1
|
Liu Y, Li J, Liu Q. Inactivation of the CMAH gene and deficiency of Neu5Gc play a role in human brain evolution. Inflamm Regen 2025; 45:5. [PMID: 39920734 PMCID: PMC11806805 DOI: 10.1186/s41232-025-00368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
During human evolution, some genes were lost or silenced from the genome of hominins. These missing genes might be the key to the evolution of humans' unique cognitive skills. An inactivation mutation in CMP-N-acetylneuraminic acid hydroxylase (CMAH) was the result of natural selection. The inactivation of CMAH protected our ancestors from some pathogens and reduced the level of N-glycolylneuraminic acid (Neu5Gc) in brain tissue. Interestingly, the low level of Neu5Gc promoted the development of brain tissue, which may have played a role in human evolution. As a xenoantigen, Neu5Gc may have been involved in brain evolution by affecting neural conduction, neuronal development, and aging.
Collapse
Affiliation(s)
- Yuxin Liu
- Center of Reproductive Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Jinhong Li
- Department of Laboratory Medicine, Medical Technology and Engineering College, Fujian Medical University, Fuzhou, P.R. China
| | - Qicai Liu
- Center of Reproductive Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China.
- Vanke School of Public Health, National Graduate College for Engineers, Tsinghua University, Beijing, P.R. China.
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Medical University, Fuzhou, P.R. China.
- School of Biomedical Engineering, Tsinghua University, Beijing, P.R. China.
- Department of Reproductive Medicine Centre, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
2
|
Isernhagen L, Galuska CE, Vernunft A, Galuska SP. Structural Characterization and Abundance of Sialylated Milk Oligosaccharides in Holstein Cows during Early Lactation. Foods 2024; 13:2484. [PMID: 39200411 PMCID: PMC11353935 DOI: 10.3390/foods13162484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Among other bioactive molecules, milk contains high amounts of sialylated milk oligosaccharides (MOs) that influence numerous processes in the offspring. For instance, sialylated MOs inhibit the invasion of pathogens and positively influence the gut microbiome to support the optimal development of the offspring. For these reasons, sialylated MOs are also used in infant formula as well as food supplements and are potential therapeutic substances for humans and animals. Because of the high interest in sialylated bovine MOs (bMOs), we used several analytical approaches, such as gas and liquid chromatography in combination with mass spectrometry, to investigate in detail the profile of sialylated bMOs in the milk of Holstein Friesian cows during early lactation. Most of the 40 MOs identified in this study were sialylated, and a rapid decrease in all detected sialylated bMOs took place during the first day of lactation. Remarkably, we observed a high variance within the sialylation level during the first two days after calving. Therefore, our results suggest that the content of sialylated MOs might be an additional quality marker for the bioactivity of colostrum and transitional milk to ensure its optimized application for the production of milk replacer and food supplements.
Collapse
Affiliation(s)
| | | | | | - Sebastian P. Galuska
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (L.I.); (A.V.)
| |
Collapse
|
3
|
Hutton E, Scott E, Robson CN, Signoret N, Fascione MA. A systematic review reveals conflicting evidence for the prevalence of antibodies against the sialic acid 'xenoautoantigen' Neu5Gc in humans and the need for a standardised approach to quantification. Front Mol Biosci 2024; 11:1390711. [PMID: 38737334 PMCID: PMC11082328 DOI: 10.3389/fmolb.2024.1390711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
Despite an array of hypothesised implications for health, disease, and therapeutic development, antibodies against the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) remain a subject of much debate. This systematic review of 114 publications aimed to generate a comprehensive overview of published studies in this field, addressing both the reported prevalence of anti-Neu5Gc antibodies in the human population and whether experimental variation accounts for the conflicting reports about the extent of this response. Absolute titres of anti-Neu5Gc antibodies, the reported prevalence of these antibodies, and the individual variation observed within experiments were analysed and grouped according to biological context ('inflammation', 'xenotransplantation', 'biotherapeutic use', 'cancer', and 'healthy populations'), detection method, target epitope selection, and choice of blocking agent. These analyses revealed that the experimental method had a notable impact on both the reported prevalence and absolute titres of anti-Neu5Gc antibodies in the general population, thereby limiting the ability to ascribe reported trends to genuine biological differences or the consequence of experimental design. Overall, this review highlights important knowledge gaps in the study of antibodies against this important xenoautoantigen and the need to establish a standardised method for their quantification if the extent of the importance of Neu5Gc in human health is to be fully understood.
