1
|
Duan A, Ma Z, Shao X, Xiong Z, Zhang C, Liu W, Wang G, Hu S, Lin W. The antiarthritic effect of CBR-470-1 in hypoxic environment is to increase the level of NOD-like receptor family pyrin domain containing 3 ubiquitination by decreasing phosphoglycerate kinase 1 activity. Clin Transl Med 2025; 15:e70118. [PMID: 39731281 DOI: 10.1002/ctm2.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/01/2024] [Accepted: 11/19/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Hypoxia can affect the occurrence and development of inflammation in humans, but its effects on the disease progression of osteoarthritis (OA) remain unclear. Synovial macrophages play an essential role in the progression of arthritis. Specifically, the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) in macrophages induces the secretion of a series of inflammatory factors, accelerating the progression of OA. METHODS The effects of CBR-470-1 were assessed in a mouse model of OA induced by destabilization of the medial meniscus (DMM) by micro-computed tomography imaging, Safranin-O and Fast Green staining, immunofluorescence staining and enzyme-linked immunosorbent assay. Western Blot analysis was used to explore the underlying mechanism of these experimental results. Additionally, a co-culture system of THP-1 and chondrocytes was established to investigate the impact of CBR-470-1 on chondrocyte proliferation, apoptosis, migration and the regulation of chondrocyte-related proteins within the system. RESULTS In hypoxic conditions, CBR-470-1 significantly inhibited the progression of OA in the DMM-induced OA mouse model, but that effect disappeared in the DMM-induced OA phosphoglycerate kinase 1 (PGK1)fl/flLyz2-Cre mouse model. Not only that, CBR-470-1 can also improve the proliferation and migration of chondrocytes, reduce the apoptosis rate of chondrocytes, and regulate the expression of chondrocyte-related proteins in the co-culture system of THP-1 and chondrocytes. CONCLUSIONS This study conducted a series of in vitro and in vivo experiments, revealing that hypoxia plays a pro-inflammatory role by increasing PGK1 activity and reducing the binding of the deubiquitinating enzyme ubiquitin-specific peptidase 14 to NLRP3, thereby reducing the ubiquitination level of NLRP3. CBR-470-1, a specific inhibitor of PGK1, can reduce PGK1 activity to reverse the role of hypoxia in the progression of OA. These findings lay a foundation for the development of OA treatment in a hypoxic environment. KEY POINTS Hypoxia plays a pro-inflammatory role by increasing PGK1 activity and thereby decreasing the ubiquitination level of NLRP3. Hypoxia plays a pro-inflammatory role by increasing PGK1 activity, reducing the binding of the deubiquitinating enzyme USP14 to NLRP3, and reducing the ubiquitination level of NLRP3. CBR-470-1 reverses the role of hypoxia in the progression of osteoarthritis.
Collapse
Affiliation(s)
- Ao Duan
- Department of Orthopedics Surgery, Trauma Medical Centre, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zemeng Ma
- Department of Joint Surgery, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaolong Shao
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhencheng Xiong
- Department of Orthopedics Surgery, Trauma Medical Centre, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyi Zhang
- Department of Orthopedics Surgery, Trauma Medical Centre, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Wenzheng Liu
- Department of Orthopedics Surgery, Trauma Medical Centre, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Guanglin Wang
- Department of Orthopedics Surgery, Trauma Medical Centre, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Shouye Hu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wei Lin
- Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Ma R, Prigge AD, Ortiz Serrano TP, Cheng Y, Davis JM, Lou KF, Wood WA, Do HC, Ren Z, Fulcer MM, Lotesto MJ, Singer BD, Coates BM, Ridge KM. Vimentin modulates regulatory T cell receptor-ligand interactions at distal pole complex, leading to dysregulated host response to viral pneumonia. Cell Rep 2024; 43:115056. [PMID: 39645657 PMCID: PMC11804169 DOI: 10.1016/j.celrep.2024.115056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/04/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024] Open
Abstract
Forkhead box P3 (Foxp3)+ regulatory T cells (Tregs) resolve acute inflammation and repair the injured lung after viral pneumonia. Vimentin is a critical protein in the distal pole complex (DPC) of Tregs. This study reveals the inhibitory effect of vimentin on the suppressive and reparative capacity of Tregs. Treg-specific deletion of vimentin increases Helios+interleukin-18 receptor (IL-18R)+ Tregs, suppresses inflammatory immune cells, and enhances tissue repair, protecting Vimfl/flFoxp3YFP-cre mice from influenza-induced lung injury and mortality. Mechanistically, vimentin suppresses the induction of amphiregulin, an epidermal growth factor receptor (EGFR) ligand necessary for tissue repair, by sequestering IL-18R to the DPC and restricting receptor-ligand interactions. We propose that vimentin in the DPC of Tregs functions as a molecular switch, which could be targeted to regulate the immune response and enhance tissue repair in patients with severe viral pneumonia.
Collapse
Affiliation(s)
- Ruihua Ma
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Andrew D Prigge
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Tatiana P Ortiz Serrano
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuan Cheng
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer M Davis
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Karen F Lou
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Walter A Wood
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hanh Chi Do
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ziyou Ren
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - McKenzie M Fulcer
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mary J Lotesto
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bria M Coates
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
Dietz S, Hebel J, Rühle J, Huff A, Eltzschig HK, Lajqi T, Poets CF, Gille C, Köstlin‐Gille N. Impact of the adenosine receptor A2BR expressed on myeloid cells on immune regulation during pregnancy. Eur J Immunol 2024; 54:e2451149. [PMID: 39460389 PMCID: PMC11628929 DOI: 10.1002/eji.202451149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
During pregnancy, the maternal immune system must carefully balance protection against pathogens with tolerance toward the semiallogeneic fetus. Dysfunctions of the immune system can lead to severe complications such as preeclampsia, fetal growth restriction, or pregnancy loss. Adenosine plays a role in physiological processes and plasma-level increase during pregnancy. The adenosine receptor A2B (A2BR), which is expressed on both, immune and nonimmune cells, is activated by high adenosine concentrations, achieved during pregnancy. We investigated the impact of A2BR expressed on myeloid cells on immune regulation during pregnancy using a mouse model with myeloid deficiency for A2BR. We demonstrate systemic changes in myeloid and lymphoid cell populations during pregnancy in A2BR-KO (Adora2B923f/f-LysMCre) mice with increased monocytes, neutrophils, and T cells but decreased B cells as well as altered T-cell subpopulations with decreased Th1 cells and Tregs and increased Th17 cells. Lack of A2BR on myeloid cells caused an increased systemic expression of IL-6 but decreased systemic accumulation and function of MDSC and reduced numbers of uterine natural killer cells. The pregnancy outcome was only marginally affected. Our results demonstrate that A2BR on myeloid cells plays a role in immune regulation during pregnancy, but the clinical impact on pregnancy remains unclear.
Collapse
Affiliation(s)
- Stefanie Dietz
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| | - Janine Hebel
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | - Jessica Rühle
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | - Alisha Huff
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | | | - Trim Lajqi
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| | - Christian F. Poets
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | - Christian Gille
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| | - Natascha Köstlin‐Gille
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| |
Collapse
|
4
|
Wang WR, Yang YZ, Xing Y, Zhou ZA, Jiang QY, Huang LY, Kong LD, Zhang DM. The trans-differentiation promotion of parietal epithelial cells by magnesium isoglycyrrhizinate to improve podocyte injury induced by high fructose consumption. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156242. [PMID: 39566408 DOI: 10.1016/j.phymed.2024.156242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Podocytes have limited proliferative capacity, which leads to irreversible glomerular injury in diverse kidney diseases. Magnesium isoglycyrrhizinate (MgIG), a hepatoprotective agent in clinic, has been reported to improve glomerular podocyte injury. However, the underlying mechanism of MgIG in ameliorating podocyte injury remains unclear. PURPOSE Glomerular parietal epithelial cells (PECs) are recognized as podocyte progenitors and play a pivotal role in the recovery following glomerular injury. This work aims to investigate the protective mechanisms of MgIG in mitigating glomerular injury by promoting PEC trans-differentiation. STUDY DESIGN A rat model of progressive glomerular podocyte injury, and in vitro models using the primary podocytes and primary PECs, were established to further explore the pharmacological mechanism of MgIG. METHODS Four-week-old male Sprague-Dawley (SD) rats were fed a 10 % fructose solution for 3, 6, 9 and 12 weeks to induce glomerular injury. The effects of MgIG on the progressive changes in podocytes and PECs, and the correlation between PEC density and podocyte loss, were analyzed. The mechanism of MgIG in triggering PEC trans-differentiation was investigated, by examining adenosine secretion in injured podocytes, as well as the expression of cluster of differentiation 44 (CD44), nephrin, adenosine receptor A2B (ARA2B) and glucocorticoid receptor (GR) in PECs both in vivo and in vitro. RESULTS Rats fed a high fructose diet exhibited progressive changes in glomerular PECs, including increased cell density and a preference for trans-differentiation. A positive correlation was observed between PEC density and podocyte loss. Co-culture experiments demonstrated that extracellular adenosine accumulation from injured podocytes induced by high fructose exposure promoted PEC trans-differentiation via ARA2B. MgIG significantly improved podocyte injury and exhibited effects similar to dexamethasone on nephrin upregulation and CD44 inhibition. Moreover, the effect of MgIG on PEC ARA2B activation was more effective than that of dexamethasone. The co-expression of paired box 2 (PAX2)+-Nephrin+ in glomeruli indicated that MgIG induced PEC trans-differentiation and podocyte regeneration in model rats. Accordingly, podocyte loss and increased urine albumin-to-creatinine ratio (UACR) were also alleviated. Moreover, MgIG, which acts as a GR agonist to activate GR, reversed the upregulation of CD44 and decreased ARA2B induced by tumor necrosis factor-α (TNF-α) in primary PECs. The siRNA interference experiment manifested that MgIG exhibited a more pronounced enhancement of GR upregulation, in contrast to ARA2B activation, to promote PEC trans-differentiation. CONCLUSION This work reports for the first time that PECs respond to the accumulation of extracellular adenosine from injured podocytes via activating ARA2B and focuses on the role of adenosine and adenosine receptors in the trans-differentiation of PECs. Furthermore, this study provides the first evidence that MgIG may promote podocyte regeneration by enhancing PEC trans-differentiation through GR activation, providing a research basis for investigating the glucocorticoid-like activity of MgIG in ameliorating glomerular podocyte injury.
Collapse
Affiliation(s)
- Wan-Ru Wang
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Ying-Zhi Yang
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Yu Xing
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Zi-Ang Zhou
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Qiao-Yun Jiang
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Lu-Yi Huang
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Ling-Dong Kong
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Dong-Mei Zhang
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China.
| |
Collapse
|
5
|
Price AD, Baucom MR, Becker ER, Chae RC, Schuster R, England L, Pritts TA, Goodman MD. Aberrant Oxygen Concentrations Induce Systemic Inflammation in a Murine Model. J Surg Res 2024; 301:287-295. [PMID: 38996719 DOI: 10.1016/j.jss.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
INTRODUCTION Hypoxia is a significant cause of secondary insult in the critically ill trauma or surgical patient. The cause of increased mortality following a brief period of hypoxia is not well understood. The aim of this study is to determine the effect of acute, isolated deviations in oxygen concentration on proinflammatory cytokine release and markers of endothelial stress in a murine model. METHODS Mice were randomized to either control, hypoxia, or hyperoxia group. The control group was exposed to room air for 60 min, the hyperoxia group was exposed to 70% fraction of inspired oxygen, and the hypoxia group was exposed to 10% fraction of inspired oxygen for 60 min. Whole blood collection was completed via cardiac puncture. Serum concentrations of proinflammatory cytokines and endothelial stress markers were analyzed via enzyme-linked immunosorbent assay. RESULTS Following exposure to hypoxic conditions, there was a significant increase in interleukin (IL)-1α (IL-1 α), IL-1 β, IL-3, IL-4, IL-6, IL-10, tumor necrosis factor α . Following exposure to hyperoxic conditions, there was a significant increase in monocyte chemoattractant protein-1 and regulated upon activation normal T cell expressed and presumably secreted, as well as a significant decrease in IL-12, and IL-17. No clinically significant difference was noted in serum concentration of endothelial stress markers between the treatment groups. DISCUSSION Exposure to oxygen extremes induces systemic inflammation as measured by proinflammatory cytokines in a murine model. Hyperoxia also demonstrates the ability to downregulate certain inflammatory pathways while inducing others. No effect on serum concentration of endothelial stress markers is observed following acute, isolated hypoxic or hyperoxic conditions.
Collapse
Affiliation(s)
- Adam D Price
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio.
| | - Matthew R Baucom
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Ellen R Becker
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Ryan C Chae
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Rebecca Schuster
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Lisa England
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Timothy A Pritts
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
6
|
Lee NT, Savvidou I, Selan C, Calvello I, Vuong A, Wright DK, Brkljaca R, Willcox A, Chia JSJ, Wang X, Peter K, Robson SC, Medcalf RL, Nandurkar HH, Sashindranath M. Development of endothelial-targeted CD39 as a therapy for ischemic stroke. J Thromb Haemost 2024; 22:2331-2344. [PMID: 38754782 DOI: 10.1016/j.jtha.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Ischemic stroke is characterized by a necrotic lesion in the brain surrounded by an area of dying cells termed the penumbra. Salvaging the penumbra either with thrombolysis or mechanical retrieval is the cornerstone of stroke management. At-risk neuronal cells release extracellular adenosine triphosphate, triggering microglial activation and causing a thromboinflammatory response, culminating in endothelial activation and vascular disruption. This is further aggravated by ischemia-reperfusion injury that follows all reperfusion therapies. The ecto-enzyme CD39 regulates extracellular adenosine triphosphate by hydrolyzing it to adenosine, which has antithrombotic and anti-inflammatory properties and reverses ischemia-reperfusion injury. OBJECTIVES The objective off the study was to determine the efficacy of our therapeutic, anti-VCAM-CD39 in ischaemic stroke. METHODS We developed anti-VCAM-CD39 that targets the antithrombotic and anti-inflammatory properties of recombinant CD39 to the activated endothelium of the penumbra by binding to vascular cell adhesion molecule (VCAM)-1. Mice were subjected to 30 minutes of middle cerebral artery occlusion and analyzed at 24 hours. Anti-VCAM-CD39 or control agents (saline, nontargeted CD39, or anti-VCAM-inactive CD39) were given at 3 hours after middle cerebral artery occlusion. RESULTS Anti-VCAM-CD39 treatment reduced neurologic deficit; magnetic resonance imaging confirmed significantly smaller infarcts together with an increase in cerebrovascular perfusion. Anti-VCAM-CD39 also restored blood-brain barrier integrity and reduced microglial activation. Coadministration of anti-VCAM-CD39 with thrombolytics (tissue plasminogen activator [tPA]) further reduced infarct volumes and attenuated blood-brain barrier permeability with no associated increase in intracranial hemorrhage. CONCLUSION Anti-VCAM-CD39, uniquely targeted to endothelial cells, could be a new stroke therapy even when administered 3 hours postischemia and may further synergize with thrombolytic therapy to improve stroke outcomes.
Collapse
Affiliation(s)
- Natasha Ting Lee
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Ioanna Savvidou
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Carly Selan
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Ilaria Calvello
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Amy Vuong
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robert Brkljaca
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Abbey Willcox
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Joanne S J Chia
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Harshal H Nandurkar
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Maithili Sashindranath
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Olatunji LA, Badmus OO, Abdullahi KO, Usman TO, ologe M, Adejare A. Depletion of hepatic glutathione and adenosine by glucocorticoid exposure in Wistar rats is pregnancy-independent. Toxicol Rep 2024; 12:485-491. [PMID: 38741615 PMCID: PMC11090063 DOI: 10.1016/j.toxrep.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/24/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Liver diseases have gained increasing attention due to their substantial impact on health, independently as well as in association with cardio-metabolic disorders. Studies have suggested that glutathione and adenosine assist in providing protection against oxidative stress and inflammation while glucocorticoid (GC) therapy has been associated with chronic inflammatory disorders, even in pregnancy. The implications of Glucocorticoid exposure on maternal health and fetal growth is a concern, however, the possible role of glutathione and adenosine has not been thoroughly investigated. The study therefore hypothesize that exposure to glucocorticoids leads to depletion of hepatic glutathione and adenosine levels, contributing to oxidative stress and tissue injury. Additionally, we aim to investigate whether the effects of glucocorticoids on hepatic health are pregnancy dependent in female rats. Twelve Pregnant and twelve age-matched non-pregnant rats were used for this study; an exogenous administration of glucocorticoid (Dex: 0.2 mg/kg) or vehicle (po) was administered to six pregnant and six non-pregnant rats from gestational day 14 to 19 or for a period of 6 days respectively. Data obtained showed that GC exposure led to a decrease in hepatic glucose-6-phosphate dehydrogenase, glutathione peroxidase, GSH/GSSG ratio and adenosine content in both pregnant and non-pregnant rats. In addition, increased activities of adenosine deaminase and xanthine oxidase, along with increased production of uric acid and increased levels of lactate dehydrogenase, aspartate aminotransferase, alanine transferase, alkaline phosphatase and gamma-glutamyl transferase were observed. In summary, the study indicates that GC-induced liver damage is underlined by depleted hepatic adenosine and glutathione levels as well as elevated markers of tissue inflammation and/or injury. Furthermore, the findings suggest that the effects of GC exposure on hepatic health are pregnancy independent.
Collapse
Affiliation(s)
- Lawrence A. Olatunji
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olufunto O. Badmus
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kamaldeen O. Abdullahi
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Taofeek O. Usman
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburg, PA, USA
| | - Mary ologe
- Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | | |
Collapse
|
8
|
Ma XN, Feng W, Chen SL, Zhong XQ, Lin CS, Xu Q. Methotrexate and the Risk of Dementia: A Two-Sample Mendelian Randomization Study. Neurol Ther 2024; 13:715-725. [PMID: 38592337 PMCID: PMC11136892 DOI: 10.1007/s40120-024-00609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION Recent studies have suggested a potential association between methotrexate use and an increased risk of dementia. However, the causal relationship between methotrexate and dementia remains unclear. This study aims to investigate the potential causal effect of methotrexate use on the risk of dementia using a two-sample Mendelian randomization (TSMR) approach. METHODS We conducted a TSMR study using summary statistics from genome-wide association studies (GWAS) of methotrexate use and dementia. We obtained genetic instruments for methotrexate use from a large-scale GWAS meta-analysis and genetic instruments for dementia from a separate GWAS meta-analysis. We performed several statistical analyses, including inverse-variance weighted (IVW), weighted median (WM1), weighted mode (WM2), and MR-Egger regression methods, to estimate the causal effect of methotrexate on dementia risk. RESULTS Our TSMR analysis showed a significant positive association between genetic predisposition to methotrexate use and dementia risk. The IVW method estimated a causal odds ratio (OR) of 0.476 [95% confidence interval (CI) 0.362-0.626] per unit increase in the log odds ratio of methotrexate use. WM1, WM2, and MR-Egger methods provided consistent results. CONCLUSION The findings of this mendelian randomization (MR) study suggest a potential causal effect of methotrexate use on the risk of dementia. However, further research is needed to validate these findings and explore the underlying mechanisms. Since methotrexate is widely prescribed for various autoimmune diseases, a better understanding of its potential impact on dementia risk is crucial for optimizing treatment strategies and addressing potential adverse effects.
Collapse
Affiliation(s)
- Xiao-Na Ma
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wei Feng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shu-Lin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiao-Qin Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chang-Song Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qiang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
9
|
Hu X, Dong J, Geng P, Sun Y, Du W, Zhao X, Wang Q, Liu C, Wang X, Liu Y, Liu W, Cheng H, Wang W, Jin X. Nicotine Treatment Ameliorates Blood-Brain Barrier Damage After Acute Ischemic Stroke by Regulating Endothelial Scaffolding Protein Pdlim5. Transl Stroke Res 2024; 15:672-687. [PMID: 37233908 DOI: 10.1007/s12975-023-01158-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Analysis of a National Institutes of Health (NIH) trial shows that cigarette smoking protected tissue plasminogen activator (tPA)-treated patients from hemorrhage transformation (HT); however, the underlying mechanism is not clear. Damage to the integrity of the blood-brain barrier (BBB) is the pathological basis of HT. Here, we investigated the molecular events of BBB damage after acute ischemic stroke (AIS) using in vitro oxygen-glucose deprivation (OGD) and in vivo mice middle cerebral artery occlusion (MCAO) models. Our results showed that the permeability of bEND.3 monolayer endothelial cells was significantly increased after being exposed to OGD for 2 h. Mice were subjected to 90-min ischemia with 45-min reperfusion, and BBB integrity was significantly damaged, accompanied by tight junction protein occludin degradation, downregulation of microRNA-21 (miR-21), transforming growth factor-β (TGF-β), phosphorylated Smad (p-Smad), plasminogen activator inhibitor-1 (PAI-1), and the upregulation of PDZ and LIM domain protein 5 (Pdlim5), an adaptor protein that has been shown to regulate TGF-β-Smad3 pathway. In addition, pretreatment with two-week nicotine significantly reduced AIS-induced BBB damage and its associated protein dysregulation via downregulating Pdlim5. Notably, AIS did not significantly induce BBB damage in Pdlim5 deficit mice, but overexpression of Pdlim5 in the striatum with adeno-associated virus produced BBB damage and associated protein dysregulation which could be ameliorated by two-week nicotine pretreatment. More important, AIS induced a significant miR-21 decrease, and miR-21 mimics treatment decreased AIS-induced BBB damage by decreasing Pdlim5. Together, these results demonstrate that nicotine treatment alleviates the AIS-compromised integrity of BBB by regulating Pdlim5.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jiali Dong
- Institute of Neuroscience, the second affiliated hospital of Soochow University, Suzhou, 215004, China
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yanyun Sun
- Institute of Neuroscience, the second affiliated hospital of Soochow University, Suzhou, 215004, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Xiaoyun Zhao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Changqing Liu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiaona Wang
- Institute of Neuroscience, the second affiliated hospital of Soochow University, Suzhou, 215004, China
| | - Yushan Liu
- Institute of Neuroscience, the second affiliated hospital of Soochow University, Suzhou, 215004, China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, 518035, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wei Wang
- Department of Physiology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, People's Republic of China.
- Institute of Neuroscience, the second affiliated hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
10
|
Eckle T, Bertazzo J, Khatua TN, Tabatabaei SRF, Bakhtiari NM, Walker LA, Martino TA. Circadian Influences on Myocardial Ischemia-Reperfusion Injury and Heart Failure. Circ Res 2024; 134:675-694. [PMID: 38484024 PMCID: PMC10947118 DOI: 10.1161/circresaha.123.323522] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
The impact of circadian rhythms on cardiovascular function and disease development is well established, with numerous studies in genetically modified animals emphasizing the circadian molecular clock's significance in the pathogenesis and pathophysiology of myocardial ischemia and heart failure progression. However, translational preclinical studies targeting the heart's circadian biology are just now emerging and are leading to the development of a novel field of medicine termed circadian medicine. In this review, we explore circadian molecular mechanisms and novel therapies, including (1) intense light, (2) small molecules modulating the circadian mechanism, and (3) chronotherapies such as cardiovascular drugs and meal timings. These promise significant clinical translation in circadian medicine for cardiovascular disease. (4) Additionally, we address the differential functioning of the circadian mechanism in males versus females, emphasizing the consideration of biological sex, gender, and aging in circadian therapies for cardiovascular disease.
