP4 as a therapeutic agent. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Marita Westhrin
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway
| | - Toril Holien
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Department of Hematology St. Olavs Hospital Trondheim Norway
| | - Muhammad Zahoor
- Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway
| | - Siv Helen Moen
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway
| | - Glenn Buene
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway
| | - Berit Størdal
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway
| | - Hanne Hella
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway
| | - Huipin Yuan
- Kuros Biosciences BV Bilthoven The Netherlands
| | - Joost D de Bruijn
- Kuros Biosciences BV Bilthoven The Netherlands.,The School of Engineering and Materials Science Queen Mary University of London London UK
| | - Anton Martens
- Department of Hematology Cancer Center Amsterdam, VU University Medical Center Amsterdam The Netherlands
| | - Richard Wj Groen
- Department of Hematology Cancer Center Amsterdam, VU University Medical Center Amsterdam The Netherlands
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology School of Veterinary Medicine, Universitat Autònoma de Barcelona Barcelona Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Madrid Spain
| | - Ulf Smith
- Department of Molecular and Clinical Medicine Sahlgrenska University Hospital Gothenburg Sweden
| | - Anne-Marit Sponaas
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway
| | - Anders Sundan
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway.,Department of Hematology St. Olavs Hospital Trondheim Norway
| |
Collapse
|
21
|
Singh H, Tiwari K, Tiwari R, Pramanik SK, Das A. Small Molecule as Fluorescent Probes for Monitoring Intracellular Enzymatic Transformations. Chem Rev 2019; 119:11718-11760. [DOI: 10.1021/acs.chemrev.9b00379] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Harwinder Singh
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Karishma Tiwari
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Rajeshwari Tiwari
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Amitava Das
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
22
|
Strømme O, Psonka-Antonczyk KM, Stokke BT, Sundan A, Arum CJ, Brede G. Myeloma-derived extracellular vesicles mediate HGF/c-Met signaling in osteoblast-like cells. Exp Cell Res 2019; 383:111490. [PMID: 31283912 DOI: 10.1016/j.yexcr.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 01/11/2023]
Abstract
Multiple myeloma is an incurable cancer of antibody-producing plasma cells. Hepatocyte growth factor (HGF), a cytokine aberrantly expressed in half of myeloma patients, is involved in myeloma pathogenesis by enhancing myeloma growth and invasiveness, and may play a role in myeloma bone disease by inhibiting osteoblastogenesis. In this study, we investigated whether extracellular vesicles (EVs) may play a role in HGF signaling between myeloma cells and osteoblast-like target cells. EVs from the HGF-positive cell line JJN-3 and the HGF-negative cell line INA-6, and from bone marrow plasma and primary human myeloma cells, were isolated using sequential centrifugation techniques and the presence of HGF on the EV-surface was investigated with ELISA. EVs from both cell lines were added to an established bioassay where HGF is known to induce interleukin-11 secretion in osteoblast-like cells. Our results show that HGF was bound to the surface of JJN-3-derived EVs, while INA-6-derived EVs were negative for HGF. Only JJN-3-derived EVs induced IL-11 secretion in osteoblast-like recipient cells. When osteoblast-like cells were preincubated with a specific HGF-receptor (c-Met) inhibitor, no induction of interleukin-11 was observed. Downstream c-Met phosphorylation was demonstrated by immunoblotting. EVs isolated from bone marrow plasma and primary myeloma cells were HGF-positive for a subset of myeloma patients. Taken together, this work shows for the first time that HGF bound on the surface of myeloma-derived EVs can effectuate HGF/c-Met signaling in osteoblast-like cells. Myeloma-derived EVs may play a role in myeloma bone disease by induction of the osteoclast-activating cytokine interleukin-11 in osteoblasts.
Collapse
Affiliation(s)
- Olaf Strømme
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Katarzyna M Psonka-Antonczyk
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Bjørn Torger Stokke
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Anders Sundan
- Centre of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Carl-Jørgen Arum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway and Department of Urology, St. Olavs University Hospital, Trondheim, Norway.
| | - Gaute Brede
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
23
|
Faraahi Z, Baud'huin M, Croucher PI, Eaton C, Lawson MA. Sostdc1: A soluble BMP and Wnt antagonist that is induced by the interaction between myeloma cells and osteoblast lineage cells. Bone 2019; 122:82-92. [PMID: 30776499 PMCID: PMC6458996 DOI: 10.1016/j.bone.2019.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/01/2023]
Abstract
Multiple myeloma (MM) is characterised by destructive lytic bone disease, caused by induction of bone resorption and impaired bone formation. Our understanding of the molecular mechanisms responsible for osteoblast suppression, are limited. Using the 5T2MM murine model of MM we have previously shown that suppression of the activity of a known inhibitor of bone formation Dikkopf-1 (Dkk1) prevents the development of lytic bone disease. Here we have demonstrated that another potential inhibitor of bone formation, sclerostin domain containing 1 (Sostdc1) is expressed at low levels in MM and osteoblast lineage cells when these cells are grown separately in cell culture but its expression is significantly induced in both cell types when these cells are in contact. The distribution of Sostdc1 staining in bones infiltrated with 5TGM1 myeloma cells in vivo suggested its presence in both myeloma and osteoblast lineage populations when in close proximity. We have also shown that recombinant Sostdc1 inhibits both bone morphogenic proteins (BMP2 and 7) and Wnt signalling in primary osteoblasts and suppresses differentiation of these cells. Together, these findings suggest that Sostdc1 expression in 5TGM1-infiltrated bones as a result of the interaction between myeloma and osteoblast lineage populations, could result in suppression of osteoblast differentiation.
Collapse
Affiliation(s)
- Z Faraahi
- Institute for Cancer Sciences, University of Manchester, UK
| | | | - P I Croucher
- Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia
| | - C Eaton
- Department of Oncology and Metabolism, Medical School, University of Sheffield, UK
| | - M A Lawson
- Department of Oncology and Metabolism, Medical School, University of Sheffield, UK.
| |
Collapse
|
24
|
A C-Met chemical inhibitor promotes fracture healing through interacting with osteogenic differentiation via the mTORC1 pathway. Exp Cell Res 2019; 381:50-56. [PMID: 31034806 DOI: 10.1016/j.yexcr.2019.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/16/2023]
Abstract
Currently, HGF/C-Met signaling inhibitors are being investigated to determine if they are useful for enhancing progenitor cell differentiation into osteoblasts, and one of them, BMS-777607, has been utilized to treat osteoporosis and bone loss in several types of diseases. However, whether BMS-777607 could be a potential treatment during fracture healing remains elusive. Here, we examined the therapeutic effects of BMS-777607 on bone fracture healing in a mouse model. In vivo radiological analysis showed that fractures treated with BMS-777607 exhibited accelerated osteotylus formation during the early stage of bone healing. Thereafter, the Safranin O staining evaluation indicated that the structure of the external callus in the Treatment group was larger than that in the Vehicle group at week 2. Furthermore, cellular proliferation of MC3T3-E1 was not significantly affected by low concentrations of BMS-777607. In addition, stimulation of osteoblast differentiation and mineralization was a result of BMS-777607 inducing the expression of Runx2 and Col1, and this osteogenic ability, at least in part, was mediated through the mammalian target of rapamycin complex 1 (mTORC1) signaling in vitro. Conclusively, BMS-777607 has been identified as a therapeutic agent to improve bone formation during fracture healing, and its osteogenic effects on osteoblast differentiation were mediated via the mTORC1 signaling pathway.