Collapse
Affiliation(s)
- Esme Hutton
- Department of Chemistry, University of York, York, United Kingdom
- Hull York Medical School, University of York, York, United Kingdom
| | - Emma Scott
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, United Kingdom
| | - Craig N. Robson
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, United Kingdom
| | | | | |
Collapse
|
4
|
Manni M, Mantuano NR, Zingg A, Kappos EA, Behrens AJ, Back J, Follador R, Faridmoayer A, Läubli H. Detection of N-glycolyl-neuraminic acid-containing glycolipids in human skin. Front Immunol 2023; 14:1291292. [PMID: 38094289 PMCID: PMC10716299 DOI: 10.3389/fimmu.2023.1291292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Humans lack the enzyme that produces the sialic acid N-glycolyl neuraminic acid (Neu5Gc), but several lines of evidence have shown that Neu5Gc can be taken up by mammalian food sources and replace the common human sialic acid N-acetyl neuraminic acid (Neu5Ac) in glycans. Cancer tissue has been shown to have increased the presence of Neu5Gc and Neu5Gc-containing glycolipids such as the ganglioside GM3, which have been proposed as tumor-specific antigens for antibody treatment. Here, we show that a previously described antibody against Neu5Gc-GM3 is binding to Neu5GC-containing gangliosides and is strongly staining different cancer tissues. However, we also found a strong intracellular staining of keratinocytes of healthy skin. We confirmed this staining on freshly isolated keratinocytes by flow cytometry and detected Neu5Gc by mass spectrometry. This finding implicates that non-human Neu5Gc can be incorporated into gangliosides in human skin, and this should be taken into consideration when targeting Neu5Gc-containing gangliosides for cancer immunotherapy.
Collapse
Affiliation(s)
- Michela Manni
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Glycoera AG, Wädenswil, Switzerland
| | | | - Andreas Zingg
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Elisabeth A. Kappos
- Department of Plastic, Reconstructive, Aesthetic and Handsurgery, University Hospital and University of Basel, Basel, Switzerland
| | | | | | | | | | - Heinz Läubli
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Division of Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
5
|
Vaill M, Kawanishi K, Varki N, Gagneux P, Varki A. Comparative physiological anthropogeny: exploring molecular underpinnings of distinctly human phenotypes. Physiol Rev 2023; 103:2171-2229. [PMID: 36603157 PMCID: PMC10151058 DOI: 10.1152/physrev.00040.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Anthropogeny is a classic term encompassing transdisciplinary investigations of the origins of the human species. Comparative anthropogeny is a systematic comparison of humans and other living nonhuman hominids (so-called "great apes"), aiming to identify distinctly human features in health and disease, with the overall goal of explaining human origins. We begin with a historical perspective, briefly describing how the field progressed from the earliest evolutionary insights to the current emphasis on in-depth molecular and genomic investigations of "human-specific" biology and an increased appreciation for cultural impacts on human biology. While many such genetic differences between humans and other hominids have been revealed over the last two decades, this information remains insufficient to explain the most distinctive phenotypic traits distinguishing humans from other living hominids. Here we undertake a complementary approach of "comparative physiological anthropogeny," along the lines of the preclinical medical curriculum, i.e., beginning with anatomy and considering each physiological system and in each case considering genetic and molecular components that are relevant. What is ultimately needed is a systematic comparative approach at all levels from molecular to physiological to sociocultural, building networks of related information, drawing inferences, and generating testable hypotheses. The concluding section will touch on distinctive considerations in the study of human evolution, including the importance of gene-culture interactions.