Collapse
Affiliation(s)
- Tobias Eckle
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Júlia Bertazzo
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tarak Nath Khatua
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Seyed Reza Fatemi Tabatabaei
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Naghmeh Moori Bakhtiari
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tami A. Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
11
|
Figarella K, Kim J, Ruan W, Mills T, Eltzschig HK, Yuan X. Hypoxia-adenosine axis as therapeutic targets for acute respiratory distress syndrome. Front Immunol 2024; 15:1328565. [PMID: 38312838 PMCID: PMC10835146 DOI: 10.3389/fimmu.2024.1328565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The human respiratory and circulatory systems collaborate intricately to ensure oxygen delivery to all cells, which is vital for ATP production and maintaining physiological functions and structures. During limited oxygen availability, hypoxia-inducible factors (HIFs) are stabilized and play a fundamental role in maintaining cellular processes for hypoxia adaptation. First discovered during investigations of erythropoietin production regulation, HIFs influence physiological and pathological processes, including development, inflammation, wound healing, and cancer. HIFs promote extracellular adenosine signaling by enhancing adenosine generation and receptor signaling, representing an endogenous feedback mechanism that curbs excessive inflammation, supports injury resolution, and enhances hypoxia tolerance. This is especially important for conditions that involve tissue hypoxia, such as acute respiratory distress syndrome (ARDS), which globally poses significant health challenges without specific treatment options. Consequently, pharmacological strategies to amplify HIF-mediated adenosine production and receptor signaling are of great importance.
Collapse
Affiliation(s)
- Katherine Figarella
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jieun Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger Klaus Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
12
|
Carvalho-Barbosa N, Zeidler JD, Savio LEB, Coutinho-Silva R. Purinergic signaling in the battlefield of viral infections. Purinergic Signal 2023:10.1007/s11302-023-09981-8. [PMID: 38038801 DOI: 10.1007/s11302-023-09981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Purinergic signaling has been associated with immune defenses against pathogens such as bacteria, protozoa, fungi, and viruses, acting as a sentinel system that signals to the cells when a threat is present. This review focuses on the roles of purinergic signaling and its therapeutic potential for viral infections. In this context, the purinergic system may play potent antiviral roles by boosting interferon signaling. In other cases, though, it can contribute to a hyperinflammatory response and disease severity, resulting in poor outcomes, such as during flu and potentially COVID-19. Lastly, a third situation may occur since viruses are obligatory intracellular parasites that hijack the host cell machinery for their infection and replication. Viruses such as HIV-1 use the purinergic system to favor their infection and persistence within the host cell. Therefore, understanding the particular nuances of purinergic signaling in each viral infection may contribute to designing proper therapeutic strategies to treat viral diseases.
Collapse
Affiliation(s)
- Nayara Carvalho-Barbosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Julianna Dias Zeidler
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
13
|
Zhang C, Wang K, Wang H. Adenosine in cancer immunotherapy: Taking off on a new plane. Biochim Biophys Acta Rev Cancer 2023; 1878:189005. [PMID: 37913941 DOI: 10.1016/j.bbcan.2023.189005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
As a new pillar of cancer therapy, tumor immunotherapy has brought irreplaceable durable responses in tumors. Considering its low response rate, additional immune regulatory mechanisms will be critical for the development of next-generation immune therapeutics. As a key regulatory mechanism, adenosine (ADO) protects tissues from excessive immune responses, but as a metabolite highly concentrated in tumor microenvironments, extracellular adenosine acts on adenosine receptors (mainly A2A receptors) expressed on MDSCs, Tregs, NK cells, effector T cells, DCs, and macrophages to promote tumor cell escape from immune surveillance by inhibiting the immune response. Amounting preclinical studies have demonstrated the adenosine pathway as a novel checkpoint for immunotherapy. Large number of adenosine pathway targeting clinical trials are now underway, including antibodies against CD39 and CD73 as well as A2A receptor inhibitors. There has been evidence of antitumor efficacy of these inhibitors in early clinical trials among a variety of tumors such as breast cancer, prostate cancer, non-small cell lung cancer, etc. As more clinical trial results are published, the combination of blockade of this pathway with immune checkpoint inhibitors, targeted drugs, traditional chemotherapy medications, radiotherapy and endocrine therapy will provide cancer patients with better clinical outcomes. We would elaborate on the role of CD39-CD73-A2AR pathway in the contribution of tumor microenvironment and the targeting of the adenosinergic pathway for cancer therapy in the review.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
14
|
Chen L, Alabdullah M, Mahnke K. Adenosine, bridging chronic inflammation and tumor growth. Front Immunol 2023; 14:1258637. [PMID: 38022572 PMCID: PMC10643868 DOI: 10.3389/fimmu.2023.1258637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Adenosine (Ado) is a well-known immunosuppressive agent that may be released or generated extracellularly by cells, via degrading ATP by the sequential actions of the ectonucleotides CD39 and CD73. During inflammation Ado is produced by leukocytes and tissue cells by different means to initiate the healing phase. Ado downregulates the activation and the effector functions of different leukocyte (sub-) populations and stimulates proliferation of fibroblasts for re-establishment of intact tissues. Therefore, the anti-inflammatory actions of Ado are already intrinsically triggered during each episode of inflammation. These tissue-regenerating and inflammation-tempering purposes of Ado can become counterproductive. In chronic inflammation, it is possible that Ado-driven anti-inflammatory actions sustain the inflammation and prevent the final clearance of the tissues from possible pathogens. These chronic infections are characterized by increased tissue damage, remodeling and accumulating DNA damage, and are thus prone for tumor formation. Developing tumors may further enhance immunosuppressive actions by producing Ado by themselves, or by "hijacking" CD39+/CD73+ cells that had already developed during chronic inflammation. This review describes different and mostly convergent mechanisms of how Ado-induced immune suppression, initially induced in inflammation, can lead to tumor formation and outgrowth.
Collapse
Affiliation(s)
| | | | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
15
|
Massold T, Ibrahim F, Niemann V, Steckel B, Becker K, Schrader J, Stegbauer J, Temme S, Grandoch M, Flögel U, Bouvain P. CD73 deficiency does not aggravate angiotensin II-induced aortic inflammation in mice. Sci Rep 2023; 13:17125. [PMID: 37816827 PMCID: PMC10564884 DOI: 10.1038/s41598-023-44361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023] Open
Abstract
Vascular inflammation plays a key role in the development of aortic diseases. A potential novel target for treatment might be CD73, an ecto-5'-nucleotidase that generates anti-inflammatory adenosine in the extracellular space. Here, we investigated whether a lack of CD73 results in enhanced aortic inflammation. To this end, angiotensin II was infused into wildtype and CD73-/- mice over 10 days. Before and after infusion, mice were analyzed using magnetic resonance imaging, ultrasound, flow cytometry, and histology. The impact of age and gender was investigated using female and male mice of three and six months of age, respectively. Angiotensin II infusion led to increased immune cell infiltration in both genotypes' aortae, but depletion of CD73 had no impact on immune cell recruitment. These findings were not modified by age or sex. No substantial difference in morphological or functional characteristics could be detected between wildtype and CD73-/- mice. Interestingly, the expression of CD73 on neutrophils decreased significantly in wildtype mice during treatment. In summary, we have found no evidence that CD73 deficiency affects the onset of aortic inflammation. However, as CD73 expression decreased during disease induction, an increase in CD73 by pharmaceutical intervention might result in lower vascular inflammation and less vascular disease.
Collapse
Affiliation(s)
- Timo Massold
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fady Ibrahim
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Viola Niemann
- Institute for Translational Pharmacology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bodo Steckel
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katrin Becker
- Department of Cardiology, Pulmonology, and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute for Cardiovascular Sciences, Endothelial Signaling and Metabolism, University Hospital Bonn, Bonn, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Sebastian Temme
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany
| | - Maria Grandoch
- Institute for Translational Pharmacology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany.
| | - Pascal Bouvain
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
16
|
Gao J, Zhang Z, Yan JY, Ge YX, Gao Y. Inflammation and coagulation abnormalities via the activation of the HMGB1‑RAGE/NF‑κB and F2/Rho pathways in lung injury induced by acute hypoxia. Int J Mol Med 2023; 52:67. [PMID: 37350396 PMCID: PMC10555482 DOI: 10.3892/ijmm.2023.5270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
High‑altitude acute hypoxia is commonly associated with respiratory cardiovascular diseases. The inability to adapt to acute hypoxia may lead to cardiovascular dysfunction, lung injury and even death. Therefore, understanding the molecular basis of the adaptation to high‑altitude acute hypoxia may reveal novel therapeutic approaches with which to counteract the detrimental consequences of hypoxia. In the present study, a high‑altitude environment was simulated in a rat model in order to investigate the role of the high mobility group protein‑1 (HMGB1)/receptor for advanced glycation end products (RAGE)/NF‑κB and F2/Rho signaling pathways in lung injury induced by acute hypoxia. It was found that acute hypoxia caused inflammation through the HMGB1/RAGE/NF‑κB pathway and coagulation dysfunction through the F2/Rho pathway, both of which may be key processes in acute hypoxia‑induced lung injury. The present study provides new insight into the molecular basis of lung injury induced by acute hypoxia. The simultaneous activation of the HMGB1/RAGE/NF‑κB and F2/Rho signaling pathways plays a critical role in hypoxia‑induced inflammatory responses and coagulation abnormalities, and provides a theoretical basis for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Jia-Yi Yan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yun-Xuan Ge
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
17
|
Chalkias A, Adamos G, Mentzelopoulos SD. General Critical Care, Temperature Control, and End-of-Life Decision Making in Patients Resuscitated from Cardiac Arrest. J Clin Med 2023; 12:4118. [PMID: 37373812 DOI: 10.3390/jcm12124118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac arrest affects millions of people per year worldwide. Although advances in cardiopulmonary resuscitation and intensive care have improved outcomes over time, neurologic impairment and multiple organ dysfunction continue to be associated with a high mortality rate. The pathophysiologic mechanisms underlying the post-resuscitation disease are complex, and a coordinated, evidence-based approach to post-resuscitation care has significant potential to improve survival. Critical care management of patients resuscitated from cardiac arrest focuses on the identification and treatment of the underlying cause(s), hemodynamic and respiratory support, organ protection, and active temperature control. This review provides a state-of-the-art appraisal of critical care management of the post-cardiac arrest patient.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, 41500 Larisa, Greece
- Outcomes Research Consortium, Cleveland, OH 44195, USA
| | - Georgios Adamos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, 10675 Athens, Greece
| | - Spyros D Mentzelopoulos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, 10675 Athens, Greece
| |
Collapse
|
18
|
Strickland LN, Faraoni EY, Ruan W, Yuan X, Eltzschig HK, Bailey-Lundberg JM. The resurgence of the Adora2b receptor as an immunotherapeutic target in pancreatic cancer. Front Immunol 2023; 14:1163585. [PMID: 37187740 PMCID: PMC10175829 DOI: 10.3389/fimmu.2023.1163585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense desmoplastic stroma that impedes drug delivery, reduces parenchymal blood flow, and suppresses the anti-tumor immune response. The extracellular matrix and abundance of stromal cells result in severe hypoxia within the tumor microenvironment (TME), and emerging publications evaluating PDAC tumorigenesis have shown the adenosine signaling pathway promotes an immunosuppressive TME and contributes to the overall low survival rate. Hypoxia increases many elements of the adenosine signaling pathway, resulting in higher adenosine levels in the TME, further contributing to immune suppression. Extracellular adenosine signals through 4 adenosine receptors (Adora1, Adora2a, Adora2b, Adora3). Of the 4 receptors, Adora2b has the lowest affinity for adenosine and thus, has important consequences when stimulated by adenosine binding in the hypoxic TME. We and others have shown that Adora2b is present in normal pancreas tissue, and in injured or diseased pancreatic tissue, Adora2b levels are significantly elevated. The Adora2b receptor is present on many immune cells, including macrophages, dendritic cells, natural killer cells, natural killer T cells, γδ T cells, B cells, T cells, CD4+ T cells, and CD8+ T cells. In these immune cell types, adenosine signaling through Adora2b can reduce the adaptive anti-tumor response, augmenting immune suppression, or may contribute to transformation and changes in fibrosis, perineural invasion, or the vasculature by binding the Adora2b receptor on neoplastic epithelial cells, cancer-associated fibroblasts, blood vessels, lymphatic vessels, and nerves. In this review, we discuss the mechanistic consequences of Adora2b activation on cell types in the tumor microenvironment. As the cell-autonomous role of adenosine signaling through Adora2b has not been comprehensively studied in pancreatic cancer cells, we will also discuss published data from other malignancies to infer emerging therapeutic considerations for targeting the Adora2b adenosine receptor to reduce the proliferative, invasive, and metastatic potential of PDAC cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, Critical Care, and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
19
|
Schädlich IS, Winzer R, Stabernack J, Tolosa E, Magnus T, Rissiek B. The role of the ATP-adenosine axis in ischemic stroke. Semin Immunopathol 2023:10.1007/s00281-023-00987-3. [PMID: 36917241 DOI: 10.1007/s00281-023-00987-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
In ischemic stroke, the primary neuronal injury caused by the disruption of energy supply is further exacerbated by secondary sterile inflammation. The inflammatory cascade is largely initiated by the purine adenosine triphosphate (ATP) which is extensively released to the interstitial space during brain ischemia and functions as an extracellular danger signaling molecule. By engaging P2 receptors, extracellular ATP activates microglia leading to cytokine and chemokine production and subsequent immune cell recruitment from the periphery which further amplifies post-stroke inflammation. The ectonucleotidases CD39 and CD73 shape and balance the inflammatory environment by stepwise degrading extracellular ATP to adenosine which itself has neuroprotective and anti-inflammatory signaling properties. The neuroprotective effects of adenosine are mainly mediated through A1 receptors and inhibition of glutamatergic excitotoxicity, while the anti-inflammatory capacities of adenosine have been primarily attributed to A2A receptor activation on infiltrating immune cells in the subacute phase after stroke. In this review, we summarize the current state of knowledge on the ATP-adenosine axis in ischemic stroke, discuss contradictory results, and point out potential pitfalls towards translating therapeutic approaches from rodent stroke models to human patients.
Collapse
Affiliation(s)
- Ines Sophie Schädlich
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Riekje Winzer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Joschi Stabernack
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
20
|
Sudi S, Thomas FM, Daud SK, Ag Daud DM, Sunggip C. The Pleiotropic Role of Extracellular ATP in Myocardial Remodelling. Molecules 2023; 28:molecules28052102. [PMID: 36903347 PMCID: PMC10004151 DOI: 10.3390/molecules28052102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 03/12/2023] Open
Abstract
Myocardial remodelling is a molecular, cellular, and interstitial adaptation of the heart in response to altered environmental demands. The heart undergoes reversible physiological remodelling in response to changes in mechanical loading or irreversible pathological remodelling induced by neurohumoral factors and chronic stress, leading to heart failure. Adenosine triphosphate (ATP) is one of the potent mediators in cardiovascular signalling that act on the ligand-gated (P2X) and G-protein-coupled (P2Y) purinoceptors via the autocrine or paracrine manners. These activations mediate numerous intracellular communications by modulating the production of other messengers, including calcium, growth factors, cytokines, and nitric oxide. ATP is known to play a pleiotropic role in cardiovascular pathophysiology, making it a reliable biomarker for cardiac protection. This review outlines the sources of ATP released under physiological and pathological stress and its cell-specific mechanism of action. We further highlight a series of cardiovascular cell-to-cell communications of extracellular ATP signalling cascades in cardiac remodelling, which can be seen in hypertension, ischemia/reperfusion injury, fibrosis, hypertrophy, and atrophy. Finally, we summarize current pharmacological intervention using the ATP network as a target for cardiac protection. A better understanding of ATP communication in myocardial remodelling could be worthwhile for future drug development and repurposing and the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Suhaini Sudi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Fiona Macniesia Thomas
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Siti Kadzirah Daud
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Dayang Maryama Ag Daud
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Health through Exercise and Active Living (HEAL) Research Unit, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Caroline Sunggip
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence:
| |
Collapse
|
21
|
Lazzarin T, Tonon CR, Martins D, Fávero EL, Baumgratz TD, Pereira FWL, Pinheiro VR, Ballarin RS, Queiroz DAR, Azevedo PS, Polegato BF, Okoshi MP, Zornoff L, Rupp de Paiva SA, Minicucci MF. Post-Cardiac Arrest: Mechanisms, Management, and Future Perspectives. J Clin Med 2022; 12:259. [PMID: 36615059 PMCID: PMC9820907 DOI: 10.3390/jcm12010259] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Cardiac arrest is an important public health issue, with a survival rate of approximately 15 to 22%. A great proportion of these deaths occur after resuscitation due to post-cardiac arrest syndrome, which is characterized by the ischemia-reperfusion injury that affects the role body. Understanding physiopathology is mandatory to discover new treatment strategies and obtain better results. Besides improvements in cardiopulmonary resuscitation maneuvers, the great increase in survival rates observed in recent decades is due to new approaches to post-cardiac arrest care. In this review, we will discuss physiopathology, etiologies, and post-resuscitation care, emphasizing targeted temperature management, early coronary angiography, and rehabilitation.
Collapse
Affiliation(s)
- Taline Lazzarin
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu 18607-741, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cupping alleviates lung injury through the adenosine/A 2BAR pathway. Heliyon 2022; 8:e12141. [PMID: 36544817 PMCID: PMC9761715 DOI: 10.1016/j.heliyon.2022.e12141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/09/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background Acute lung injury (ALI) is a serious condition. Inflammation plays a crucial role in the pathogenesis of ALI. Cupping, as a part of traditional Chinese medicine, is still a popular complementary and alternative therapy for a variety of ailments including respiratory diseases. However, reliable scientific data about cupping therapy are scarce. Adenosine, a purine nucleoside produced under metabolic stress by the action of extracellular ectonucleotidases (i.e. CD39 and CD73), can attenuate ALI through the A2BAR receptor. The aim of this study was to investigate the protective effect of cupping in a rat model of ALI and the role of adenosine in it. Methods Male adult rats were subjected to ALI by intratracheal LPS instillation (0.3 mg/kg). Immediately after intratracheal LPS instillation, vacuum pressure was applied to a sanitized plastic bell cup on the back of the rat by suction for 10 min. Pulmonary injury and inflammation were assessed at 4 h after LPS challenge. The role of adenosine and A2BAR in cupping's protection after LPS instillation were evaluated. Results Cupping alleviated LPS-induced lung injury, reduced inflammation and inhibited NF-kB activation in rats. Cupping upregulated CD39 and CD73 mRNA expression of the skin tissue at the cupping site and increased circulating levels of adenosine. Administration of PSB1115, a specific adenosine A2BAR receptor antagonist, abolished cupping's beneficial effects in LPS-induced ALI. Conclusions Cupping attenuates lung inflammation and injury through the adenosine/A2BAR pathway. The current study provides evidence-based information about cupping therapy in ALI.
Collapse
|
23
|
Wing PAC, Prange-Barczynska M, Cross A, Crotta S, Orbegozo Rubio C, Cheng X, Harris JM, Zhuang X, Johnson RL, Ryan KA, Hall Y, Carroll MW, Issa F, Balfe P, Wack A, Bishop T, Salguero FJ, McKeating JA. Hypoxia inducible factors regulate infectious SARS-CoV-2, epithelial damage and respiratory symptoms in a hamster COVID-19 model. PLoS Pathog 2022; 18:e1010807. [PMID: 36067210 PMCID: PMC9481176 DOI: 10.1371/journal.ppat.1010807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Understanding the host pathways that define susceptibility to Severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) infection and disease are essential for the design of new therapies. Oxygen levels in the microenvironment define the transcriptional landscape, however the influence of hypoxia on virus replication and disease in animal models is not well understood. In this study, we identify a role for the hypoxic inducible factor (HIF) signalling axis to inhibit SARS-CoV-2 infection, epithelial damage and respiratory symptoms in the Syrian hamster model. Pharmacological activation of HIF with the prolyl-hydroxylase inhibitor FG-4592 significantly reduced infectious virus in the upper and lower respiratory tract. Nasal and lung epithelia showed a reduction in SARS-CoV-2 RNA and nucleocapsid expression in treated animals. Transcriptomic and pathological analysis showed reduced epithelial damage and increased expression of ciliated cells. Our study provides new insights on the intrinsic antiviral properties of the HIF signalling pathway in SARS-CoV-2 replication that may be applicable to other respiratory pathogens and identifies new therapeutic opportunities.
Collapse
Affiliation(s)
- Peter A. C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maria Prange-Barczynska
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Amy Cross
- Radcliffe Department of Surgery, University of Oxford, United Kingdom
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Xiaotong Cheng
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel L. Johnson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Kathryn A. Ryan
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Yper Hall
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Miles W. Carroll
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Radcliffe Department of Surgery, University of Oxford, United Kingdom
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tammie Bishop
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Francisco J. Salguero
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Jane A. McKeating
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Ruan W, Ma X, Bang IH, Liang Y, Muehlschlegel JD, Tsai KL, Mills TW, Yuan X, Eltzschig HK. The Hypoxia-Adenosine Link during Myocardial Ischemia-Reperfusion Injury. Biomedicines 2022; 10:1939. [PMID: 36009485 PMCID: PMC9405579 DOI: 10.3390/biomedicines10081939] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Despite increasing availability and more successful interventional approaches to restore coronary reperfusion, myocardial ischemia-reperfusion injury is a substantial cause of morbidity and mortality worldwide. During myocardial ischemia, the myocardium becomes profoundly hypoxic, thus causing stabilization of hypoxia-inducible transcription factors (HIF). Stabilization of HIF leads to a transcriptional program that promotes adaptation to hypoxia and cellular survival. Transcriptional consequences of HIF stabilization include increases in extracellular production and signaling effects of adenosine. Extracellular adenosine functions as a signaling molecule via the activation of adenosine receptors. Several studies implicated adenosine signaling in cardioprotection, particularly through the activation of the Adora2a and Adora2b receptors. Adenosine receptor activation can lead to metabolic adaptation to enhance ischemia tolerance or dampen myocardial reperfusion injury via signaling events on immune cells. Many studies highlight that clinical strategies to target the hypoxia-adenosine link could be considered for clinical trials. This could be achieved by using pharmacologic HIF activators or by directly enhancing extracellular adenosine production or signaling as a therapy for patients with acute myocardial infarction, or undergoing cardiac surgery.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinxin Ma
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - In Hyuk Bang
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yafen Liang
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jochen Daniel Muehlschlegel
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tingting W. Mills
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
25
|
Pereira-Figueiredo D, Nascimento AA, Cunha-Rodrigues MC, Brito R, Calaza KC. Caffeine and Its Neuroprotective Role in Ischemic Events: A Mechanism Dependent on Adenosine Receptors. Cell Mol Neurobiol 2022; 42:1693-1725. [PMID: 33730305 PMCID: PMC11421760 DOI: 10.1007/s10571-021-01077-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Ischemia is characterized by a transient, insufficient, or permanent interruption of blood flow to a tissue, which leads to an inadequate glucose and oxygen supply. The nervous tissue is highly active, and it closely depends on glucose and oxygen to satisfy its metabolic demand. Therefore, ischemic conditions promote cell death and lead to a secondary wave of cell damage that progressively spreads to the neighborhood areas, called penumbra. Brain ischemia is one of the main causes of deaths and summed with retinal ischemia comprises one of the principal reasons of disability. Although several studies have been performed to investigate the mechanisms of damage to find protective/preventive interventions, an effective treatment does not exist yet. Adenosine is a well-described neuromodulator in the central nervous system (CNS), and acts through four subtypes of G-protein-coupled receptors. Adenosine receptors, especially A1 and A2A receptors, are the main targets of caffeine in daily consumption doses. Accordingly, caffeine has been greatly studied in the context of CNS pathologies. In fact, adenosine system, as well as caffeine, is involved in neuroprotection effects in different pathological situations. Therefore, the present review focuses on the role of adenosine/caffeine in CNS, brain and retina, ischemic events.