Collapse
|
25
|
The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev 2019; 34:56-66. [DOI: 10.1016/j.blre.2018.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
|
26
|
Giannoni P, Fais F, Cutrona G, Totero DD. Hepatocyte Growth Factor: A Microenvironmental Resource for Leukemic Cell Growth. Int J Mol Sci 2019; 20:ijms20020292. [PMID: 30642077 PMCID: PMC6359660 DOI: 10.3390/ijms20020292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the progressive expansion of B lymphocytes CD5+/CD23+ in peripheral blood, lymph-nodes, and bone marrow. The pivotal role played by the microenvironment in disease pathogenesis has become increasingly clear. We demonstrated that bone marrow stromal cells and trabecular bone cells sustain survival of leukemic B cells through the production of hepatocyte growth factor (HGF). Indeed the trans-membrane kinase receptor for HGF, c-MET, is expressed on CLL cells and STAT3 TYR705 or AKT phosphorylation is induced after HGF/c-MET interaction. We have further observed that c-MET is also highly expressed in a peculiar type of cells of the CLL-microenvironment showing nurturing features for the leukemic clone (nurse-like cells: NLCs). Since HGF treatment drives monocytes toward the M2 phenotype and NLCs exhibit features of tumor associated macrophages of type 2 we suggested that HGF, released either by cells of the microenvironment or leukemic cells, exerts a double effect: (i) enhances CLL cells survival and (ii) drives differentiation of monocytes-macrophages to an oriented immune suppressive phenotype. We here discuss how paracrine, but also autocrine production of HGF by malignant cells, may favor leukemic clone expansion and resistance to conventional drug treatments in CLL, as well as in other hematological malignancies. Novel therapeutic approaches aimed to block HGF/c-MET interactions are further proposed.
Collapse
Affiliation(s)
- Paolo Giannoni
- Stem Cell Laboratory, Department of Experimental Medicine, University of Genoa, V. Pastore 3, 16132 Genova, Italy.
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Polyclinic Hospital San Martino, L.go R. Benzi n.10, 16132 Genova, Italy.
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Polyclinic Hospital San Martino, L.go R. Benzi n.10, 16132 Genova, Italy.
| | - Daniela de Totero
- Molecular Pathology Unit, IRCCS Polyclinic Hospital San Martino, L.go R. Benzi n.10, 16132 Genova, Italy.
| |
Collapse
|
27
|
Yang S, Guo Y, Zhang W, Zhang J, Zhang Y, Xu P. Effect of FGF-21 on implant bone defects through hepatocyte growth factor (HGF)-mediated PI3K/AKT signaling pathway. Biomed Pharmacother 2018; 109:1259-1267. [PMID: 30551376 DOI: 10.1016/j.biopha.2018.10.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 11/28/2022] Open
Abstract
Implant bone defects are the most common phenomenon in the processes of bone transplantation. Evidences have identified that fibroblast growth factor-21 (FGF-21) encourages osteogenesis for patients with implant bone defects. The purpose of this study was to investigate the role of FGF-21 and its potential mechanism in bone mesenchymal stem cells (BMSCs). RT-PCR, Western blotting, flow cytometry, immunofluorescence and immunohistochemistry assays were performed to analyze the role of FGF-21 and intracellular signaling pathways involved in BMSCs. It was shown that FGF-21 increased viability of BMSCs. Treatment with FGF-21 decreased the apoptosis of BMSCs by decreasing pro-apoptosis protein Caspase-3. Results indicated that FGF-21 (2 mg/kg) treatment up-regulated HGF, PI3K and AKT expression in BMSCs. In addition, the protective effects of FGF-21 on BMSCs were canceled by PI3K/AKT inhibitor in BMSCs. Results found that knockdown of HGF abolished FGF-21-decreased PI3K/AKT signal pathway. Furthermore, results demonstrated that FGF-21 presented beneficial effects for implant bone defects in rat model. In conclusion, these results indicate that FGF-21 can improve implant bone defects through HGF-mediated PI3K/AKT signaling pathway in BMSCs.
Collapse
Affiliation(s)
- Shimao Yang
- Department of Oral and Maxillofacial Surgery, Jinan Stomatology Hospital, Jinan City, Shandong Province, China
| | - Yanwei Guo
- Department of Oral and Maxillofacial Surgery, Jining Stomatology Hospital, Jining City, Shandong Province, China
| | - Wenmei Zhang
- Department of Oral and Maxillofacial Surgery, Jinan Stomatology Hospital, Jinan City, Shandong Province, China
| | - Jin Zhang
- Department of Oral and Maxillofacial Surgery, Jinan Stomatology Hospital, Jinan City, Shandong Province, China
| | - Yujie Zhang
- Department of Oral and Maxillofacial Surgery, Jinan Stomatology Hospital, Jinan City, Shandong Province, China
| | - Peng Xu
- Department of Dental Implant, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
| |
Collapse
|
28
|
Tai YT, Cho SF, Anderson KC. Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1. Front Immunol 2018; 9:1822. [PMID: 30147691 PMCID: PMC6095980 DOI: 10.3389/fimmu.2018.01822] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
Immunomodulatory drugs and monoclonal antibody-based immunotherapies have significantly improved the prognosis of the patients with multiple myeloma (MM) in the recent years. These new classes of reagents target malignant plasma cells (PCs) and further modulate the immune microenvironment, which prolongs anti-MM responses and may prevent tumor occurrence. Since MM remains an incurable cancer for most patients, there continues to be a need to identify new tumor target molecules and investigate alternative cellular approaches using gene therapeutic strategies and novel treatment mechanisms. Osteoclasts (OCs), as critical multi-nucleated large cells responsible for bone destruction in >80% MM patients, have become an attractive cellular target for the development of novel MM immunotherapies. In MM, OCs are induced and activated by malignant PCs in a reciprocal manner, leading to osteolytic bone disease commonly associated with this malignancy. Significantly, bidirectional interactions between OCs and MM cells create a positive feedback loop to promote MM cell progression, increase angiogenesis, and inhibit immune surveillance via both cell-cell contact and abnormal production of multiple cytokines/chemokines. Most recently, hyper-activated OCs have been associated with activation of programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway, which impairs T cell proliferation and cytotoxicity against MM cells. Importantly, therapeutic anti-CD38 monoclonal antibodies and checkpoint inhibitors can alleviate OC-induced immune suppression. Furthermore, a proliferation-inducing ligand, abundantly secreted by OCs and OC precursors, significantly upregulates PD-L1 expression on MM cells, in addition to directly promoting MM cell proliferation and survival. Coupled with increased PD-L1 expression in other immune-suppressive cells, i.e., myeloid-derived suppressor cells and tumor-associated macrophages, these results strongly suggest that OCs contribute to the immunosuppressive MM BM microenvironment. Based on these findings and ongoing osteoimmunology studies, therapeutic interventions targeting OC number and function are under development to diminish both MM bone disease and related immune suppression. In this review, we discuss the classical and novel roles of OCs in the patho-immunology of MM. We also describe novel therapeutic strategies simultaneously targeting OCs and MM interactions, including PD-1/PD-L1 axis, to overcome the immune-suppressive microenvironment and improve patient outcome.
Collapse
Affiliation(s)
- Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Shih-Feng Cho
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.,Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
Xu S, De Veirman K, De Becker A, Vanderkerken K, Van Riet I. Mesenchymal stem cells in multiple myeloma: a therapeutical tool or target? Leukemia 2018; 32:1500-1514. [PMID: 29535427 PMCID: PMC6035148 DOI: 10.1038/s41375-018-0061-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Multiple myeloma (MM) is a malignant plasma cell (PC) disorder, characterized by a complex interactive network of tumour cells and the bone marrow (BM) stromal microenvironment, contributing to MM cell survival, proliferation and chemoresistance. Mesenchymal stem cells (MSCs) represent the predominant stem cell population of the bone marrow stroma, capable of differentiating into multiple cell lineages, including fibroblasts, adipocytes, chondrocytes and osteoblasts. MSCs can migrate towards primary tumours and metastatic sites, implying that these cells might modulate tumour growth and metastasis. However, this issue remains controversial and is not well understood. Interestingly, several recent studies have shown functional abnormalities of MM patient-derived MSCs indicating that MSCs are not just by-standers in the BM microenvironment but rather active players in the pathophysiology of this disease. It appears that the complex interaction of MSCs and MM cells is critical for MM development and disease outcome. This review will focus on the current understanding of the biological role of MSCs in MM as well as the potential utility of MSC-based therapies in this malignancy.
Collapse
Affiliation(s)
- Song Xu
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Kim De Veirman
- Department Hematology- Stem Cell Laboratory, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Research Group Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Ann De Becker
- Department Hematology- Stem Cell Laboratory, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Karin Vanderkerken
- Research Group Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Ivan Van Riet
- Department Hematology- Stem Cell Laboratory, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
- Research Group Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium.
| |
Collapse
|
30
|
Lath DL, Buckle CH, Evans HR, Fisher M, Down JM, Lawson MA, Chantry AD. ARQ-197, a small-molecule inhibitor of c-Met, reduces tumour burden and prevents myeloma-induced bone disease in vivo. PLoS One 2018; 13:e0199517. [PMID: 29924867 PMCID: PMC6010293 DOI: 10.1371/journal.pone.0199517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/09/2018] [Indexed: 11/18/2022] Open
Abstract
The receptor tyrosine kinase c-Met, its ligand HGF, and components of the downstream signalling pathway, have all been implicated in the pathogenesis of myeloma, both as modulators of plasma cell proliferation and as agents driving osteoclast differentiation and osteoblast inhibition thus, all these contribute substantially to the bone destruction typically caused by myeloma. Patients with elevated levels of HGF have a poor prognosis, therefore, targeting these entities in such patients may be of substantial benefit. We hypothesized that ARQ-197 (Tivantinib), a small molecule c-Met inhibitor, would reduce myeloma cell growth and prevent myeloma-associated bone disease in a murine model. In vitro we assessed the effects of ARQ-197 on myeloma cell proliferation, cytotoxicity and c-Met protein expression in human myeloma cell lines. In vivo we injected NOD/SCID-γ mice with PBS (non-tumour bearing) or JJN3 cells and treated them with either ARQ-197 or vehicle. In vitro exposure of JJN3, U266 or NCI-H929 cells to ARQ-197 resulted in a significant inhibition of cell proliferation and an induction of cell death by necrosis, probably caused by significantly reduced levels of phosphorylated c-Met. In vivo ARQ-197 treatment of JJN3 tumour-bearing mice resulted in a significant reduction in tumour burden, tumour cell proliferation, bone lesion number, trabecular bone loss and prevented significant decreases in the bone formation rate on the cortico-endosteal bone surface compared to the vehicle group. However, no significant differences on bone parameters were observed in non-tumour mice treated with ARQ-197 compared to vehicle, implying that in tumour-bearing mice the effects of ARQ-197 on bone cells was indirect. In summary, these res ults suggest that ARQ-197 could be a promising therapeutic in myeloma patients, leading to both a reduction in tumour burden and an inhibition of myeloma-induced bone disease.
Collapse
Affiliation(s)
- Darren L. Lath
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Clive H. Buckle
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Holly R. Evans
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Matthew Fisher
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Jenny M. Down
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Michelle A. Lawson
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Andrew D. Chantry
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, Medical School, University of Sheffield, Sheffield, United Kingdom
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
| |
Collapse
|
31
|
Insights into inflammatory priming of mesenchymal stromal cells: functional biological impacts. Inflamm Res 2018; 67:467-477. [PMID: 29362849 DOI: 10.1007/s00011-018-1131-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent adult cells with relevant biological properties making them interesting tools for cell-based therapy. These cells have the ability to home to sites of injury and secrete bioactive factors as part of their therapeutic functions. However, depending on the local environment, diverse functions of MSCs can be modulated and thus can influence their therapeutic value. The specific cytokine milieu within the site of inflammation is vital in determining the fate and cell behaviors of MSCs. Indeed, inflammatory signals (called as inflammatory priming), may induce critical changes on the phenotype, multilineage potential, hematopoietic support and immunomodulatory capacity of MSCs. Thus, for appropriate clinical application of MSCs, it is important to well know and understand these effects. In summary, investigating MSC interactions with the inflammatory environment is necessary to empower the therapeutic value of MSCs.
Collapse
|
32
|
Terpos E, Ntanasis-Stathopoulos I, Gavriatopoulou M, Dimopoulos MA. Pathogenesis of bone disease in multiple myeloma: from bench to bedside. Blood Cancer J 2018; 8:7. [PMID: 29330358 PMCID: PMC5802524 DOI: 10.1038/s41408-017-0037-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 12/29/2022] Open
Abstract
Osteolytic bone disease is the hallmark of multiple myeloma, which deteriorates the quality of life of myeloma patients, and it affects dramatically their morbidity and mortality. The basis of the pathogenesis of myeloma-related bone disease is the uncoupling of the bone-remodeling process. The interaction between myeloma cells and the bone microenvironment ultimately leads to the activation of osteoclasts and suppression of osteoblasts, resulting in bone loss. Several intracellular and intercellular signaling cascades, including RANK/RANKL/OPG, Notch, Wnt, and numerous chemokines and interleukins are implicated in this complex process. During the last years, osteocytes have emerged as key regulators of bone loss in myeloma through direct interactions with the myeloma cells. The myeloma-induced crosstalk among the molecular pathways establishes a positive feedback that sustains myeloma cell survival and continuous bone destruction, even when a plateau phase of the disease has been achieved. Targeted therapies, based on the better knowledge of the biology, constitute a promising approach in the management of myeloma-related bone disease and several novel agents are currently under investigation. Herein, we provide an insight into the underlying pathogenesis of bone disease and discuss possible directions for future studies.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
33
|
Aquino-Martínez R, Angelo AP, Pujol FV. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration. Stem Cell Res Ther 2017; 8:265. [PMID: 29145866 PMCID: PMC5689169 DOI: 10.1186/s13287-017-0713-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022] Open
Abstract
Background Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca2+-containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO4) on MSC migration. In addition, to evaluate the influence of CaSO4 on MSC differentiation and the potential molecular mechanisms involved. Methods A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO4 treatment was also evaluated by qPCR. Results CaSO4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO4-containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO4 effects on MSC migration. Conclusions Specific CaSO4 concentrations induce bone regeneration of calvarial defects in part by acting on the host’s undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO4 regulates BMP-2-induced MSC migration by differentially activating the PI3K/AKT pathway. Altogether, these results suggest that CaSO4 scaffolds could have potential applications for bone regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0713-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rubén Aquino-Martínez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alcira P Angelo
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Ventura Pujol
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
34
|
Terpos E, Christoulas D, Gavriatopoulou M, Dimopoulos MA. Mechanisms of bone destruction in multiple myeloma. Eur J Cancer Care (Engl) 2017; 26. [PMID: 28940410 DOI: 10.1111/ecc.12761] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2017] [Indexed: 02/02/2023]
Abstract
Osteolytic bone disease is a frequent complication of multiple myeloma, resulting in skeletal complications that are a significant cause of morbidity and mortality. It is the result of an increased activity of osteoclasts, which is not followed by reactive bone formation by osteoblasts. Recent studies have revealed novel molecules and pathways that are implicated in osteoclast activation and osteoblast inhibition. Among them, the most important include the receptor activator of nuclear factor-kappa B ligand/osteoprotegerin pathway, the macrophage inflammatory proteins and the activin-A that play a crucial role in osteoclast stimulation in myeloma, while the wingless-type (Wnt) signalling inhibitors (sclerostin and dickkopf-1) along with the growth factor independence-1 are considered the most important factors for the osteoblast dysfunction of myeloma patients. Finally, the role of osteocytes, which is the key cell for normal bone remodelling, has also revealed during the last years through their interaction with myeloma cells that leads to their apoptosis and the release of RANKL and sclerostin maintaining bone loss in these patients. This review focuses on the latest available data for the mechanisms of bone destruction in multiple myeloma.
Collapse
Affiliation(s)
- E Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| | - D Christoulas
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| | - M Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| | - M A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| |
Collapse
|
35
|
Heusschen R, Muller J, Duray E, Withofs N, Bolomsky A, Baron F, Beguin Y, Menu E, Ludwig H, Caers J. Molecular mechanisms, current management and next generation therapy in myeloma bone disease. Leuk Lymphoma 2017; 59:14-28. [PMID: 28573897 DOI: 10.1080/10428194.2017.1323272] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple myeloma (MM) bone disease is a major cause of morbidity and mortality in MM patients and persists even in patients in remission. This bone disease is caused by an uncoupling of bone remodeling, with increased osteoclast and decreased osteoblast activity and formation, culminating in lytic bone destruction. Bisphosphonates are the current standard of care but new therapies are needed. As the molecular mechanisms controlling MM bone disease are increasingly well understood, new therapeutic targets are extensively explored in the preclinical setting and initial clinical trials with novel compounds now show promising results. In this review, we will provide a comprehensive overview of the biology of MM bone disease, summarize its current clinical management and discuss preclinical and clinical data on next generation therapies.
Collapse
Affiliation(s)
- Roy Heusschen
- a Laboratory of Hematology , University of Liège, GIGA-I3 , Liège , Belgium
| | - Joséphine Muller
- a Laboratory of Hematology , University of Liège, GIGA-I3 , Liège , Belgium
| | - Elodie Duray
- a Laboratory of Hematology , University of Liège, GIGA-I3 , Liège , Belgium
| | - Nadia Withofs
- b Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics , University and CHU of Liège , Liège , Belgium
| | - Arnold Bolomsky
- c Wilhelminen Cancer Research Institute, Department of Medicine I , Center for Oncology and Hematology, Wilhelminenspital , Vienna , Austria
| | - Frédéric Baron
- a Laboratory of Hematology , University of Liège, GIGA-I3 , Liège , Belgium.,d Division of Hematology, Department of Medicine , University and CHU of Liège , Liège , Belgium
| | - Yves Beguin
- a Laboratory of Hematology , University of Liège, GIGA-I3 , Liège , Belgium.,d Division of Hematology, Department of Medicine , University and CHU of Liège , Liège , Belgium
| | - Eline Menu
- e Department of Hematology and Immunology , Myeloma Center Brussels, Vrije Universiteit Brussel , Brussels , Belgium
| | - Heinz Ludwig
- c Wilhelminen Cancer Research Institute, Department of Medicine I , Center for Oncology and Hematology, Wilhelminenspital , Vienna , Austria
| | - Jo Caers
- a Laboratory of Hematology , University of Liège, GIGA-I3 , Liège , Belgium.,d Division of Hematology, Department of Medicine , University and CHU of Liège , Liège , Belgium
| |
Collapse
|
36
|
Kim JW, Lee MN, Jeong BC, Oh SH, Kook MS, Koh JT. Chemical inhibitors of c-Met receptor tyrosine kinase stimulate osteoblast differentiation and bone regeneration. Eur J Pharmacol 2017; 806:10-17. [PMID: 28322831 DOI: 10.1016/j.ejphar.2017.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 01/19/2023]
Abstract
The c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), have been recently introduced to negatively regulate bone morphogenetic protein (BMP)-induced osteogenesis. However, the effect of chemical inhibitors of c-Met receptor on osteoblast differentiation process has not been examined, especially the applicability of c-Met chemical inhibitors on in vivo bone regeneration. In this study, we demonstrated that chemical inhibitors of c-Met receptor tyrosine kinase, SYN1143 and SGX523, could potentiate the differentiation of precursor cells to osteoblasts and stimulate regeneration in calvarial bone defects of mice. Treatment with SYN1143 or SGX523 inhibited HGF-induced c-Met phosphorylation in MC3T3-E1 and C3H10T1/2 cells. Cell proliferation of MC3T3-E1 or C3H10T1/2 was not significantly affected by the concentrations of these inhibitors. Co-treatment with chemical inhibitor of c-Met and osteogenic inducing media enhanced osteoblast-specific genes expression and calcium nodule formation accompanied by increased Runx2 expression via c-Met receptor-dependent but Erk-Smad signaling independent pathway. Notably, the administration of these c-Met inhibitors significantly repaired critical-sized calvarial bone defects. Collectively, our results suggest that chemical inhibitors of c-Met receptor tyrosine kinase might be used as novel therapeutics to induce bone regeneration.
Collapse
Affiliation(s)
- Jung-Woo Kim
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mi Nam Lee
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byung-Chul Jeong
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Pharmacology, Seonam University Medical School, Namwon, Chonbuk 55724, Republic of Korea
| | - Sin-Hye Oh
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Min-Suk Kook
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-Tae Koh
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
37
|
Libouban H, Chappard D. Altered bone microarchitecture and gene expression profile due to calcium deficiency in a mouse model of myeloma. Micron 2017; 96:77-85. [PMID: 28273524 DOI: 10.1016/j.micron.2017.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 01/01/2023]
Abstract
It is not clear why patients with an indolent form of multiple myeloma (MM) develop into an aggressive form with poor prognostic. We investigated the effect of a dietary calcium deficiency on tumor growth, osteolysis and gene expression in the 5T2MM murine model. Two groups of C57BL/KaLwRij mice received 5T2MM cells and started a diet with normal (0.8%; "normal-Ca-MM") or low calcium content (0.05%; "low-Ca-MM"). Two control groups (without 5T2MM cells) received either a normal or low calcium diet (normal-Ca and low-Ca groups). Tumor growth, osteolysis and marrow gene expression of the Wnt pathway, RANKL and MIP-1α were monitored at 6, 8 and 10 weeks (w) after cell injection. In low-Ca mice, serum level of PTH was higher after 10w; microCT showed trabecular bone loss and decrease of cortical thickness at the tibia. A higher M-protein level was evidenced at 10w and 4 mice developed paraplegia at 8/9w in low-Ca-MM group only. Numerous cortical perforations of the tibia were observed in MM groups with a marked decrease in cortical thickness in low-Ca-MM. At 6w, osteoclast number from the endosteum was significantly higher in low-Ca-MM compared to normal-Ca MM. This observation was not found at 8 and 10w. MicroCT of the lumbar vertebrae showed dramatic bone destruction in the low-Ca-MM group. qPCR revealed no difference in RANKL expression whereas differences were obtained in the expression of Lrp5/Lrp6 and MIP-1α from 6w. A low calcium diet induced higher bone destruction in the tibia and vertebra associated with an earlier decrease in bone formation level and a higher increase in bone resorption level at early time in the MM development.
Collapse
Affiliation(s)
- Hélène Libouban
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - IRIS-IBS Institut de Biologie en Santé, Université d'Angers, CHU d'Angers, 49933 Angers Cedex, France.
| | - Daniel Chappard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - IRIS-IBS Institut de Biologie en Santé, Université d'Angers, CHU d'Angers, 49933 Angers Cedex, France
| |
Collapse
|
38
|
Xi H, An R, Li L, Wang G, Tao Y, Gao L. Myeloma bone disease: Progress in pathogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:149-155. [PMID: 27496181 DOI: 10.1016/j.pbiomolbio.2016.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/31/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022]
Abstract
Myeloma bone disease (MBD) is one of the most serious complications of multiple myeloma (MM) and the most severe cause of MM morbidity. Dysregulation of osteoblast and osteoclast cells plays key roles in MBD. In the bone marrow microenvironment, myeloma cells, osteoblasts, osteoclasts and bone marrow stromal cells can secrete multiple cytokines, categorized as osteoclast cell activating factors (OAFs) and osteoblast cell inactivating factors, which have been discovered to participate in bone metabolism and contribute to the pathogenesis of MBD. Several signaling pathways related to these cytokines were also revealed in the MBD pathogenesis. To better understand the pathogenesis of MBD and therefore the potential therapeutic targets of this disease, we will summarize recent study progress in the factors and underlying signaling pathways involved in the occurrence and development of MBD.
Collapse
Affiliation(s)
- Hao Xi
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ran An
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lu Li
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Gang Wang
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lu Gao
- Department of Physiology, Second Military Medical University, Shanghai, China.
| |
Collapse
|
39
|
FGF2 Stimulates COUP-TFII Expression via the MEK1/2 Pathway to Inhibit Osteoblast Differentiation in C3H10T1/2 Cells. PLoS One 2016; 11:e0159234. [PMID: 27404388 PMCID: PMC4942136 DOI: 10.1371/journal.pone.0159234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/29/2016] [Indexed: 11/20/2022] Open
Abstract
Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an orphan nuclear receptor that regulates many key biological processes, including organ development and cell fate determination. Although the biological functions of COUP-TFII have been studied extensively, little is known about what regulates its gene expression, especially the role of inducible extracellular factors in triggering it. Here we report that COUP-TFII expression is regulated specifically by fibroblast growth factor 2 (FGF2), which mediates activation of the MEK1/2 pathway in mesenchymal lineage C3H10T1/2 cells. Although FGF2 treatment increased cell proliferation, the induction of COUP-TFII expression was dispensable. Instead, FGF2-primed cells in which COUP-TFII expression was induced showed a low potential for osteoblast differentiation, as evidenced by decreases in alkaline phosphatase activity and osteogenic marker gene expression. Reducing COUP-TFII by U0126 or siRNA against COUP-TFII prevented the anti-osteogenic effect of FGF2, indicating that COUP-TFII plays a key role in the FGF2-mediated determination of osteoblast differentiation capability. This report is the first to suggest that FGF2 is an extracellular inducer of COUP-TFII expression and may suppress the osteogenic potential of mesenchymal cells by inducing COUP-TFII expression prior to the onset of osteogenic differentiation.
Collapse
|
40
|
Frisch RN, Curtis KM, Aenlle KK, Howard GA. Hepatocyte growth factor and alternative splice variants - expression, regulation and implications in osteogenesis and bone health and repair. Expert Opin Ther Targets 2016; 20:1087-98. [PMID: 26941128 DOI: 10.1517/14728222.2016.1162293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Bone marrow-derived mesenchymal stem cells (MSCs) can differentiate into multiple cell types, including osteoblasts, chondrocytes, and adipocytes. These pluripotent cells secrete hepatocyte growth factor (HGF), which regulates cell growth, survival, motility, migration, mitogenesis and is important for tissue development/regeneration. HGF has four splice variants, NK1, NK2, NK3, and NK4 which have varying functions and affinities for the HGF receptor, cMET. HGF promotes osteoblastic differentiation of MSCs into bone forming cells, playing a role in bone development, health and repair. AREAS COVERED This review will focus on the effects of HGF in osteogenesis, bone repair and bone health, including structural and functional insights into the role of HGF in the body. EXPERT OPINION Approximately 6.2 million Americans experience a fracture annually, with 5-10% being mal- or non-union fractures. HGF is important in priming MSCs for osteogenic differentiation in vitro and is currently being studied to assess its role during bone repair in vivo. Due to the high turnover rate of systemic HGF, non-classic modes of HGF-treatment, including naked-plasmid HGF delivery and the use of HGF splice variants (NK1 & NK2) are being studied to find safe and efficacious treatments for bone disorders, such as mal- or non-union fractures.
Collapse
Affiliation(s)
- Rachel N Frisch
- a Geriatric Research, Education, and Clinical Center, and Research Service , Bruce W. Carter Veterans Affairs Medical Center , Miami , FL , USA
| | - Kevin M Curtis
- a Geriatric Research, Education, and Clinical Center, and Research Service , Bruce W. Carter Veterans Affairs Medical Center , Miami , FL , USA.,b Biochemistry & Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Kristina K Aenlle
- a Geriatric Research, Education, and Clinical Center, and Research Service , Bruce W. Carter Veterans Affairs Medical Center , Miami , FL , USA
| | - Guy A Howard
- a Geriatric Research, Education, and Clinical Center, and Research Service , Bruce W. Carter Veterans Affairs Medical Center , Miami , FL , USA.,b Biochemistry & Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA.,c Medicine , University of Miami Miller School of Medicine , Miami , FL , USA
| |
Collapse
|
41
|
Abstract
Unprecedented advances in multiple myeloma (MM) therapy during the last 15 years are predominantly based on our increasing understanding of the pathophysiologic role of the bone marrow (BM) microenvironment. Indeed, new treatment paradigms, which incorporate thalidomide, immunomodulatory drugs (IMiDs), and proteasome inhibitors, target the tumor cell as well as its BM microenvironment. Ongoing translational research aims to understand in more detail how disordered BM-niche functions contribute to MM pathogenesis and to identify additional derived targeting agents. One of the most exciting advances in the field of MM treatment is the emergence of immune therapies including elotuzumab, daratumumab, the immune checkpoint inhibitors, Bispecific T-cell engagers (BiTes), and Chimeric antigen receptor (CAR)-T cells. This chapter will review our knowledge on the pathophysiology of the BM microenvironment and discuss derived novel agents that hold promise to further improve outcome in MM.
Collapse
Affiliation(s)
- Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Klaus Podar
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
42
|
Improved Follow-Up and Response Monitoring of Thoracic Cage Involvement in Multiple Myeloma Using a Novel CT Postprocessing Software: The Lessons We Learned. AJR Am J Roentgenol 2016; 206:57-63. [DOI: 10.2214/ajr.15.15089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Westhrin M, Moen SH, Holien T, Mylin AK, Heickendorff L, Olsen OE, Sundan A, Turesson I, Gimsing P, Waage A, Standal T. Growth differentiation factor 15 (GDF15) promotes osteoclast differentiation and inhibits osteoblast differentiation and high serum GDF15 levels are associated with multiple myeloma bone disease. Haematologica 2015; 100:e511-4. [PMID: 26294726 DOI: 10.3324/haematol.2015.124511] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Marita Westhrin
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siv Helen Moen
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Toril Holien
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Lene Heickendorff
- Department of Clinical Biochemistry, Aarhus University Hospital, Denmark
| | - Oddrun Elise Olsen
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anders Sundan
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingemar Turesson
- Department of Hematology, Skane University Hospital, Malmo, Sweden
| | - Peter Gimsing
- Department of Haematology, Rigshospitalet, University of Copenhagen, Denmark
| | - Anders Waage
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Therese Standal
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
44
|
Tian E, Børset M, Sawyer JR, Brede G, Våtsveen TK, Hov H, Waage A, Barlogie B, Shaughnessy JD, Epstein J, Sundan A. Allelic mutations in noncoding genomic sequences construct novel transcription factor binding sites that promote gene overexpression. Genes Chromosomes Cancer 2015. [PMID: 26220195 DOI: 10.1002/gcc.22280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The growth and survival factor hepatocyte growth factor (HGF) is expressed at high levels in multiple myeloma (MM) cells. We report here that elevated HGF transcription in MM was traced to DNA mutations in the promoter alleles of HGF. Sequence analysis revealed a previously undiscovered single-nucleotide polymorphism (SNP) and crucial single-nucleotide variants (SNVs) in the promoters of myeloma cells that produce large amounts of HGF. The allele-specific mutations functionally reassembled wild-type sequences into the motifs that affiliate with endogenous transcription factors NFKB (nuclear factor kappa-B), MZF1 (myeloid zinc finger 1), and NRF-2 (nuclear factor erythroid 2-related factor 2). In vitro, a mutant allele that gained novel NFKB-binding sites directly responded to transcriptional signaling induced by tumor necrosis factor alpha (TNFα) to promote high levels of luciferase reporter. Given the recent discovery by genome-wide sequencing (GWS) of numerous non-coding mutations in myeloma genomes, our data provide evidence that heterogeneous SNVs in the gene regulatory regions may frequently transform wild-type alleles into novel transcription factor binding properties to aberrantly interact with dysregulated transcriptional signals in MM and other cancer cells.
Collapse
Affiliation(s)
- Erming Tian
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,The Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Magne Børset
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Jeffrey R Sawyer
- The Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Gaute Brede
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thea K Våtsveen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håkon Hov
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anders Waage
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bart Barlogie
- The Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | - Joshua Epstein
- The Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Anders Sundan
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
45
|
Chen X, Song F, Jhamb D, Li J, Bottino MC, Palakal MJ, Stocum DL. The Axolotl Fibula as a Model for the Induction of Regeneration across Large Segment Defects in Long Bones of the Extremities. PLoS One 2015; 10:e0130819. [PMID: 26098852 PMCID: PMC4476796 DOI: 10.1371/journal.pone.0130819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/26/2015] [Indexed: 12/25/2022] Open
Abstract
We tested the ability of the axolotl (Ambystoma mexicanum) fibula to regenerate across segment defects of different size in the absence of intervention or after implant of a unique 8-braid pig small intestine submucosa (SIS) scaffold, with or without incorporated growth factor combinations or tissue protein extract. Fractures and defects of 10% and 20% of the total limb length regenerated well without any intervention, but 40% and 50% defects failed to regenerate after either simple removal of bone or implanting SIS scaffold alone. By contrast, scaffold soaked in the growth factor combination BMP-4/HGF or in protein extract of intact limb tissue promoted partial or extensive induction of cartilage and bone across 50% segment defects in 30%-33% of cases. These results show that BMP-4/HGF and intact tissue protein extract can promote the events required to induce cartilage and bone formation across a segment defect larger than critical size and that the long bones of axolotl limbs are an inexpensive model to screen soluble factors and natural and synthetic scaffolds for their efficacy in stimulating this process.
Collapse
Affiliation(s)
- Xiaoping Chen
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Fengyu Song
- Department of Oral Biology, School of Dentistry, Indiana-University-Purdue University, Indianapolis, Indiana, United States of America
| | - Deepali Jhamb
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Jiliang Li
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Marco C. Bottino
- Department of Restorative Dentistry, Division of Dental Biomaterials, School of Dentistry, Indiana-University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Mathew J. Palakal
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - David L. Stocum
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
46
|
Abed E, Bouvard B, Martineau X, Jouzeau JY, Reboul P, Lajeunesse D. Elevated hepatocyte growth factor levels in osteoarthritis osteoblasts contribute to their altered response to bone morphogenetic protein-2 and reduced mineralization capacity. Bone 2015; 75:111-9. [PMID: 25667190 DOI: 10.1016/j.bone.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/24/2015] [Accepted: 02/01/2015] [Indexed: 10/24/2022]
Abstract
PURPOSE Clinical and in vitro studies suggest that subchondral bone sclerosis due to abnormal osteoblasts is involved in the progression of osteoarthritis (OA). Human osteoblasts isolated from sclerotic subchondral OA bone tissue show an altered phenotype, a decreased canonical Wnt/ß-catenin pathway, and a reduced mineralization in vitro as well as in vivo. These alterations were linked with an abnormal response to BMP-2. OA osteoblasts release factors such as the hepatocyte growth factor (HGF) that contribute to cartilage loss whereas chondrocytes do not express HGF. HGF can stimulate BMP-2 expression in human osteoblasts, however, the role of HGF and its effect in OA osteoblasts remains unknown. Here we investigated whether elevated endogenous HGF levels in OA osteoblasts are responsible for their altered response to BMP-2. METHODS We prepared primary human subchondral osteoblasts using the sclerotic medial portion of the tibial plateaus of OA patients undergoing total knee arthroplasty, or from tibial plateaus of normal individuals obtained at autopsy. The expression of HGF was evaluated by qRT-PCR and the protein production by western blot analysis. HGF expression was reduced with siRNA technique whereas its activity was inhibited using the selective inhibitor PHA665752. Alkaline phosphatase activity (ALPase) and osteocalcin release were measured by substrate hydrolysis and EIA respectively. Canonical Wnt/β-catenin signaling (cWnt) was evaluated both by target gene expression using the TOPflash TCF/lef luciferase reporter assay and western blot analysis of β-catenin levels in response to Wnt3a stimulation. Mineralization in response to BMP-2 was evaluated by alizarin red staining. RESULTS The expression of HGF was increased in OA osteoblasts compared to normal osteoblasts and was maintained during their in vitro differentiation. OA osteoblasts released more HGF than normal osteoblasts as assessed by western blot analysis. HGF stimulated the expression of TGF-β1. BMP-2 dose-dependently (1 to 100 ng/ml) stimulated both ALPase and osteocalcin in normal osteoblasts whereas, it inhibited them in OA osteoblasts. HGF-siRNA treatments reversed this response in OA osteoblasts and restored the BMP-2 response. cWnt is reduced in OA osteoblasts compared to normal, and HGF-siRNA treatments increased cWnt in OA osteoblasts almost to normal. Smad1/5/8 phosphorylation in response to BMP-2, which is reduced in OA osteoblasts, was corrected when these cells were treated with PHA665752. The BMP-2-dependent mineralization of OA osteoblasts, which is also reduced compared to normal, was only partially restored by PHA665752 treatment whereas 28 days treatment with HGF reduced the mineralization of normal osteoblasts. CONCLUSION OA osteoblasts expressed more HGF than normal osteoblasts. Increased endogenous HGF production in OA osteoblasts stimulated the expression of TGF-β1 and reduced their response to BMP-2. Inhibiting HGF expression or HGF signaling restored the response to BMP-2 and Smad1/5/8 signaling. In addition, decreased HGF signaling partly corrects the abnormal mineralization of OA osteoblasts while increased HGF prevents the normal mineralization of normal osteoblasts. In summary, we hypothesize that sustained elevated HGF levels in OA osteoblasts drive their abnormal phenotype and is implicated in OA pathophysiology.
Collapse
Affiliation(s)
- E Abed
- Unité de recherche en Arthrose, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - B Bouvard
- UMR7365 IMoPA, Université de Lorraine/CNRS, Vandœuvre lès Nancy, 54505, France; Service de Rhumatologie, Centre Hospitalier Universitaire (CHU), Angers 49933, France
| | - X Martineau
- Unité de recherche en Arthrose, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - J-Y Jouzeau
- UMR7365 IMoPA, Université de Lorraine/CNRS, Vandœuvre lès Nancy, 54505, France; Service de Pharmacologie Clinique et de Toxicologie, Centre Hospitalier Universitaire (CHU), Nancy 54023, France
| | - P Reboul
- UMR7365 IMoPA, Université de Lorraine/CNRS, Vandœuvre lès Nancy, 54505, France
| | - D Lajeunesse
- Unité de recherche en Arthrose, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.
| |
Collapse
|
47
|
Gambella M, Palumbo A, Rocci A. MET/HGF pathway in multiple myeloma: from diagnosis to targeted therapy? Expert Rev Mol Diagn 2015; 15:881-93. [PMID: 25967746 DOI: 10.1586/14737159.2015.1046436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The interaction between neoplastic cells and the microenvironment is critical in several cancers and plays a central role in multiple myeloma. Microenvironmental stimuli support plasma cell proliferation, survival, motility and can determine drug resistance. The network between plasma cells and surrounding cells is also responsible for increasing angiogenesis, unbalancing bone formation and bony lesions. The MET/HGF pathway is a key player in this interaction and has been found to be abnormally active in both malignant plasma cells and surrounding cells. Patients with abnormal MET and/or HGF levels usually have a poor outcome even when treated with novel drugs. This review addresses the role of MET/HGF in the pathogenesis of myeloma and describes the role of MET/HGF signaling as a prognostic factor. The different techniques to detect MET/HGF abnormalities are examined and a description of compounds targeting MET/HGF is also provided.
Collapse
Affiliation(s)
- Manuela Gambella
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | | | | |
Collapse
|
48
|
Shibasaki S, Kitano S, Karasaki M, Tsunemi S, Sano H, Iwasaki T. Blocking c-Met signaling enhances bone morphogenetic protein-2-induced osteoblast differentiation. FEBS Open Bio 2015; 5:341-7. [PMID: 25941631 PMCID: PMC4415006 DOI: 10.1016/j.fob.2015.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/02/2015] [Accepted: 04/17/2015] [Indexed: 01/09/2023] Open
Abstract
Role of c-Met signaling in osteoblast differentiation was investigated. Osteoblast differentiation was determined by ALP and osteocalcin production by C2C12 and MC3T3-E1 cells. c-Met signaling negatively regulates osteoblast differentiation. Blocking c-Met signaling might serve as a therapeutic strategy for rheumatoid arthritis.
We previously demonstrated that blocking hepatocyte growth factor (HGF) receptor/c-Met signaling inhibited arthritis and articular bone destruction in mouse models of rheumatoid arthritis (RA). In the present study, we investigated the role of c-Met signaling in osteoblast differentiation using the C2C12 myoblast cell line derived from murine satellite cells and the MC3T3-E1 murine pre-osteoblast cell line. Osteoblast differentiation was induced by treatment with bone morphogenetic protein (BMP)-2 or osteoblast-inducer reagent in the presence or absence of either HGF antagonist (NK4) or c-Met inhibitor (SU11274). Osteoblast differentiation was confirmed by Runx2 expression, and alkaline phosphatase (ALP) and osteocalcin production by the cells. Production of ALP, osteocalcin and HGF was verified by enzyme-linked immunosorbent assay. Runx2 expression was confirmed by reverse transcription-PCR analysis. The phosphorylation status of ERK1/2, AKT, and Smads was determined by Western blot analysis. Both NK4 and SU11274 enhanced Runx2 expression, and ALP and osteocalcin production but suppressed HGF production in BMP-2-stimulated C2C12 cells. SU11274 also enhanced ALP and osteocalcin production in osteoblast-inducer reagent-stimulated MC3T3-E1 cells. SU11274 inhibited ERK1/2 and AKT phosphorylation in HGF-stimulated C2C12 cells. This result suggested that ERK and AKT were functional downstream of the c-Met signaling pathway. However, both mitogen-activated protein kinase/ERK kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) inhibitor suppressed osteocalcin and HGF production in BMP-2-stimulated C2C12 cells. Furthermore, SU11274, MEK, and PI3K inhibitor suppressed Smad phosphorylation in BMP-2-stimulated C2C12 cells. These results indicate that although the c-Met-MEK-ERK-Smad and c-Met-PI3K-AKT-Smad signaling pathways positively regulate osteoblast differentiation, c-Met signaling negatively regulates osteoblast differentiation, independent of the MEK-ERK-Smad and PI3K-AKT-Smad pathways. Therefore, blocking c-Met signaling might serve as a therapeutic strategy for the repair of destructed bone in patients with RA.
Collapse
Affiliation(s)
- Seiji Shibasaki
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan ; Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Sachie Kitano
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Miki Karasaki
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Sachi Tsunemi
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| | - Hajime Sano
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Tsuyoshi Iwasaki
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan ; Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| |
Collapse
|
49
|
Abstract
In myeloma, the understanding of the tissular, cellular and molecular mechanisms of the interactions between tumor plasma cells and bone cells have progressed from in vitro and in vivo studies. However none of the known animal models of myeloma reproduce exactly the human form of the disease. There are currently three types of animal models: (1) injection of pristane oil in BALB/c mice leads to intraperitoneal plasmacytomas but without bone marrow colonization and osteolysis; (2) injection of malignant plasma cell lines in immunodeficient mice SCID or NOD/SCID; the use of the SCID-hu or SCID-rab model allows the use of fresh plasma cells obtained from MM patients; (3) injection of allogeneic malignant plasma cells (5T2MM, 5T33) in the C57BL/KalwRij mouse induces bone marrow proliferation and osteolytic lesions. These cells did not grow in vitro and can be propagated by injection of plasma cells isolated from bone marrow of a mouse at end stage of the disease into young recipient mice. The 5TGM1 is a subclone of 5T33MM cells and can grow in vitro. Among the different models, the 5TMM models and SCID-hu/SCID-rab models were extensively used to test pathophysiological hypotheses and to assess anti-osteoclastic, anti-osteoblastic or anti-tumor therapies in myeloma. In the present review, we report the different types of animal models of MM and describe their interests and limitations.
Collapse
|
50
|
Lawson MA, Paton-Hough JM, Evans HR, Walker RE, Harris W, Ratnabalan D, Snowden JA, Chantry AD. NOD/SCID-GAMMA mice are an ideal strain to assess the efficacy of therapeutic agents used in the treatment of myeloma bone disease. PLoS One 2015; 10:e0119546. [PMID: 25768011 PMCID: PMC4358985 DOI: 10.1371/journal.pone.0119546] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 01/22/2015] [Indexed: 02/07/2023] Open
Abstract
Animal models of multiple myeloma vary in terms of consistency of onset, degree of tumour burden and degree of myeloma bone disease. Here we describe five pre-clinical models of myeloma in NOD/SCID-GAMMA mice to specifically study the effects of therapeutic agents on myeloma bone disease. Groups of 7–8 week old female irradiated NOD/SCID-GAMMA mice were injected intravenously via the tail vein with either 1x106 JJN3, U266, XG-1 or OPM-2 human myeloma cell lines or patient-derived myeloma cells. At the first signs of morbidity in each tumour group all animals were sacrificed. Tumour load was measured by histological analysis, and bone disease was assessed by micro-CT and standard histomorphometric methods. Mice injected with JJN3, U266 or OPM-2 cells showed high tumour bone marrow infiltration of the long bones with low variability, resulting in osteolytic lesions. In contrast, mice injected with XG-1 or patient-derived myeloma cells showed lower tumour bone marrow infiltration and less bone disease with high variability. Injection of JJN3 cells into NOD/SCID-GAMMA mice resulted in an aggressive, short-term model of myeloma with mice exhibiting signs of morbidity 3 weeks later. Treating these mice with zoledronic acid at the time of tumour cell injection or once tumour was established prevented JJN3-induced bone disease but did not reduce tumour burden, whereas, carfilzomib treatment given once tumour was established significantly reduced tumour burden. Injection of U266, XG-1, OPM-2 and patient-derived myeloma cells resulted in less aggressive longer-term models of myeloma with mice exhibiting signs of morbidity 8 weeks later. Treating U266-induced disease with zoledronic acid prevented the formation of osteolytic lesions and trabecular bone loss as well as reducing tumour burden whereas, carfilzomib treatment only reduced tumour burden. In summary, JJN3, U266 or OPM-2 cells injected into NOD/SCID-GAMMA mice provide robust models to study anti-myeloma therapies, particularly those targeting myeloma bone disease.
Collapse
Affiliation(s)
- Michelle A. Lawson
- Department of Oncology, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| | - Julia M. Paton-Hough
- Department of Oncology, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
| | - Holly R. Evans
- Department of Oncology, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
| | - Rebecca E. Walker
- Department of Oncology, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
| | - William Harris
- Department of Oncology, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
| | - Dharshi Ratnabalan
- Department of Oncology, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
| | - John A. Snowden
- Department of Oncology, University of Sheffield, Sheffield, United Kingdom
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Andrew D. Chantry
- Department of Oncology, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
| |
Collapse
|