Collapse
Affiliation(s)
- Michael Vaill
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| | - Kunio Kawanishi
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nissi Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Pascal Gagneux
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Ajit Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Stanczak MA, Läubli H. Siglec receptors as new immune checkpoints in cancer. Mol Aspects Med 2023; 90:101112. [PMID: 35948467 DOI: 10.1016/j.mam.2022.101112] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy in the form of immune checkpoint inhibitors and cellular therapies has improved the treatment and prognosis of many patients. Nevertheless, most cancers are still resistant to currently approved cancer immunotherapies. New approaches and rational combinations are needed to overcome these resistances. There is emerging evidence that Siglec receptors could be regarded as new immune checkpoints and targets for cancer immunotherapy. In this review, we summarize the experimental evidence supporting Siglec receptors as new immune checkpoints in cancer and discuss their mechanisms of action, as well as current efforts to target Siglec receptors and their interactions with sialoglycan Siglec-ligands.
Collapse
Affiliation(s)
- Michal A Stanczak
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, 21287, USA
| | - Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Division of Oncology, University Hospital Basel, Switzerland.
| |
Collapse
|
7
|
Rousse J, Royer PJ, Evanno G, Lheriteau E, Ciron C, Salama A, Shneiker F, Duchi R, Perota A, Galli C, Cozzi E, Blancho G, Duvaux O, Brouard S, Soulillou JP, Bach JM, Vanhove B. LIS1, a glyco-humanized swine polyclonal anti-lymphocyte globulin, as a novel induction treatment in solid organ transplantation. Front Immunol 2023; 14:1137629. [PMID: 36875084 PMCID: PMC9978386 DOI: 10.3389/fimmu.2023.1137629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Anti-thymocyte or anti-lymphocyte globulins (ATGs/ALGs) are immunosuppressive drugs used in induction therapies to prevent acute rejection in solid organ transplantation. Because animal-derived, ATGs/ALGs contain highly immunogenic carbohydrate xenoantigens eliciting antibodies that are associated with subclinical inflammatory events, possibly impacting long-term graft survival. Their strong and long-lasting lymphodepleting activity also increases the risk for infections. We investigated here the in vitro and in vivo activity of LIS1, a glyco-humanized ALG (GH-ALG) produced in pigs knocked out for the two major xeno-antigens αGal and Neu5Gc. It differs from other ATGs/ALGs by its mechanism of action excluding antibody-dependent cell-mediated cytotoxicity and being restricted to complement-mediated cytotoxicity, phagocyte-mediated cytotoxicity, apoptosis and antigen masking, resulting in profound inhibition of T-cell alloreactivity in mixed leucocyte reactions. Preclinical evaluation in non-human primates showed that GH-ALG dramatically reduced CD4+ (p=0.0005,***), CD8+ effector T cells (p=0.0002,***) or myeloid cells (p=0.0007,***) but not T-reg (p=0.65, ns) or B cells (p=0.65, ns). Compared with rabbit ATG, GH-ALG induced transient depletion (less than one week) of target T cells in the peripheral blood (<100 lymphocytes/L) but was equivalent in preventing allograft rejection in a skin allograft model. The novel therapeutic modality of GH-ALG might present advantages in induction treatment during organ transplantation by shortening the T-cell depletion period while maintaining adequate immunosuppression and reducing immunogenicity.
Collapse
Affiliation(s)
| | | | | | | | - Carine Ciron
- Research and Development, Xenothera, Nantes, France
| | - Apolline Salama
- Nantes Université, Inserm, University Hospital Center CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | | | - Roberto Duchi
- Transplantation Immunology Unit, Padua University Hospital, Padova, Italy
| | - Andrea Perota
- Transplantation Immunology Unit, Padua University Hospital, Padova, Italy
| | - Cesare Galli
- Transplantation Immunology Unit, Padua University Hospital, Padova, Italy
| | - Emmanuele Cozzi
- Avantea, Laboratorio di Tecnologie della Riproduzione, Cremona, Italy
| | - Gilles Blancho
- Nantes Université, Inserm, University Hospital Center CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Odile Duvaux
- Research and Development, Xenothera, Nantes, France
| | - Sophie Brouard
- Nantes Université, Inserm, University Hospital Center CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Jean-Paul Soulillou
- Nantes Université, Inserm, University Hospital Center CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | | | | |
Collapse
|
8
|
Immune disguise: the mechanisms of Neu5Gc inducing autoimmune and transplant rejection. Genes Immun 2022; 23:175-182. [PMID: 36151402 DOI: 10.1038/s41435-022-00182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Organ (stem cell) transplantation is the most effective treatment for advanced organ failure. Neu5Gc (N-hydroxyacetylneuraminic acid) is a pathogenic non-human sialic acid, which is very similar to the molecular structure of Neu5Ac (N-acetylneuraminic acid) in human body. Neu5Gc has the function of "immune disguise", which is the main obstacle to transplantation. Gene knockout such as cytidine monophosphate-N-acetylneuraminidase (CMAH) reduces donor antigenicity, making xenotransplantation from fiction to reality. Exploring the immune disguise event in this emerging field has become a hot topic in the research of transplantation immune tolerance mechanism.
Collapse
|
9
|
Teng H, Li Q, Gou M, Liu G, Cao X, Lu J, Han Y, Yu Y, Gao Z, Song X, Dong W, Pang Y. Lamprey immunity protein enables early detection and recurrence monitoring for bladder cancer through recognizing Neu5Gc-modified uromodulin glycoprotein in urine. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166493. [PMID: 35853560 DOI: 10.1016/j.bbadis.2022.166493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
Abstract
The clinical management of bladder cancer (BCa) is hindered by the lack of reliable biomarkers. We aimed to investigate the potential of lamprey immunity protein (LIP), a lectin that specifically binds to multi-antennary sialylated N-glycolylneuraminic acid (Neu5Gc) structures on UMOD glycoproteins in the urine of BCa patients. Primary BCa patients had higher levels of LIP-bound Neu5Gc in urine than healthy participants and patients receiving postoperative treatment did. In addition, lectin chip assay and mass spectrometry were used to analyze the glycan chain structure, which can recognize the UMOD glycoprotein decorated with multi-antennary sialylated Neu5Gc structures. Furthermore, compared with urine samples from healthy patients (N = 2821, T/C = 0.12 ± 0.09) or benign patients (N = 360, T/C = 0.11 ± 0.08), the range of the urine T/C ratio detected using LIP test paper was 1.97 ± 0.32 in patients with bladder cancer (N = 518) with significant difference (P < 0.0001). Our results indicate that LIP may be a tool for early BCa identification, diagnosis, and monitoring. Neu5Gc-modified UMOD glycoproteins in urine and Neu5Gc-modified N-glycochains and sialyltransferases may function as potential markers in clinical trials.
Collapse
Affiliation(s)
- Hongming Teng
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China
| | - Gang Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Xu Cao
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China
| | - Jiali Lu
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China
| | - Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China
| | - Yang Yu
- Department of Urology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhanfeng Gao
- Department of Urology, Dalian Municipal Central Hospital affiliated to Dalian Medical University, Dalian, China
| | - Xiaoping Song
- Respiratory Medicine, Affiliated Zhong shan Hospital of Dalian University, Dalian, China
| | - Weijie Dong
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China.