Collapse
Affiliation(s)
- D Pereira-Figueiredo
- Neurobiology of the Retina Laboratory, Biomedical Sciences Program, Biomedical Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - A A Nascimento
- Neurobiology of the Retina Laboratory, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - M C Cunha-Rodrigues
- Neurobiology of the Retina Laboratory, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - R Brito
- Laboratory of Neuronal Physiology and Pathology, Cellular and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - K C Calaza
- Neurobiology of the Retina Laboratory, Biomedical Sciences Program, Biomedical Institute, Fluminense Federal University, Niterói, RJ, Brazil.
- Neurobiology of the Retina Laboratory, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil.
- Neurobiology Department, Biology Institute of Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
26
|
Duan L, Sanchez-Guerrero G, Jaeschke H, Ramachandran A. Activation of the adenosine A2B receptor even beyond the therapeutic window of N-acetylcysteine accelerates liver recovery after an acetaminophen overdose. Food Chem Toxicol 2022; 163:112911. [PMID: 35292334 PMCID: PMC9018526 DOI: 10.1016/j.fct.2022.112911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023]
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the USA. The short therapeutic window of the current antidote, N-acetylcysteine (NAC) highlights the need for novel late acting therapeutics. The neuronal guidance cue netrin-1 provides delayed protection against APAP hepatotoxicity through the adenosine A2B receptor (A2BAR). The clinical relevance of this mechanism was investigated here by administration of the A2BAR agonist BAY 60-6583, after an APAP overdose (300 or 600 mg/kg) in fasted male and female C57BL/6J mice with assessment of liver injury 6 or 24 h after APAP in comparison to NAC. BAY 60-6583 treatment 1.5 h after APAP overdose (600 mg/kg) protected against liver injury at 6 h by preserving mitochondrial function despite JNK activation and its mitochondrial translocation. Gender independent protection was sustained when BAY 60-6583 was given 6 h after APAP overdose (300 mg/kg), when NAC administration did not show benefit. This protection was accompanied by enhanced infiltration of macrophages with the reparative anti-inflammatory phenotype by 24 h, accompanied by a decrease in neutrophil infiltration. Thus, our data emphasize the remarkable therapeutic utility of using an A2BAR agonist, which provides delayed protection long after the standard of care NAC ceased to be effective.
Collapse
Affiliation(s)
- Luqi Duan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
27
|
Francucci B, Dal Ben D, Lambertucci C, Spinaci A, Volpini R, Marucci G, Buccioni M. A patent review of adenosine A 2B receptor antagonists (2016-present). Expert Opin Ther Pat 2022; 32:689-712. [PMID: 35387537 DOI: 10.1080/13543776.2022.2057222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION A2B adenosine receptor (A2BAR) plays a crucial role in pathophysiologic conditions associated with high adenosine release, typical of airway inflammatory pathologies, gastrointestinal disorders, cancer, asthma, type 2 diabetes, and atherosclerosis. In some pathologies, simultaneous inactivation of A2A and A2BARs is desirable to have a synergism of action that leads to a greater efficacy of the pharmacological treatment and less side effects due to the dose of drug administered. In this context, it is strongly required to identify molecules capable of selectively antagonizing A2BAR or A2A/A2BARs. AREAS COVERED The review provides a summary of patents, published from 2016 to present, on chemicals and their clinical use. In this paper, information on the biological activity of representative structures of recently developed A2B or A2A/A2B receptor ligands is reported. EXPERT OPINION Among the four P1 receptors, A2BAR is the most inscrutable and the least studied until a few years ago, but its involvement in various inflammatory pathologies has recently made it a pharmacological target of high interest. Many efforts by the academy and pharmaceutical companies have been made to discover potential A2BAR and A2A/A2BARs drugs. Although several compounds have been synthesized only a few molecules have entered clinical trials.
Collapse
Affiliation(s)
- Beatrice Francucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Gabriella Marucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
28
|
Ziegon L, Schlegel M. Netrin-1: A Modulator of Macrophage Driven Acute and Chronic Inflammation. Int J Mol Sci 2021; 23:275. [PMID: 35008701 PMCID: PMC8745333 DOI: 10.3390/ijms23010275] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Netrins belong to the family of laminin-like secreted proteins, which guide axonal migration and neuronal growth in the developing central nervous system. Over the last 20 years, it has been established that netrin-1 acts as a chemoattractive or chemorepulsive cue in diverse biological processes far beyond neuronal development. Netrin-1 has been shown to play a central role in cell adhesion, cell migration, proliferation, and cell survival in neuronal and non-neuronal tissue. In this context, netrin-1 was found to orchestrate organogenesis, angiogenesis, tumorigenesis, and inflammation. In inflammation, as in neuronal development, netrin-1 plays a dichotomous role directing the migration of leukocytes, especially monocytes in the inflamed tissue. Monocyte-derived macrophages have long been known for a similar dual role in inflammation. In response to pathogen-induced acute injury, monocytes are rapidly recruited to damaged tissue as the first line of immune defense to phagocyte pathogens, present antigens to initiate the adaptive immune response, and promote wound healing in the resolution phase. On the other hand, dysregulated macrophages with impaired phagocytosis and egress capacity accumulate in chronic inflammation sites and foster the maintenance-and even the progression-of chronic inflammation. In this review article, we will highlight the dichotomous roles of netrin-1 and its impact on acute and chronic inflammation.
Collapse
Affiliation(s)
| | - Martin Schlegel
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany;
| |
Collapse
|
29
|
Höppner J, Bruni C, Distler O, Robson SC, Burmester GR, Siegert E, Distler JHW. Purinergic signaling in systemic sclerosis. Rheumatology (Oxford) 2021; 61:2770-2782. [PMID: 34849624 DOI: 10.1093/rheumatology/keab859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune rheumatic disease that involves numerous organs and presents major management challenges. The histopathologic hallmarks of SSc include vasculopathy, fibrosis and autoimmune phenomena involving both innate and adaptive immune systems. Purinergic signalling is a pathway that may be implicated in the pathophysiology of several of these disease manifestations. Extracellular purines are potent signalling mediators, which have been shown to be dysregulated in SSc. As examples, purines can exacerbate vasculopathy and provoke platelet dysfunction; as well as contributing to immune dysregulation. Elements of purinergic signalling further promote organ and tissue fibrosis in several disease models. Here, we provide an overview of extracellular purine metabolism in purinergic signalling and link disorders of these to the molecular pathology of SSc. We also discuss targeting the purinergic signalling and explore the translational applications for new therapeutic options in SSc.
Collapse
Affiliation(s)
- Jakob Höppner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, Division of Rheumatology, Careggi University Hospital, University of Florence, Florence, Italy.,Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simon C Robson
- Departments of Anesthesia and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elise Siegert
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
30
|
Daidone M, Cataldi M, Pinto A, Tuttolomondo A. Non-coding RNAs and other determinants of neuroinflammation and endothelial dysfunction: regulation of gene expression in the acute phase of ischemic stroke and possible therapeutic applications. Neural Regen Res 2021; 16:2154-2158. [PMID: 33818487 PMCID: PMC8354116 DOI: 10.4103/1673-5374.310607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke occurs under a variety of clinical conditions and has different pathogeneses, resulting in necrosis of brain parenchyma. Stroke pathogenesis is characterized by neuroinflammation and endothelial dysfunction. Some of the main processes triggered in the early stages of ischemic damage are the rapid activation of resident inflammatory cells (microglia, astrocytes and endothelial cells), inflammatory cytokines, and translocation of intercellular nuclear factors. Inflammation in stroke includes all the processes mentioned above, and it consists of either protective or detrimental effects concerning the "polarization" of these processes. This polarization comes out from the interaction of all the molecular pathways that regulate genome expression: the epigenetic factors. In recent years, new regulation mechanisms have been cleared, and these include non-coding RNAs, adenosine receptors, and the activity of mesenchymal stem/stromal cells and microglia. We reviewed how long non-coding RNA and microRNA have emerged as an essential mediator of some neurological diseases. We also clarified that their roles in cerebral ischemic injury may provide novel targets for the treatment of ischemic stroke. To date, we do not have adequate tools to control pathophysiological processes associated with stroke. Our goal is to review the role of non-coding RNAs and innate immune cells (such as microglia and mesenchymal stem/stromal cells) and the possible therapeutic effects of their modulation in patients with acute ischemic stroke. A better understanding of the mechanisms that influence the "polarization" of the inflammatory response after the acute event seems to be the way to change the natural history of the disease.
Collapse
Affiliation(s)
- Mario Daidone
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, Palermo, Italy
| | - Marco Cataldi
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, Palermo, Italy
| | - Antonio Pinto
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, Palermo, Italy
| |
Collapse
|
31
|
Oyama Y, Walker LA, Eckle T. Targeting circadian PER2 as therapy in myocardial ischemia and reperfusion injury. Chronobiol Int 2021; 38:1262-1273. [PMID: 34034593 PMCID: PMC8355134 DOI: 10.1080/07420528.2021.1928160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/22/2023]
Abstract
The cycle of day and night dominates life on earth. Therefore, almost all living organisms adopted a molecular clock linked to the light-dark cycles. It is now well established that this molecular clock is crucial for human health and wellbeing. Disruption of the molecular clockwork directly results in a myriad of disorders, including cardiovascular diseases. Further, the onset of many cardiovascular diseases such as acute myocardial infarction exhibits a circadian periodicity with worse outcomes in the early morning hours. Based on these observations, the research community became interested in manipulating the molecular clock to treat cardiovascular diseases. In recent years, several exciting discoveries of pharmacological agents or molecular mechanisms targeting the molecular clockwork have paved the way for circadian medicine's arrival in cardiovascular diseases. The current review will outline the most recent circadian therapeutic advances related to the circadian rhythm protein Period2 (PER2) to treat myocardial ischemia and summarize future research in the respective field.
Collapse
Affiliation(s)
- Yoshimasa Oyama
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
- Department of Anesthesiology and Intensive Care Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
- Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
32
|
Zhang J, Lu X, Liu M, Fan H, Zheng H, Zhang S, Rahman N, Wołczyński S, Kretowski A, Li X. Melatonin inhibits inflammasome-associated activation of endothelium and macrophages attenuating pulmonary arterial hypertension. Cardiovasc Res 2021; 116:2156-2169. [PMID: 31774487 DOI: 10.1093/cvr/cvz312] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/25/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023] Open
Abstract
AIMS Pulmonary arterial hypertension (PAH) is a pathophysiological syndrome associated with pulmonary/systemic inflammation. Melatonin relieves PAH, but the molecular mode of action remains unclear. Here, we investigated the role of melatonin in normalizing vascular homeostasis. METHODS AND RESULTS Light-time mean serum melatonin concentration was lower in patients with PAH than in normal controls [11.06 ± 3.44 (7.13-15.6) vs. 14.55 ± 1.28 (8.0-19.4) pg/mL], which was negatively correlated with increased serum levels of interleukin-1β (IL-1β) in patients with PAH. We showed that inflammasomes were activated in the PAH mice model and that melatonin attenuated IL-1β secretion. On one hand, melatonin reduced the number of macrophages in lung by inhibiting the endothelial chemokines and adhesion factors. Moreover, use of Il1r-/- mice, Caspase1/11-/- mice, and melatonin-treated mice revealed that melatonin reduced hypoxia-induced vascular endothelial leakage in the lung. On the other hand, we verified that melatonin reduced the formation of inflammasome multiprotein complexes by modulating calcium ions in macrophages using a live cell station, and melatonin decreased inositol triphosphate and increased cAMP. Furthermore, knockdown of melatonin membrane receptors blocked melatonin function, and a melatonin membrane receptors agonist inactivated inflammasomes in macrophages. CONCLUSION Melatonin attenuated inflammasome-associated vascular disorders by directly improving endothelial leakage and decreasing the formation of inflammasome multiprotein complexes in macrophages. Taken together, our data provide a theoretical basis for applying melatonin clinically, and inflammasomes may be a possible target of PAH treatment.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaohui Lu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Mei Liu
- Department of Pathology, Chinese PLA General Hospital, Beijing 102628, China
| | - Hanlu Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Han Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Shanshan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Nafis Rahman
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| | - Xiangdong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
33
|
Ngamsri KC, Fabian F, Fuhr A, Gamper-Tsigaras J, Straub A, Fecher D, Steinke M, Walles H, Reutershan J, Konrad FM. Sevoflurane Exerts Protective Effects in Murine Peritonitis-induced Sepsis via Hypoxia-inducible Factor 1α/Adenosine A2B Receptor Signaling. Anesthesiology 2021; 135:136-150. [PMID: 33914856 DOI: 10.1097/aln.0000000000003788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sepsis is one of the leading causes of mortality in intensive care units, and sedation in the intensive care unit during sepsis is usually performed intravenously. The inhalative anesthetic sevoflurane has been shown to elicit protective effects in various inflammatory studies, but its role in peritonitis-induced sepsis remains elusive. The hypothesis was that sevoflurane controls the neutrophil infiltration by stabilization of hypoxia-inducible factor 1α and elevated adenosine A2B receptor expression. METHODS In mouse models of zymosan- and fecal-induced peritonitis, male mice were anesthetized with sevoflurane (2 volume percent, 30 min) after the onset of inflammation. Control animals received the solvent saline. The neutrophil counts and adhesion molecules on neutrophils in the peritoneal lavage of wild-type, adenosine A2B receptor -/-, and chimeric animals were determined by flow cytometry 4 h after stimulation. Cytokines and protein release were determined in the lavage. Further, the adenosine A2B receptor and its transcription factor hypoxia-inducible factor 1α were evaluated by real-time polymerase chain reaction and Western blot analysis 4 h after stimulation. RESULTS Sevoflurane reduced the neutrophil counts in the peritoneal lavage (mean ± SD, 25 ± 17 × 105vs. 12 ± 7 × 105 neutrophils; P = 0.004; n = 19/17) by lower expression of various adhesion molecules on neutrophils of wild-type animals but not of adenosine A2B receptor -/- animals. The cytokines concentration (means ± SD, tumor necrosis factor α [pg/ml], 523 ± 227 vs. 281 ± 101; P = 0.002; n = 9/9) and protein extravasation (mean ± SD [mg/ml], 1.4 ± 0.3 vs. 0.8 ± 0.4; P = 0.002; n = 12/11) were also lower after sevoflurane only in the wild-type mice. Chimeric mice showed the required expression of the adenosine A2B receptor on the hematopoietic and nonhematopoietic compartments for the protective effects of the anesthetic. Sevoflurane induced the expression of hypoxia-inducible factor 1α and adenosine A2B receptor in the intestine, liver, and lung. CONCLUSIONS Sevoflurane exerts various protective effects in two murine peritonitis-induced sepsis models. These protective effects were linked with a functional adenosine A2B receptor. EDITOR’S PERSPECTIVE
Collapse
|
34
|
Grunwell JR, Rad MG, Stephenson ST, Mohammad AF, Opolka C, Fitzpatrick AM, Kamaleswaran R. Machine Learning-Based Discovery of a Gene Expression Signature in Pediatric Acute Respiratory Distress Syndrome. Crit Care Explor 2021; 3:e0431. [PMID: 34151274 PMCID: PMC8208445 DOI: 10.1097/cce.0000000000000431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES To identify differentially expressed genes and networks from the airway cells within 72 hours of intubation of children with and without pediatric acute respiratory distress syndrome. To test the use of a neutrophil transcription reporter assay to identify immunogenic responses to airway fluid from children with and without pediatric acute respiratory distress syndrome. DESIGN Prospective cohort study. SETTING Thirty-six bed academic PICU. PATIENTS Fifty-four immunocompetent children, 28 with pediatric acute respiratory distress syndrome, who were between 2 days to 18 years old within 72 hours of intubation for acute hypoxemic respiratory failure. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We applied machine learning methods to a Nanostring transcriptomics on primary airway cells and a neutrophil reporter assay to discover gene networks differentiating pediatric acute respiratory distress syndrome from no pediatric acute respiratory distress syndrome. An analysis of moderate or severe pediatric acute respiratory distress syndrome versus no or mild pediatric acute respiratory distress syndrome was performed. Pathway network visualization was used to map pathways from 62 genes selected by ElasticNet associated with pediatric acute respiratory distress syndrome. The Janus kinase/signal transducer and activator of transcription pathway emerged. Support vector machine performed best for the primary airway cells and the neutrophil reporter assay using a leave-one-out cross-validation with an area under the operating curve and 95% CI of 0.75 (0.63-0.87) and 0.80 (0.70-1.0), respectively. CONCLUSIONS We identified gene networks important to the pediatric acute respiratory distress syndrome airway immune response using semitargeted transcriptomics from primary airway cells and a neutrophil reporter assay. These pathways will drive mechanistic investigations into pediatric acute respiratory distress syndrome. Further studies are needed to validate our findings and to test our models.
Collapse
Affiliation(s)
- Jocelyn R Grunwell
- Children's Healthcare of Atlanta, Egleston Hospital, Atlanta, GA
- Emory University School of Medicine, Department of Pediatrics, Division of Critical Care Medicine, Atlanta, GA
| | - Milad G Rad
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Susan T Stephenson
- Emory University School of Medicine, Department of Pediatrics, Division of Critical Care Medicine, Atlanta, GA
| | - Ahmad F Mohammad
- Emory University School of Medicine, Department of Pediatrics, Division of Critical Care Medicine, Atlanta, GA
| | - Cydney Opolka
- Children's Healthcare of Atlanta, Egleston Hospital, Atlanta, GA
| | - Anne M Fitzpatrick
- Emory University School of Medicine, Department of Pediatrics, Division of Critical Care Medicine, Atlanta, GA
| | - Rishikesan Kamaleswaran
- Emory University School of Medicine, Department of Pediatrics, Division of Critical Care Medicine, Atlanta, GA
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
35
|
Sun D, Ko MK, Shao H, Kaplan HJ. Augmented Th17-stimulating activity of BMDCs as a result of reciprocal interaction between γδ and dendritic cells. Mol Immunol 2021; 134:13-24. [PMID: 33689926 PMCID: PMC8629029 DOI: 10.1016/j.molimm.2021.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Our previous studies demonstrated that γδ T cells have a strong regulatory effect on Th17 autoimmune responses in experimental autoimmune uveitis (EAU). In the current study, we show that reciprocal interactions between mouse γδ T cells and dendritic cells (DCs) played a major role in γδ regulation of Th17 responses. Mouse bone marrow-derived dendritic cells (BMDCs) acquired an increased ability to enhance Th17 autoimmune responses after exposure to γδ T cells; meanwhile, after exposure, a significant portion of the BMDCs expressed CD73 - a molecule that is fundamental in the conversion of immunostimulatory ATP into immunosuppressive adenosine. Functional studies showed that CD73+ BMDCs were uniquely effective in stimulating the Th17 responses, as compared to CD73- BMDCs; and activated γδ T cells are much more effective than non-activated γδ T cells at inducing CD73+ BMDCs. As a result, activated γδ T cells acquired greater Th17-enhancing activity. Treatment of BMDCs with the CD73-specific antagonist APCP abolished the enhancing effect of the BMDCs. γδ T cells more effectively induced CD73+ BMDCs from the BMDCs that were pre-exposed to TLR ligands, and the response was further augmented by adenosine. Moreover, BMDCs acquired increased ability to stimulate γδ activation after pre-exposure to TLR ligands and adenosine. Our results demonstrated that both extra-cellular adenosine and TLR ligands are critical factors in augmented Th17 responses in this autoimmune disease, and the reciprocal interactions between γδ T cells and DCs play a major role in promoting Th17 responses.
Collapse
Affiliation(s)
- Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States.
| | - Minhee K Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, 40202, United States
| | - Henry J Kaplan
- Saint Louis University (SLU) Eye Institute, SLU School of Medicine, Saint Louis, MO, 63104, United States
| |
Collapse
|
36
|
Coppi E, Cencetti F, Cherchi F, Venturini M, Donati C, Bruni P, Pedata F, Pugliese AM. A 2 B Adenosine Receptors and Sphingosine 1-Phosphate Signaling Cross-Talk in Oligodendrogliogenesis. Front Neurosci 2021; 15:677988. [PMID: 34135730 PMCID: PMC8202686 DOI: 10.3389/fnins.2021.677988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain. Impairments in the process of myelination, or demyelinating insults, might cause chronic diseases such as multiple sclerosis (MS). Under physiological conditions, remyelination is an ongoing process throughout adult life consisting in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs). During pathological events, this process fails due to unfavorable environment. Adenosine and sphingosine kinase/sphingosine 1-phosphate signaling axes (SphK/S1P) play important roles in remyelination processes. Remarkably, fingolimod (FTY720), a sphingosine analog recently approved for MS treatment, plays important roles in OPC maturation. We recently demonstrated that the selective stimulation of A2 B adenosine receptors (A2 B Rs) inhibit OPC differentiation in vitro and reduce voltage-dependent outward K+ currents (I K ) necessary to OPC maturation, whereas specific SphK1 or SphK2 inhibition exerts the opposite effect. During OPC differentiation A2 B R expression increases, this effect being prevented by SphK1/2 blockade. Furthermore, selective silencing of A2 B R in OPC cultures prompts maturation and, intriguingly, enhances the expression of S1P lyase, the enzyme responsible for irreversible S1P catabolism. Finally, the existence of an interplay between SphK1/S1P pathway and A2 B Rs in OPCs was confirmed since acute stimulation of A2 B Rs activates SphK1 by increasing its phosphorylation. Here the role of A2 B R and SphK/S1P signaling during oligodendrogenesis is reviewed in detail, with the purpose to shed new light on the interaction between A2 B Rs and S1P signaling, as eventual innovative targets for the treatment of demyelinating disorders.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
37
|
Li J, Conrad C, Mills TW, Berg NK, Kim B, Ruan W, Lee JW, Zhang X, Yuan X, Eltzschig HK. PMN-derived netrin-1 attenuates cardiac ischemia-reperfusion injury via myeloid ADORA2B signaling. J Exp Med 2021; 218:212023. [PMID: 33891683 PMCID: PMC8077173 DOI: 10.1084/jem.20210008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 01/03/2023] Open
Abstract
Previous studies implicated the neuronal guidance molecule netrin-1 in attenuating myocardial ischemia-reperfusion injury. However, the tissue-specific sources and receptor signaling events remain elusive. Neutrophils are among the first cells responding to an ischemic insult and can be associated with tissue injury or rescue. We found netrin-1 levels were elevated in the blood of patients with myocardial infarction, as well as in mice exposed to myocardial ischemia-reperfusion. Selectively increased infarct sizes and troponin levels were found in Ntn1loxP/loxP Lyz2 Cre+ mice, but not in mice with conditional netrin-1 deletion in other tissue compartments. In vivo studies using neutrophil depletion identified neutrophils as the main source for elevated blood netrin-1 during myocardial injury. Finally, pharmacologic studies using treatment with recombinant netrin-1 revealed a functional role for purinergic signaling events through the myeloid adenosine A2b receptor in mediating netrin-1-elicited cardioprotection. These findings suggest an autocrine signaling loop with a functional role for neutrophil-derived netrin-1 in attenuating myocardial ischemia-reperfusion injury through myeloid adenosine A2b signaling.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX.,Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Catharina Conrad
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX.,Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Tingting W Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX
| | - Nathaniel K Berg
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Boyun Kim
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Wei Ruan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX.,Department of Anesthesiology, Second Xiangya Hospital, Central South University, Hunan, China
| | - Jae W Lee
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT
| | - Xu Zhang
- Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Xiaoyi Yuan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| |
Collapse
|
38
|
Halder SK, Milner R. Hypoxia in multiple sclerosis; is it the chicken or the egg? Brain 2021; 144:402-410. [PMID: 33351069 PMCID: PMC8453297 DOI: 10.1093/brain/awaa427] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/03/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Over the past 50 years, intense research effort has taught us a great deal about multiple sclerosis. We know that it is the most common neurological disease affecting the young-middle aged, that it affects two to three times more females than males, and that it is characterized as an autoimmune disease, in which autoreactive T lymphocytes cross the blood-brain barrier, resulting in demyelinating lesions. But despite all the knowledge gained, a key question still remains; what is the initial event that triggers the inflammatory demyelinating process? While most research effort to date has focused on the immune system, more recently, another potential candidate has emerged: hypoxia. Specifically, a growing number of studies have described the presence of hypoxia (both 'virtual' and real) at an early stage of demyelinating lesions, and several groups, including our own, have begun to investigate how manipulation of inspired oxygen levels impacts disease progression. In this review we summarize the findings of these hypoxia studies, and in particular, address three main questions: (i) is the hypoxia found in demyelinating lesions 'virtual' or real; (ii) what causes this hypoxia; and (iii) how does manipulation of inspired oxygen impact disease progression?
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100, San Diego, CA 92121, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100, San Diego, CA 92121, USA
| |
Collapse
|
39
|
Padmavathi G, Ramkumar KM. MicroRNA mediated regulation of the major redox homeostasis switch, Nrf2, and its impact on oxidative stress-induced ischemic/reperfusion injury. Arch Biochem Biophys 2021; 698:108725. [PMID: 33326800 DOI: 10.1016/j.abb.2020.108725] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/21/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion injury (IRI) initiates from oxidative stress caused by lack of blood supply and subsequent reperfusion. It is often associated with sterile inflammation, cell death and microvascular dysfunction, which ultimately results in myocardial, cerebral and hepatic IRIs. Reportedly, deregulation of Nrf2 pathway plays a significant role in the oxidative stress-induced IRIs. Further, microRNAs (miRNAs/miRs) are proved to regulate the expression and activation of Nrf2 by targeting either the 3'-UTR or the upstream regulators of Nrf2. Additionally, compounds (crocin, ZnSO4 and ginsenoside Rg1) that modulate the levels of the Nrf2-regulating miRNAs were found to exhibit a protective effect against IRIs of different organs. Therefore, the current review briefs the impact of ischemia reperfusion (I/R) pathogenesis in various organs, role of miRNAs in the regulation of Nrf2 and the I/R protective effect of compounds that alter their expression.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
40
|
Dettori I, Gaviano L, Ugolini F, Lana D, Bulli I, Magni G, Rossi F, Giovannini MG, Pedata F. Protective Effect of Adenosine A 2B Receptor Agonist, BAY60-6583, Against Transient Focal Brain Ischemia in Rat. Front Pharmacol 2021; 11:588757. [PMID: 33643036 PMCID: PMC7905306 DOI: 10.3389/fphar.2020.588757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is a multifactorial pathology characterized first by an acute injury, due to excitotoxicity, followed by a secondary brain injury that develops hours to days after ischemia. During ischemia, adenosine acts as an endogenous neuroprotectant. Few studies have investigated the role of A2B receptor in brain ischemia because of the low potency of adenosine for it and the few selective ligands developed so far. A2B receptors are scarcely but widely distributed in the brain on neurons, glial and endothelial cells and on hematopoietic cells, lymphocytes and neutrophils, where they exert mainly anti-inflammatory effects, inhibiting vascular adhesion and inflammatory cells migration. Aim of this work was to verify whether chronic administration of the A2B agonist, BAY60-6583 (0.1 mg/kg i.p., twice/day), starting 4 h after focal ischemia induced by transient (1 h) Middle Cerebral Artery occlusion (tMCAo) in the rat, was protective after the ischemic insult. BAY60-6583 improved the neurological deficit up to 7 days after tMCAo. Seven days after ischemia BAY60-6583 reduced significantly the ischemic brain damage in cortex and striatum, counteracted ischemia-induced neuronal death, reduced microglia activation and astrocytes alteration. Moreover, it decreased the expression of TNF-α and increased that of IL-10 in peripheral plasma. Two days after ischemia BAY60-6583 reduced blood cell infiltration in the ischemic cortex. The present study indicates that A2B receptors stimulation can attenuate the neuroinflammation that develops after ischemia, suggesting that A2B receptors may represent a new interesting pharmacological target to protect from degeneration after brain ischemia.
Collapse
Affiliation(s)
- Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lisa Gaviano
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giada Magni
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Florence, Italy
| | - Francesca Rossi
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
41
|
Paganelli F, Mottola G, Fromonot J, Marlinge M, Deharo P, Guieu R, Ruf J. Hyperhomocysteinemia and Cardiovascular Disease: Is the Adenosinergic System the Missing Link? Int J Mol Sci 2021; 22:1690. [PMID: 33567540 PMCID: PMC7914561 DOI: 10.3390/ijms22041690] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
The influence of hyperhomocysteinemia (HHCy) on cardiovascular disease (CVD) remains unclear. HHCy is associated with inflammation and atherosclerosis, and it is an independent risk factor for CVD, stroke and myocardial infarction. However, homocysteine (HCy)-lowering therapy does not affect the inflammatory state of CVD patients, and it has little influence on cardiovascular risk. The HCy degradation product hydrogen sulfide (H2S) is a cardioprotector. Previous research proposed a positive role of H2S in the cardiovascular system, and we discuss some recent data suggesting that HHCy worsens CVD by increasing the production of H2S, which decreases the expression of adenosine A2A receptors on the surface of immune and cardiovascular cells to cause inflammation and ischemia, respectively.
Collapse
Affiliation(s)
- Franck Paganelli
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Department of Cardiology, North Hospital, F-13015 Marseille, France
| | - Giovanna Mottola
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Laboratory of Biochemistry, Timone Hospital, F-13005 Marseille, France
| | - Julien Fromonot
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Laboratory of Biochemistry, Timone Hospital, F-13005 Marseille, France
| | - Marion Marlinge
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Laboratory of Biochemistry, Timone Hospital, F-13005 Marseille, France
| | - Pierre Deharo
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Department of Cardiology, Timone Hospital, F-13005 Marseille, France
| | - Régis Guieu
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Laboratory of Biochemistry, Timone Hospital, F-13005 Marseille, France
| | - Jean Ruf
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
| |
Collapse
|
42
|
Li X, Berg NK, Mills T, Zhang K, Eltzschig HK, Yuan X. Adenosine at the Interphase of Hypoxia and Inflammation in Lung Injury. Front Immunol 2021; 11:604944. [PMID: 33519814 PMCID: PMC7840604 DOI: 10.3389/fimmu.2020.604944] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia and inflammation often coincide in pathogenic conditions such as acute respiratory distress syndrome (ARDS) and chronic lung diseases, which are significant contributors to morbidity and mortality for the general population. For example, the recent global outbreak of Coronavirus disease 2019 (COVID-19) has placed viral infection-induced ARDS under the spotlight. Moreover, chronic lung disease ranks the third leading cause of death in the United States. Hypoxia signaling plays a diverse role in both acute and chronic lung inflammation, which could partially be explained by the divergent function of downstream target pathways such as adenosine signaling. Particularly, hypoxia signaling activates adenosine signaling to inhibit the inflammatory response in ARDS, while in chronic lung diseases, it promotes inflammation and tissue injury. In this review, we discuss the role of adenosine at the interphase of hypoxia and inflammation in ARDS and chronic lung diseases, as well as the current strategy for therapeutic targeting of the adenosine signaling pathway.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Nathanial K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kaiying Zhang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
43
|
Majellaro M, Jespers W, Crespo A, Núñez MJ, Novio S, Azuaje J, Prieto-Díaz R, Gioé C, Alispahic B, Brea J, Loza MI, Freire-Garabal M, Garcia-Santiago C, Rodríguez-García C, García-Mera X, Caamaño O, Fernandez-Masaguer C, Sardina JF, Stefanachi A, El Maatougui A, Mallo-Abreu A, Åqvist J, Gutiérrez-de-Terán H, Sotelo E. 3,4-Dihydropyrimidin-2(1 H)-ones as Antagonists of the Human A 2B Adenosine Receptor: Optimization, Structure-Activity Relationship Studies, and Enantiospecific Recognition. J Med Chem 2020; 64:458-480. [PMID: 33372800 DOI: 10.1021/acs.jmedchem.0c01431] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present and thoroughly characterize a large collection of 3,4-dihydropyrimidin-2(1H)-ones as A2BAR antagonists, an emerging strategy in cancer (immuno) therapy. Most compounds selectively bind A2BAR, with a number of potent and selective antagonists further confirmed by functional cyclic adenosine monophosphate experiments. The series was analyzed with one of the most exhaustive free energy perturbation studies on a GPCR, obtaining an accurate model of the structure-activity relationship of this chemotype. The stereospecific binding modeled for this scaffold was confirmed by resolving the two most potent ligands [(±)-47, and (±)-38 Ki = 10.20 and 23.6 nM, respectively] into their two enantiomers, isolating the affinity on the corresponding (S)-eutomers (Ki = 6.30 and 11.10 nM, respectively). The assessment of the effect in representative cytochromes (CYP3A4 and CYP2D6) demonstrated insignificant inhibitory activity, while in vitro experiments in three prostate cancer cells demonstrated that this pair of compounds exhibits a pronounced antimetastatic effect.
Collapse
Affiliation(s)
- María Majellaro
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Willem Jespers
- Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Abel Crespo
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María J Núñez
- SNL, Departamento de Farmacología, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Silvia Novio
- SNL, Departamento de Farmacología, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jhonny Azuaje
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rubén Prieto-Díaz
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Claudia Gioé
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Belma Alispahic
- Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - José Brea
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María I Loza
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Freire-Garabal
- SNL, Departamento de Farmacología, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlota Garcia-Santiago
- SNL, Departamento de Farmacología, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Rodríguez-García
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Xerardo García-Mera
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Olga Caamaño
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Christian Fernandez-Masaguer
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Javier F Sardina
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | - Abdelaziz El Maatougui
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Mallo-Abreu
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | | | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
44
|
Han Y, Ding L, Cheng X, Zhao M, Zhao T, Guo L, Li X, Geng Y, Fan M, Liao H, Zhu L. Hypoxia Augments Cerebral Inflammation in a Dextran Sulfate Sodium-Induced Colitis Mouse Model. Front Cell Neurosci 2020; 14:611764. [PMID: 33362475 PMCID: PMC7756107 DOI: 10.3389/fncel.2020.611764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/18/2020] [Indexed: 11/23/2022] Open
Abstract
The importance of hypoxia in the pathophysiology of inflammatory bowel disease (IBD) is increasingly being realized; also, hypoxia seems to be an important accelerator of brain inflammation, as has been reported by our group and others. IBD is a chronic intestinal disorder that leads to the development of inflammation, which is related to brain dysfunction. However, no studies have reported whether hypoxia is associated with IBD-induced neuroinflammation. Therefore, the objective of the present study was to determine whether hypoxia augments cerebral inflammation in a DSS-induced colitis mouse model. The mouse model was developed using 3% DSS for five days combined with exposure to hypoxic conditions (6,000 m) for two days. Mice were randomly divided into four groups: control group, DSS group, hypoxia group, and DSS plus hypoxia group. The results demonstrated that DSS combined with hypoxia resulted in up-regulation of colonic and plasmatic proinflammatory cytokines. Meanwhile, DSS plus hypoxia increased expression of Iba1, which is a marker of activated microglia, accompanied by increased expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the brain. Moreover, the expression of tight junction proteins, such as zonula occludens-1 (ZO-1), occludin, and claudin-5, was markedly downregulated. The current study provides new insight into how hypoxia exposure induces excessive inflammatory responses andpathophysiological consequences in the brain in a DSS-induced colitis model.
Collapse
Affiliation(s)
- Ying Han
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Liping Ding
- National Nanjing Center for Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiang Cheng
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Ming Zhao
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Tong Zhao
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Liang Guo
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Xinyang Li
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Yanan Geng
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ming Fan
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Hong Liao
- National Nanjing Center for Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Lingling Zhu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
45
|
Coppi E, Dettori I, Cherchi F, Bulli I, Venturini M, Lana D, Giovannini MG, Pedata F, Pugliese AM. A 2B Adenosine Receptors: When Outsiders May Become an Attractive Target to Treat Brain Ischemia or Demyelination. Int J Mol Sci 2020; 21:E9697. [PMID: 33353217 PMCID: PMC7766015 DOI: 10.3390/ijms21249697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine is a signaling molecule, which, by activating its receptors, acts as an important player after cerebral ischemia. Here, we review data in the literature describing A2BR-mediated effects in models of cerebral ischemia obtained in vivo by the occlusion of the middle cerebral artery (MCAo) or in vitro by oxygen-glucose deprivation (OGD) in hippocampal slices. Adenosine plays an apparently contradictory role in this receptor subtype depending on whether it is activated on neuro-glial cells or peripheral blood vessels and/or inflammatory cells after ischemia. Indeed, A2BRs participate in the early glutamate-mediated excitotoxicity responsible for neuronal and synaptic loss in the CA1 hippocampus. On the contrary, later after ischemia, the same receptors have a protective role in tissue damage and functional impairments, reducing inflammatory cell infiltration and neuroinflammation by central and/or peripheral mechanisms. Of note, demyelination following brain ischemia, or autoimmune neuroinflammatory reactions, are also profoundly affected by A2BRs since they are expressed by oligodendroglia where their activation inhibits cell maturation and expression of myelin-related proteins. In conclusion, data in the literature indicate the A2BRs as putative therapeutic targets for the still unmet treatment of stroke or demyelinating diseases.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| |
Collapse
|
46
|
Patinha D, Abreu C, Carvalho C, Cunha OM, Mota M, Afonso J, Sousa T, Albino-Teixeira A, Diniz C, Morato M. Adenosine A 2A and A 3 Receptors as Targets for the Treatment of Hypertensive-Diabetic Nephropathy. Biomedicines 2020; 8:biomedicines8110529. [PMID: 33238361 PMCID: PMC7700226 DOI: 10.3390/biomedicines8110529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) and hypertension are prime causes for end-stage renal disease (ESRD) that often coexist in patients, but are seldom studied in combination. Kidney adenosine levels are markedly increased in diabetes, and the expression and function of renal adenosine receptors are altered in experimental diabetes. The aim of this work is to explore the impact of endogenous and exogenous adenosine on the expression/distribution profile of its receptors along the nephron of hypertensive rats with experimentally-induced diabetes. Using spontaneously hypertensive (SHR) rats rendered diabetic with streptozotocin (STZ), we show that treatment of SHR-STZ rats with an agonist of adenosine receptors increases A2A immunoreactivity in superficial glomeruli (SG), proximal tubule (PCT), and distal tubule (DCT). Differently, treatment of SHR-STZ rats with a xanthinic antagonist of adenosine receptors decreases adenosine A3 immunoreactivity in SG, PCT, DCT, and collecting duct. There is no difference in the immunoreactivity against the adenosine A1 and A2B receptors between the experimental groups. The agonist of adenosine receptors ameliorates renal fibrosis, probably via A2A receptors, while the antagonist exacerbates it, most likely due to tonic activation of A3 receptors. The reduction in adenosine A3 immunoreactivity might be due to receptor downregulation in response to prolonged activation. Altogether, these results suggest an opposite regulation exerted by endogenous and exogenous adenosine upon the expression of its A2A and A3 receptors along the nephron of hypertensive diabetic rats, which has a functional impact and should be taken into account when considering novel therapeutic targets for hypertensive-diabetic nephropathy.
Collapse
Affiliation(s)
- Daniela Patinha
- Department of Biomedicine—Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal; (D.P.); (J.A.); (T.S.); (A.A.-T.)
- The Institute of Biomedical and Clinical Science, Medical School, University of Exeter, EX4 4QJ Exeter, UK
| | - Carla Abreu
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
| | - Carla Carvalho
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
| | - Olga Mariana Cunha
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
| | - Mariana Mota
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
| | - Joana Afonso
- Department of Biomedicine—Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal; (D.P.); (J.A.); (T.S.); (A.A.-T.)
- MedInUP—Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-319 Porto, Portugal
| | - Teresa Sousa
- Department of Biomedicine—Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal; (D.P.); (J.A.); (T.S.); (A.A.-T.)
- MedInUP—Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-319 Porto, Portugal
| | - António Albino-Teixeira
- Department of Biomedicine—Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal; (D.P.); (J.A.); (T.S.); (A.A.-T.)
- MedInUP—Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-319 Porto, Portugal
| | - Carmen Diniz
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
- Correspondence:
| | - Manuela Morato
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
| |
Collapse
|
47
|
Lichota A, Szewczyk EM, Gwozdzinski K. Factors Affecting the Formation and Treatment of Thrombosis by Natural and Synthetic Compounds. Int J Mol Sci 2020; 21:E7975. [PMID: 33121005 PMCID: PMC7663413 DOI: 10.3390/ijms21217975] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Venous thromboembolism (VTE) refers to deep vein thrombosis (DVT), whose consequence may be a pulmonary embolism (PE). Thrombosis is associated with significant morbidity and mortality and is the third most common cardiovascular disease after myocardial infarction and stroke. DVT is associated with the formation of a blood clot in a deep vein in the body. Thrombosis promotes slowed blood flow, hypoxia, cell activation, and the associated release of many active substances involved in blood clot formation. All thrombi which adhere to endothelium consist of fibrin, platelets, and trapped red and white blood cells. In this review, we summarise the impact of various factors affecting haemostatic disorders leading to blood clot formation. The paper discusses the causes of thrombosis, the mechanism of blood clot formation, and factors such as hypoxia, the involvement of endothelial cells (ECs), and the activation of platelets and neutrophils along with the effects of bacteria and reactive oxygen species (ROS). Mechanisms related to the action of anticoagulants affecting coagulation factors including antiplatelet drugs have also been discussed. However, many aspects related to the pathogenesis of thrombosis still need to be clarified. A review of the drugs used to treat and prevent thrombosis and natural anticoagulants that occur in the plant world and are traditionally used in Far Eastern medicine has also been carried out.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Faculty of Pharmacy, Medical University of Lodz, 90-235 Lodz, Poland; (A.L.); (E.M.S.)
| | - Eligia M. Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Faculty of Pharmacy, Medical University of Lodz, 90-235 Lodz, Poland; (A.L.); (E.M.S.)
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
48
|
Strassheim D, Verin A, Batori R, Nijmeh H, Burns N, Kovacs-Kasa A, Umapathy NS, Kotamarthi J, Gokhale YS, Karoor V, Stenmark KR, Gerasimovskaya E. P2Y Purinergic Receptors, Endothelial Dysfunction, and Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21186855. [PMID: 32962005 PMCID: PMC7555413 DOI: 10.3390/ijms21186855] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Purinergic G-protein-coupled receptors are ancient and the most abundant group of G-protein-coupled receptors (GPCRs). The wide distribution of purinergic receptors in the cardiovascular system, together with the expression of multiple receptor subtypes in endothelial cells (ECs) and other vascular cells demonstrates the physiological importance of the purinergic signaling system in the regulation of the cardiovascular system. This review discusses the contribution of purinergic P2Y receptors to endothelial dysfunction (ED) in numerous cardiovascular diseases (CVDs). Endothelial dysfunction can be defined as a shift from a “calm” or non-activated state, characterized by low permeability, anti-thrombotic, and anti-inflammatory properties, to a “activated” state, characterized by vasoconstriction and increased permeability, pro-thrombotic, and pro-inflammatory properties. This state of ED is observed in many diseases, including atherosclerosis, diabetes, hypertension, metabolic syndrome, sepsis, and pulmonary hypertension. Herein, we review the recent advances in P2Y receptor physiology and emphasize some of their unique signaling features in pulmonary endothelial cells.
Collapse
Affiliation(s)
- Derek Strassheim
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (R.B.); (A.K.-K.)
| | - Robert Batori
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (R.B.); (A.K.-K.)
| | - Hala Nijmeh
- The Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA;
| | - Nana Burns
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (R.B.); (A.K.-K.)
| | | | - Janavi Kotamarthi
- The Department of BioMedical Engineering, University of Wisconsin, Madison, WI 53706, USA; (J.K.); (Y.S.G.)
| | - Yash S. Gokhale
- The Department of BioMedical Engineering, University of Wisconsin, Madison, WI 53706, USA; (J.K.); (Y.S.G.)
| | - Vijaya Karoor
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
| | - Kurt R. Stenmark
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
- The Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA;
| | - Evgenia Gerasimovskaya
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
- The Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA;
- Correspondence: ; Tel.: +1-303-724-5614
| |
Collapse
|
49
|
Wang HG, Yan H, Wang C, Li MM, Lv XZ, Wu HD, Fang ZH, Mo DL, Zhang ZY, Liang B, Lai KG, Bao JY, Yang XJ, Zhao HJ, Chen S, Fan YM, Tong XG. circAFF1 Aggravates Vascular Endothelial Cell Dysfunction Mediated by miR-516b/SAV1/YAP1 Axis. Front Physiol 2020; 11:899. [PMID: 32848851 PMCID: PMC7425207 DOI: 10.3389/fphys.2020.00899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023] Open
Abstract
Pathological vascular endothelial damage caused by hypoxia is the basis of many vascular-related diseases. However, the role of circular RNA in hypoxic vascular injury is still poorly understood. Here, we found that hypoxia induced AFF1 circular RNA (circAFF1) can activate the SAV1/YAP1 and lead to the dysfunction of vascular endothelial cells. In HUV-EC-C and HBEC-5i cells, circAFF1 was upregulated under CoCl2 induced hypoxic conditions. The abnormal expression of circAFF1 inhibited the proliferation, tube formation, migration of vascular endothelial cells. The effect of circAFF1 is achieved by the adsorption of miR-516b to release SAV1, which in turn causes the phosphorylation of YAP1. Moreover, we found that the upregulation of circAFF1 in 235 Patients with subarachnoid hemorrhage. Taken together, we clarify the role of circAFF1/miR-516b/SAV1/YAP1 axis in vascular endothelial dysfunction and its potential early diagnostic value of disease caused by hypoxia injury in blood vessels.
Collapse
Affiliation(s)
- Hong-Guang Wang
- College of Pharmacy, Nankai University, Tianjin, China.,Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China.,Tianjin Institute, of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China
| | - Chen Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Mi-Mi Li
- Tianjin Institute, of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Xin-Ze Lv
- Drug Safety Evaluation Center, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hai-Dong Wu
- Tianjin Institute, of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhan-Hai Fang
- Department of Neurosurgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Dong-Li Mo
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zhi-Yuan Zhang
- Tianjin Institute, of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Bin Liang
- Tianjin Institute, of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Ke-Guan Lai
- Drug Safety Evaluation Center, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jing-Yu Bao
- Drug Safety Evaluation Center, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xue-Jia Yang
- Drug Safety Evaluation Center, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hong-Juan Zhao
- Department of Respiratory Medicine, Songjiang Sijing Hospital, Shanghai, China
| | - Shuang Chen
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yi-Mu Fan
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiao-Guang Tong
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
50
|
Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. Nat Rev Nephrol 2020; 16:509-524. [PMID: 32641760 DOI: 10.1038/s41581-020-0304-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
ATP and its ultimate degradation product adenosine are potent extracellular signalling molecules that elicit a variety of pathophysiological functions in the kidney through the activation of P2 and P1 purinergic receptors, respectively. Extracellular purines can modulate immune responses, balancing inflammatory processes and immunosuppression; indeed, alterations in extracellular nucleotide and adenosine signalling determine outcomes of inflammation and healing processes. The functional activities of ectonucleotidases such as CD39 and CD73, which hydrolyse pro-inflammatory ATP to generate immunosuppressive adenosine, are therefore pivotal in acute inflammation. Protracted inflammation may result in aberrant adenosinergic signalling, which serves to sustain inflammasome activation and worsen fibrotic reactions. Alterations in the expression of ectonucleotidases on various immune cells, such as regulatory T cells and macrophages, as well as components of the renal vasculature, control purinergic receptor-mediated effects on target tissues within the kidney. The role of CD39 as a rheostat that can have an impact on purinergic signalling in both acute and chronic inflammation is increasingly supported by the literature, as detailed in this Review. Better understanding of these purinergic processes and development of novel drugs targeting these pathways could lead to effective therapies for the management of acute and chronic kidney disease.
Collapse
|