1
|
Ovcinnikovs V, Dijkman K, Zom GG, Beurskens FJ, Trouw LA. Enhancing complement activation by therapeutic anti-tumor antibodies: Mechanisms, strategies, and engineering approaches. Semin Immunol 2024; 77:101922. [PMID: 39742715 DOI: 10.1016/j.smim.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/04/2025]
Abstract
The complement system plays an integral role in both innate and adaptive immune responses. Beyond its protective function against infections, complement is also known to influence tumor immunity, where its activation can either promote tumor progression or mediate tumor cell destruction, depending on the context. One such context can be provided by antibodies, with their inherent capacity to activate the classical complement pathway. In recent years, our understanding of the mechanisms governing complement activation by IgG and IgM antibodies has expanded significantly. At the same time, preclinical and clinical studies on antibodies such as rituximab, ofatumumab, and daratumumab have provided evidence for the role of complement in therapeutic success, encouraging strategies to further enhance its activity. In this review we examine the main determinants of antibody-mediated complement activation, highlighting the importance of antibody subclass, affinity, valency, and geometry of antigen engagement. We summarize the evidence for complement involvement in anti-tumor activity and challenges of accurately estimating the extent of its contribution to therapeutic efficacy. Furthermore, we explore several engineering approaches designed to enhance complement activation, including increased Fc oligomerization and C1q affinity, bispecific C1q-recruiting antibodies, IgG subclass chimeras, as well as antibody and paratope combinations. Strategies targeting membrane-bound complement regulatory proteins to overcome tumor-associated complement inhibition are also discussed as a method to boost therapeutic efficacy. Finally, we highlight the potential of complement-dependent cellular cytotoxicity (CDCC) and complement-dependent cellular phagocytosis (CDCP) as effector mechanisms that warrant deeper investigation. By integrating advances in antibody and complement biology with insights from efforts to enhance complement activation in therapeutic antibodies, this review aims to provide a comprehensive framework of antibody design and engineering strategies that optimize complement activity for improved anti-tumor efficacy.
Collapse
Affiliation(s)
| | - Karin Dijkman
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
2
|
Nguyen OTP, Lara S, Ferro G, Peipp M, Kleinau S. Rituximab-IgG2 is a phagocytic enhancer in antibody-based immunotherapy of B-cell lymphoma by altering CD47 expression. Front Immunol 2024; 15:1483617. [PMID: 39712032 PMCID: PMC11659266 DOI: 10.3389/fimmu.2024.1483617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Antibody-dependent cellular phagocytosis (ADCP) by monocytes and macrophages contributes significantly to the efficacy of many therapeutic monoclonal antibodies (mAbs), including anti-CD20 rituximab (RTX) targeting CD20+ B-cell non-Hodgkin lymphomas (NHL). However, ADCP is constrained by various immune checkpoints, notably the anti-phagocytic CD47 molecule, necessitating strategies to overcome this resistance. We have previously shown that the IgG2 isotype of RTX induces CD20-mediated apoptosis in B-cell lymphoma cells and, when combined with RTX-IgG1 or RTX-IgG3 mAbs, can significantly enhance Fc receptor-mediated phagocytosis. Here, we report that the apoptotic effect of RTX-IgG2 on lymphoma cells contributes to changes in the tumor cell's CD47 profile by reducing its overall expression and altering its surface distribution. Furthermore, when RTX-IgG2 is combined with other lymphoma-targeting mAbs, such as anti-CD59 or anti-PD-L1, it significantly enhances the ADCP of lymphoma cells compared to single mAb treatment. In summary, RTX-IgG2 acts as a potent phagocytic enhancer by promoting Fc-receptor mediated phagocytosis through apoptosis and reduction of CD47 in CD20+ malignant B-cells. RTX-IgG2 represents a valuable therapeutic component in enhancing the effectiveness of different mAbs targeting B-cell NHL.
Collapse
Affiliation(s)
- Oanh T. P. Nguyen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sandra Lara
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Giovanni Ferro
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sandra Kleinau
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Wu Y, Sun X, Kang K, Yang Y, Li H, Zhao A, Niu T. Hemophagocytic lymphohistiocytosis: current treatment advances, emerging targeted therapy and underlying mechanisms. J Hematol Oncol 2024; 17:106. [PMID: 39511607 PMCID: PMC11542428 DOI: 10.1186/s13045-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rapidly progressing, life-threatening syndrome characterized by excessive immune activation, often presenting as a complex cytokine storm. This hyperactive immune response can lead to multi-organ failure and systemic damage, resulting in an extremely short survival period if left untreated. Over the past decades, although HLH has garnered increasing attention from researchers, there have been few advancements in its treatment. The cytokine storm plays a crucial role in the treatment of HLH. Investigating the detailed mechanisms behind cytokine storms offers insights into targeted therapeutic approaches, potentially aiding in early intervention and improving the clinical outcome of HLH patients. To date, there is only one targeted therapy, emapalumab targeting interferon-γ, that has gained approval for primary HLH. This review aims to summarize the current treatment advances, emerging targeted therapeutics and underlying mechanisms of HLH, highlighting its newly discovered targets potentially involved in cytokine storms, which are expected to drive the development of novel treatments and offer fresh perspectives for future studies. Besides, multi-targeted combination therapy may be essential for disease control, but further trials are required to determine the optimal treatment mode for HLH.
Collapse
Affiliation(s)
- Yijun Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Sun
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqi Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - He Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Jestrabek H, Kohlhas V, Hallek M, Nguyen PH. Impact of leukemia-associated macrophages on the progression and therapy response of chronic lymphocytic leukemia. Leuk Res 2024; 143:107531. [PMID: 38851084 DOI: 10.1016/j.leukres.2024.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The treatment landscape of chronic lymphocytic leukemia (CLL) has advanced remarkably over the past decade. The advent and approval of the BTK inhibitor ibrutinib and BCL-2 inhibitor venetoclax, as well as monoclonal anti-CD20 antibodies rituximab and obinutuzumab, have resulted in deep remissions and substantially improved survival outcomes for patients. However, CLL remains a complex disease with many patients still experiencing relapse and unsatisfactory treatment responses. CLL cells are highly dependent on their pro-leukemic tumor microenvironment (TME), which comprises different cellular and soluble factors. A large body of evidence suggests that CLL-associated macrophages shaped by leukemic cells play a pivotal role in maintaining CLL cell survival. In this review, we summarize the pro-survival interactions between CLL cells and macrophages, as well as the impact of the current first-line treatment agents, including ibrutinib, venetoclax, and CD20 antibodies on leukemia-associated macrophages.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/drug effects
- Disease Progression
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Adenine/analogs & derivatives
- Sulfonamides/therapeutic use
- Piperidines/therapeutic use
- Macrophages/pathology
- Macrophages/immunology
Collapse
Affiliation(s)
- Hendrik Jestrabek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany; Mildred Scheel School of Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne 50931, Germany
| | - Viktoria Kohlhas
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany
| | - Michael Hallek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany; Mildred Scheel School of Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne 50931, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany.
| |
Collapse
|
5
|
Merchand-Reyes G, Bull MF, Santhanam R, Valencia-Pena ML, Murugesan RA, Chordia A, Mo XM, Robledo-Avila FH, Ruiz-Rosado JDD, Carson WE, Byrd JC, Woyach JA, Tridandapani S, Butchar JP. NOD2 activation enhances macrophage Fcγ receptor function and may increase the efficacy of antibody therapy. Front Immunol 2024; 15:1409333. [PMID: 38919608 PMCID: PMC11196781 DOI: 10.3389/fimmu.2024.1409333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Therapeutic antibodies have become a major strategy to treat oncologic diseases. For chronic lymphocytic leukemia, antibodies against CD20 are used to target and elicit cytotoxic responses against malignant B cells. However, efficacy is often compromised due to a suppressive microenvironment that interferes with cellular immune responses. To overcome this suppression, agonists of pattern recognition receptors have been studied which promote direct cytotoxicity or elicit anti-tumoral immune responses. NOD2 is an intracellular pattern recognition receptor that participates in the detection of peptidoglycan, a key component of bacterial cell walls. This detection then mediates the activation of multiple signaling pathways in myeloid cells. Although several NOD2 agonists are being used worldwide, the potential benefit of these agents in the context of antibody therapy has not been explored. Methods Primary cells from healthy-donor volunteers (PBMCs, monocytes) or CLL patients (monocytes) were treated with versus without the NOD2 agonist L18-MDP, then antibody-mediated responses were assessed. In vivo, the Eµ-TCL1 mouse model of CLL was used to test the effects of L18-MDP treatment alone and in combination with anti-CD20 antibody. Results Treatment of peripheral blood mononuclear cells with L18-MDP led to activation of monocytes from both healthy donors and CLL patients. In addition, there was an upregulation of activating FcγR in monocytes and a subsequent increase in antibody-mediated phagocytosis. This effect required the NF-κB and p38 signaling pathways. Treatment with L18-MDP plus anti-CD20 antibody in the Eµ-TCL model of CLL led to a significant reduction of CLL load, as well as to phenotypic changes in splenic monocytes and macrophages. Conclusions Taken together, these results suggest that NOD2 agonists help overturn the suppression of myeloid cells, and may improve the efficacy of antibody therapy for CLL.
Collapse
MESH Headings
- Nod2 Signaling Adaptor Protein/agonists
- Nod2 Signaling Adaptor Protein/metabolism
- Nod2 Signaling Adaptor Protein/immunology
- Animals
- Humans
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Mice
- Macrophages/immunology
- Macrophages/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Acetylmuramyl-Alanyl-Isoglutamine/pharmacology
- Female
- Mice, Inbred C57BL
- Signal Transduction
- Phagocytosis
- Rituximab/pharmacology
- Rituximab/therapeutic use
Collapse
Affiliation(s)
- Giovanna Merchand-Reyes
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Mikayla F. Bull
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ramasamy Santhanam
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Maria L. Valencia-Pena
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | | | - Aadesh Chordia
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Xiaokui-Molly Mo
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Frank H. Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Juan De Dios Ruiz-Rosado
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Division of Pediatric Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, United States
| | | | - John C. Byrd
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jennifer A. Woyach
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Susheela Tridandapani
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jonathan P. Butchar
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Arora J, Ayyappan S, Yin C, Smith BJ, Lemke-Miltner CD, Wang Z, Farooq U, Weiner GJ. T-cell help in the tumor microenvironment enhances rituximab-mediated NK-cell ADCC. Blood 2024; 143:1816-1824. [PMID: 38457360 PMCID: PMC11076912 DOI: 10.1182/blood.2023023370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT Rituximab (RTX) and other monoclonal antibodies (mAbs) that bind directly to malignant cells are of great clinical value but are not effective for all patients. A major mechanism of action of RTX is antibody-dependent cellular cytotoxicity (ADCC) mediated by natural killer (NK) cells. Prior in vitro studies in our laboratory demonstrated that T cells contribute to maintaining the viability and cytotoxic potential of NK cells activated by anti-CD20-coated target B cells. Here, we conducted studies using a novel mouse model and clinical correlative analysis to assess whether T-cell help contribute to RTX-mediated NK-cell ADCC in the tumor microenvironment (TME) in vivo. A humanized mouse model was developed using Raji lymphoma cells and normal donor peripheral blood mononuclear cells that allows for control of T-cell numbers in the lymphoma TME. In this model, NK-cell viability and CD16 and CD25 expression dropped after RTX in the absence of T cells but increased in the presence of T cells. RTX therapy was more effective when T cells were present and was ineffective when NK cells were depleted. In patients with indolent lymphoma, fine needle aspirates were obtained before and ∼1 week after treatment with a RTX-containing regimen. There was a strong correlation between CD4+ T cells as well as total T cells in the pretherapy TME and an increase in NK-cell CD16 and CD25 expression after RTX. We conclude that T-cell help in the TME enhances RTX-mediated NK-cell viability and ADCC.
Collapse
Affiliation(s)
- Jyoti Arora
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA
| | - Sabarish Ayyappan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Chaobo Yin
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Brian J. Smith
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Biostatistics, University of Iowa, Iowa City, IA
| | | | - Zhaoming Wang
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Umar Farooq
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - George J. Weiner
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
7
|
Jin Q, Jiang H, Yue N, Zhang L, Li C, Dong C, Zeng P, Yue L, Wu C. The prognostic value of CD8 + CTLs, CD163 + TAMs, and PDL1 expression in the tumor microenvironment of primary central nervous system lymphoma. Leuk Lymphoma 2024; 65:472-480. [PMID: 38198635 DOI: 10.1080/10428194.2023.2296364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
To explore immune cell infiltration and PDL1 expression in the tumor microenvironment (TME) of primary central nervous system lymphoma (PCNSL), we performed immunohistochemical staining on paraffin-embedded tumor tissues from 34 patients diagnosed with PCNSL. CD8 and CD163 positive cells were manually counted, and PDL1 expression was quantified by the H-score scoring method in the tumor center and around the tumor. The Kaplan-Meier method was used to analyze the prognostic value of the TME. We found obvious infiltration of CD8+ CTLs and CD163+ TAMs in the TME of PCNSL patients. And PDL1 was expressed in the tumor center as well as around the tumor. Survival analysis showed that high CD8+ CTLs levels and high intratumoral PDL1 expression were significantly correlated with longer OS. High CD8+ CTLs and CD163+ TAMs levels were associated with longer PFS.
Collapse
Affiliation(s)
- Qiqi Jin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Haoyun Jiang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ningning Yue
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Litian Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Cuicui Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chi Dong
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, China
| | - Pengyun Zeng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lingling Yue
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
8
|
Perry TA, Masand N, Vrzalikova K, Pugh M, Wei W, Hollows R, Bouchalova K, Nohtani M, Fennell E, Bouchal J, Kearns P, Murray PG. The Oncogenic Lipid Sphingosine-1-Phosphate Impedes the Phagocytosis of Tumor Cells by M1 Macrophages in Diffuse Large B Cell Lymphoma. Cancers (Basel) 2024; 16:574. [PMID: 38339325 PMCID: PMC10854869 DOI: 10.3390/cancers16030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND A total of 30-40% of diffuse large B cell lymphoma (DLBCL) patients will either not respond to the standard therapy or their disease will recur. The first-line treatment for DLBCL is rituximab and combination chemotherapy. This treatment involves the chemotherapy-induced recruitment of tumor-associated macrophages that recognize and kill rituximab-opsonized DLBCL cells. However, we lack insights into the factors responsible for the recruitment and functionality of macrophages in DLBCL tumors. METHODS We have studied the effects of the immunomodulatory lipid sphingosine-1-phosphate (S1P) on macrophage activity in DLBCL, both in vitro and in animal models. RESULTS We show that tumor-derived S1P mediates the chemoattraction of both monocytes and macrophages in vitro and in animal models, an effect that is dependent upon the S1P receptor S1PR1. However, S1P inhibited M1 macrophage-mediated phagocytosis of DLBCL tumor cells opsonized with the CD20 monoclonal antibodies rituximab and ofatumumab, an effect that could be reversed by an S1PR1 inhibitor. CONCLUSIONS Our data show that S1P signaling can modulate macrophage recruitment and tumor cell killing by anti-CD20 monoclonal antibodies in DLBCL. The administration of S1PR1 inhibitors could enhance the phagocytosis of tumor cells and improve outcomes for patients.
Collapse
Affiliation(s)
- Tracey A. Perry
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (N.M.); (W.W.); (R.H.); (P.K.)
| | - Navta Masand
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (N.M.); (W.W.); (R.H.); (P.K.)
| | - Katerina Vrzalikova
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; (K.V.); (M.P.)
- Royal College of Surgeons in Ireland Medical University of Bahrain, Manama P.O. Box 15503, Bahrain
| | - Matthew Pugh
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; (K.V.); (M.P.)
| | - Wenbin Wei
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (N.M.); (W.W.); (R.H.); (P.K.)
- The Palatine Centre, Durham University, Durham DH1 3LE, UK
| | - Robert Hollows
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (N.M.); (W.W.); (R.H.); (P.K.)
| | - Katerina Bouchalova
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, 77900 Olomouc, Czech Republic;
| | - Mahdi Nohtani
- Limerick Digital Cancer Research Centre, Health Research Institute and Bernal Institute and School of Medicine, University of Limerick, Limerick V94 T9PX, Ireland; (M.N.); (E.F.)
| | - Eanna Fennell
- Limerick Digital Cancer Research Centre, Health Research Institute and Bernal Institute and School of Medicine, University of Limerick, Limerick V94 T9PX, Ireland; (M.N.); (E.F.)
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, 77900 Olomouc, Czech Republic;
| | - Pamela Kearns
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (N.M.); (W.W.); (R.H.); (P.K.)
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul G. Murray
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; (K.V.); (M.P.)
- Royal College of Surgeons in Ireland Medical University of Bahrain, Manama P.O. Box 15503, Bahrain
- Limerick Digital Cancer Research Centre, Health Research Institute and Bernal Institute and School of Medicine, University of Limerick, Limerick V94 T9PX, Ireland; (M.N.); (E.F.)
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, 77900 Olomouc, Czech Republic;
| |
Collapse
|
9
|
Galvez-Cancino F, Simpson AP, Costoya C, Matos I, Qian D, Peggs KS, Litchfield K, Quezada SA. Fcγ receptors and immunomodulatory antibodies in cancer. Nat Rev Cancer 2024; 24:51-71. [PMID: 38062252 DOI: 10.1038/s41568-023-00637-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 12/24/2023]
Abstract
The discovery of both cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) as negative regulators of antitumour immunity led to the development of numerous immunomodulatory antibodies as cancer treatments. Preclinical studies have demonstrated that the efficacy of immunoglobulin G (IgG)-based therapies depends not only on their ability to block or engage their targets but also on the antibody's constant region (Fc) and its interactions with Fcγ receptors (FcγRs). Fc-FcγR interactions are essential for the activity of tumour-targeting antibodies, such as rituximab, trastuzumab and cetuximab, where the killing of tumour cells occurs at least in part due to these mechanisms. However, our understanding of these interactions in the context of immunomodulatory antibodies designed to boost antitumour immunity remains less explored. In this Review, we discuss our current understanding of the contribution of FcγRs to the in vivo activity of immunomodulatory antibodies and the challenges of translating results from preclinical models into the clinic. In addition, we review the impact of genetic variability of human FcγRs on the activity of therapeutic antibodies and how antibody engineering is being utilized to develop the next generation of cancer immunotherapies.
Collapse
Affiliation(s)
- Felipe Galvez-Cancino
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Alexander P Simpson
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Cristobal Costoya
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Ignacio Matos
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Danwen Qian
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Karl S Peggs
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
10
|
Van Wagoner CM, Rivera-Escalera F, Delgadillo NJ, Chu CC, Zent CS, Elliott MR. Antibody-mediated phagocytosis in cancer immunotherapy. Immunol Rev 2023; 319:128-141. [PMID: 37602915 PMCID: PMC10615698 DOI: 10.1111/imr.13265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Unconjugated monoclonal antibodies (mAb) have revolutionized the treatment of many types of cancer. Some of these mAbs promote the clearance of malignant cells via direct cytotoxic effects. More recently, antibody-dependent cellular phagocytosis (ADCP) has been appreciated as a major mechanism of action for a number of widely-used mAbs, including anti-CD20 (rituximab, obinutuzumab), anti-HER2 (trazituzumab), and anti-CD38 (daratumumab). However, as a monotherapy these ADCP-inducing mAbs produce insufficient levels of cytotoxicity in vivo and are not curative. As a result, these mAbs are most effectively used in combination therapies. The efficacy of these mAbs is further hampered by the apparent development of drug resistance by many patients. Here we will explore the role of ADCP in cancer immunotherapy and discuss the key factors that could limit the efficacy of ADCP-inducing mAbs in vivo. Finally, we will discuss current insights and approaches being applied to overcome these limitations.
Collapse
Affiliation(s)
- Carly M. Van Wagoner
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Fátima Rivera-Escalera
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | | | - Charles C. Chu
- Division of Hematology/Oncology, University of Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, NY, USA
| | - Clive S. Zent
- Division of Hematology/Oncology, University of Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, NY, USA
| | - Michael R. Elliott
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
11
|
Moore JE, Bloom PC, Chu CC, Bruno JE, Herne CA, Baran AM, Quataert SA, Mosmann TR, Taylor RP, Wallace DS, Elliott MR, Barr PM, Zent CS. Rituximab induced cytokine release with high serum IP-10 (CXCL10) concentrations is associated with infusion reactions. Leuk Res 2023; 129:107072. [PMID: 37003030 PMCID: PMC10219853 DOI: 10.1016/j.leukres.2023.107072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Monoclonal antibody induced infusion reactions (IRs) can be serious and even fatal. We used clinical data and blood samples from 37 treatment naïve patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) initiating therapy for progressive disease with a single 50 mg dose of intravenous (IV) rituximab at 25 mg/h. Twenty-four (65 %) patients had IRs at a median of 78 min (range 35-128) and rituximab dose of 32 mg (range 15-50). IR risk did not correlate with patient or CLL characteristics, CLL counts or CD20 levels, or serum rituximab or complement concentrations. Thirty-five (95 %) patients had cytokine release response with a ≥ 4-fold increase in serum concentration of ≥ 1 inflammatory cytokine. IRs were associated with significantly higher post-infusion serum concentrations of gamma interferon induced cytokines IP-10, IL-6 and IL-8. IP-10 concentrations increased ≥ 4-fold in all patients with an IR and were above the upper limit of detection (40,000 pg/ml) in 17 (71 %). In contrast, to only three (23 %) patients without an IR had an ≥ 4-fold increase in serum concentrations of IP-10 (highest 22,013 pg/ml). Our data suggest that cytokine release could be initiated by activation of effector cells responsible for clearance of circulating CLL cells with IRs occurring in those with higher levels of gamma interferon induced cytokines. These novel insights could inform future research to better understand and manage IRs and understand the role of cytokines in the control of cytotoxic immune responses to mAb.
Collapse
Affiliation(s)
- Jeremiah E Moore
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States; Department of Pharmacy, University of Rochester Medical Center, Rochester, NY, United States
| | - Paige C Bloom
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Charles C Chu
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States; Division of Hematology/Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Jennifer E Bruno
- Center for Vaccine Biology & Immunology, University of Rochester Medical Center, Rochester, NY, United States; Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Christine A Herne
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrea M Baran
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Sally A Quataert
- Center for Vaccine Biology & Immunology, University of Rochester Medical Center, Rochester, NY, United States; Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Timothy R Mosmann
- Center for Vaccine Biology & Immunology, University of Rochester Medical Center, Rochester, NY, United States; Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Danielle S Wallace
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States; Division of Hematology/Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael R Elliott
- Center for Cell Clearance and the Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Paul M Barr
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States; Division of Hematology/Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Clive S Zent
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States; Division of Hematology/Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
12
|
Inhibition of CD39 unleashes macrophage antibody-dependent cellular phagocytosis against B-cell lymphoma. Leukemia 2023; 37:379-387. [PMID: 36539557 DOI: 10.1038/s41375-022-01794-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 02/05/2023]
Abstract
Redirection of tumor-associated macrophages to eliminate tumor cells holds great promise for overcoming therapeutic resistance to rituximab and other antibody drugs. Here, we determined the expression of ectonucleotidases CD39 and CD73 in diffuse large B-cell lymphoma (DLBCL), and examined the impact of extracellular ATP (eATP) metabolism on macrophage-mediated anti-lymphoma immunity. Immunostaining of tissue microarray samples showed that CD39 (the ecto-enzyme for eATP hydrolysis) was highly expressed in tumors with the non-germinal center B-cell-like (non-GCB) subtype, and to a lesser extent tumors with the GCB subtype. By contrast, the expression of CD73 (the ecto-enzyme for adenosine generation) was undetectable in tumor cells. Pharmacological blockade of CD39 prevented eATP degradation and enhanced engulfment of antibody-coated lymphoma cells by macrophages in a P2X7 receptor-dependent manner, indicating that eATP fueled antibody-dependent cellular phagocytosis (ADCP) activity. Importantly, inhibition of CD39 augmented in vivo anti-lymphoma effects by therapeutic antibodies including rituximab and daratumumab. Furthermore, the addition of a CD39 inhibitor to anti-CD20 and anti-CD47 combination therapy significantly improved survival in a disseminated model of aggressive B-cell lymphoma, supporting the benefit of dual targeting CD39-mediated eATP hydrolysis and CD47-mediated "don't eat me" signal. Together, preventing eATP degradation may be a potential approach to unleash macrophage-mediated anti-lymphoma immunity.
Collapse
|
13
|
Lu C, Liu Y, Ali NM, Zhang B, Cui X. The role of innate immune cells in the tumor microenvironment and research progress in anti-tumor therapy. Front Immunol 2023; 13:1039260. [PMID: 36741415 PMCID: PMC9893925 DOI: 10.3389/fimmu.2022.1039260] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
Innate immune cells in the tumor microenvironment (TME) mainly include macrophages, neutrophils, natural killer cells, dendritic cells and bone marrow derived suppressor cells. They play an anti-tumor or pro-tumor role by secreting various cytokines, chemokines and other factors, and determine the occurrence and development of tumors. Comprehending the role of innate immune cells in tumorigenesis and progression can help improve therapeutic approaches targeting innate immune cells in the TME, increasing the likelihood of favorable prognosis. In this review, we discussed the cell biology of innate immune cells, their role in tumorigenesis and development, and the current status of innate immune cell-based immunotherapy, in order to provide an overview for future research lines and clinical trials.
Collapse
Affiliation(s)
- Chenglin Lu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Nasra Mohamoud Ali
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,*Correspondence: Xiaonan Cui, ; Bin Zhang,
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,*Correspondence: Xiaonan Cui, ; Bin Zhang,
| |
Collapse
|
14
|
Aguilar OA, Gonzalez-Hinojosa MD, Arakawa-Hoyt JS, Millan AJ, Gotthardt D, Nabekura T, Lanier LL. The CD16 and CD32b Fc-gamma receptors regulate antibody-mediated responses in mouse natural killer cells. J Leukoc Biol 2023; 113:27-40. [PMID: 36822164 PMCID: PMC10197019 DOI: 10.1093/jleuko/qiac003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 01/12/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes capable of mediating immune responses without prior sensitization. NK cells express Fc-gamma receptors (FcγRs) that engage the Fc region of IgG. Studies investigating the role of FcγRs on mouse NK cells have been limited due to lack specific reagents. In this study, we characterize the expression and biological consequences of activating mouse NK cells through their FcγRs. We demonstrate that most NK cells express the activating CD16 receptor, and a subset of NK cells also expresses the inhibitory CD32b receptor. Critically, these FcγRs are functional on mouse NK cells and can modulate antibody-mediated responses. We also characterized mice with conditional knockout alleles of Fcgr3 (CD16) or Fcgr2b (CD32b) in the NK and innate lymphoid cell (ILC) lineage. NK cells in these mice did not reveal any developmental defects and were responsive to cross-linking activating NK receptors, cytokine stimulation, and killing of YAC-1 targets. Importantly, CD16-deficient NK cells failed to induce antibody-directed cellular cytotoxicity of antibody-coated B-cell lymphomas in in vitro assays. In addition, we demonstrate the important role of CD16 on NK cells using an in vivo model of cancer immunotherapy using anti-CD20 antibody treatment of B-cell lymphomas.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Maria D.R. Gonzalez-Hinojosa
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Janice S. Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Alberto J. Millan
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Dagmar Gotthardt
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Present Address: Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Tsukasa Nabekura
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
15
|
Patysheva M, Frolova A, Larionova I, Afanas'ev S, Tarasova A, Cherdyntseva N, Kzhyshkowska J. Monocyte programming by cancer therapy. Front Immunol 2022; 13:994319. [PMID: 36341366 PMCID: PMC9631446 DOI: 10.3389/fimmu.2022.994319] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/27/2022] [Indexed: 08/27/2023] Open
Abstract
Monocytes in peripheral blood circulation are the precursor of essential cells that control tumor progression, that include tumor-associated macrophages (TAMs), dendritic cells (DCs) and myeloid-derive suppressor cells (MDSC). Monocytes-derived cells orchestrate immune reactions in tumor microenvironment that control disease outcome and efficiency of cancer therapy. Four major types of anti-cancer therapy, surgery, radiotherapy, chemotherapy, and most recent immunotherapy, affect tumor-associated macrophage (TAM) polarization and functions. TAMs can also decrease the efficiency of therapy in a tumor-specific way. Monocytes is a major source of TAMs, and are recruited to tumor mass from the blood circulation. However, the mechanisms of monocyte programming in circulation by different therapeutic onsets are only emerging. In our review, we present the state-of-the art about the effects of anti-cancer therapy on monocyte progenitors and their dedifferentiation, on the content of monocyte subpopulations and their transcriptional programs in the circulation, on their recruitment into tumor mass and their potential to give origin for TAMs in tumor-specific microenvironment. We have also summarized very limited available knowledge about genetics that can affect monocyte interaction with cancer therapy, and highlighted the perspectives for the therapeutic targeting of circulating monocytes in cancer patients. We summarized the knowledge about the mediators that affect monocytes fate in all four types of therapies, and we highlighted the perspectives for targeting monocytes to develop combined and minimally invasive anti-cancer therapeutic approaches.
Collapse
Affiliation(s)
- Marina Patysheva
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Tumor Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anastasia Frolova
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Tumor Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Sergey Afanas'ev
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Department of Abdominal Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anna Tarasova
- Department of Abdominal Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
| |
Collapse
|
16
|
Resistance to Trastuzumab. Cancers (Basel) 2022; 14:cancers14205115. [PMID: 36291900 PMCID: PMC9600208 DOI: 10.3390/cancers14205115] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Trastuzumab is a humanized antibody that has significantly improved the management and treatment outcomes of patients with cancers that overexpress HER2. Many research groups, both in academia and industry, have contributed towards understanding the various mechanisms engaged by trastuzumab to mediate its anti-tumor effects. Nevertheless, data from several clinical studies have indicated that a significant proportion of patients exhibit primary or acquired resistance to trastuzumab therapy. In this article, we discuss underlying mechanisms that contribute towards to resistance. Furthermore, we discuss the potential strategies to overcome some of the mechanisms of resistance to enhance the therapeutic efficacy of trastuzumab and other therapies based on it. Abstract One of the most impactful biologics for the treatment of breast cancer is the humanized monoclonal antibody, trastuzumab, which specifically recognizes the HER2/neu (HER2) protein encoded by the ERBB2 gene. Useful for both advanced and early breast cancers, trastuzumab has multiple mechanisms of action. Classical mechanisms attributed to trastuzumab action include cell cycle arrest, induction of apoptosis, and antibody-dependent cell-mediated cytotoxicity (ADCC). Recent studies have identified the role of the adaptive immune system in the clinical actions of trastuzumab. Despite the multiple mechanisms of action, many patients demonstrate resistance, primary or adaptive. Newly identified molecular and cellular mechanisms of trastuzumab resistance include induction of immune suppression, vascular mimicry, generation of breast cancer stem cells, deregulation of long non-coding RNAs, and metabolic escape. These newly identified mechanisms of resistance are discussed in detail in this review, particularly considering how they may lead to the development of well-rationalized, patient-tailored combinations that improve patient survival.
Collapse
|
17
|
Grzelak L, Roesch F, Vaysse A, Biton A, Legendre R, Porrot F, Commère PH, Planchais C, Mouquet H, Vignuzzi M, Bruel T, Schwartz O. IRF8 regulates efficacy of therapeutic anti-CD20 monoclonal antibodies. Eur J Immunol 2022; 52:1648-1661. [PMID: 36030374 DOI: 10.1002/eji.202250037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
Anti-CD20 monoclonal antibodies such as Rituximab, Ofatumumab, and Obinutuzumab are widely used to treat lymphomas and autoimmune diseases. They act by depleting B cells, mainly through Fc-dependent effectors functions. Some patients develop resistance to treatment but the underlying mechanisms are poorly understood. Here, we performed a genome-wide CRISPR/Cas9 screen to identify genes regulating the efficacy of anti-CD20 antibodies. We used as a model the killing of RAJI B cells by Rituximab through complement-dependent-cytotoxicity (CDC). As expected, the screen identified MS4A1, encoding CD20, the target of Rituximab. Among other identified genes, the role of Interferon Regulatory Factor 8 (IRF8) was validated in two B-cell lines. IRF8 KO also decreased the efficacy of antibody-dependent cellular cytotoxicity and phagocytosis (ADCC and ADCP) induced by anti-CD20 antibodies. We further show that IRF8 is necessary for efficient CD20 transcription. Levels of IRF8 and CD20 RNA or proteins correlated in normal B cells and in hundreds of malignant B cells. Therefore, IRF8 regulates CD20 expression and controls the depleting capacity of anti-CD20 antibodies. Our results bring novel insights into the pathways underlying resistance to CD20-targeting immunotherapies.