| |
Collapse
|
10
|
Shewell LK, Day CJ, Kutasovic JR, Abrahams JL, Wang J, Poole J, Niland C, Ferguson K, Saunus JM, Lakhani SR, von Itzstein M, Paton JC, Paton AW, Jennings MP. N-glycolylneuraminic acid serum biomarker levels are elevated in breast cancer patients at all stages of disease. BMC Cancer 2022; 22:334. [PMID: 35346112 PMCID: PMC8962556 DOI: 10.1186/s12885-022-09428-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Normal human tissues do not express glycans terminating with the sialic acid N-glycolylneuraminic acid (Neu5Gc), yet Neu5Gc-containing glycans have been consistently found in human tumor tissues, cells and secretions and have been proposed as a cancer biomarker. We engineered a Neu5Gc-specific lectin called SubB2M, and previously reported elevated Neu5Gc biomarkers in serum from ovarian cancer patients using a Surface Plasmon Resonance (SPR)-based assay. Here we report an optimized SubB2M SPR-based assay and use this new assay to analyse sera from breast cancer patients for Neu5Gc levels. Methods To enhance specificity of our SPR-based assay, we included a non-sialic acid binding version of SubB, SubBA12, to control for any non-specific binding to SubB2M, which improved discrimination of cancer-free controls from early-stage ovarian cancer. We analysed 96 serum samples from breast cancer patients at all stages of disease compared to 22 cancer-free controls using our optimized SubB2M-A12-SPR assay. We also analysed a collection of serum samples collected at 6 monthly intervals from breast cancer patients at high risk for disease recurrence or spread. Results Analysis of sera from breast cancer cases revealed significantly elevated levels of Neu5Gc biomarkers at all stages of breast cancer. We show that Neu5Gc serum biomarker levels can discriminate breast cancer patients from cancer-free individuals with 98.96% sensitivity and 100% specificity. Analysis of serum collected prospectively, post-diagnosis, from breast cancer patients at high risk for disease recurrence showed a trend for a decrease in Neu5Gc levels immediately following treatment for those in remission. Conclusions Neu5Gc serum biomarkers are a promising new tool for early detection and disease monitoring for breast cancer that may complement current imaging- and biopsy-based approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09428-0.
Collapse
|
11
|
Jennings MP, Day CJ, Atack JM. How bacteria utilize sialic acid during interactions with the host: snip, snatch, dispatch, match and attach. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001157. [PMID: 35316172 PMCID: PMC9558349 DOI: 10.1099/mic.0.001157] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
N -glycolylneuraminic acid (Neu5Gc), and its precursor N-acetylneuraminic acid (Neu5Ac), commonly referred to as sialic acids, are two of the most common glycans found in mammals. Humans carry a mutation in the enzyme that converts Neu5Ac into Neu5Gc, and as such, expression of Neu5Ac can be thought of as a 'human specific' trait. Bacteria can utilize sialic acids as a carbon and energy source and have evolved multiple ways to take up sialic acids. In order to generate free sialic acid, many bacteria produce sialidases that cleave sialic acid residues from complex glycan structures. In addition, sialidases allow escape from innate immune mechanisms, and can synergize with other virulence factors such as toxins. Human-adapted pathogens have evolved a preference for Neu5Ac, with many bacterial adhesins, and major classes of toxin, specifically recognizing Neu5Ac containing glycans as receptors. The preference of human-adapted pathogens for Neu5Ac also occurs during biosynthesis of surface structures such as lipo-oligosaccharide (LOS), lipo-polysaccharide (LPS) and polysaccharide capsules, subverting the human host immune system by mimicking the host. This review aims to provide an update on the advances made in understanding the role of sialic acid in bacteria-host interactions made in the last 5-10 years, and put these findings into context by highlighting key historical discoveries. We provide a particular focus on 'molecular mimicry' and incorporation of sialic acid onto the bacterial outer-surface, and the role of sialic acid as a receptor for bacterial adhesins and toxins.
Collapse
Affiliation(s)
- Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
12
|
Naso F, Gandaglia A. Can Heart Valve Decellularization Be Standardized? A Review of the Parameters Used for the Quality Control of Decellularization Processes. Front Bioeng Biotechnol 2022; 10:830899. [PMID: 35252139 PMCID: PMC8891751 DOI: 10.3389/fbioe.2022.830899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
When a tissue or an organ is considered, the attention inevitably falls on the complex and delicate mechanisms regulating the correct interaction of billions of cells that populate it. However, the most critical component for the functionality of specific tissue or organ is not the cell, but the cell-secreted three-dimensional structure known as the extracellular matrix (ECM). Without the presence of an adequate ECM, there would be no optimal support and stimuli for the cellular component to replicate, communicate and interact properly, thus compromising cell dynamics and behaviour and contributing to the loss of tissue-specific cellular phenotype and functions. The limitations of the current bioprosthetic implantable medical devices have led researchers to explore tissue engineering constructs, predominantly using animal tissues as a potentially unlimited source of materials. The high homology of the protein sequences that compose the mammalian ECM, can be exploited to convert a soft animal tissue into a human autologous functional and long-lasting prosthesis ensuring the viability of the cells and maintaining the proper biomechanical function. Decellularization has been shown to be a highly promising technique to generate tissue-specific ECM-derived products for multiple applications, although it might comprise very complex processes that involve the simultaneous use of chemical, biochemical, physical and enzymatic protocols. Several different approaches have been reported in the literature for the treatment of bone, cartilage, adipose, dermal, neural and cardiovascular tissues, as well as skeletal muscle, tendons and gastrointestinal tract matrices. However, most of these reports refer to experimental data. This paper reviews the most common and latest decellularization approaches that have been adopted in cardiovascular tissue engineering. The efficacy of cells removal was specifically reviewed and discussed, together with the parameters that could be used as quality control markers for the evaluation of the effectiveness of decellularization and tissue biocompatibility. The purpose was to provide a panel of parameters that can be shared and taken into consideration by the scientific community to achieve more efficient, comparable, and reliable experimental research results and a faster technology transfer to the market.
Collapse
|
13
|
Obukhova P, Tsygankova S, Chinarev A, Shilova N, Nokel A, Kosma P, Bovin N. Are there specific antibodies against Neu5Gc epitopes in the blood of healthy individuals? Glycobiology 2021; 30:395-406. [PMID: 31897477 DOI: 10.1093/glycob/cwz107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Strong discrepancies in published data on the levels and epitope specificities of antibodies against the xenogenic N-glycolyl forms of sialoglycans (Hanganutziu-Deicher Neu5Gcɑ2-3Galβ1-4Glc and related antigens) in healthy donors prompted us to carry out a systematic study in this area using the printed glycan array and other methods. This article summarizes and discusses our published and previously unpublished data, as well as publicly available data from the Consortium for Functional Glycomics. As a result, we conclude that (1) the level of antibodies referred to as anti-Neu5Gc in healthy individuals is low; (2) there are antibodies that seem to interact with Neu5Gc-containing epitopes, but in fact they recognize internal fragments of Neu5Gc-containing glycans (without sialic acids), which served as antigens in the assays used and; (3) a population capable of interacting specifically with Neu5Gc (it does not bind the corresponding NAc analogs) does exist, but it binds the monosaccharide Neu5Gc better than the entire glycans containing it. In other words, in healthy donors, there are populations of antibodies capable of binding the Neu5Gc monosaccharide or the inner core -Galβ1-4Glc, but very few true anti-Neu5Gcɑ2-3Galβ1-4Glc antibodies, i.e., antibodies capable of specifically recognizing the entire trisaccharide.
Collapse
Affiliation(s)
- Polina Obukhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia.,Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 4 Oparin str., 117997, Moscow, Russia
| | - Svetlana Tsygankova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia
| | - Alexander Chinarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia
| | - Nadezhda Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia.,Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 4 Oparin str., 117997, Moscow, Russia.,Semiotik LLC, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia
| | - Alexey Nokel
- Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 4 Oparin str., 117997, Moscow, Russia.,Semiotik LLC, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences, 18 Muthgasse, 1190 Vienna, