1
|
Negri S, Reyff Z, Troyano-Rodriguez E, Milan M, Ihuoma J, Tavakol S, Shi H, Patai R, Jiang R, Mohon J, Boma-Iyaye J, Ungvari Z, Csiszar A, Yabluchanskiy A, Moccia F, Tarantini S. Endothelial Colony-Forming Cells (ECFCs) in cerebrovascular aging: Focus on the pathogenesis of Vascular Cognitive Impairment and Dementia (VCID), and treatment prospects. Ageing Res Rev 2025; 104:102672. [PMID: 39884362 DOI: 10.1016/j.arr.2025.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Endothelial colony-forming cells (ECFCs), a unique endothelial progenitor subset, are essential for vascular integrity and repair, providing significant regenerative potential. Recent studies highlight their role in cerebrovascular aging, particularly in the pathogenesis of vascular cognitive impairment and dementia (VCID). Aging disrupts ECFC functionality through mechanisms such as oxidative stress, chronic inflammation, and cellular senescence, leading to compromised vascular repair and reduced neurovascular resilience. ECFCs influence key cerebrovascular processes, including neurovascular coupling (NVC), blood-brain barrier (BBB) integrity, and vascular regeneration, which are critical for cognitive health. Age-related decline in ECFC quantity and functionality contributes to vascular rarefaction, diminished cerebral blood flow (CBF), and BBB permeability-processes that collectively exacerbate cognitive decline. This review delves into the multifaceted role of ECFCs in cerebrovascular aging and underscores their potential as therapeutic targets in addressing age-related vascular dysfunctions, presenting new directions for mitigating the effects of aging on brain health.
Collapse
Affiliation(s)
- Sharon Negri
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zeke Reyff
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eva Troyano-Rodriguez
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Madison Milan
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jennifer Ihuoma
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sherwin Tavakol
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Helen Shi
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Raymond Jiang
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Casady School, Oklahoma City, OK, USA
| | - Jonah Mohon
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma School of Science and Mathematics, OK, USA
| | - Jed Boma-Iyaye
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma School of Science and Mathematics, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral College, Health Sciences Program/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Francesco Moccia
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso 86100, Italy
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral College, Health Sciences Program/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Baranwal G, Mukhtar H, Kane J, Lemieux A, Misra S. Advancements in Mesenchymal Stem Cell-Based Therapy for Enhancing Arteriovenous Fistula Patency. Int J Mol Sci 2024; 25:12719. [PMID: 39684430 DOI: 10.3390/ijms252312719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic kidney disease (CKD) affects more than 10% of the world's population. Hemodialysis, along with peritoneal dialysis and renal transplant, is one of the renal replacement therapies offered to patients with CKD/end-stage renal disease (ESRD). To proceed with hemodialysis, vascular access is required. The two means of long-term access are arteriovenous fistula (AVF) and arteriovenous graft (AVG). Multiple therapies have been created to help the long-term patency of AVFs. These therapies are needed as 40% of AVFs fail within the first year and additional intervention is required. Much of the existing research has focused on biomarkers, immune cells, hypoxia, and cell-based therapies. Regeneration therapy using mesenchymal stem cells seeks to investigate other ways that we can treat AVF failure. Mesenchymal stem cells are harvested as two main types, fetal and adult. Fetal cells are harvested at different times in fetal gestation and from multiple sources, placental blood, Whartons jelly, and amniotic stem cell fluid. Taken together, this review summarizes the different preclinical/clinical studies conducted using different types of MSCs towards vascular regenerative medicine and further highlights its potential to be a suitable alternative approach to enhance AVF patency.
Collapse
Affiliation(s)
- Gaurav Baranwal
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Haseeb Mukhtar
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jamie Kane
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Alaura Lemieux
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Wu Y, Li X, Liu H, Yang X, Li R, Zhao H, Shang Z. Organoids in the oral and maxillofacial region: present and future. Int J Oral Sci 2024; 16:61. [PMID: 39482304 PMCID: PMC11528035 DOI: 10.1038/s41368-024-00324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/18/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024] Open
Abstract
The oral and maxillofacial region comprises a variety of organs made up of multiple soft and hard tissue, which are anatomically vulnerable to the pathogenic factors of trauma, inflammation, and cancer. The studies of this intricate entity have been long-termly challenged by a lack of versatile preclinical models. Recently, the advancements in the organoid industry have provided novel strategies to break through this dilemma. Here, we summarize the existing biological and engineering approaches that were employed to generate oral and maxillofacial organoids. Then, we detail the use of modified co-culture methods, such as cell cluster co-inoculation and air-liquid interface culture technology to reconstitute the vascular network and immune microenvironment in assembled organoids. We further retrospect the existing oral and maxillofacial assembled organoids and their potential to recapitulate the homeostasis in parental tissues such as tooth, salivary gland, and mucosa. Finally, we discuss how the next-generation organoids may benefit to regenerative and precision medicine for treatment of oral-maxillofacial illness.
Collapse
Affiliation(s)
- Yufei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hanzhe Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Luo AC, Wang J, Wang K, Zhu Y, Gong L, Lee U, Li X, Tremmel DM, Lin RZ, Ingber DE, Gorman J, Melero-Martin JM. A streamlined method to generate endothelial cells from human pluripotent stem cells via transient doxycycline-inducible ETV2 activation. Angiogenesis 2024; 27:779-795. [PMID: 38969874 PMCID: PMC11577265 DOI: 10.1007/s10456-024-09937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
The development of reliable methods for producing functional endothelial cells (ECs) is crucial for progress in vascular biology and regenerative medicine. In this study, we present a streamlined and efficient methodology for the differentiation of human induced pluripotent stem cells (iPSCs) into induced ECs (iECs) that maintain the ability to undergo vasculogenesis in vitro and in vivo using a doxycycline-inducible system for the transient expression of the ETV2 transcription factor. This approach mitigates the limitations of direct transfection methods, such as mRNA-mediated differentiation, by simplifying the protocol and enhancing reproducibility across different stem cell lines. We detail the generation of iPSCs engineered for doxycycline-induced ETV2 expression and their subsequent differentiation into iECs, achieving over 90% efficiency within four days. Through both in vitro and in vivo assays, the functionality and phenotypic stability of the derived iECs were rigorously validated. Notably, these cells exhibit key endothelial markers and capabilities, including the formation of vascular networks in a microphysiological platform in vitro and in a subcutaneous mouse model. Furthermore, our results reveal a close transcriptional and proteomic alignment between the iECs generated via our method and primary ECs, confirming the biological relevance of the differentiated cells. The high efficiency and effectiveness of our induction methodology pave the way for broader application and accessibility of iPSC-derived ECs in scientific research, offering a valuable tool for investigating endothelial biology and for the development of EC-based therapies.
Collapse
Affiliation(s)
- Allen Chilun Luo
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Jiuhai Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Yonglin Zhu
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Liyan Gong
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Umji Lee
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiang Li
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel M Tremmel
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02138, USA
| | - James Gorman
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
5
|
Iqbal MZ, Riaz M, Biedermann T, Klar AS. Breathing new life into tissue engineering: exploring cutting-edge vascularization strategies for skin substitutes. Angiogenesis 2024; 27:587-621. [PMID: 38842751 PMCID: PMC11564345 DOI: 10.1007/s10456-024-09928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Tissue-engineered skin substitutes (TESS) emerged as a new therapeutic option to improve skin transplantation. However, establishing an adequate and rapid vascularization in TESS is a critical factor for their clinical application and successful engraftment in patients. Therefore, several methods have been applied to improve the vascularization of skin substitutes including (i) modifying the structural and physicochemical properties of dermal scaffolds; (ii) activating biological scaffolds with growth factor-releasing systems or gene vectors; and (iii) developing prevascularized skin substitutes by loading scaffolds with capillary-forming cells. This review provides a detailed overview of the most recent and important developments in the vascularization strategies for skin substitutes. On the one hand, we present cell-based approaches using stem cells, microvascular fragments, adipose tissue derived stromal vascular fraction, endothelial cells derived from blood and skin as well as other pro-angiogenic stimulation methods. On the other hand, we discuss how distinct 3D bioprinting techniques and microfluidics, miRNA manipulation, cell sheet engineering and photosynthetic scaffolds like GelMA, can enhance skin vascularization for clinical applications. Finally, we summarize and discuss the challenges and prospects of the currently available vascularization techniques that may serve as a steppingstone to a mainstream application of skin tissue engineering.
Collapse
Affiliation(s)
- M Zohaib Iqbal
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Mahrukh Riaz
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Lee U, Zhang Y, Zhu Y, Luo AC, Gong L, Tremmel DM, Kim Y, Villarreal VS, Wang X, Lin RZ, Cui M, Ma M, Yuan K, Wang K, Chen K, Melero-Martin JM. Robust differentiation of human pluripotent stem cells into mural progenitor cells via transient activation of NKX3.1. Nat Commun 2024; 15:8392. [PMID: 39349465 PMCID: PMC11442894 DOI: 10.1038/s41467-024-52678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
Mural cells are central to vascular integrity and function. In this study, we demonstrate the innovative use of the transcription factor NKX3.1 to guide the differentiation of human induced pluripotent stem cells into mural progenitor cells (iMPCs). By transiently activating NKX3.1 in mesodermal intermediates, we developed a method that diverges from traditional growth factor-based differentiation techniques. This approach efficiently generates a robust iMPC population capable of maturing into diverse functional mural cell subtypes, including smooth muscle cells and pericytes. These iMPCs exhibit key mural cell functionalities such as contractility, deposition of extracellular matrix, and the ability to support endothelial cell-mediated vascular network formation in vivo. Our study not only underscores the fate-determining significance of NKX3.1 in mural cell differentiation but also highlights the therapeutic potential of these iMPCs. We envision these insights could pave the way for a broader use of iMPCs in vascular biology and regenerative medicine.
Collapse
Affiliation(s)
- Umji Lee
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Yadong Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yonglin Zhu
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Allen Chilun Luo
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Liyan Gong
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Daniel M Tremmel
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Yunhye Kim
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | - Xi Wang
- Department of Biological and Environmental Engineering, Cornell University, NY, USA
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Miao Cui
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, NY, USA
| | - Ke Yuan
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
7
|
Rojas-Torres M, Beltrán-Camacho L, Martínez-Val A, Sánchez-Gomar I, Eslava-Alcón S, Rosal-Vela A, Jiménez-Palomares M, Doiz-Artázcoz E, Martínez-Torija M, Moreno-Luna R, Olsen JV, Duran-Ruiz MC. Unraveling the differential mechanisms of revascularization promoted by MSCs & ECFCs from adipose tissue or umbilical cord in a murine model of critical limb-threatening ischemia. J Biomed Sci 2024; 31:71. [PMID: 39004727 PMCID: PMC11247736 DOI: 10.1186/s12929-024-01059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Critical limb-threatening ischemia (CLTI) constitutes the most severe manifestation of peripheral artery disease, usually induced by atherosclerosis. CLTI patients suffer from high risk of amputation of the lower extremities and elevated mortality rates, while they have low options for surgical revascularization due to associated comorbidities. Alternatively, cell-based therapeutic strategies represent an effective and safe approach to promote revascularization. However, the variability seen in several factors such as cell combinations or doses applied, have limited their success in clinical trials, being necessary to reach a consensus regarding the optimal "cellular-cocktail" prior further application into the clinic. To achieve so, it is essential to understand the mechanisms by which these cells exert their regenerative properties. Herein, we have evaluated, for the first time, the regenerative and vasculogenic potential of a combination of endothelial colony forming cells (ECFCs) and mesenchymal stem cells (MSCs) isolated from adipose-tissue (AT), compared with ECFCs from umbilical cord blood (CB-ECFCs) and AT-MSCs, in a murine model of CLTI. METHODS Balb-c nude mice (n:32) were distributed in four different groups (n:8/group): control shams, and ischemic mice (after femoral ligation) that received 50 µl of physiological serum alone or a cellular combination of AT-MSCs with either CB-ECFCs or AT-ECFCs. Follow-up of blood flow reperfusion and ischemic symptoms was carried out for 21 days, when mice were sacrificed to evaluate vascular density formation. Moreover, the long-term molecular changes in response to CLTI and both cell combinations were analyzed in a proteomic quantitative approach. RESULTS AT-MSCs with either AT- or CB-ECFCs, promoted a significant recovery of blood flow in CLTI mice 21 days post-ischemia. Besides, they modulated the inflammatory and necrotic related processes, although the CB group presented the slowest ischemic progression along the assay. Moreover, many proteins involved in the repairing mechanisms promoted by cell treatments were identified. CONCLUSIONS The combination of AT-MSCs with AT-ECFCs or with CB-ECFCs promoted similar revascularization in CLTI mice, by restoring blood flow levels, together with the modulation of the inflammatory and necrotic processes, and reduction of muscle damage. The protein changes identified are representative of the molecular mechanisms involved in ECFCs and MSCs-induced revascularization (immune response, vascular repair, muscle regeneration, etc.).
Collapse
Affiliation(s)
- Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cadiz, 11002, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, 11002, Spain
| | - Lucía Beltrán-Camacho
- Cell Biology, Physiology and Immunology Department, University of Cordoba, Cordoba, 14004, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
| | - Ana Martínez-Val
- National Center of Cardiovascular Research Carlos III (CNIC), Madrid, 28029, Spain
| | - Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cadiz, 11002, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, 11002, Spain
| | - Sara Eslava-Alcón
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cadiz, 11002, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, 11002, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cadiz, 11002, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, 11002, Spain
| | - Margarita Jiménez-Palomares
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cadiz, 11002, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, 11002, Spain
| | - Esther Doiz-Artázcoz
- Angiology & Vascular Surgery Unit, Hospital Universitario Puerta del Mar, Cadiz, Spain
| | - Mario Martínez-Torija
- Pathophysiology and Regenerative Medicine Group, Hospital Nacional de Parapléjicos (SESCAM), Toledo, 45071, Spain
- Nursing department, Hospital Universitario de Toledo (SESCAM), Toledo, 45071, Spain
| | - Rafael Moreno-Luna
- Pathophysiology and Regenerative Medicine Group, Hospital Nacional de Parapléjicos (SESCAM), Toledo, 45071, Spain.
- Cooperative Research Network Orientated to Health Results, Vascular Brain Diseases, RICORS-ICTUS, SESCAM, Toledo, Spain.
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Copenhagen, Denmark
| | - Ma Carmen Duran-Ruiz
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cadiz, 11002, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, 11002, Spain.
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University. Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, Cádiz, 11519, Spain.
| |
Collapse
|
8
|
Lin RZ, Im GB, Luo AC, Zhu Y, Hong X, Neumeyer J, Tang HW, Perrimon N, Melero-Martin JM. Mitochondrial transfer mediates endothelial cell engraftment through mitophagy. Nature 2024; 629:660-668. [PMID: 38693258 PMCID: PMC11574736 DOI: 10.1038/s41586-024-07340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide1. Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated2,3. The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1-Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy.
Collapse
Affiliation(s)
- Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Gwang-Bum Im
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Allen Chilun Luo
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Yonglin Zhu
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Xuechong Hong
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Joseph Neumeyer
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Hong-Wen Tang
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
9
|
Hong X, Luo AC, Doulamis I, Oh N, Im GB, Lin CY, del Nido PJ, Lin RZ, Melero-Martin JM. Photopolymerizable Hydrogel for Enhanced Intramyocardial Vascular Progenitor Cell Delivery and Post-Myocardial Infarction Healing. Adv Healthc Mater 2023; 12:e2301581. [PMID: 37611321 PMCID: PMC10840685 DOI: 10.1002/adhm.202301581] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Cell transplantation success for myocardial infarction (MI) treatment is often hindered by low engraftment due to washout effects during myocardial contraction. A clinically viable biomaterial that enhances cell retention can optimize intramyocardial cell delivery. In this study, a therapeutic cell delivery method is developed for MI treatment utilizing a photocrosslinkable gelatin methacryloyl (GelMA) hydrogel. Human vascular progenitor cells, capable of forming functional vasculatures upon transplantation, are combined with an in situ photopolymerization approach and injected into the infarcted zones of mouse hearts. This strategy substantially improves acute cell retention and promotes long-term post-MI cardiac healing, including stabilized cardiac functions, preserved viable myocardium, and reduced cardiac fibrosis. Additionally, engrafted vascular cells polarize recruited bone marrow-derived neutrophils toward a non-inflammatory phenotype via transforming growth factor beta (TGFβ) signaling, fostering a pro-regenerative microenvironment. Neutrophil depletion negates the therapeutic benefits generated by cell delivery in ischemic hearts, highlighting the essential role of non-inflammatory, pro-regenerative neutrophils in cardiac remodeling. In conclusion, this GelMA hydrogel-based intramyocardial vascular cell delivery approach holds promise for enhancing the treatment of acute myocardial infarction.
Collapse
Affiliation(s)
- Xuechong Hong
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Allen Chilun Luo
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ilias Doulamis
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Oh
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Gwang-Bum Im
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Chun-Yen Lin
- Department of Lymphoma and Myeloma, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Pedro J. del Nido
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Juan M. Melero-Martin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
10
|
Schwarz N, Yadegari H. Potentials of Endothelial Colony-Forming Cells: Applications in Hemostasis and Thrombosis Disorders, from Unveiling Disease Pathophysiology to Cell Therapy. Hamostaseologie 2023; 43:325-337. [PMID: 37857295 DOI: 10.1055/a-2101-5936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Endothelial colony-forming cells (ECFCs) are endothelial progenitor cells circulating in a limited number in peripheral blood. They can give rise to mature endothelial cells (ECs) and, with intrinsically high proliferative potency, contribute to forming new blood vessels and restoring the damaged endothelium in vivo. ECFCs can be isolated from peripheral blood or umbilical cord and cultured to generate large amounts of autologous ECs in vitro. Upon differentiation in culture, ECFCs are excellent surrogates for mature ECs showing the same phenotypic, genotypic, and functional features. In the last two decades, the ECFCs from various vascular disease patients have been widely used to study the diseases' pathophysiology ex vivo and develop cell-based therapeutic approaches, including vascular regenerative therapy, tissue engineering, and gene therapy. In the current review, we will provide an updated overview of past studies, which have used ECFCs to elucidate the molecular mechanisms underlying the pathogenesis of hemostatic disorders in basic research. Additionally, we summarize preceding studies demonstrating the utility of ECFCs as cellular tools for diagnostic or therapeutic clinical applications in thrombosis and hemostasis.
Collapse
Affiliation(s)
- Nadine Schwarz
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Hamideh Yadegari
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
11
|
Zhang Y, Zhong J, Lin S, Hu M, Liu J, Kang J, Qi Y, Basabrain MS, Zou T, Zhang C. Direct contact with endothelial cells drives dental pulp stem cells toward smooth muscle cells differentiation via TGF-β1 secretion. Int Endod J 2023; 56:1092-1107. [PMID: 37294792 DOI: 10.1111/iej.13943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
AIM Prevascularization is vital to accelerate functional blood circulation establishment in transplanted engineered tissue constructs. Mesenchymal stem cells (MSCs) or mural cells could promote the survival of implanted endothelial cells (ECs) and enhance the stabilization of newly formed blood vessels. However, the dynamic cell-cell interactions between MSCs, mural cells and ECs in the angiogenic processes remain unclear. This study aimed to explore the interactions of human umbilical vein ECs (HUVECs) and dental pulp stem cells (DPSCs) in an in vitro cell coculture model. METHODOLOGY Human umbilical vascular ECs and DPSCs were directly cocultured or indirectly cocultured with transwell inserts in endothelial basal media-2 (EBM-2) supplemented with 5% FBS for 6 days. Expression of SMC-specific markers in DPSCs monoculture and HUVEC+DPSC cocultures was assessed by western blot and immunofluorescence. Activin A and transforming growth factor-beta 1 (TGF-β1) in conditioned media (CM) of HUVECs monoculture (E-CM), DPSCs monoculture (D-CM) and HUVEC+DPSC cocultures (E+D-CM) were analysed by enzyme-linked immunosorbent assay. TGF-β RI kinase inhibitor VI, SB431542, was used to block TGF-β1/ALK5 signalling in DPSCs. RESULTS The expression of SMC-specific markers, α-SMA, SM22α and Calponin, were markedly increased in HUVEC+DPSC direct cocultures compared to that in DPSCs monoculture, while no differences were demonstrated between HUVEC+DPSC indirect cocultures and DPSCs monoculture. E+D-CM significantly upregulated the expression of SMC-specific markers in DPSCs compared to E-CM and D-CM. Activin A and TGF-β1 were considerably higher in E+D-CM than that in D-CM, with upregulated Smad2 phosphorylation in HUVEC+DPSC cocultures. Treatment with activin A did not change the expression of SMC-specific markers in DPSCs, while treatment with TGF-β1 significantly enhanced these markers' expression in DPSCs. In addition, blocking TGF-β1/ALK5 signalling inhibited the expression of α-SMA, SM22α and Calponin in DPSCs. CONCLUSIONS TGF-β1 was responsible for DPSC differentiation into SMCs in HUVEC+DPSC cocultures, and TGF-β1/ALK5 signalling pathway played a vital role in this process.
Collapse
Affiliation(s)
- Yuchen Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jialin Zhong
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shulan Lin
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Mingxin Hu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Junqing Liu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jun Kang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yubingqing Qi
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Mohammed S Basabrain
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ting Zou
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Fang W, Yang M, Liu M, Jin Y, Wang Y, Yang R, Wang Y, Zhang K, Fu Q. Review on Additives in Hydrogels for 3D Bioprinting of Regenerative Medicine: From Mechanism to Methodology. Pharmaceutics 2023; 15:1700. [PMID: 37376148 PMCID: PMC10302687 DOI: 10.3390/pharmaceutics15061700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The regeneration of biological tissues in medicine is challenging, and 3D bioprinting offers an innovative way to create functional multicellular tissues. One common way in bioprinting is bioink, which is one type of the cell-loaded hydrogel. For clinical application, however, the bioprinting still suffers from satisfactory performance, e.g., in vascularization, effective antibacterial, immunomodulation, and regulation of collagen deposition. Many studies incorporated different bioactive materials into the 3D-printed scaffolds to optimize the bioprinting. Here, we reviewed a variety of additives added to the 3D bioprinting hydrogel. The underlying mechanisms and methodology for biological regeneration are important and will provide a useful basis for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kaile Zhang
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| |
Collapse
|
13
|
Bansal A, Singh A, Nag TC, Sharma D, Garg B, Bhatla N, Choudhury SD, Ramakrishnan L. Augmenting the Angiogenic Profile and Functionality of Cord Blood Endothelial Colony-Forming Cells by Indirect Priming with Bone-Marrow-Derived Mesenchymal Stromal Cells. Biomedicines 2023; 11:biomedicines11051372. [PMID: 37239042 DOI: 10.3390/biomedicines11051372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Cellular therapy has shown promise as a strategy for the functional restoration of ischemic tissues through promoting vasculogenesis. Therapy with endothelial progenitor cells (EPCs) has shown encouraging results in preclinical studies, but the limited engraftment, inefficient migration, and poor survival of patrolling endothelial progenitor cells at the injured site hinder its clinical utilization. These limitations can, to some extent, be overcome by co-culturing EPCs with mesenchymal stem cells (MSCs). Studies on the improvement in functional capacity of late EPCs, also referred to as endothelial colony-forming cells (ECFCs), when cultured with MSCs have mostly focused on the angiogenic potential, although migration, adhesion, and proliferation potential also determine effective physiological vasculogenesis. Alteration in angiogenic proteins with co-culturing has also not been studied. We co-cultured ECFCs with MSCs via both direct and indirect means, and studied the impact of the resultant contact-mediated and paracrine-mediated impact of MSCs over ECFCs, respectively, on the functional aspects and the angiogenic protein signature of ECFCs. Both directly and indirectly primed ECFCs significantly restored the adhesion and vasculogenic potential of impaired ECFCs, whereas indirectly primed ECFCs showed better proliferation and migratory potential than directly primed ECFCs. Additionally, indirectly primed ECFCs, in their angiogenesis proteomic signature, showed alleviated inflammation, along with the balanced expression of various growth factors and regulators of angiogenesis.
Collapse
Affiliation(s)
- Ashutosh Bansal
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Devyani Sharma
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bhavuk Garg
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neerja Bhatla
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saumitra Dey Choudhury
- Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
14
|
Nasim S, Wylie-Sears J, Gao X, Peng Q, Zhu B, Chen K, Chen H, Bischoff J. CD45 Is Sufficient to Initiate Endothelial-to-Mesenchymal Transition in Human Endothelial Cells-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:e124-e131. [PMID: 36924233 PMCID: PMC10133027 DOI: 10.1161/atvbaha.122.318172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Endothelial-to-mesenchymal transition (EndMT) is a dynamic process in which endothelial cells acquire mesenchymal properties and in turn contribute to tissue remodeling and growth. Previously, we found EndMT associated with mitral valve adaptation after myocardial infarction. Furthermore, mitral valve endothelial cells collected at 6 months post-myocardial infarction expressed the pan-leukocyte marker CD45 and EndMT markers. Additionally, mitral valve endothelial cells induced to undergo EndMT with TGF (transforming growth factor)-β1 strongly coexpressed CD45 but not CD11b or CD14. Pharmacologic inhibition of the CD45 PTPase (protein tyrosine phosphatase) domain in mitral valve endothelial cells blocked TGFβ-induced EndMT. This prompted us to speculate that, downstream of TGFβ, CD45 induces EndMT. METHODS We activated the endogenous CD45 promoter in human endothelial colony forming cells (ECFCs) using CRISPR (cluster regularly interspaced short palindromic repeats)/inactive Cas9 (CRISPR-associated protein 9) transcriptional activation. Bulk RNA sequencing was performed on control ECFCs and CD45-positive ECFCs to identify transcriptomic changes. Three functional assays-cellular migration, collagen gel contraction, and transendothelial electrical resistance-were conducted to assess mesenchymal properties in CD45-positive ECFCs. RESULTS Activation of the endogenous CD45 promoter in ECFC and 3 additional sources of endothelial cells induced expression of several genes implicated in EndMT. In addition, CD45-positive ECFCs showed increased migration, a hallmark of EndMT, increased collagen gel contraction, a hallmark of mesenchymal cells, and decreased cell-cell barrier integrity, indicating reduced endothelial function. CONCLUSIONS CD45 is sufficient to incite an EndMT phenotype and acquisition of mesenchymal cell properties in normal human ECFCs. We speculate that CD45, through its C-terminal PTPase domain, initiates signaling events that drive EndMT.
Collapse
Affiliation(s)
- Sana Nasim
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Jill Wylie-Sears
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, MA 02115
| | - Xinlei Gao
- Computational Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Qianman Peng
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Bo Zhu
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Kaifu Chen
- Computational Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Hong Chen
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
15
|
Liu C, Sharpe P, Volponi AA. Applications of regenerative techniques in adult orthodontics. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2022.1100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Management of the growing adult orthodontic patient population must contend with challenges particular to orthodontic treatment in adults. These include a limited rate of tooth movement, increased incidence of periodontal complications, higher risk of iatrogenic root resorption and pulp devitalisation, resorbed edentulous ridges, and lack of growth potential. The field of regenerative dentistry has evolved numerous methods of manipulating cellular and molecular processes to rebuild functional oral and dental tissues, and research continues to advance our understanding of stem cells, signalling factors that stimulate repair and extracellular scaffold interactions for the purposes of tissue engineering. We discuss recent findings in the literature to synthesise our understanding of current and prospective approaches based on biological repair that have the potential to improve orthodontic treatment outcomes in adult patients. Methods such as mesenchymal stem cell transplantation, biomimetic scaffold manipulation, and growth factor control may be employed to overcome the challenges described above, thereby reducing adverse sequelae and improving orthodontic treatment outcomes in adult patients. The overarching goal of such research is to eventually translate these regenerative techniques into clinical practice, and establish a new gold standard of safe, effective, autologous therapies.
Collapse
|
16
|
Im GB, Lin RZ. Bioengineering for vascularization: Trends and directions of photocrosslinkable gelatin methacrylate hydrogels. Front Bioeng Biotechnol 2022; 10:1053491. [PMID: 36466323 PMCID: PMC9713639 DOI: 10.3389/fbioe.2022.1053491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/03/2022] [Indexed: 10/17/2023] Open
Abstract
Gelatin methacrylate (GelMA) hydrogels have been widely used in various biomedical applications, especially in tissue engineering and regenerative medicine, for their excellent biocompatibility and biodegradability. GelMA crosslinks to form a hydrogel when exposed to light irradiation in the presence of photoinitiators. The mechanical characteristics of GelMA hydrogels are highly tunable by changing the crosslinking conditions, including the GelMA polymer concentration, degree of methacrylation, light wavelength and intensity, and light exposure time et al. In this regard, GelMA hydrogels can be adjusted to closely resemble the native extracellular matrix (ECM) properties for the specific functions of target tissues. Therefore, this review focuses on the applications of GelMA hydrogels for bioengineering human vascular networks in vitro and in vivo. Since most tissues require vasculature to provide nutrients and oxygen to individual cells, timely vascularization is critical to the success of tissue- and cell-based therapies. Recent research has demonstrated the robust formation of human vascular networks by embedding human vascular endothelial cells and perivascular mesenchymal cells in GelMA hydrogels. Vascular cell-laden GelMA hydrogels can be microfabricated using different methodologies and integrated with microfluidic devices to generate a vasculature-on-a-chip system for disease modeling or drug screening. Bioengineered vascular networks can also serve as build-in vasculature to ensure the adequate oxygenation of thick tissue-engineered constructs. Meanwhile, several reports used GelMA hydrogels as implantable materials to deliver therapeutic cells aiming to rebuild the vasculature in ischemic wounds for repairing tissue injuries. Here, we intend to reveal present work trends and provide new insights into the development of clinically relevant applications based on vascularized GelMA hydrogels.
Collapse
Affiliation(s)
- Gwang-Bum Im
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Chen H, Li Y. Circular RNA hsa_circ_0000915 promotes propranolol resistance of hemangioma stem cells in infantile haemangiomas. Hum Genomics 2022; 16:43. [PMID: 36167680 PMCID: PMC9513930 DOI: 10.1186/s40246-022-00416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Propranolol is a first-line clinical drug for infantile haemangiomas (IH) therapy. Nevertheless, resistance to propranolol is observed in some patients with IH. Circular RNAs (circRNAs) has been increasingly reported to act as a pivotal regulator in tumor progression. However, the underlying mechanism of circRNAs in IH remains unclear. METHODS Quantitative real-time polymerase chain reaction was performed to detect Circ_0000915, miR-890 and RNF187 expression. Protein levels were determined using western blot. CCK-8 assay was used to measure cell proliferation. Caspase-3 activity assay and flow cytometry were conducted to determine cell apoptosis. Luciferase reporter assay was carried out to assess the interaction between miR-890 and Circ_0000915 or RNF187. Chromatin immunoprecipitation assay was performed to detect the interaction between STAT3 and Circ_0000915 promoter. Biotin pull-down assay was used to detect the direct interaction between miR-890 and Circ_0000915. In vivo experiments were performed to measure tumor formation. RESULTS Here, we discovered depletion of Circ_0000915 increased propranolol sensitivity of haemangioma derived stem cells (HemSCs) both in vitro and in vivo, whereas forced expression of Circ_0000915 exhibited opposite effects. Mechanistically, Circ_0000915, transcriptionally induced by IL-6/STAT3 pathway, competed with RNF187 for the biding site in miR-890, led to upregulation of RNF187 by acting as a miR-890 "sponge". Furthermore, silence of miR-890 reversed increased propranolol sensitivity of HemSCs due to Circ_0000915 ablation. Moreover, increased Circ_0000915 and RNF187 levels were observed in IH tissues and positively associated with propranolol resistance, miR-890 exhibited an inverse expression pattern. CONCLUSION We thereby uncover the activation of IL-6/STAT3/Circ_0000915/miR-890/RNF187 axis in propranolol resistance of IH, and provide therapeutic implications for patients of IH with propranolol resistance.
Collapse
Affiliation(s)
- Hongrang Chen
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yongsheng Li
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
18
|
Li D, Liu Y, Wu N. Application progress of nanotechnology in regenerative medicine of diabetes mellitus. Diabetes Res Clin Pract 2022; 190:109966. [PMID: 35718019 DOI: 10.1016/j.diabres.2022.109966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/20/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
In recent years, the development of diabetic regenerative medicine has led to new developments and progress for the clinical treatment of diabetes mellitus and its various complications. Besides, the emergence of nanotechnology has injected new vitality into diabetic regenerative medicine. Nano-stent provides an appropriate direction for the regeneration of islet β cells, retinal tissue, nerve tissue, and wound tissue cells. Conductive nanomaterials promote various tissues' growth. Many nanoparticles also promote wound healing and present other advantages that have solved many potential problems in the practical application of regenerative medicine. In this review, we will summarize the application of nanotechnology in diabetic regenerative medicine.
Collapse
Affiliation(s)
- Danyang Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Yuxin Liu
- Student Affairs Department, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Clinical Skills Practice Teaching Center, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
19
|
Pontiggia L, Van Hengel IAJ, Klar A, Rütsche D, Nanni M, Scheidegger A, Figi S, Reichmann E, Moehrlen U, Biedermann T. Bioprinting and plastic compression of large pigmented and vascularized human dermo-epidermal skin substitutes by means of a new robotic platform. J Tissue Eng 2022; 13:20417314221088513. [PMID: 35495096 PMCID: PMC9044789 DOI: 10.1177/20417314221088513] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Extensive availability of engineered autologous dermo-epidermal skin substitutes (DESS) with functional and structural properties of normal human skin represents a goal for the treatment of large skin defects such as severe burns. Recently, a clinical phase I trial with this type of DESS was successfully completed, which included patients own keratinocytes and fibroblasts. Yet, two important features of natural skin were missing: pigmentation and vascularization. The first has important physiological and psychological implications for the patient, the second impacts survival and quality of the graft. Additionally, accurate reproduction of large amounts of patient’s skin in an automated way is essential for upscaling DESS production. Therefore, in the present study, we implemented a new robotic unit (called SkinFactory) for 3D bioprinting of pigmented and pre-vascularized DESS using normal human skin derived fibroblasts, blood- and lymphatic endothelial cells, keratinocytes, and melanocytes. We show the feasibility of our approach by demonstrating the viability of all the cells after printing in vitro, the integrity of the reconstituted capillary network in vivo after transplantation to immunodeficient rats and the anastomosis to the vascular plexus of the host. Our work has to be considered as a proof of concept in view of the implementation of an extended platform, which fully automatize the process of skin substitution: this would be a considerable improvement of the treatment of burn victims and patients with severe skin lesions based on patients own skin derived cells.
Collapse
Affiliation(s)
- Luca Pontiggia
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Ingmar AJ Van Hengel
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Agnes Klar
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Dominic Rütsche
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Monica Nanni
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | | | | | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Zurich Center for Fetal Diagnosis and Treatment, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Kwack KH, Lee HW. Clinical Potential of Dental Pulp Stem Cells in Pulp Regeneration: Current Endodontic Progress and Future Perspectives. Front Cell Dev Biol 2022; 10:857066. [PMID: 35478967 PMCID: PMC9035692 DOI: 10.3389/fcell.2022.857066] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Dental caries is a common disease that not only destroys the rigid structure of the teeth but also causes pulp necrosis in severe cases. Once pulp necrosis has occurred, the most common treatment is to remove the damaged pulp tissue, leading to a loss of tooth vitality and increased tooth fragility. Dental pulp stem cells (DPSCs) isolated from pulp tissue exhibit mesenchymal stem cell-like characteristics and are considered ideal candidates for regenerating damaged dental pulp tissue owing to their multipotency, high proliferation rate, and viability after cryopreservation. Importantly, DPSCs do not elicit an allogeneic immune response because they are non-immunogenic and exhibit potent immunosuppressive properties. Here, we provide an up-to-date review of the clinical applicability and potential of DPSCs, as well as emerging trends in the regeneration of damaged pulp tissue. In addition, we suggest the possibility of using DPSCs as a resource for allogeneic transplantation and provide a perspective for their clinical application in pulp regeneration.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hyeon-Woo Lee
- Department of Pharmacology, School of Dentistry, Graduate School, Institute of Oral Biology, Kyung Hee University, Seoul, South Korea
- *Correspondence: Hyeon-Woo Lee,
| |
Collapse
|
21
|
Bouten CVC, Cheng C, Vermue IM, Gawlitta D, Passier R. Cardiovascular tissue engineering and regeneration: A plead for further knowledge convergence. Tissue Eng Part A 2022; 28:525-541. [PMID: 35382591 DOI: 10.1089/ten.tea.2021.0231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular tissue engineering and regeneration strive to provide long-term, effective solutions for a growing group of patients in need of myocardial repair, vascular (access) grafts, heart valves, and regeneration of organ microcirculation. In the past two decades, ongoing convergence of disciplines and multidisciplinary collaborations between cardiothoracic surgeons, cardiologists, bioengineers, material scientists, and cell biologists have resulted in better understanding of the problems at hand and novel regenerative approaches. As a side effect, however, the field has become strongly organized and differentiated around topical areas at risk of reinvention of technologies and repetition of approaches and across the areas. A better integration of knowledge and technologies from the individual topical areas and regenerative approaches and technologies may pave the way towards faster and more effective treatments to cure the cardiovascular system. This review summarizes the evolution of research and regenerative approaches in the areas of myocardial regeneration, heart valve and vascular tissue engineering, and regeneration of microcirculations and discusses previous and potential future integration of these individual areas and developed technologies for improved clinical impact. Finally, it provides a perspective on the further integration of research organization, knowledge implementation, and valorization as a contributor to advancing cardiovascular tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Carlijn V C Bouten
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Experimental Cardiology, Department of Cardiology, Thoraxcenter Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ijsbrand M Vermue
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery, Prosthodontics and Special Dental Care, University Medical Center, Utrecht, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Mesenchymal Stem Cells Potentiate the Vasculogenic Capacity of Endothelial Colony-Forming Cells under Hyperglycemic Conditions. LIFE (BASEL, SWITZERLAND) 2022; 12:life12040469. [PMID: 35454960 PMCID: PMC9028253 DOI: 10.3390/life12040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
Many studies have demonstrated a reduced number and vasculogenic capacity of endothelial colony-forming cells (ECFCs) in diabetic patients. However, whether the vasculogenic capacity of ECFCs is recovered or not when combined with pericyte precursors, mesenchymal stem cells (MSCs), under hyperglycemic conditions has not been studied. Thus, we investigated the role of MSCs in ECFC-mediated vascular formation under high-glucose conditions. The ECFCs and MSCs were treated with normal glucose (5 mM; NG) or high glucose (30 mM; HG) for 7 days. The cell viability, proliferation, migration, and tube formation of ECFCs were reduced in HG compared to NG. Interestingly, the ECFC+MSC combination after HG treatment formed tubular structures similar to NG-treated ECFCs+MSCs. An in vivo study using a diabetic mouse model revealed that the number of perfused vessels formed by HG-treated ECFCs+MSCs in diabetic mice was comparable with that of NG-treated ECFCs+MSCs in normal mice. Electron microscopy revealed that the ECFCs+MSCs formed pericyte-covered perfused blood vessels, while the ECFCs alone did not form perfused vessels when injected into the mice. Taken together, MSCs potentiate the vasculogenic capacity of ECFCs under hyperglycemic conditions, suggesting that the combined delivery of ECFCs+MSCs can be a promising strategy to build a functional microvascular network to repair vascular defects in diabetic ischemic regions.
Collapse
|
23
|
Hsu YJ, Wei SY, Lin TY, Fang L, Hsieh YT, Chen YC. A strategy to engineer vascularized tissue constructs by optimizing and maintaining the geometry. Acta Biomater 2022; 138:254-272. [PMID: 34774782 DOI: 10.1016/j.actbio.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/01/2022]
Abstract
The success of engineered tissues is limited by the need for rapid perfusion of a functional vascular network that can control tissue engraftment and promote survival after implantation. Diabetic conditions pose an additional challenge, because high glucose and lipid concentrations cause an aggressive oxidative environment that impairs vessel remodeling and stabilization and impedes integration of engineered constructs into surrounding tissues. Thus, to achieve rapid vasculogenesis, angiogenesis, and anastomosis, hydrogels incorporating cells in their structure have been developed to facilitate formation of functional vascular networks within implants. However, their transport diffusivity decreases with increasing thickness, preventing the formation of a thick vascularized tissue. To address this, we used diffusion-based computational simulations to optimize the geometry of hydrogel structures. The results show that the micro-patterned constructs improved diffusion, thus supporting cell viability, and spreading while retaining their mechanical properties. Thick cell-laden bulk, linear, or hexagonal infill patterned hydrogels were implanted; and structural stability due to skin mobility was improved by the protective spacer. Larger and thicker perfused vascular networks formed in the hexagonal structures (∼17 mm diameter, ∼1.5 mm thickness) in both normal and diabetic mice on day 3, and they became functional and uniformly distributed on day 7. Moreover, transplanted islets were rapidly integrated subcutaneously in this engineered functional vascular bed, which significantly enhanced islet viability and insulin secretion. In summary, we developed a promising strategy for generating large, thick vascularized tissue constructs, which may support transplanted islet cells. These constructs showed potential for engineering other vascularized tissues in regenerative therapy. STATEMENT OF SIGNIFICANCE: Diffusion-based computational simulations were used to optimize the geometry of hydrogel structures, i.e., hexagonal cell-laden hydrogels. To maintain the hydrogel's structural integrity, a spacer was designed and co-implanted subcutaneously to increase the permeability of explants. The spacer provides the structural integrity to improve the permeability of the implanted hydrogel. Otherwise, the implanted hydrogel may be easily squeezed and deformed by compression from the skin mobility of mice. Here, we successfully developed a cell-based strategy for rapidly generating large, functional vasculature (diameter ∼17 mm and thickness ∼1.5 mm) in both normal and diabetic mice and demonstrated its advantages over currently available methods in a clinically-relevant animal model. This concept could serve as a basis for engineering and repairing other tissues in animals.
Collapse
|
24
|
Distinctive Roles of YAP and TAZ in Human Endothelial Progenitor Cells Growth and Functions. Biomedicines 2022; 10:biomedicines10010147. [PMID: 35052826 PMCID: PMC8773510 DOI: 10.3390/biomedicines10010147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The hippo signaling pathway plays an essential role in controlling organ size and balancing tissue homeostasis. Its two main effectors, yes-associated protein (YAP) and WW domain-containing transcription regulator 1, WWTR1 or TAZ, have also been shown to regulate endothelial cell functions and angiogenesis. In this study, the functions of YAP and TAZ in human endothelial progenitor cells (EPCs) were investigated by a loss-of-function study using CRISPR/Cas9-mediated gene knockdown (KD). Depletion of either YAP or TAZ reduced EPC survival and impaired many of their critical functions, including migration, invasion, vessel-formation, and expression of pro-angiogenic genes. Notably, TAZ-KD EPCs exhibited more severe phenotypes in comparison to YAP-KD EPCs. Moreover, the conditioned medium derived from TAZ-KD EPCs reduced the survivability of human lung cancer cells and increased their sensitivity to chemotherapeutic agents. The overexpression of either wild-type or constitutively active TAZ rescued the impaired phenotypes of TAZ-KD EPCs and restored the expression of pro-angiogenic genes in those EPCs. In summary, we demonstrate the crucial role of Hippo signaling components, YAP and TAZ, in controlling several aspects of EPC functions that can potentially be used as a drug target to enhance EPC functions in patients.
Collapse
|
25
|
Lutter G, Puehler T, Cyganek L, Seiler J, Rogler A, Herberth T, Knueppel P, Gorb SN, Sathananthan J, Sellers S, Müller OJ, Frank D, Haben I. Biodegradable Poly-ε-Caprolactone Scaffolds with ECFCs and iMSCs for Tissue-Engineered Heart Valves. Int J Mol Sci 2022; 23:527. [PMID: 35008953 PMCID: PMC8745109 DOI: 10.3390/ijms23010527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Clinically used heart valve prostheses, despite their progress, are still associated with limitations. Biodegradable poly-ε-caprolactone (PCL) nanofiber scaffolds, as a matrix, were seeded with human endothelial colony-forming cells (ECFCs) and human induced-pluripotent stem cells-derived MSCs (iMSCs) for the generation of tissue-engineered heart valves. Cell adhesion, proliferation, and distribution, as well as the effects of coating PCL nanofibers, were analyzed by fluorescence microscopy and SEM. Mechanical properties of seeded PCL scaffolds were investigated under uniaxial loading. iPSCs were used to differentiate into iMSCs via mesoderm. The obtained iMSCs exhibited a comparable phenotype and surface marker expression to adult human MSCs and were capable of multilineage differentiation. EFCFs and MSCs showed good adhesion and distribution on PCL fibers, forming a closed cell cover. Coating of the fibers resulted in an increased cell number only at an early time point; from day 7 of colonization, there was no difference between cell numbers on coated and uncoated PCL fibers. The mechanical properties of PCL scaffolds under uniaxial loading were compared with native porcine pulmonary valve leaflets. The Young's modulus and mean elongation at Fmax of unseeded PCL scaffolds were comparable to those of native leaflets (p = ns.). Colonization of PCL scaffolds with human ECFCs or iMSCs did not alter these properties (p = ns.). However, the native heart valves exhibited a maximum tensile stress at a force of 1.2 ± 0.5 N, whereas it was lower in the unseeded PCL scaffolds (0.6 ± 0.0 N, p < 0.05). A closed cell layer on PCL tissues did not change the values of Fmax (ECFCs: 0.6 ± 0.1 N; iMSCs: 0.7 ± 0.1 N). Here, a successful two-phase protocol, based on the timed use of differentiation factors for efficient differentiation of human iPSCs into iMSCs, was developed. Furthermore, we demonstrated the successful colonization of a biodegradable PCL nanofiber matrix with human ECFCs and iMSCs suitable for the generation of tissue-engineered heart valves. A closed cell cover was already evident after 14 days for ECFCs and 21 days for MSCs. The PCL tissue did not show major mechanical differences compared to native heart valves, which was not altered by short-term surface colonization with human cells in the absence of an extracellular matrix.
Collapse
Affiliation(s)
- Georg Lutter
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (T.P.); (J.S.); (A.R.); (T.H.); (P.K.); (I.H.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (O.J.M.); (D.F.)
| | - Thomas Puehler
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (T.P.); (J.S.); (A.R.); (T.H.); (P.K.); (I.H.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (O.J.M.); (D.F.)
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Jette Seiler
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (T.P.); (J.S.); (A.R.); (T.H.); (P.K.); (I.H.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (O.J.M.); (D.F.)
| | - Anita Rogler
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (T.P.); (J.S.); (A.R.); (T.H.); (P.K.); (I.H.)
| | - Tanja Herberth
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (T.P.); (J.S.); (A.R.); (T.H.); (P.K.); (I.H.)
| | - Philipp Knueppel
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (T.P.); (J.S.); (A.R.); (T.H.); (P.K.); (I.H.)
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany;
| | - Janarthanan Sathananthan
- Department of Centre for Heart Valve Innovation, St Paul’s Hospital, University of British Columbia, Vancouver, BC V6T 174, Canada; (J.S.); (S.S.)
| | - Stephanie Sellers
- Department of Centre for Heart Valve Innovation, St Paul’s Hospital, University of British Columbia, Vancouver, BC V6T 174, Canada; (J.S.); (S.S.)
| | - Oliver J. Müller
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (O.J.M.); (D.F.)
- Department of Cardiology and Angiology, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany
| | - Derk Frank
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (O.J.M.); (D.F.)
- Department of Cardiology and Angiology, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany
| | - Irma Haben
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (T.P.); (J.S.); (A.R.); (T.H.); (P.K.); (I.H.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (O.J.M.); (D.F.)
| |
Collapse
|
26
|
Olgasi C, Borsotti C, Merlin S, Bergmann T, Bittorf P, Adewoye AB, Wragg N, Patterson K, Calabria A, Benedicenti F, Cucci A, Borchiellini A, Pollio B, Montini E, Mazzuca DM, Zierau M, Stolzing A, Toleikis P, Braspenning J, Follenzi A. Efficient and safe correction of hemophilia A by lentiviral vector-transduced BOECs in an implantable device. Mol Ther Methods Clin Dev 2021; 23:551-566. [PMID: 34853801 PMCID: PMC8606349 DOI: 10.1016/j.omtm.2021.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
Hemophilia A (HA) is a rare bleeding disorder caused by deficiency/dysfunction of the FVIII protein. As current therapies based on frequent FVIII infusions are not a definitive cure, long-term expression of FVIII in endothelial cells through lentiviral vector (LV)-mediated gene transfer holds the promise of a one-time treatment. Thus, here we sought to determine whether LV-corrected blood outgrowth endothelial cells (BOECs) implanted through a prevascularized medical device (Cell Pouch) would rescue the bleeding phenotype of HA mice. To this end, BOECs from HA patients and healthy donors were isolated, expanded, and transduced with an LV carrying FVIII driven by an endothelial-specific promoter employing GMP-like procedures. FVIII-corrected HA BOECs were either directly transplanted into the peritoneal cavity or injected into a Cell Pouch implanted subcutaneously in NSG-HA mice. In both cases, FVIII secretion was sufficient to improve the mouse bleeding phenotype. Indeed, FVIII-corrected HA BOECs reached a relatively short-term clinically relevant engraftment being detected up to 16 weeks after transplantation, and their genomic integration profile did not show enrichment for oncogenes, confirming the process safety. Overall, this is the first preclinical study showing the safety and feasibility of transplantation of GMP-like produced LV-corrected BOECs within an implantable device for the long-term treatment of HA.
Collapse
Affiliation(s)
- Cristina Olgasi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Thorsten Bergmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97082 Würzburg, Germany
| | - Patrick Bittorf
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97082 Würzburg, Germany
| | - Adeolu Badi Adewoye
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Nicholas Wragg
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST47QB Stoke-on-Trent, UK
| | | | | | | | - Alessia Cucci
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Alessandra Borchiellini
- Haematology Unit Regional Center for Hemorrhagic and Thrombotic Diseases, City of Health and Science University Hospital of Molinette, 10126 Turin, Italy
| | - Berardino Pollio
- Immune-Haematology and Transfusion Medicine, Regina Margherita Children Hospital, City of Health and Science University Hospital of Molinette, 10126 Turin, Italy
| | | | | | - Martin Zierau
- IMS Integrierte Management Systeme e. K., 64646 Heppenheim, Germany
| | - Alexandra Stolzing
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, LE113TU Loughborough, UK
- SENS Research Foundation, Mountain View, CA 94041, USA
| | | | - Joris Braspenning
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97082 Würzburg, Germany
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
27
|
Zhao Z, Wang M, Shao F, Liu G, Li J, Wei X, Zhang X, Yang J, Cao F, Wang Q, Wang H, Zhao D. Porous tantalum-composited gelatin nanoparticles hydrogel integrated with mesenchymal stem cell-derived endothelial cells to construct vascularized tissue in vivo. Regen Biomater 2021; 8:rbab051. [PMID: 34603743 PMCID: PMC8481010 DOI: 10.1093/rb/rbab051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/08/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
The ideal scaffold material of angiogenesis should have mechanical strength and provide appropriate physiological microporous structures to mimic the extracellular matrix environment. In this study, we constructed an integrated three-dimensional scaffold material using porous tantalum (pTa), gelatin nanoparticles (GNPs) hydrogel, and seeded with bone marrow mesenchymal stem cells (BMSCs)-derived endothelial cells (ECs) for vascular tissue engineering. The characteristics and biocompatibility of pTa and GNPs hydrogel were evaluated by mechanical testing, scanning electron microscopy, cell counting kit, and live-cell assay. The BMSCs-derived ECs were identified by flow cytometry and angiogenesis assay. BMSCs-derived ECs were seeded on the pTa-GNPs hydrogel scaffold and implanted subcutaneously in nude mice. Four weeks after the operation, the scaffold material was evaluated by histomorphology. The superior biocompatible ability of pTa-GNPs hydrogel scaffold was observed. Our in vivo results suggested that 28 days after implantation, the formation of the stable capillary-like network in scaffold material could be promoted significantly. The novel, integrated pTa-GNPs hydrogel scaffold is biocompatible with the host, and exhibits biomechanical and angiogenic properties. Moreover, combined with BMSCs-derived ECs, it could construct vascular engineered tissue in vivo. This study may provide a basis for applying pTa in bone regeneration and autologous BMSCs in tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Zhenhua Zhao
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| | - Mang Wang
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| | - Fei Shao
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, High-Tech District, Dalian 116024, P. R. China
| | - Ge Liu
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China
| | - Junlei Li
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| | - Xiaowei Wei
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| | - Xiuzhi Zhang
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
- Reproductive Medicine Centre, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| | - Jiahui Yang
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| | - Fang Cao
- Department of Biomedical Engineering, Faculty of Electronic Information and Electronical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qiushi Wang
- Laboratory Animal Center, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, High-Tech District, Dalian 116024, P. R. China
| | - Dewei Zhao
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| |
Collapse
|
28
|
Cell-based therapies for vascular regeneration: Past, present and future. Pharmacol Ther 2021; 231:107976. [PMID: 34480961 DOI: 10.1016/j.pharmthera.2021.107976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
Tissue vascularization remains one of the outstanding challenges in regenerative medicine. Beyond its role in circulating oxygen and nutrients, the vasculature is critical for organ development, function and homeostasis. Importantly, effective vascular regeneration is key in generating large 3D tissues for regenerative medicine applications to enable the survival of cells post-transplantation, organ growth, and integration into the host system. Therefore, the absence of clinically applicable means of (re)generating vessels is one of the main obstacles in cell replacement therapy. In this review, we highlight cell-based vascularization strategies which demonstrate clinical potential, discuss their strengths and limitations and highlight the main obstacles hindering cell-based therapeutic vascularization.
Collapse
|
29
|
Role of Stromal Cell-Derived Factor-1 in Endothelial Progenitor Cell-Mediated Vascular Repair and Regeneration. Tissue Eng Regen Med 2021; 18:747-758. [PMID: 34449064 PMCID: PMC8440704 DOI: 10.1007/s13770-021-00366-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are immature endothelial cells that participate in vascular repair and postnatal neovascularization and provide a novel and promising therapy for the treatment of vascular disease. Studies in different animal models have shown that EPC mobilization through pharmacological agents and autologous EPC transplantation contribute to restoring blood supply and tissue regeneration after ischemic injury. However, these effects of the progenitor cells in clinical studies exhibit mixed results. The therapeutic efficacy of EPCs is closely associated with the number of the progenitor cells recruited into ischemic regions and their functional abilities and survival in injury tissues. In this review, we discussed the regulating role of stromal cell-derived factor-1 (also known CXCL12, SDF-1) in EPC mobilization, recruitment, homing, vascular repair and neovascularization, and analyzed the underlying machemisms of these functions. Application of SDF-1 to improve the regenerative function of EPCs following vascular injury was also discussed. SDF-1 plays a crucial role in mobilizing EPC from bone marrow into peripheral circulation, recruiting the progenitor cells to target tissue and protecting against cell death under pathological conditions; thus improve EPC regenerative capacity. SDF-1 are crucial for regulating EPC regenerative function, and provide a potential target for improve therapeutic efficacy of the progenitor cells in treatment of vascular disease.
Collapse
|
30
|
Huang Y, Qian JY, Cheng H, Li XM. Effects of shear stress on differentiation of stem cells into endothelial cells. World J Stem Cells 2021; 13:894-913. [PMID: 34367483 PMCID: PMC8316872 DOI: 10.4252/wjsc.v13.i7.894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell transplantation is an appealing potential therapy for vascular diseases and an indispensable key step in vascular tissue engineering. Substantial effort has been made to differentiate stem cells toward vascular cell phenotypes, including endothelial cells (ECs) and smooth muscle cells. The microenvironment of vascular cells not only contains biochemical factors that influence differentiation but also exerts hemodynamic forces, such as shear stress and cyclic strain. More recently, studies have shown that shear stress can influence the differentiation of stem cells toward ECs. A deep understanding of the responses and underlying mechanisms involved in this process is essential for clinical translation. This review highlights current data supporting the role of shear stress in stem cell differentiation into ECs. Potential mechanisms and signaling cascades for transducing shear stress into a biological signal are proposed. Further study of stem cell responses to shear stress will be necessary to apply stem cells for pharmacological applications and cardiovascular implants in the realm of regenerative medicine.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jia-Yi Qian
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hong Cheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiao-Ming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
31
|
Ebner-Peking P, Krisch L, Wolf M, Hochmann S, Hoog A, Vári B, Muigg K, Poupardin R, Scharler C, Schmidhuber S, Russe E, Stachelscheid H, Schneeberger A, Schallmoser K, Strunk D. Self-assembly of differentiated progenitor cells facilitates spheroid human skin organoid formation and planar skin regeneration. Theranostics 2021; 11:8430-8447. [PMID: 34373751 PMCID: PMC8344006 DOI: 10.7150/thno.59661] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023] Open
Abstract
Self-assembly of solid organs from single cells would greatly expand applicability of regenerative medicine. Stem/progenitor cells can self-organize into micro-sized organ units, termed organoids, partially modelling tissue function and regeneration. Here we demonstrated 3D self-assembly of adult and induced pluripotent stem cell (iPSC)-derived fibroblasts, keratinocytes and endothelial progenitors into both, planar human skin in vivo and a novel type of spheroid-shaped skin organoids in vitro, under the aegis of human platelet lysate. Methods: Primary endothelial colony forming cells (ECFCs), skin fibroblasts (FBs) and keratinocytes (KCs) were isolated from human tissues and polyclonally propagated under 2D xeno-free conditions. Human tissue-derived iPSCs were differentiated into endothelial cells (hiPSC-ECs), fibroblasts (hiPSC-FBs) and keratinocytes (hiPSC-KCs) according to efficiency-optimized protocols. Cell identity and purity were confirmed by flow cytometry and clonogenicity indicated their stem/progenitor potential. Triple cell type floating spheroids formation was promoted by human platelet-derived growth factors containing culture conditions, using nanoparticle cell labelling for monitoring the organization process. Planar human skin regeneration was assessed in full-thickness wounds of immune-deficient mice upon transplantation of hiPSC-derived single cell suspensions. Results: Organoids displayed a distinct architecture with surface-anchored keratinocytes surrounding a stromal core, and specific signaling patterns in response to inflammatory stimuli. FGF-7 mRNA transfection was required to accelerate keratinocyte long-term fitness. Stratified human skin also self-assembled within two weeks after either adult- or iPSC-derived skin cell-suspension liquid-transplantation, healing deep wounds of mice. Transplant vascularization significantly accelerated in the presence of co-transplanted endothelial progenitors. Mechanistically, extracellular vesicles mediated the multifactorial platelet-derived trophic effects. No tumorigenesis occurred upon xenografting. Conclusion: This illustrates the superordinate progenitor self-organization principle and permits novel rapid 3D skin-related pharmaceutical high-content testing opportunities with floating spheroid skin organoids. Multi-cell transplant self-organization facilitates development of iPSC-based organ regeneration strategies using cell suspension transplantation supported by human platelet factors.
Collapse
Affiliation(s)
- Patricia Ebner-Peking
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Linda Krisch
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
- Department of Transfusion Medicine, University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Martin Wolf
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Sarah Hochmann
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Anna Hoog
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Balázs Vári
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Muigg
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Rodolphe Poupardin
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Cornelia Scharler
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | | | - Elisabeth Russe
- Department of Plastic, Aesthetic and Reconstructive Surgery, Hospital Barmherzige Brueder, Salzburg, Austria
| | | | | | - Katharina Schallmoser
- Department of Transfusion Medicine, University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
32
|
Vilahur G, Nguyen PH, Badimon L. Impact of Diabetes Mellitus on the Potential of Autologous Stem Cells and Stem Cell-Derived Microvesicles to Repair the Ischemic Heart. Cardiovasc Drugs Ther 2021; 36:933-949. [PMID: 34251593 DOI: 10.1007/s10557-021-07208-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
Ischemic heart disease remains the leading cause of morbidity and mortality worldwide. Despite the advances in medical management and catheter-based therapy, mortality remains high, as does the risk of developing heart failure. Regenerative therapies have been widely used as an alternative option to repair the damaged heart mainly because of their paracrine-related beneficial effects. Although cell-based therapy has been demonstrated as feasible and safe, randomized controlled trials and meta-analyses show little consistent benefit from treatments with adult-derived stem cells. Mounting evidence from our group and others supports that cardiovascular risk factors and comorbidities impair stem cell potential thus hampering their autologous use. This review aims to better understand the influence of diabetes on stem cell potential. For this purpose, we will first discuss the most recent advances in the mechanistic understanding of the effects of diabetes on stem cell phenotype, function, and molecular fingerprint to further elaborate on diabetes-induced alterations in stem cell extracellular vesicle profile. Although we acknowledge that multiple sources of stem or progenitor cells are used for regenerative purposes, we will focus on bone marrow hematopoietic stem/progenitor cells, mesenchymal stem cells residing in the bone marrow, and adipose tissue and briefly discuss endothelial colony-forming cells.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain.,Ciber CV - ISCIII, Madrid, Spain
| | - Phuong Hue Nguyen
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain. .,Ciber CV - ISCIII, Madrid, Spain. .,Cardiovascular Research Chair UAB, Barcelona, Spain.
| |
Collapse
|
33
|
Kim HD, Hong X, An YH, Park MJ, Kim DG, Greene AK, Padwa BL, Hwang NS, Lin RZ, Melero-Martin JM. A Biphasic Osteovascular Biomimetic Scaffold for Rapid and Self-Sustained Endochondral Ossification. Adv Healthc Mater 2021; 10:e2100070. [PMID: 33882194 PMCID: PMC8273143 DOI: 10.1002/adhm.202100070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/23/2021] [Indexed: 12/14/2022]
Abstract
Regeneration of large bones remains a challenge in surgery. Recent developmental engineering efforts aim to recapitulate endochondral ossification (EO), a critical step in bone formation. However, this process entails the condensation of mesenchymal stem cells (MSCs) into cartilaginous templates, which requires long-term cultures and is challenging to scale up. Here, a biomimetic scaffold is developed that allows rapid and self-sustained EO without initial hypertrophic chondrogenesis. The design comprises a porous chondroitin sulfate cryogel decorated with whitlockite calcium phosphate nanoparticles, and a soft hydrogel occupying the porous space. This composite scaffold enables human endothelial colony-forming cells (ECFCs) and MSCs to rapidly assemble into osteovascular niches in immunodeficient mice. These niches contain ECFC-lined blood vessels and perivascular MSCs that differentiate into RUNX2+ OSX+ pre-osteoblasts after one week in vivo. Subsequently, multiple ossification centers are formed, leading to de novo bone tissue formation by eight weeks, including mature human OCN+ OPN+ osteoblasts, collagen-rich mineralized extracellular matrix, hydroxyapatite, osteoclast activity, and gradual mechanical competence. The early establishment of blood vessels is essential, and grafts that do not contain ECFCs fail to produce osteovascular niches and ossification centers. The findings suggest a novel bioengineering approach to recapitulate EO in the context of human bone regeneration.
Collapse
Affiliation(s)
- Hwan D. Kim
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea (H.D.K current address)
| | - Xuechong Hong
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, BioMAX Institute, Institute of Chemical Processes, Institute of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mihn Jeong Park
- School of Chemical and Biological Engineering, BioMAX Institute, Institute of Chemical Processes, Institute of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Arin K. Greene
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Bonnie L. Padwa
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering, BioMAX Institute, Institute of Chemical Processes, Institute of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Juan M. Melero-Martin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
34
|
Sun X, Wu J, Qiang B, Romagnuolo R, Gagliardi M, Keller G, Laflamme MA, Li RK, Nunes SS. Transplanted microvessels improve pluripotent stem cell-derived cardiomyocyte engraftment and cardiac function after infarction in rats. Sci Transl Med 2021; 12:12/562/eaax2992. [PMID: 32967972 DOI: 10.1126/scitranslmed.aax2992] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 05/06/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer an unprecedented opportunity to remuscularize infarcted human hearts. However, studies have shown that most hiPSC-CMs do not survive after transplantation into the ischemic myocardial environment, limiting their regenerative potential and clinical application. We established a method to improve hiPSC-CM survival by cotransplanting ready-made microvessels obtained from adipose tissue. Ready-made microvessels promoted a sixfold increase in hiPSC-CM survival and superior functional recovery when compared to hiPSC-CMs transplanted alone or cotransplanted with a suspension of dissociated endothelial cells in infarcted rat hearts. Microvessels showed unprecedented persistence and integration at both early (~80%, week 1) and late (~60%, week 4) time points, resulting in increased vessel density and graft perfusion, and improved hiPSC-CM maturation. These findings provide an approach to cell-based therapies for myocardial infarction, whereby incorporation of ready-made microvessels can improve functional outcomes in cell replacement therapies.
Collapse
Affiliation(s)
- Xuetao Sun
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Jun Wu
- Division of Cardiovascular Surgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Beiping Qiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mark Gagliardi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada.,Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada.,Division of Cardiovascular Surgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada. .,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON M5S 3H2, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
35
|
Dai Y, Zheng H, Liu Z, Wang Y, Hu W. The flavonoid luteolin suppresses infantile hemangioma by targeting FZD6 in the Wnt pathway. Invest New Drugs 2021; 39:775-784. [PMID: 33411210 DOI: 10.1007/s10637-020-01052-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 10/22/2022]
Abstract
Infantile hemangioma is the most common vascular tumor of childhood. It is characterized by clinical expansion of endothelial cells and promoted by angiogenic factors. Luteolin is a flavonoid compound that carries anti-cancer and anti-angiogenesis properties. The study aimed to investigate the effect of luteolin in treating infantile hemangioma. We first tested the effect of luteolin on cell proliferative potential and VEGFA expression in hemangioma-derived stem cells (HemSCs). We then examined the efficacy of systemic application of luteolin in a murine hemangioma model. We then identified the downstream factor regulated by luteolin in HemSCs and validated its causative relationship with knock-down method in both in vitro and in vivo models. We also investigated the protein expression change of this targeting factor in proliferating hemangiomas. Luteolin inhibited HemSC growth and suppressed VEGF-A expression in a dose-dependent manner. Luteolin inhibited microvessel formation and de novo vasculogenesis in the murine model. FZD6 was induced by luteolin and exerted the anti-angiogenesis effect in our tumor models. Lastly, FZD6 level was repressed in the clinical tissues of human proliferating hemangiomas. Luteolin is a promising new agent to treat infantile hemangioma. Targeting the Wnt pathway may represent a potential therapeutic strategic to inhibit angiogenesis in proliferating hemangiomas.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Proliferation/drug effects
- Cells, Cultured
- Fibroblasts/drug effects
- Frizzled Receptors/antagonists & inhibitors
- Frizzled Receptors/genetics
- Frizzled Receptors/metabolism
- Hemangioma/drug therapy
- Hemangioma/genetics
- Hemangioma/metabolism
- Hemangioma/pathology
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/drug therapy
- Infant, Newborn, Diseases/genetics
- Infant, Newborn, Diseases/metabolism
- Infant, Newborn, Diseases/pathology
- Luteolin/pharmacology
- Luteolin/therapeutic use
- Male
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mice, Nude
- Microvessels/drug effects
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Wnt Signaling Pathway/drug effects
- Mice
Collapse
Affiliation(s)
- Yujian Dai
- Department of Pediatric Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, 362000, Fujian, China
| | - Huiming Zheng
- Department of Pediatric Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, 362000, Fujian, China.
| | - Zhen Liu
- Department of Pediatric Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, 362000, Fujian, China
| | - Yingjun Wang
- Department of Pediatric Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, 362000, Fujian, China
| | - Weize Hu
- Department of Pediatric Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, 362000, Fujian, China
| |
Collapse
|
36
|
Nulty J, Freeman FE, Browe DC, Burdis R, Ahern DP, Pitacco P, Lee YB, Alsberg E, Kelly DJ. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects. Acta Biomater 2021; 126:154-169. [PMID: 33705989 DOI: 10.1016/j.actbio.2021.03.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/06/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
For 3D bioprinted tissues to be scaled-up to clinically relevant sizes, effective prevascularisation strategies are required to provide the necessary nutrients for normal metabolism and to remove associated waste by-products. The aim of this study was to develop a bioprinting strategy to engineer prevascularised tissues in vitro and to investigate the capacity of such constructs to enhance the vascularisation and regeneration of large bone defects in vivo. From a screen of different bioinks, a fibrin-based hydrogel was found to best support human umbilical vein endothelial cell (HUVEC) sprouting and the establishment of a microvessel network. When this bioink was combined with HUVECs and supporting human bone marrow stem/stromal cells (hBMSCs), these microvessel networks persisted in vitro. Furthermore, only bioprinted tissues containing both HUVECs and hBMSCs, that were first allowed to mature in vitro, supported robust blood vessel development in vivo. To assess the therapeutic utility of this bioprinting strategy, these bioinks were used to prevascularise 3D printed polycaprolactone (PCL) scaffolds, which were subsequently implanted into critically-sized femoral bone defects in rats. Micro-computed tomography (µCT) angiography revealed increased levels of vascularisation in vivo, which correlated with higher levels of new bone formation. Such prevascularised constructs could be used to enhance the vascularisation of a range of large tissue defects, forming the basis of multiple new bioprinted therapeutics. STATEMENT OF SIGNIFICANCE: This paper demonstrates a versatile 3D bioprinting technique to improve the vascularisation of tissue engineered constructs and further demonstrates how this method can be incorporated into a bone tissue engineering strategy to improve vascularisation in a rat femoral defect model.
Collapse
|
37
|
Kim ES, Nam SM, Song HK, Lee S, Kim K, Lim HK, Lee H, Kang KT, Kwon YJ, Chun YJ, Park SY, Jung J, Moon A. CCL8 mediates crosstalk between endothelial colony forming cells and triple-negative breast cancer cells through IL-8, aggravating invasion and tumorigenicity. Oncogene 2021; 40:3245-3259. [PMID: 33833397 DOI: 10.1038/s41388-021-01758-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 02/01/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a poor prognosis for which no effective therapeutic measures are currently available. The present study aimed to investigate whether interactions with endothelial colony-forming cells (ECFCs) promote aggressive progression of TNBC cells. Herein, using an indirect co-culture system, we showed that co-culture increased the invasive and migratory phenotypes of both MDA-MB-231 TNBC cells and ECFCs. Through a cytokine antibody array and RT-PCR analysis, we revealed that co-culture markedly induced secretion of the chemokine C-C motif ligand (CCL)8 from ECFCs and that of interleukin (IL)-8 from MDA-MB-231 cells. CCL8 was crucial for ECFC-induced IL-8 secretion and invasion of MDA-MB-231 cells as well as for MDA-MB-231-enhanced MMP-2 secretion and angiogenesis of ECFCs. We suggest c-Jun as a transcription factor for CCL8-induced IL-8 expression in MDA-MB-231 cells. IL-8 was important for co-culture-induced CCL8 and MMP-2 upregulation and invasion of ECFCs. Notably, our findings reveal a positive feedback loop between CCL8 and IL-8, which contributes to the aggressive phenotypes of both ECFC and TNBC cells. Using an MDA-MB-231 cell-based xenograft model, we show that tumor growth and metastasis are increased by co-injected ECFCs in vivo. Increased expression of IL-8 was observed in tissues with bone metastases in mice injected with conditioned media from co-cultured cells. High IL-8 levels are correlated with poor recurrence-free survival in TNBC patients. Together, these results suggest that CCL8 and IL-8 mediate the crosstalk between ECFCs and TNBC, leading to aggravation of tumorigenicity in TNBC.
Collapse
Affiliation(s)
- Eun-Sook Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Su-Min Nam
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Hye Kyung Song
- College of Chemistry, Duksung Women's University, Seoul, Korea
| | - Seungeun Lee
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Kyoungmee Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Hyun Kyung Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Hyunsook Lee
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Kyu-Tae Kang
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | | - So Yeon Park
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea.
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea.
| |
Collapse
|
38
|
Seiffert N, Tang P, Keshi E, Reutzel-Selke A, Moosburner S, Everwien H, Wulsten D, Napierala H, Pratschke J, Sauer IM, Hillebrandt KH, Struecker B. In vitro recellularization of decellularized bovine carotid arteries using human endothelial colony forming cells. J Biol Eng 2021; 15:15. [PMID: 33882982 PMCID: PMC8059238 DOI: 10.1186/s13036-021-00266-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/07/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Many patients suffering from peripheral arterial disease (PAD) are dependent on bypass surgery. However, in some patients no suitable replacements (i.e. autologous or prosthetic bypass grafts) are available. Advances have been made to develop autologous tissue engineered vascular grafts (TEVG) using endothelial colony forming cells (ECFC) obtained by peripheral blood draw in large animal trials. Clinical translation of this technique, however, still requires additional data for usability of isolated ECFC from high cardiovascular risk patients. Bovine carotid arteries (BCA) were decellularized using a combined SDS (sodium dodecyl sulfate) -free mechanical-osmotic-enzymatic-detergent approach to show the feasibility of xenogenous vessel decellularization. Decellularized BCA chips were seeded with human ECFC, isolated from a high cardiovascular risk patient group, suffering from diabetes, hypertension and/or chronic renal failure. ECFC were cultured alone or in coculture with rat or human mesenchymal stromal cells (rMSC/hMSC). Decellularized BCA chips were evaluated for biochemical, histological and mechanical properties. Successful isolation of ECFC and recellularization capabilities were analyzed by histology. RESULTS Decellularized BCA showed retained extracellular matrix (ECM) composition and mechanical properties upon cell removal. Isolation of ECFC from the intended target group was successfully performed (80% isolation efficiency). Isolated cells showed a typical ECFC-phenotype. Upon recellularization, co-seeding of patient-isolated ECFC with rMSC/hMSC and further incubation was successful for 14 (n = 9) and 23 (n = 5) days. Reendothelialization (rMSC) and partial reendothelialization (hMSC) was achieved. Seeded cells were CD31 and vWF positive, however, human cells were detectable for up to 14 days in xenogenic cell-culture only. Seeding of ECFC without rMSC was not successful. CONCLUSION Using our refined decellularization process we generated easily obtainable TEVG with retained ECM- and mechanical quality, serving as a platform to develop small-diameter (< 6 mm) TEVG. ECFC isolation from the cardiovascular risk target group is possible and sufficient. Survival of diabetic ECFC appears to be highly dependent on perivascular support by rMSC/hMSC under static conditions. ECFC survival was limited to 14 days post seeding.
Collapse
Affiliation(s)
- Nicolai Seiffert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Department for Trauma and Orthopedic Surgery, Vivantes-Hospital Spandau, Berlin, Germany
| | - Peter Tang
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Eriselda Keshi
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Anja Reutzel-Selke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Simon Moosburner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hannah Everwien
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dag Wulsten
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hendrik Napierala
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Johann Pratschke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Igor M Sauer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Karl H Hillebrandt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Benjamin Struecker
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| |
Collapse
|
39
|
Melero-Martin JM, Dudley AC, Griffioen AW. Adieu to parting Editor in Chief and pioneering scientist Dr. Joyce Bischoff. Angiogenesis 2021; 24:191-193. [PMID: 33843032 DOI: 10.1007/s10456-021-09786-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, & The Emily Couric Cancer Center, Charlottesville, VA, 22908, USA
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Andrade AC, Wolf M, Binder HM, Gomes FG, Manstein F, Ebner-Peking P, Poupardin R, Zweigerdt R, Schallmoser K, Strunk D. Hypoxic Conditions Promote the Angiogenic Potential of Human Induced Pluripotent Stem Cell-Derived Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22083890. [PMID: 33918735 PMCID: PMC8070165 DOI: 10.3390/ijms22083890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Stem cells secrete paracrine factors including extracellular vesicles (EVs) which can mediate cellular communication and support the regeneration of injured tissues. Reduced oxygen (hypoxia) as a key regulator in development and regeneration may influence cellular communication via EVs. We asked whether hypoxic conditioning during human induced pluripotent stem cell (iPSC) culture effects their EV quantity, quality or EV-based angiogenic potential. We produced iPSC-EVs from large-scale culture-conditioned media at 1%, 5% and 18% air oxygen using tangential flow filtration (TFF), with or without subsequent concentration by ultracentrifugation (TUCF). EVs were quantified by tunable resistive pulse sensing (TRPS), characterized according to MISEV2018 guidelines, and analyzed for angiogenic potential. We observed superior EV recovery by TFF compared to TUCF. We confirmed hypoxia efficacy by HIF-1α stabilization and pimonidazole hypoxyprobe. EV quantity did not differ significantly at different oxygen conditions. Significantly elevated angiogenic potential was observed for iPSC-EVs derived from 1% oxygen culture by TFF or TUCF as compared to EVs obtained at higher oxygen or the corresponding EV-depleted soluble factor fractions. Data thus demonstrate that cell-culture oxygen conditions and mode of EV preparation affect iPSC-EV function. We conclude that selecting appropriate protocols will further improve production of particularly potent iPSC-EV-based therapeutics.
Collapse
Affiliation(s)
- André Cronemberger Andrade
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
| | - Martin Wolf
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
| | - Heide-Marie Binder
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
| | - Fausto Gueths Gomes
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (K.S.)
| | - Felix Manstein
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625 Hannover, Germany; (F.M.); (R.Z.)
| | - Patricia Ebner-Peking
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
| | - Rodolphe Poupardin
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
| | - Robert Zweigerdt
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625 Hannover, Germany; (F.M.); (R.Z.)
| | - Katharina Schallmoser
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (K.S.)
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
- Correspondence:
| |
Collapse
|
41
|
Hachey SJ, Movsesyan S, Nguyen QH, Burton-Sojo G, Tankazyan A, Wu J, Hoang T, Zhao D, Wang S, Hatch MM, Celaya E, Gomez S, Chen GT, Davis RT, Nee K, Pervolarakis N, Lawson DA, Kessenbrock K, Lee AP, Lowengrub J, Waterman ML, Hughes CCW. An in vitro vascularized micro-tumor model of human colorectal cancer recapitulates in vivo responses to standard-of-care therapy. LAB ON A CHIP 2021; 21:1333-1351. [PMID: 33605955 PMCID: PMC8525497 DOI: 10.1039/d0lc01216e] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 05/23/2023]
Abstract
Around 95% of anti-cancer drugs that show promise during preclinical study fail to gain FDA-approval for clinical use. This failure of the preclinical pipeline highlights the need for improved, physiologically-relevant in vitro models that can better serve as reliable drug-screening and disease modeling tools. The vascularized micro-tumor (VMT) is a novel three-dimensional model system (tumor-on-a-chip) that recapitulates the complex human tumor microenvironment, including perfused vasculature, within a transparent microfluidic device, allowing real-time study of drug responses and tumor-stromal interactions. Here we have validated this microphysiological system (MPS) platform for the study of colorectal cancer (CRC), the second leading cause of cancer-related deaths, by showing that gene expression, tumor heterogeneity, and treatment responses in the VMT more closely model CRC tumor clinicopathology than current standard drug screening modalities, including 2-dimensional monolayer culture and 3-dimensional spheroids.
Collapse
Affiliation(s)
- Stephanie J. Hachey
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Silva Movsesyan
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Quy H. Nguyen
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Giselle Burton-Sojo
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Ani Tankazyan
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Tuyen Hoang
- Department of Biostatistics, University of California, IrvineIrvineCA92697USA
| | - Da Zhao
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
| | - Shuxiong Wang
- Department of Mathematics, University of California, IrvineIrvineCA92697USA
| | - Michaela M. Hatch
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Elizabeth Celaya
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Samantha Gomez
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - George T. Chen
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvineCA92697USA
| | - Ryan T. Davis
- Department of Physiology and Biophysics, University of California, IrvineIrvineCA92697USA
| | - Kevin Nee
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Nicholas Pervolarakis
- Center for Complex Biological Systems, University of California, IrvineIrvineCA92697USA
| | - Devon A. Lawson
- Department of Physiology and Biophysics, University of California, IrvineIrvineCA92697USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Abraham P. Lee
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
| | - John Lowengrub
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
- Department of Mathematics, University of California, IrvineIrvineCA92697USA
- Center for Complex Biological Systems, University of California, IrvineIrvineCA92697USA
| | - Marian L. Waterman
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvineCA92697USA
| | - Christopher C. W. Hughes
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
| |
Collapse
|
42
|
Reyner CL, Winter RL, Maneval KL, Boone LH, Wooldridge AA. Effect of recombinant equine interleukin-1β on function of equine endothelial colony-forming cells in vitro. Am J Vet Res 2021; 82:318-325. [PMID: 33764832 DOI: 10.2460/ajvr.82.4.318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the effects of recombinant equine IL-1β on function of equine endothelial colony-forming cells (ECFCs) in vitro. SAMPLE ECFCs derived from peripheral blood samples of 3 healthy adult geldings. PROCEDURES Function testing was performed to assess in vitro wound healing, tubule formation, cell adhesion, and uptake of 1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate-labeled acetylated low-density lipoprotein (DiI-Ac-LDL) by cultured ECFCs. Cell proliferation was determined by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay. Effects on function test results of different concentrations and exposure times of recombinant equine IL-1β were assessed. RESULTS Challenge of cultured ECFCs with IL-1β for 48 hours inhibited tubule formation. Continuous challenge (54 hours) with IL-1β in the wound healing assay reduced gap closure. The IL-1β exposure did not significantly affect ECFC adhesion, DiI-Ac-LDL uptake, or ECFC proliferation. CONCLUSIONS AND CLINICAL RELEVANCE These results suggested a role for IL-1β in the inhibition of ECFC function in vitro. Functional changes in ECFCs following challenge with IL-1β did not appear to be due to changes in cell proliferative capacity. These findings have implications for designing microenvironments for and optimizing therapeutic effects of ECFCs used to treat ischemic diseases in horses.
Collapse
|
43
|
A Xenograft Model for Venous Malformation. Methods Mol Biol 2021; 2206:179-192. [PMID: 32754818 DOI: 10.1007/978-1-0716-0916-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Xenograft models allow for an in vivo approach to monitor cellular functions within the context of a host microenvironment. Here we describe a protocol to generate a xenograft model of venous malformation (VM) based on the use of human umbilical vein endothelial cells (HUVEC) expressing a constitutive active form of the endothelial tyrosine kinase receptor TEK (TIE2 p.L914F) or patient-derived EC containing TIE2 and/or PIK3CA gene mutations. Hyperactive somatic TIE2 and PIK3CA mutations are a common hallmark of VM in patient lesions. The EC are injected subcutaneously on the back of athymic nude mice to generate ectatic vascular channels and recapitulate histopathological features of VM patient tissue histology. Lesion plugs with TIE2/PIK3CA-mutant EC are visibly vascularized within 7-9 days of subcutaneous injection, making this a great tool to study venous malformation.
Collapse
|
44
|
Abstract
Recreating human organ-level function in vitro is a rapidly evolving field that integrates tissue engineering, stem cell biology, and microfluidic technology to produce 3D organoids. A critical component of all organs is the vasculature. Herein, we discuss general strategies to create vascularized organoids, including common source materials, and survey previous work using vascularized organoids to recreate specific organ functions and simulate tumor progression. Vascularization is not only an essential component of individual organ function but also responsible for coupling the fate of all organs and their functions. While some success in coupling two or more organs together on a single platform has been demonstrated, we argue that the future of vascularized organoid technology lies in creating organoid systems complete with tissue-specific microvasculature and in coupling multiple organs through a dynamic vascular network to create systems that can respond to changing physiological conditions.
Collapse
Affiliation(s)
- Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA;
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA;
| |
Collapse
|
45
|
Abstract
SARS-CoV-2 viruses are positive single-stranded RNA viruses, whose infection can be asymptomatic or lead to the coronavirus disease 2019 (Covid-19). Covid-19 is a respiratory infection with a significant impact on the hematopoietic system and hemostasis leading to several cardiovascular complications. Hematologic consequences of this new infection allowed medical community to start new treatment approaches concerning infection going from targeted anti-inflammatory drugs to anticoagulation or stem cell therapies. A better understanding of Covid-19 pathophysiology, in particular hematological disorders, will help to choose appropriate treatment strategies.
Collapse
|
46
|
Cai Q, Liao W, Xue F, Wang X, Zhou W, Li Y, Zeng W. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater 2021; 6:2557-2568. [PMID: 33665496 PMCID: PMC7887299 DOI: 10.1016/j.bioactmat.2020.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) have enormous potential for vascular replacement therapy. However, thrombosis and intimal hyperplasia are important problems associated with TEVGs especially small diameter TEVGs (<6 mm) after transplantation. Endothelialization of TEVGs is a key point to prevent thrombosis. Here, we discuss different types of endothelialization and different seed cells of tissue-engineered vascular grafts. Meanwhile, endothelial heterogeneity is also discussed. Based on it, we provide a new perspective for selecting suitable types of endothelialization and suitable seed cells to improve the long-term patency rate of tissue-engineered vascular grafts with different diameters and lengths. The material, diameter and length of tissue-engineered vascular graft are all key factors affecting its long-term patency. Endothelialization strategies should consider the different diameters and lengths of tissue-engineered vascular grafts. Cell heterogeneity and tissue heterogeneity should be considered in the application of seed cells.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Wanshan Liao
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaochen Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Weiming Zhou
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yanzhao Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.,Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
47
|
Lee H, Kang KT. Differential Angiogenic Responses of Human Endothelial Colony-Forming Cells to Different Molecular Subtypes of Breast Cancer Cells. J Lipid Atheroscler 2021; 10:111-122. [PMID: 33537258 PMCID: PMC7838508 DOI: 10.12997/jla.2021.10.1.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
Objective Triple negative breast cancer (TNBC) is one subtype of breast cancer. It is characterized by lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Compared with non-TNBC, TNBC is more aggressive, of higher grade, and frequently metastatic with poor prognosis, which is correlated with upregulated microvascular density. Endothelial colony-forming cells (ECFCs) mediate neovascularization, which is the crucial contributor to cancer growth and metastasis. The present study aimed to determine whether angiogenic responses of ECFCs are regulated differently by TNBC compared with non-TNBC. Methods MDA-MB-231 and MCF7 cells were utilized for TNBC and non-TNBC, respectively. Bone-marrow-derived human ECFCs were treated with a conditioned medium (CM) of cancer cells to investigate the paracrine effect on angiogenesis. Also, ECFCs were co-cultured with cancer cells to evaluate the angiogenic effect of direct cell-to-cell interaction. Angiogenic responses of ECFCs were evaluated by proliferation, migration, and tube formation. Gene expression profiles of pro-angiogenic factors were also analyzed. Results Migration and tube formation of ECFCs were increased by treatment with CM of MDA-MB-231, which correlated with a higher gene expression profile of pro-angiogenic factors in MDA-MB-231 compared to MCF7. Interestingly, ECFCs co-cultured with MDA-MB-231 showed further increase of tube formation, suggesting synergic mechanisms between the paracrine effect and direct interaction between the cells. Conclusion The angiogenic potential of ECFCs was enhanced by TNBC through both direct and indirect mechanisms. Therefore, the investigation of signaling pathways to regulate ECFC-mediated angiogenesis will be important to the discovery of anti-angiogenic therapies to treat TNBC patients.
Collapse
Affiliation(s)
- Hyunsook Lee
- Department of Pharmacy, College of Pharmacy, Duksung Women's University, Seoul, Korea.,Duksung Innovative Drug Center, Duksung Women's University, Seoul, Korea
| | - Kyu-Tae Kang
- Department of Pharmacy, College of Pharmacy, Duksung Women's University, Seoul, Korea.,Duksung Innovative Drug Center, Duksung Women's University, Seoul, Korea
| |
Collapse
|
48
|
Hong X, Oh N, Wang K, Neumeyer J, Lee CN, Lin RZ, Piekarski B, Emani S, Greene AK, Friehs I, Del Nido PJ, Melero-Martin JM. Human endothelial colony-forming cells provide trophic support for pluripotent stem cell-derived cardiomyocytes via distinctively high expression of neuregulin-1. Angiogenesis 2021; 24:327-344. [PMID: 33454888 DOI: 10.1007/s10456-020-09765-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/20/2020] [Indexed: 01/19/2023]
Abstract
The search for a source of endothelial cells (ECs) with translational therapeutic potential remains crucial in regenerative medicine. Human blood-derived endothelial colony-forming cells (ECFCs) represent a promising source of autologous ECs due to their robust capacity to form vascular networks in vivo and their easy accessibility from peripheral blood. However, whether ECFCs have distinct characteristics with translational value compared to other ECs remains unclear. Here, we show that vascular networks generated with human ECFCs exhibited robust paracrine support for human pluripotent stem cell-derived cardiomyocytes (iCMs), significantly improving protection against drug-induced cardiac injury and enhancing engraftment at ectopic (subcutaneous) and orthotopic (cardiac) sites. In contrast, iCM support was notably absent in grafts with vessels lined by mature-ECs. This differential trophic ability was due to a unique high constitutive expression of the cardioprotective growth factor neuregulin-1 (NRG1). ECFCs, but not mature-ECs, were capable of actively releasing NRG1, which, in turn, reduced apoptosis and increased the proliferation of iCMs via the PI3K/Akt signaling pathway. Transcriptional silencing of NRG1 abrogated these cardioprotective effects. Our study suggests that ECFCs are uniquely suited to support human iCMs, making these progenitor cells ideal for cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Xuechong Hong
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave., Enders 349, Boston, MA, 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Nicholas Oh
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave., Enders 349, Boston, MA, 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave., Enders 349, Boston, MA, 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Joseph Neumeyer
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave., Enders 349, Boston, MA, 02115, USA
| | - Chin Nien Lee
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave., Enders 349, Boston, MA, 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave., Enders 349, Boston, MA, 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Breanna Piekarski
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave., Enders 349, Boston, MA, 02115, USA
| | - Sitaram Emani
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave., Enders 349, Boston, MA, 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Arin K Greene
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Ingeborg Friehs
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave., Enders 349, Boston, MA, 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave., Enders 349, Boston, MA, 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave., Enders 349, Boston, MA, 02115, USA. .,Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
49
|
Chang Y, Lin S, Li Y, Liu S, Ma T, Wei W. Umbilical cord blood CD34 + cells administration improved neurobehavioral status and alleviated brain injury in a mouse model of cerebral palsy. Childs Nerv Syst 2021; 37:2197-2205. [PMID: 33559728 PMCID: PMC8263416 DOI: 10.1007/s00381-021-05068-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/02/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Cerebral palsy (CP) is the most common neuromuscular disease in children, and currently, there is no cure. Several studies have reported the benefits of umbilical cord blood (UCB) cell treatment for CP. However, these studies either examined the effects of UCB cell fraction with a short experimental period or used neonatal rat models for a long-term study which displayed an insufficient immunological reaction and clearance of human stem cells. Here, we developed a CP model by hypoxia-ischemic injury (HI) using immunodeficient mice and examined the effects of human UCB CD34+ hematopoietic stem cells (HSCs) on CP therapy over a period of 8 weeks. METHODS Sixty postnatal day-9 (P9) mouse pups were randomly divided into 4 groups (n = 15/group) as follows: (1) sham operation (control group), (2) HI-induced CP model, (3) CP model with CD34+ HSC transplantation, and (4) CP model with CD34- cell transplantation. Eight weeks after insult, the sensorimotor performance was analyzed by rotarod treadmill, gait dynamic, and open field assays. The pathological changes in brain tissue of mice were determined by HE staining, Nissl staining, and MBP immunohistochemistry of the hippocampus in the mice. RESULTS HI brain injury in mice pups resulted in significant behavioral deficits and loss of neurons. Both CD34+ HSCs and CD34- cells improved the neurobehavioral statuses and alleviated the pathological brain injury. In comparison with CD34- cells, the CD34+ HSC compartments were more effective. CONCLUSION These findings indicate that CD34+ HSC transplantation was neuroprotective in neonatal mice and could be an effective therapy for CP.
Collapse
Affiliation(s)
- Yanqun Chang
- Department of Medical Rehabilitation, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shouheng Lin
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongsheng Li
- Guangdong Cord Blood Bank, Guangzhou, China. .,Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd., Guangzhou, China.
| | - Song Liu
- Guangzhou Reborn Health Management Consultation Co., Ltd., Guangzhou, China
| | - Tianbao Ma
- Guangdong Cord Blood Bank, Guangzhou, China ,Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd., Guangzhou, China
| | - Wei Wei
- Guangdong Cord Blood Bank, Guangzhou, China ,Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd., Guangzhou, China
| |
Collapse
|
50
|
Vasculogenesis from Human Dental Pulp Stem Cells Grown in Matrigel with Fully Defined Serum-Free Culture Media. Biomedicines 2020; 8:biomedicines8110483. [PMID: 33182239 PMCID: PMC7695282 DOI: 10.3390/biomedicines8110483] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022] Open
Abstract
The generation of vasculature is one of the most important challenges in tissue engineering and regeneration. Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types to induce vasculogenesis and angiogenesis as they not only secrete vascular endothelial growth factor (VEGF) but can also differentiate in vitro into both endotheliocytes and pericytes in serum-free culture media. Moreover, hDPSCs can generate complete blood vessels containing both endothelial and mural layers in vivo, upon transplantation into the adult brain. However, many of the serum free media employed for the growth of hDPSCs contain supplements of an undisclosed composition. This generates uncertainty as to which of its precise components are necessary and which are dispensable for the vascular differentiation of hDPSCs, and also hinders the transfer of basic research findings to clinical cell therapy. In this work, we designed and tested new endothelial differentiation media with a fully defined composition using standard basal culture media supplemented with a mixture of B27, heparin and growth factors, including VEGF-A165 at different concentrations. We also optimized an in vitro Matrigel assay to characterize both the ability of hDPSCs to differentiate to vascular cells and their capacity to generate vascular tubules in 3D cultures. The description of a fully defined serum-free culture medium for the induction of vasculogenesis using human adult stem cells highlights its potential as a relevant innovation for tissue engineering applications. In conclusion, we achieved efficient vasculogenesis starting from hDPSCs using serum-free culture media with a fully defined composition, which is applicable for human cell therapy purposes.
Collapse
|