Collapse
Affiliation(s)
- Ludivine Grzelak
- Unité Virus et Immunité, Département de Virologie, Institut Pasteur & Université Paris Cité, Paris, France.,École Doctorale Bio Sorbonne Paris Cité (BioSPC), Université Paris Cité, France
| | | | - Amaury Vaysse
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Anne Biton
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Françoise Porrot
- Unité Virus et Immunité, Département de Virologie, Institut Pasteur & Université Paris Cité, Paris, France
| | | | - Cyril Planchais
- Laboratoire Immunologie Humorale, Institut Pasteur, Paris, France
| | - Hugo Mouquet
- Laboratoire Immunologie Humorale, Institut Pasteur, Paris, France
| | - Marco Vignuzzi
- Unité des Populations virales et pathogenèse, Département de Virologie, Institut Pasteur, Paris, France
| | - Timothée Bruel
- Unité Virus et Immunité, Département de Virologie, Institut Pasteur & Université Paris Cité, Paris, France
| | - Olivier Schwartz
- Unité Virus et Immunité, Département de Virologie, Institut Pasteur & Université Paris Cité, Paris, France
| |
Collapse
|
18
|
Nakamura A, Grossman S, Song K, Xega K, Zhang Y, Cvet D, Berger A, Shapiro G, Huszar D. The SUMOylation inhibitor subasumstat potentiates rituximab activity by IFN1-dependent macrophage and NK cell stimulation. Blood 2022; 139:2770-2781. [PMID: 35226739 PMCID: PMC11022956 DOI: 10.1182/blood.2021014267] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/07/2022] [Indexed: 11/20/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) is a member of a ubiquitin-like protein superfamily. SUMOylation is a reversible posttranslational modification that has been implicated in the regulation of various cellular processes including inflammatory responses and expression of type 1 interferons (IFN1). In this report, we have explored the activity of the selective small molecule SUMOylation inhibitor subasumstat (TAK-981) in promoting antitumor innate immune responses. We demonstrate that treatment with TAK-981 results in IFN1-dependent macrophage and natural killer (NK) cell activation, promoting macrophage phagocytosis and NK cell cytotoxicity in ex vivo assays. Furthermore, pretreatment with TAK-981 enhanced macrophage phagocytosis or NK cell cytotoxicity against CD20+ target cells in combination with the anti-CD20 antibody rituximab. In vivo studies demonstrated enhanced antitumor activity of TAK-981 and rituximab in CD20+ lymphoma xenograft models. Combination of TAK-981 with anti-CD38 antibody daratumumab also resulted in enhanced antitumor activity. TAK-981 is currently being studied in phase 1 clinical trials (#NCT03648372, #NCT04074330, #NCT04776018, and #NCT04381650; www.clinicaltrials.gov) for the treatment of patients with lymphomas and solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Allison Berger
- Oncology Therapeutic Area Unit, Takeda Development Center Americas, Inc., Cambridge, MA
| | | | | |
Collapse
|
19
|
Aguilar OA, Fong LK, Ishiyama K, DeGrado WF, Lanier LL. The CD3ζ adaptor structure determines functional differences between human and mouse CD16 Fc receptor signaling. J Exp Med 2022; 219:e20220022. [PMID: 35320345 PMCID: PMC8953085 DOI: 10.1084/jem.20220022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells can detect antibody-coated cells through recognition by the CD16 Fc receptor. The importance of CD16 in human NK cell biology has long been appreciated, but how CD16 functions in mouse NK cells remains poorly understood. Here, we report drastic differences between human and mouse CD16 functions in NK cells. We demonstrate that one of the adaptor molecules that CD16 associates with and signals through, CD3ζ, plays a critical role in these functional differences. Using a systematic approach, we demonstrate that residues in the transmembrane domain of the mouse CD3ζ molecule prevent efficient complex formation with mouse CD16, thereby dampening receptor function. Mutating these residues in mouse CD3ζ to those encoded by human CD3ζ resulted in rescue of CD16 receptor function. We reveal that the mouse CD3ζ transmembrane domain adopts a tightly packed confirmation, preventing association with CD16, whereas human CD3ζ adopts a versatile configuration that accommodates receptor assembly.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| | - Lam-Kiu Fong
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Kenichi Ishiyama
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
20
|
Moreno-Vicente J, Willoughby JE, Taylor MC, Booth SG, English VL, Williams EL, Penfold CA, Mockridge CI, Inzhelevskaya T, Kim J, Chan HTC, Cragg MS, Gray JC, Beers SA. Fc-null anti-PD-1 monoclonal antibodies deliver optimal checkpoint blockade in diverse immune environments. J Immunother Cancer 2022; 10:e003735. [PMID: 35017153 PMCID: PMC8753441 DOI: 10.1136/jitc-2021-003735] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Despite extensive clinical use, the mechanisms that lead to therapeutic resistance to anti-programmed cell-death (PD)-1 monoclonal antibodies (mAbs) remain elusive. Here, we sought to determine how interactions between the Fc region of anti-PD-1 mAbs and Fcγ receptors (FcγRs) affect therapeutic activity and how these are impacted by the immune environment. METHODS Mouse and human anti-PD-1 mAbs with different Fc binding profiles were generated and characterized in vitro. The ability of these mAbs to elicit T-cell responses in vivo was first assessed in a vaccination setting using the model antigen ovalbumin. The antitumor activity of anti-PD-1 mAbs was investigated in the context of immune 'hot' MC38 versus 'cold' neuroblastoma tumor models, and flow cytometry performed to assess immune infiltration. RESULTS Engagement of activating FcγRs by anti-PD-1 mAbs led to depletion of activated CD8 T cells in vitro and in vivo, abrogating therapeutic activity. Importantly, the extent of this Fc-mediated modulation was determined by the surrounding immune environment. Low FcγR-engaging mouse anti-PD-1 isotypes, which are frequently used as surrogates for human mAbs, were unable to expand ovalbumin-reactive CD8 T cells, in contrast to Fc-null mAbs. These results were recapitulated in mice expressing human FcγRs, in which clinically relevant hIgG4 anti-PD-1 led to reduced endogenous expansion of CD8 T cells compared with its engineered Fc-null counterpart. In the context of an immunologically 'hot' tumor however, both low-engaging and Fc-null mAbs induced long-term antitumor immunity in MC38-bearing mice. Finally, a similar anti-PD-1 isotype hierarchy was demonstrated in the less responsive 'cold' 9464D neuroblastoma model, where the most effective mAbs were able to delay tumor growth but could not induce long-term protection. CONCLUSIONS Our data collectively support a critical role for Fc:FcγR interactions in inhibiting immune responses to both mouse and human anti-PD-1 mAbs, and highlight the context-dependent effect that anti-PD-1 mAb isotypes can have on T-cell responses. We propose that engineering of Fc-null anti-PD-1 mAbs would prevent FcγR-mediated resistance in vivo and allow maximal T-cell stimulation independent of the immunological environment.
Collapse
Affiliation(s)
- Julia Moreno-Vicente
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jane E Willoughby
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Martin C Taylor
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Steven G Booth
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Vikki L English
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Emily L Williams
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Christine A Penfold
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - C Ian Mockridge
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Jinny Kim
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - H T Claude Chan
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Juliet C Gray
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
21
|
Tousif S, Wang Y, Jackson J, Hough KP, Strenkowski JG, Athar M, Thannickal VJ, McCusker RH, Ponnazhagan S, Deshane JS. Indoleamine 2, 3-Dioxygenase Promotes Aryl Hydrocarbon Receptor-Dependent Differentiation Of Regulatory B Cells in Lung Cancer. Front Immunol 2021; 12:747780. [PMID: 34867973 PMCID: PMC8640488 DOI: 10.3389/fimmu.2021.747780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Regulatory B cells (Breg) are IL-10 producing subsets of B cells that contribute to immunosuppression in the tumor microenvironment (TME). Breg are elevated in patients with lung cancer; however, the mechanisms underlying Breg development and their function in lung cancer have not been adequately elucidated. Herein, we report a novel role for Indoleamine 2, 3- dioxygenase (IDO), a metabolic enzyme that degrades tryptophan (Trp) and the Trp metabolite L-kynurenine (L-Kyn) in the regulation of Breg differentiation in the lung TME. Using a syngeneic mouse model of lung cancer, we report that Breg frequencies significantly increased during tumor progression in the lung TME and secondary lymphoid organs, while Breg were reduced in tumor-bearing IDO deficient mice (IDO-/-). Trp metabolite L-Kyn promoted Breg differentiation in-vitro in an aryl hydrocarbon receptor (AhR), toll-like receptor-4-myeloid differentiation primary response 88, (TLR4-MyD88) dependent manner. Importantly, using mouse models with conditional deletion of IDO in myeloid-lineage cells, we identified a significant role for immunosuppressive myeloid-derived suppressor cell (MDSC)-associated IDO in modulating in-vivo and ex-vivo differentiation of Breg. Our studies thus identify Trp metabolism as a therapeutic target to modulate regulatory B cell function during lung cancer progression.
Collapse
Affiliation(s)
- Sultan Tousif
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yong Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joshua Jackson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kenneth P Hough
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John G Strenkowski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor J Thannickal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert H McCusker
- Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | | | - Jessy S Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
22
|
Follicular lymphoma and macrophages: impact of approved and novel therapies. Blood Adv 2021; 5:4303-4312. [PMID: 34570196 PMCID: PMC8945644 DOI: 10.1182/bloodadvances.2021005722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/08/2021] [Indexed: 12/20/2022] Open
Abstract
The survival and proliferation of follicular lymphoma (FL) cells are strongly dependent on macrophages, because their presence is necessary for the propagation of FL cells in vitro. To this regard, as also shown for the majority of solid tumors, a high tissue content of tumor-associated macrophages (TAMs), particularly if showing a protumoral phenotype (also called M2), is strongly associated with a poor outcome among patients with FL treated with chemotherapy. The introduction of rituximab, an anti-CD20 antibody that can be used by TAMs to facilitate antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis, has challenged this paradigm. In the rituximab era, clinical studies have yielded conflicting results in FL, showing variable outcomes based on the type of regimen used. This highlighted, for the first time, that the impact of TAMs on the prognosis of patients with FL may depend on the administered treatment, emphasizing the need to better understand how currently available therapies affect macrophage function in FL. We summarize the impact of approved and novel therapies for FL, including radiation therapy, chemotherapy, anti-CD20 monoclonal antibodies, lenalidomide, and targeted agents, on the biology of TAMs and describe their effects on macrophage phagocytosis, polarization, and function. Although novel agents targeting the CD47/SIRPα axis are being developed and show promising activity in FL, a deeper understanding of macrophage biology and their complex pathways will help to develop novel and safer therapeutic strategies for patients with this type of lymphoma.
Collapse
|
23
|
Hussain K, Cragg MS, Beers SA. Remodeling the Tumor Myeloid Landscape to Enhance Antitumor Antibody Immunotherapies. Cancers (Basel) 2021; 13:4904. [PMID: 34638388 PMCID: PMC8507767 DOI: 10.3390/cancers13194904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 12/30/2022] Open
Abstract
Among the diverse tumor resident immune cell types, tumor-associated macrophages (TAMs) are often the most abundant, possess an anti-inflammatory phenotype, orchestrate tumor immune evasion and are frequently associated with poor prognosis. However, TAMs can also be harnessed to destroy antibody-opsonized tumor cells through the process of antibody-dependent cellular phagocytosis (ADCP). Clinically important tumor-targeting monoclonal antibodies (mAb) such as Rituximab, Herceptin and Cetuximab, function, at least in part, by inducing macrophages to eliminate tumor cells via ADCP. For IgG mAb, this is mediated by antibody-binding activating Fc gamma receptors (FcγR), with resultant phagocytic activity impacted by the level of co-engagement with the single inhibitory FcγRIIb. Approaches to enhance ADCP in the tumor microenvironment include the repolarization of TAMs to proinflammatory phenotypes or the direct augmentation of ADCP by targeting so-called 'phagocytosis checkpoints'. Here we review the most promising new strategies targeting the cell surface molecules present on TAMs, which include the inhibition of 'don't eat me signals' or targeting immunostimulatory pathways with agonistic mAb and small molecules to augment tumor-targeting mAb immunotherapies and overcome therapeutic resistance.
Collapse
Affiliation(s)
| | | | - Stephen A. Beers
- Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK; (K.H.); (M.S.C.)
| |
Collapse
|
24
|
Nowicka M, Hilton LK, Ashton-Key M, Hargreaves CE, Lee C, Foxall R, Carter MJ, Beers SA, Potter KN, Bolen CR, Klein C, Knapp A, Mir F, Rose-Zerilli M, Burton C, Klapper W, Scott DW, Sehn LH, Vitolo U, Martelli M, Trneny M, Rushton CK, Slack GW, Farinha P, Strefford JC, Oestergaard MZ, Morin RD, Cragg MS. Prognostic significance of FCGR2B expression for the response of DLBCL patients to rituximab or obinutuzumab treatment. Blood Adv 2021; 5:2945-2957. [PMID: 34323958 PMCID: PMC8361458 DOI: 10.1182/bloodadvances.2021004770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 01/16/2023] Open
Abstract
Fc γ receptor IIB (FcγRIIB) is an inhibitory molecule capable of reducing antibody immunotherapy efficacy. We hypothesized its expression could confer resistance in patients with diffuse large B-cell lymphoma (DLBCL) treated with anti-CD20 monoclonal antibody (mAb) chemoimmunotherapy, with outcomes varying depending on mAb (rituximab [R]/obinutuzumab [G]) because of different mechanisms of action. We evaluated correlates between FCGR2B messenger RNA and/or FcγRIIB protein expression and outcomes in 3 de novo DLBCL discovery cohorts treated with R plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) reported by Arthur, Schmitz, and Reddy, and R-CHOP/G-CHOP-treated patients in the GOYA trial (NCT01287741). In the discovery cohorts, higher FCGR2B expression was associated with significantly shorter progression-free survival (PFS; Arthur: hazard ratio [HR], 1.09; 95% confidence interval [CI], 1.01-1.19; P = .0360; Schmitz: HR, 1.13; 95% CI, 1.02-1.26; P = .0243). Similar results were observed in GOYA with R-CHOP (HR, 1.26; 95% CI, 1.00-1.58; P = .0455), but not G-CHOP (HR, 0.91; 95% CI, 0.69-1.20; P = .50). A nonsignificant trend that high FCGR2B expression favored G-CHOP over R-CHOP was observed (HR, 0.67; 95% CI, 0.44-1.02; P = .0622); however, low FCGR2B expression favored R-CHOP (HR, 1.58; 95% CI, 1.00-2.50; P = .0503). In Arthur and GOYA, FCGR2B expression was associated with tumor FcγRIIB expression; correlating with shorter PFS for R-CHOP (HR, 2.17; 95% CI, 1.04-4.50; P = .0378), but not G-CHOP (HR, 1.37; 95% CI, 0.66-2.87; P = .3997). This effect was independent of established prognostic biomarkers. High FcγRIIB/FCGR2B expression has prognostic value in R-treated patients with DLBCL and may confer differential responsiveness to R-CHOP/G-CHOP.
Collapse
Affiliation(s)
| | - Laura K Hilton
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Margaret Ashton-Key
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
- Southampton University Hospitals NHS Foundation Trust, Southampton, United Kingdom
| | - Chantal E Hargreaves
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Chern Lee
- Southampton University Hospitals NHS Foundation Trust, Southampton, United Kingdom
| | - Russell Foxall
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton, Faculty of Medicine, Southampton, United Kingdom
| | - Matthew J Carter
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton, Faculty of Medicine, Southampton, United Kingdom
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton, Faculty of Medicine, Southampton, United Kingdom
| | - Kathleen N Potter
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | | | | | | | - Farheen Mir
- Royal Marsden Hospital, Sutton, United Kingdom
| | - Matthew Rose-Zerilli
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Cathy Burton
- St James's Institute of Oncology, Leeds, United Kingdom
| | - Wolfram Klapper
- Department of Hematopathology, University of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - David W Scott
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Laurie H Sehn
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Umberto Vitolo
- Multidisciplinary Oncology Outpatient Clinic, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Maurizio Martelli
- Department of Translational and Precision Medicine, Hematology, Sapienza University, Rome, Italy
| | - Marek Trneny
- 1st Medical Faculty, Charles University, Prague, Czech Republic; and
| | - Christopher K Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada; and
| | - Graham W Slack
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Pedro Farinha
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Jonathan C Strefford
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Ryan D Morin
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada; and
| | - Mark S Cragg
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton, Faculty of Medicine, Southampton, United Kingdom
| |
Collapse
|
25
|
Wang Z, Chimenti MS, Strouse C, Weiner GJ. T cells, particularly activated CD4 + cells, maintain anti-CD20-mediated NK cell viability and antibody dependent cellular cytotoxicity. Cancer Immunol Immunother 2021; 71:237-249. [PMID: 34110453 PMCID: PMC8783893 DOI: 10.1007/s00262-021-02976-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022]
Abstract
Anti-CD20 monoclonal antibody (mAb) therapy is a mainstay of therapy for B cell malignancies, however many patients fail to respond or eventually develop resistance. The current understanding of mechanisms responsible for this resistance is limited. When peripheral blood mononuclear cells of healthy donors were cultured with Raji cells for 7 days, rituximab (RTX) induced NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC), enhanced NK cell viability and increased or maintained NK expression of CD56, CD16, CD57 and KIR. T cells, mainly CD4+, mediated these changes in a contact-dependent manner, with local T cell production of IL2 playing a central role. Similar findings were found when autologous B cells were used as target cells demonstrating the need for T cell help was not due to allogenic reaction. Results with other anti-CD20 and anti-EGFR antibodies were consistent. Small numbers of T cells activated by anti-CD3/CD28 beads or bispecific antibody enhanced RTX-mediated NK cell ADCC, viability and phenotypical changes. Pathway analysis of bulk NK cell mRNA sequencing after activation by RTX with and without T cells was consistent with T cells maintaining the viability of the activated NK cells. These findings suggest T cell help, mediated in large part by local production of IL2, contributes to NK cell ADCC and viability, and that activating T cells in the tumor microenvironment, such as through the use of anti-CD3 based bispecific antibodies, could enhance the efficacy of anti-CD20 and other mAb therapies where NK-mediated ADCC is a primary mechanism of action.
Collapse
Affiliation(s)
- Zhaoming Wang
- Cancer Biology Graduate Program, Holden Comprehensive Cancer Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Christopher Strouse
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - George J Weiner
- Cancer Biology Graduate Program, Holden Comprehensive Cancer Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA.
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
26
|
CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity. Blood 2021; 136:2416-2427. [PMID: 32603414 DOI: 10.1182/blood.2020006200] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm that commonly expresses CD38. Daratumumab (DARA), a human monoclonal antibody targeting CD38, has significantly improved the outcome of patients with relapsed or refractory MM, but the response is transient in most cases. Putative mechanisms of suboptimal efficacy of DARA include downregulation of CD38 expression and overexpression of complement inhibitory proteins on MM target cells as well as DARA-induced depletion of CD38high natural killer (NK) cells resulting in crippled antibody-dependent cellular cytotoxicity (ADCC). Here, we tested whether maintaining NK cell function during DARA therapy could maximize DARA-mediated ADCC against MM cells and deepen the response. We used the CRISPR/Cas9 system to delete CD38 (CD38KO) in ex vivo expanded peripheral blood NK cells. These CD38KO NK cells were completely resistant to DARA-induced fratricide, showed superior persistence in immune-deficient mice pretreated with DARA, and enhanced ADCC activity against CD38-expressing MM cell lines and primary MM cells. In addition, transcriptomic and cellular metabolic analysis demonstrated that CD38KO NK cells have unique metabolic reprogramming with higher mitochondrial respiratory capacity. Finally, we evaluated the impact of exposure to all-trans retinoic acid (ATRA) on wild-type NK and CD38KO NK cell function and highlighted potential benefits and drawbacks of combining ATRA with DARA in patients with MM. Taken together, these findings provide proof of concept that adoptive immunotherapy using ex vivo expanded CD38KO NK cells has the potential to boost DARA activity in MM.
Collapse
|
27
|
Macrophage hypophagia as a mechanism of innate immune exhaustion in mAb-induced cell clearance. Blood 2021; 136:2065-2079. [PMID: 32556153 DOI: 10.1182/blood.2020005571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
Macrophage antibody (Ab)-dependent cellular phagocytosis (ADCP) is a major cytotoxic mechanism for both therapeutic unconjugated monoclonal Abs (mAbs) such as rituximab and Ab-induced hemolytic anemia and immune thrombocytopenia. Here, we studied the mechanisms controlling the rate and capacity of macrophages to carry out ADCP in settings of high target/effector cell ratios, such as those seen in patients with circulating tumor burden in leukemic phase disease. Using quantitative live-cell imaging of primary human and mouse macrophages, we found that, upon initial challenge with mAb-opsonized lymphocytes, macrophages underwent a brief burst (<1 hour) of rapid phagocytosis, which was then invariably followed by a sharp reduction in phagocytic activity that could persist for days. This previously unknown refractory period of ADCP, or hypophagia, was observed in all macrophage, mAb, and target cell conditions tested in vitro and was also seen in vivo in Kupffer cells from mice induced to undergo successive rounds of αCD20 mAb-dependent clearance of circulating B cells. Importantly, hypophagia had no effect on Ab-independent phagocytosis and did not alter macrophage viability. In mechanistic studies, we found that the rapid loss of activating Fc receptors from the surface and their subsequent proteolytic degradation were the primary mechanisms responsible for the loss of ADCP activity in hypophagia. These data suggest hypophagia is a critical limiting step in macrophage-mediated clearance of cells via ADCP, and understanding such limitations to innate immune system cytotoxic capacity will aid in the development of mAb regimens that could optimize ADCP and improve patient outcome.
Collapse
|
28
|
Mantovani A, Marchesi F, Jaillon S, Garlanda C, Allavena P. Tumor-associated myeloid cells: diversity and therapeutic targeting. Cell Mol Immunol 2021; 18:566-578. [PMID: 33473192 PMCID: PMC8027665 DOI: 10.1038/s41423-020-00613-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
Myeloid cells in tumor tissues constitute a dynamic immune population characterized by a non-uniform phenotype and diverse functional activities. Both tumor-associated macrophages (TAMs), which are more abundantly represented, and tumor-associated neutrophils (TANs) are known to sustain tumor cell growth and invasion, support neoangiogenesis and suppress anticancer adaptive immune responses. In recent decades, several therapeutic approaches have been implemented in preclinical cancer models to neutralize the tumor-promoting roles of both TAMs and TANs. Some of the most successful strategies have now reached the clinic and are being investigated in clinical trials. In this review, we provide an overview of the recent literature on the ever-growing complexity of the biology of TAMs and TANs and the development of the most promising approaches to target these populations therapeutically in cancer patients.
Collapse
Affiliation(s)
- Alberto Mantovani
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy.
- Department of Biomedical Science, Humanitas University, Rozzano, Italy.
- The William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Federica Marchesi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sebastien Jaillon
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Rozzano, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Rozzano, Italy
| | - Paola Allavena
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| |
Collapse
|
29
|
Hubert P, Amigorena S. Antibody-dependent cell cytotoxicity in monoclonal antibody-mediated tumor immunotherapy. Oncoimmunology 2021; 1:103-105. [PMID: 22720225 DOI: 10.4161/onci.1.1.17963] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Antibody-dependent cell cytotoxicity (ADCC) is critical in monoclonal antibody (mAb)-mediated cancer therapy. We recently showed that a tumor-specific mAb in combination with cyclophosphamide inhibited tumor cell growth and induced ADCC-synapses between tumor and effector cells in vivo, opening perspectives to enhance anti-tumor responses by manipulating the immune system.
Collapse
Affiliation(s)
- Pascale Hubert
- Institut Curie; Centre de Recherche; Paris, France ; INSERM; U93; Paris, France
| | | |
Collapse
|
30
|
Grandjean CL, Garcia Z, Lemaître F, Bréart B, Bousso P. Imaging the mechanisms of anti-CD20 therapy in vivo uncovers spatiotemporal bottlenecks in antibody-dependent phagocytosis. SCIENCE ADVANCES 2021; 7:7/8/eabd6167. [PMID: 33608271 PMCID: PMC7895428 DOI: 10.1126/sciadv.abd6167] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/31/2020] [Indexed: 05/16/2023]
Abstract
Anti-CD20 antibody (mAb) represents an effective strategy for the treatment of B cell malignancies, possibly involving complement activity, antibody-dependent cellular cytotoxicity and phagocytosis (ADP). While ADP by Kupffer cells deplete circulating tumors, mechanisms targeting non-circulating tumors remain unclear. Using intravital imaging in a model of B cell lymphoma, we establish here the dominance and limitations of ADP in the bone marrow (BM). We found that tumor cells were stably residing in the BM with little evidence for recirculation. To elucidate the mechanism of depletion, we designed a dual fluorescent reporter to visualize phagocytosis and apoptosis. ADP by BM-associated macrophages was the primary mode of tumor elimination but was no longer active after one hour, resulting in partial depletion. Moreover, macrophages were present at low density in tumor-rich regions, targeting only neighboring tumors. Overcoming spatiotemporal bottlenecks in tumor-targeting Ab therapy thus represents a critical path towards the design of optimized therapies.
Collapse
Affiliation(s)
- Capucine L Grandjean
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 75015 Paris, France.
- INSERM U1223, 75015 Paris, France
| | - Zacarias Garcia
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 75015 Paris, France
- INSERM U1223, 75015 Paris, France
| | - Fabrice Lemaître
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 75015 Paris, France
- INSERM U1223, 75015 Paris, France
| | - Béatrice Bréart
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 75015 Paris, France
- INSERM U1223, 75015 Paris, France
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 75015 Paris, France.
- INSERM U1223, 75015 Paris, France
| |
Collapse
|
31
|
Naicker SD, Feerick CL, Lynch K, Swan D, McEllistrim C, Henderson R, Leonard NA, Treacy O, Natoni A, Rigalou A, Cabral J, Chiu C, Sasser K, Ritter T, O'Dwyer M, Ryan AE. Cyclophosphamide alters the tumor cell secretome to potentiate the anti-myeloma activity of daratumumab through augmentation of macrophage-mediated antibody dependent cellular phagocytosis. Oncoimmunology 2021; 10:1859263. [PMID: 33552684 PMCID: PMC7849715 DOI: 10.1080/2162402x.2020.1859263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple Myeloma (MM) is a malignant disorder of plasma cells which, despite significant advances in treatment, remains incurable. Daratumumab, the first CD38 directed monoclonal antibody, has shown promising activity alone and in combination with other agents for MM treatment. Daratumumab is thought to have pleiotropic mechanisms of activity including natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC). With the knowledge that CD38-expressing NK cells are depleted by daratumumab, we sought to investigate a potential mechanism of enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP) by combining daratumumab with cyclophosphamide (CTX). Cyclophosphamide’s immunomodulatory function was investigated by conditioning macrophages with tumor cell secretome collected from cyclophosphamide treated MM cell lines (CTX-TCS). Flow cytometry analysis revealed that CTX-TCS conditioning augmented the migratory capacity of macrophages and increased CD32 and CD64 Fcγ receptor expression on their cell surface. Daratumumab-specific tumor clearance was increased by conditioning macrophages with CTX-TCS in a dose-dependent manner. This effect was impeded by pre-incubating macrophages with Cytochalasin D (CytoD), an inhibitor of actin polymerization, indicating macrophage-mediated ADCP as the mechanism of clearance. CD64 expression on macrophages directly correlated with MM cell clearance and was essential to the observed synergy between cyclophosphamide and daratumumab, as tumor clearance was attenuated in the presence of a FcγRI/CD64 blocking agent. Cyclophosphamide independently enhances daratumumab-mediated killing of MM cells by altering the tumor microenvironment to promote macrophage recruitment, polarization to a pro-inflammatory phenotype, and directing ADCP. These findings support the addition of cyclophosphamide to existing or novel monoclonal antibody-containing MM regimens.
Collapse
Affiliation(s)
- Serika D Naicker
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Claire L Feerick
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Kevin Lynch
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Dawn Swan
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Department of Hematology, Galway University Hospital, Galway, Ireland.,Blood Cancer Network Ireland, Galway, Ireland
| | - Cian McEllistrim
- Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Robert Henderson
- Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Niamh A Leonard
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Oliver Treacy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Alessandro Natoni
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Athina Rigalou
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Joana Cabral
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | | | - Kate Sasser
- Janssen Research and Development, Pennsylvania, USA
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, Galway, Ireland
| | - Michael O'Dwyer
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Department of Hematology, Galway University Hospital, Galway, Ireland.,Blood Cancer Network Ireland, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, Galway, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Blood Cancer Network Ireland, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, Galway, Ireland
| |
Collapse
|
32
|
Felberg A, Taszner M, Urban A, Majeranowski A, Jaskuła K, Jurkiewicz A, Stasiłojć G, Blom AM, Zaucha JM, Okrój M. Monitoring of the Complement System Status in Patients With B-Cell Malignancies Treated With Rituximab. Front Immunol 2020; 11:584509. [PMID: 33329558 PMCID: PMC7710700 DOI: 10.3389/fimmu.2020.584509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Rituximab is a pioneering anti-CD20 monoclonal antibody that became the first-line drug used in immunotherapy of B-cell malignancies over the last twenty years. Rituximab activates the complement system in vitro, but there is an ongoing debate on the exact role of this effector mechanism in therapeutic effect. Results of both in vitro and in vivo studies are model-dependent and preclude clear clinical conclusions. Additional confounding factors like complement inhibition by tumor cells, loss of target antigen and complement depletion due to excessively applied immunotherapeutics, intrapersonal variability in the concentration of main complement components and differences in tumor burden all suggest that a personalized approach is the best strategy for optimization of rituximab dosage and therapeutic schedule. Herein we critically review the existing knowledge in support of such concept and present original data on markers of complement activation, complement consumption, and rituximab accumulation in plasma of patients with chronic lymphocytic leukemia (CLL) and non-Hodgkin’s lymphomas (NHL). The increase of markers such as C4d and terminal complement complex (TCC) suggest the strongest complement activation after the first administration of rituximab, but not indicative of clinical outcome in patients receiving rituximab in combination with chemotherapy. Both ELISA and complement-dependent cytotoxicity (CDC) functional assay showed that a substantial number of patients accumulate rituximab to the extent that consecutive infusions do not improve the cytotoxic capacity of their sera. Our data suggest that individual assessment of CDC activity and rituximab concentration in plasma may support clinicians’ decisions on further drug infusions, or instead prescribing a therapy with anti-CD20 antibodies like obinutuzumab that more efficiently activate effector mechanisms other than complement.
Collapse
Affiliation(s)
- Anna Felberg
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Taszner
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Urban
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Alan Majeranowski
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Kinga Jaskuła
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Jurkiewicz
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jan M Zaucha
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marcin Okrój
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
33
|
|
34
|
Anderson NR, Minutolo NG, Gill S, Klichinsky M. Macrophage-Based Approaches for Cancer Immunotherapy. Cancer Res 2020; 81:1201-1208. [PMID: 33203697 DOI: 10.1158/0008-5472.can-20-2990] [Citation(s) in RCA: 387] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
Adoptive cell therapy with genetically modified T cells has generated exciting outcomes in hematologic malignancies, but its application to solid tumors has proven challenging. This gap has spurred the investigation of alternative immune cells as therapeutics. Macrophages are potent immune effector cells whose functional plasticity leads to antitumor as well as protumor function in different settings, and this plasticity has led to notable efforts to deplete or repolarize tumor-associated macrophages. Alternatively, macrophages could be adoptively transferred after ex vivo genetic modification. In this review, we highlight the role of macrophages in solid tumors, the progress made with macrophage-focused immunotherapeutic modalities, and the emergence of chimeric antigen receptor macrophage cell therapy.
Collapse
Affiliation(s)
| | | | - Saar Gill
- Department of Hematology Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
35
|
The Role of Complement in the Mechanism of Action of Therapeutic Anti-Cancer mAbs. Antibodies (Basel) 2020; 9:antib9040058. [PMID: 33126570 PMCID: PMC7709112 DOI: 10.3390/antib9040058] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Unconjugated anti-cancer IgG1 monoclonal antibodies (mAbs) activate antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells and antibody-dependent cellular phagocytosis (ADCP) by macrophages, and these activities are thought to be important mechanisms of action for many of these mAbs in vivo. Several mAbs also activate the classical complement pathway and promote complement-dependent cytotoxicity (CDC), although with very different levels of efficacy, depending on the mAb, the target antigen, and the tumor type. Recent studies have unraveled the various structural factors that define why some IgG1 mAbs are strong mediators of CDC, whereas others are not. The role of complement activation and membrane inhibitors expressed by tumor cells, most notably CD55 and CD59, has also been quite extensively studied, but how much these affect the resistance of tumors in vivo to IgG1 therapeutic mAbs still remains incompletely understood. Recent studies have demonstrated that complement activation has multiple effects beyond target cell lysis, affecting both innate and adaptive immunity mediated by soluble complement fragments, such as C3a and C5a, and by stimulating complement receptors expressed by immune cells, including NK cells, neutrophils, macrophages, T cells, and dendritic cells. Complement activation can enhance ADCC and ADCP and may contribute to the vaccine effect of mAbs. These different aspects of complement are also briefly reviewed in the specific context of FDA-approved therapeutic anti-cancer IgG1 mAbs.
Collapse
|
36
|
Horii M, Matsushita T. Regulatory B cells and T cell Regulation in Cancer. J Mol Biol 2020; 433:166685. [PMID: 33096106 DOI: 10.1016/j.jmb.2020.10.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
Abstract
Recent researches shed light on B cell role on various autoimmune diseases, including autoantibody-mediated diseases as well as T cell-mediated autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. B cells play a critical role in the immune response beyond the production of antibodies through mechanisms such as antigen presentation and cytokine production. Furthermore, B cells have recently been recognized to play a role in promoting tumor immunity against cancer. However, not all B cells positively regulate immune responses. Regulatory B cells negatively regulate immune responses by the production of anti-inflammatory cytokines such as interleukin (IL)-10, IL-35, and transforming growth factor-beta. Thus, a balance between effector and regulatory B cells regulates the immune response through the release of cytokines. In this review, we highlight the main emerging roles of B cells in tumor immunity with a focus on the T cell response. These findings can guide a protocol for selectively depleting regulatory B cells as a potential therapeutic strategy for patients with cancer.
Collapse
Affiliation(s)
- Motoki Horii
- Department of Dermatology, Kanazawa University, Graduate School of Medical Sciences, Kanazawa 920-8641, Japan.
| | - Takashi Matsushita
- Department of Dermatology, Kanazawa University, Graduate School of Medical Sciences, Kanazawa 920-8641, Japan.
| |
Collapse
|
37
|
Gordan S, Albert H, Danzer H, Lux A, Biburger M, Nimmerjahn F. The Immunological Organ Environment Dictates the Molecular and Cellular Pathways of Cytotoxic Antibody Activity. Cell Rep 2020; 29:3033-3046.e4. [PMID: 31801071 DOI: 10.1016/j.celrep.2019.10.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/30/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Cytotoxic immunoglobulin G antibodies are an essential component of therapeutic approaches aimed at depleting self-reactive or malignant cells. More recent evidence suggests that the tissue in which the target cell resides influences the underlying molecular and cellular pathways responsible for cytotoxic antibody activity. By studying cytotoxic IgG activity directed against natural killer cells in primary and secondary immunological organs, we show that distinct organ-specific effector pathways are responsible for target cell depletion. While in the bone marrow, the classical complement pathway and the high-affinity Fcγ-receptor I expressed on organ-resident macrophages were both involved in removing opsonized target cells; in the spleen and blood, all activating FcγRs but not the classical complement pathway were critical for target cell killing. Our study suggests that future strategies aimed at optimizing overall cytotoxic antibody activity may need to consider organ-specific pathways to achieve a maximal therapeutic effect.
Collapse
Affiliation(s)
- Sina Gordan
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Heike Albert
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Heike Danzer
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Anja Lux
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Markus Biburger
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany.
| |
Collapse
|
38
|
The immune landscape and response to immune checkpoint blockade therapy in lymphoma. Blood 2020; 135:523-533. [PMID: 31790142 DOI: 10.1182/blood.2019000847] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
The clinical development of effective cancer immunotherapies, along with advances in genomic analysis, has led to the identification of tumor environmental features that predict for sensitivity to immune checkpoint blockade therapy (CBT). Early-phase clinical trial results have demonstrated the remarkable effectiveness of CBT in specific lymphoma subtypes, including classical Hodgkin lymphoma and primary mediastinal B-cell lymphoma. Conversely, CBT has been relatively disappointing in follicular lymphoma and diffuse large B-cell lymphoma. These clinical observations, coupled with important scientific discoveries, have uncovered salient features of the lymphoma microenvironment that correlate with immunotherapy response in patients. For example, classical Hodgkin lymphoma is characterized by an inflammatory environment, genetic alterations that facilitate escape from immune attack, and sensitivity to PD-1 blockade therapy. On the other hand, for lymphomas in which measures of immune surveillance are lacking, including follicular lymphoma and most diffuse large B-cell lymphomas, anti-PD-1 therapy has been less effective. An improved understanding of the immune landscapes of these lymphomas is needed to define subsets that might benefit from CBT. In this article, we describe the immune environments associated with major B-cell lymphomas with an emphasis on the immune escape pathways orchestrated by these diseases. We also discuss how oncogenic alterations in lymphoma cells may affect the cellular composition of the immune environment and ultimately, vulnerability to CBT. Finally, we highlight key areas for future investigation, including the need for the development of biomarkers that predict for sensitivity to CBT in lymphoma patients.
Collapse
|
39
|
Zahavi D, Weiner L. Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel) 2020; 9:E34. [PMID: 32698317 PMCID: PMC7551545 DOI: 10.3390/antib9030034] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibody-based immunotherapy is now considered to be a main component of cancer therapy, alongside surgery, radiation, and chemotherapy. Monoclonal antibodies possess a diverse set of clinically relevant mechanisms of action. In addition, antibodies can directly target tumor cells while simultaneously promoting the induction of long-lasting anti-tumor immune responses. The multifaceted properties of antibodies as a therapeutic platform have led to the development of new cancer treatment strategies that will have major impacts on cancer care. This review focuses on the known mechanisms of action, current clinical applications for the treatment of cancer, and mechanisms of resistance of monoclonal antibody therapy. We further discuss how monoclonal antibody-based strategies have moved towards enhancing anti-tumor immune responses by targeting immune cells instead of tumor antigens as well as some of the current combination therapies.
Collapse
Affiliation(s)
- David Zahavi
- Tumor Biology Training Program, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA;
| | - Louis Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA
| |
Collapse
|
40
|
Improving Immunotherapy Against B-Cell Malignancies Using γδ T-Cell-specific Stimulation and Therapeutic Monoclonal Antibodies. J Immunother 2020; 42:331-344. [PMID: 31318724 DOI: 10.1097/cji.0000000000000289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor antigen-targeting monoclonal antibodies (mAbs) are an important element of current cancer therapies. Some of these therapeutic mAbs enable antibody-dependent cell mediated cytotoxicity (ADCC) against tumor cells. However, cancer-related functional impairment of immune effector cells may limit the clinical efficacy of antibody treatments. We reckoned that combining mAbs with cell-based immunotherapies would provide a clinically relevant synergism and benefit for cancer patients. Here, we focus on γδ T cells, as earlier studies demonstrated that γδ T-cell-based therapies are safe and promising for several types of malignancies. Similar to natural killer cells, their antitumor effects can be enhanced using antibodies, and they could, therefore, become a versatile effector cell platform for use with a variety of licensed therapeutic mAbs against cancer. In this study, we explore the potential of a combination therapy of activated γδ T cells with rituximab and the more recently developed mAbs (obinutuzumab and daratumumab) in different B-cell malignancies in vitro. Obinutuzumab outperformed the other mAbs with regard to direct target cell lysis and ADCC by γδ T cells in several CD20 cell lines and primary lymphoma specimens. We demonstrate that comparatively few CD16 γδ T cells are sufficient to mediate a strong ADCC. Using Fc-receptor-positive B-cell lymphomas as target cells, ADCC cannot be blocked by high concentrations of immunoglobulins or anti-CD16 antibodies, but both substances can promote cell mediated target cell lysis. This study expands on earlier reports on the therapeutic potential of distinctive tumor antigen-targeting mAbs and facilitates the understanding of the mechanism and potential of ADCC by γδ T-cell subsets.
Collapse
|
41
|
Yu X, Chan HTC, Fisher H, Penfold CA, Kim J, Inzhelevskaya T, Mockridge CI, French RR, Duriez PJ, Douglas LR, English V, Verbeek JS, White AL, Tews I, Glennie MJ, Cragg MS. Isotype Switching Converts Anti-CD40 Antagonism to Agonism to Elicit Potent Antitumor Activity. Cancer Cell 2020; 37:850-866.e7. [PMID: 32442402 PMCID: PMC7280789 DOI: 10.1016/j.ccell.2020.04.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
Anti-CD40 monoclonal antibodies (mAbs) comprise agonists and antagonists, which display promising therapeutic activities in cancer and autoimmunity, respectively. We previously showed that epitope and isotype interact to deliver optimal agonistic anti-CD40 mAbs. The impact of Fc engineering on antagonists, however, remains largely unexplored. Here, we show that clinically relevant antagonists used for treating autoimmune conditions can be converted into potent FcγR-independent agonists with remarkable antitumor activity by isotype switching to hIgG2. One antagonist is converted to a super-agonist with greater potency than previously reported highly agonistic anti-CD40 mAbs. Such conversion is dependent on the unique disulfide bonding properties of the hIgG2 hinge. This investigation highlights the transformative capacity of the hIgG2 isotype for converting antagonists to agonists to treat cancer.
Collapse
Affiliation(s)
- Xiaojie Yu
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK.
| | - H T Claude Chan
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Hayden Fisher
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK; Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Christine A Penfold
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Jinny Kim
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - C Ian Mockridge
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Ruth R French
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Patrick J Duriez
- CRUK Protein Core Facility, University of Southampton Faculty of Medicine, Southampton, UK
| | - Leon R Douglas
- CRUK Protein Core Facility, University of Southampton Faculty of Medicine, Southampton, UK
| | - Vikki English
- Pre-clinical Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Ann L White
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Ivo Tews
- Institute for Life Sciences, University of Southampton, Southampton, UK; Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Martin J Glennie
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
42
|
Chenoweth AM, Wines BD, Anania JC, Mark Hogarth P. Harnessing the immune system via FcγR function in immune therapy: a pathway to next-gen mAbs. Immunol Cell Biol 2020; 98:287-304. [PMID: 32157732 PMCID: PMC7228307 DOI: 10.1111/imcb.12326] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
The human fragment crystallizable (Fc)γ receptor (R) interacts with antigen‐complexed immunoglobulin (Ig)G ligands to both activate and modulate a powerful network of inflammatory host‐protective effector functions that are key to the normal physiology of immune resistance to pathogens. More than 100 therapeutic monoclonal antibodies (mAbs) are approved or in late stage clinical trials, many of which harness the potent FcγR‐mediated effector systems to varying degrees. This is most evident for antibodies targeting cancer cells inducing antibody‐dependent killing or phagocytosis but is also true to some degree for the mAbs that neutralize or remove small macromolecules such as cytokines or other Igs. The use of mAb therapeutics has also revealed a “scaffolding” role for FcγR which, in different contexts, may either underpin the therapeutic mAb action such as immune agonism or trigger catastrophic adverse effects. The still unmet therapeutic need in many cancers, inflammatory diseases or emerging infections such as severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) requires increased effort on the development of improved and novel mAbs. A more mature appreciation of the immunobiology of individual FcγR function and the complexity of the relationships between FcγRs and antibodies is fueling efforts to develop more potent “next‐gen” therapeutic antibodies. Such development strategies now include focused glycan or protein engineering of the Fc to increase affinity and/or tailor specificity for selective engagement of individual activating FcγRs or the inhibitory FcγRIIb or alternatively, for the ablation of FcγR interaction altogether. This review touches on recent aspects of FcγR and IgG immunobiology and its relationship with the present and future actions of therapeutic mAbs.
Collapse
Affiliation(s)
- Alicia M Chenoweth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,St John's Institute of Dermatology, King's College, London, UK
| | - Bruce D Wines
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Australia
| | - Jessica C Anania
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - P Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Australia
| |
Collapse
|
43
|
Targeting an adenosine-mediated "don't eat me signal" augments anti-lymphoma immunity by anti-CD20 monoclonal antibody. Leukemia 2020; 34:2708-2721. [PMID: 32269319 DOI: 10.1038/s41375-020-0811-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
A growing body of evidence suggests that macrophage immune checkpoint molecules are potential targets in the era of cancer immunotherapy. Here we showed that extracellular adenosine, an abundant metabolite in the tumor microenvironment, critically impedes the therapeutic efficacy of anti-CD20 monoclonal antibodies (mAbs) against B-cell lymphoma. Using a syngeneic B-cell lymphoma model, we showed that host deficiency of adenosine 2A receptor (A2AR), but not A2BR, remarkably improved lymphoma control by anti-CD20 mAb therapy. Conditional deletion of A2AR in myeloid cells, and to a lesser extent in NK cells, augmented therapeutic efficacy of anti-CD20 mAb. Indeed, adenosine signaling impaired antibody-mediated cellular phagocytosis (ADCP) by macrophages and limited the generation of anti-lymphoma CD8+ T cells. Pharmacological inhibition of A2AR overcame the adenosine-mediated negative regulation of ADCP by rituximab in a xeno-transplanted lymphoma model. Moreover, aberrant overexpression of CD39, an apical ecto-enzyme for adenosine generation, showed a negative impact on prognosis in patients with diffuse large B-cell lymphoma, as well as on preclinical efficacy of rituximab. Together, adenosine acts as a "don't eat me signal", and may be a potential target to harness anti-lymphoma immunity.
Collapse
|
44
|
Flow cytometry-based assessment of direct-targeting anti-cancer antibody immune effector functions. Methods Enzymol 2020; 632:431-456. [PMID: 32000909 PMCID: PMC7000137 DOI: 10.1016/bs.mie.2019.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Monoclonal antibody-based therapies are increasingly being used to treat cancer. Some mediate their therapeutic effects through modifying the function of immune cells globally, while others bind directly to tumor cells and can recruit immune effector cells through their Fc regions. As new direct-binding agents are developed, having the ability to test their Fc-mediated functions in a high-throughput manner is important for selecting antibodies with immune effector properties. Here, using monoclonal anti-CD20 antibody (rituximab) as an example and the CD20+ Raji cell line as tumor target, we describe flow cytometry-based assays for determining an antibody's capacity for mediating antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC). These assays are sensitive, reliable, affordable and avoid the use of radioactivity.
Collapse
|
45
|
Kang TH, Jung ST. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp Mol Med 2019; 51:1-9. [PMID: 31735912 PMCID: PMC6859160 DOI: 10.1038/s12276-019-0345-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) are one of the most widely used drug platforms for infectious diseases or cancer therapeutics because they selectively target pathogens, infectious cells, cancerous cells, and even immune cells. In this way, they mediate the elimination of target molecules and cells with fewer side effects than other therapeutic modalities. In particular, cancer therapeutic mAbs can recognize cell-surface proteins on target cells and then kill the targeted cells by multiple mechanisms that are dependent upon a fragment crystallizable (Fc) domain interacting with effector Fc gamma receptors, including antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated phagocytosis. Extensive engineering efforts have been made toward tuning Fc functions by either reinforcing (e.g. for targeted therapy) or disabling (e.g. for immune checkpoint blockade therapy) effector functions and prolonging the serum half-lives of antibodies, as necessary. In this report, we review Fc engineering efforts to improve therapeutic potency, and propose future antibody engineering directions that can fulfill unmet medical needs. Fine-tuning the function of monoclonal antibodies (mAbs) holds promise for developing new therapeutic agents. Antibodies bind to pathogens or cancer cells, flagging them with Fc (fragment crystallizable) domain for destruction by the immune system. mAbs attached only to specific target cells enable lower side effect than other conventional drugs. Sang Taek Jung at Korea University and Tae Hyun Kang at Kookmin University, both in Seoul, reviewed recent developments in engineering therapeutic potency of mAbs. They report that mAbs can be engineered to activate effective immune cell types to treat a particular disease. Engineering can also increase mAbs’ persistence in the blood, enabling less frequent administration. Antibodies engineered to bind to two different antigens at once can also improve therapeutic efficacy. Applying these techniques could help developing new treatments against cancer, and infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Tae Hyun Kang
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
46
|
Enhancing immunotherapy of STING agonist for lymphoma in preclinical models. Blood Adv 2019; 2:2230-2241. [PMID: 30194137 DOI: 10.1182/bloodadvances.2018020040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022] Open
Abstract
Direct activation of tumor infiltrating antigen-presenting cells (APCs) by intratumoral injection of STING agonists (STINGa) leads to regression of the treated lymphoma tumor. Because STING activation induces apoptosis in lymphoma cells in vitro, we distinguished between the direct therapeutic vs the indirect immunotherapeutic properties of STINGa in vivo. Employing wild-type or STING knockout hosts bearing either wild-type or STING knockout tumor cells, we demonstrated that local tumor regression is totally dependent on STING expression by the host and is therefore immune mediated. However, distant untreated tumors are weakly affected after injection of STINGa to a single tumor site. Therefore, using the STINGa currently being tested in clinical trials, we screened for immunomodulatory agents that could synergize with the STING pathway to induce a systemic antitumor immune response and regression of distant tumors. We combined the STINGa with agents that improve APC or T-cell function. We found that modulation of both APCs and T cells can enhance control of distant lymphoma tumors by STINGa. In particular, adding an anti-GITR antibody induced lymphocyte expansion in the lymph node draining the treated site followed by increased T-cell infiltration in the distant tumor. Furthermore, more of these CD8 T cells at the distant site expressed PD-1. Therefore, blockade of PD-1 further enhanced tumor control at the distant site, leading to cure in 50% of the mice. These preclinical data provide the rationale for testing local injection of STINGa followed by agonistic anti-GITR and anti-PD-1 antibodies as immunotherapy for human lymphoma.
Collapse
|
47
|
Accelerated, but not conventional, radiotherapy of murine B-cell lymphoma induces potent T cell-mediated remissions. Blood Adv 2019; 2:2568-2580. [PMID: 30301812 DOI: 10.1182/bloodadvances.2018023119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/02/2018] [Indexed: 11/20/2022] Open
Abstract
Conventional local tumor irradiation (LTI), delivered in small daily doses over several weeks, is used clinically as a palliative, rather than curative, treatment for chemotherapy-resistant diffuse large B-cell lymphoma (DLBCL) for patients who are ineligible for hematopoietic cell transplantation. Our goal was to test the hypothesis that accelerated, but not conventional, LTI would be more curative by inducing T cell-mediated durable remissions. We irradiated subcutaneous A20 and BL3750 lymphoma tumors in mice with a clinically relevant total radiation dose of 30 Gy LTI, delivered in 10 doses of 3 Gy over 4 days (accelerated irradiation) or as 10 doses of 3 Gy over 12 days (conventional irradiation). Compared with conventional LTI, accelerated LTI resulted in more complete and durable tumor remissions. The majority of these mice were resistant to rechallenge with lymphoma cells, demonstrating the induction of memory antitumor immunity. The increased efficacy of accelerated LTI correlated with higher levels of tumor cell necrosis vs apoptosis and expression of "immunogenic cell death" markers, including calreticulin, heat shock protein 70 (Hsp70), and Hsp90. Accelerated LTI-induced remissions were not seen in immunodeficient Rag-2 -/- mice, CD8+ T-cell-depleted mice, or Batf-3 -/- mice lacking CD8α+ and CD103+ dendritic cells. Accelerated, but not conventional, LTI in immunocompetent hosts induced marked increases in tumor-infiltrating CD4+ and CD8+ T cells and MHCII+CD103+CD11c+ dendritic cells and corresponding reductions in exhausted PD-1+Eomes+CD8+ T cells and CD4+CD25+FOXP3+ regulatory T cells. These findings raise the possibility that accelerated LTI can provide effective immune control of human DLBCL.
Collapse
|
48
|
Kang TH, Lee CH, Delidakis G, Jung J, Richard-Le Goff O, Lee J, Kim JE, Charab W, Bruhns P, Georgiou G. An Engineered Human Fc variant With Exquisite Selectivity for FcγRIIIa V158 Reveals That Ligation of FcγRIIIa Mediates Potent Antibody Dependent Cellular Phagocytosis With GM-CSF-Differentiated Macrophages. Front Immunol 2019; 10:562. [PMID: 30984171 PMCID: PMC6448688 DOI: 10.3389/fimmu.2019.00562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/04/2019] [Indexed: 01/27/2023] Open
Abstract
IgG antibodies mediate the clearance of target cells via the engagement of Fc gamma receptors (FcγRs) on effector cells by eliciting antibody-dependent cellular cytotoxicity and phagocytosis (ADCC and ADCP, respectively). Because (i) the IgG Fc domain binds to multiple FcγRs with varying affinities; (ii) even low Fc:FcγRs affinity interactions can play a significant role when antibodies are engaged in high avidity immune complexes and (iii) most effector cells express multiple FcγRs, the clearance mechanisms that can be mediated by individual FcγR are not well-understood. Human FcγRIIIa (hFcγRIIIa; CD16a), which exists as two polymorphic variants at position 158, hFcγRIIIaV158 and hFcγRIIIaF158, is widely considered to only trigger ADCC, especially with natural killer (NK) cells as effectors. To evaluate the role of hFcγRIIIa ligation in myeloid-derived effector cells, and in particular on macrophages and monocytes which express multiple FcγRs, we engineered an aglycosylated engineered human Fc (hFc) variant, Fc3aV, which binds exclusively to hFcγRIIIaV158. Antibodies formatted with the Fc3aV variant bind to the hFcγRIIIaV158 allotype with a somewhat lower KD than their wild type IgG1 counterparts, but not to any other hFcγR. The exceptional selectivity for hFcγRIIIaV158 was demonstrated by SPR using increased avidity, dimerized GST-fused versions of the ectodomains of hFcγRs and from the absence of binding of large immune complex (IC) to CHO cells expressing each of the hFcγRs, including notably, the FcγRIIIaF158 variant or the highly homologous FcγRIIIb. We show that even though monocyte-derived GM-CSF differentiated macrophages express hFcγRIIIa at substantially lower levels than the other two major activating receptors, namely hFcγRI or hFcγRIIa, Fc3aV-formatted Rituximab and Herceptin perform ADCP toward CD20- and Her2-expressing cancer cells, respectively, at a level comparable to that of the respective wild-type antibodies. We further show that hFcγRIIIa activation plays a significant role on ADCC by human peripheral monocytes. Our data highlight the utility of Fc3aV and other similarly engineered exquisitely selective, aglycosylated Fc variants toward other hFcγRs as tools for the detailed molecular understanding of hFcγR biology.
Collapse
Affiliation(s)
- Tae Hyun Kang
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Chang-Han Lee
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - George Delidakis
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Jiwon Jung
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Odile Richard-Le Goff
- Unit of Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris, France
| | - Jiwon Lee
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Jin Eyun Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Wissam Charab
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Pierre Bruhns
- Unit of Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris, France.,INSERM, U1222, Paris, France
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States.,Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States.,Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, United States.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
49
|
Buchan SL, Dou L, Remer M, Booth SG, Dunn SN, Lai C, Semmrich M, Teige I, Mårtensson L, Penfold CA, Chan HTC, Willoughby JE, Mockridge CI, Dahal LN, Cleary KLS, James S, Rogel A, Kannisto P, Jernetz M, Williams EL, Healy E, Verbeek JS, Johnson PWM, Frendéus B, Cragg MS, Glennie MJ, Gray JC, Al-Shamkhani A, Beers SA. Antibodies to Costimulatory Receptor 4-1BB Enhance Anti-tumor Immunity via T Regulatory Cell Depletion and Promotion of CD8 T Cell Effector Function. Immunity 2018; 49:958-970.e7. [PMID: 30446386 DOI: 10.1016/j.immuni.2018.09.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 07/12/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022]
Abstract
The costimulatory receptor 4-1BB is expressed on activated immune cells, including activated T cells. Antibodies targeting 4-1BB enhance the proliferation and survival of antigen-stimulated T cells in vitro and promote CD8 T cell-dependent anti-tumor immunity in pre-clinical cancer models. We found that T regulatory (Treg) cells infiltrating human or murine tumors expressed high amounts of 4-1BB. Intra-tumoral Treg cells were preferentially depleted by anti-4-1BB mAbs in vivo. Anti-4-1BB mAbs also promoted effector T cell agonism to promote tumor rejection. These distinct mechanisms were competitive and dependent on antibody isotype and FcγR availability. Administration of anti-4-1BB IgG2a, which preferentially depletes Treg cells, followed by either agonistic anti-4-1BB IgG1 or anti-PD-1 mAb augmented anti-tumor responses in multiple solid tumor models. An antibody engineered to optimize both FcγR-dependent Treg cell depleting capacity and FcγR-independent agonism delivered enhanced anti-tumor therapy. These insights into the effector mechanisms of anti-4-1BB mAbs lay the groundwork for translation into the clinic.
Collapse
Affiliation(s)
- Sarah L Buchan
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Lang Dou
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Marcus Remer
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Steven G Booth
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Stuart N Dunn
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Chester Lai
- Department of Dermatopharmacology, University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK; Department of Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Monika Semmrich
- BioInvent International AB, Sölvegatan 41, 22370 Lund, Sweden
| | - Ingrid Teige
- BioInvent International AB, Sölvegatan 41, 22370 Lund, Sweden
| | | | - Christine A Penfold
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - H T Claude Chan
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Jane E Willoughby
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - C Ian Mockridge
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Lekh N Dahal
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Kirstie L S Cleary
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Sonya James
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Anne Rogel
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Päivi Kannisto
- Department of Obstetrics and Gynecology, Lund University Hospital, Lund, Sweden
| | - Mats Jernetz
- Department of Obstetrics and Gynecology, Lund University Hospital, Lund, Sweden
| | - Emily L Williams
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Eugene Healy
- Department of Dermatopharmacology, University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK; Department of Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Peter W M Johnson
- Cancer Research UK Southampton Centre, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Björn Frendéus
- BioInvent International AB, Sölvegatan 41, 22370 Lund, Sweden
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Martin J Glennie
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Juliet C Gray
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Aymen Al-Shamkhani
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| |
Collapse
|
50
|
Dahal LN, Huang CY, Stopforth RJ, Mead A, Chan K, Bowater JX, Taylor MC, Narang P, Chan HTC, Kim JH, Vaughan AT, Forconi F, Beers SA. Shaving Is an Epiphenomenon of Type I and II Anti-CD20-Mediated Phagocytosis, whereas Antigenic Modulation Limits Type I Monoclonal Antibody Efficacy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1211-1221. [PMID: 29997125 PMCID: PMC6082343 DOI: 10.4049/jimmunol.1701122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 06/10/2018] [Indexed: 01/09/2023]
Abstract
Rituximab is an anti-CD20 mAb used in the treatment of B cell malignancies. Loss of surface CD20 Ag from the surface of target cells is thought to be one mechanism governing resistance to rituximab, but how this occurs is not completely understood. Two explanations for this have been proposed: antigenic modulation whereby mAb:CD20 complexes are internalized in a B cell intrinsic process and shaving, in which mAb:CD20 complexes undergo trogocytic removal by effector cells, such as macrophages. However, there is conflicting evidence as to which predominates in clinical scenarios and hence the best strategies to overcome resistance. In this study, we investigated the relative importance of modulation and shaving in the downregulation of surface mAb:CD20. We used both murine and human systems and treated ex vivo macrophages with varying concentrations of non-FcγR-interacting beads to achieve differential macrophage saturation states, hence controllably suppressing further phagocytosis of target cells. We then monitored the level and localization of mAb:CD20 using a quenching assay. Suppression of phagocytosis with bead treatment decreased shaving and increased modulation, suggesting that the two compete for surface rituximab:CD20. Under all conditions tested, modulation predominated in rituximab loss, whereas shaving represented an epiphenomenon to phagocytosis. We also demonstrate that the nonmodulating, glycoengineered, type II mAb obinutuzumab caused a modest but significant increase in shaving compared with type II BHH2 human IgG1 wild-type mAb. Therefore, shaving may represent an important mechanism of resistance when modulation is curtailed, and glycoengineering mAb to increase affinity for FcγR may enhance resistance because of shaving.
Collapse
Affiliation(s)
- Lekh N Dahal
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| | - Chie-Yin Huang
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| | - Richard J Stopforth
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| | - Abbie Mead
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| | - Keith Chan
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| | - Juliet X Bowater
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| | - Martin C Taylor
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| | - Priyanka Narang
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| | - H T Claude Chan
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| | - Jinny H Kim
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| | - Andrew T Vaughan
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| | - Francesco Forconi
- Cancer Sciences Unit, Cancer Research UK and National Institute for Health Research Experimental Cancer Medicine Centres, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| |
Collapse
|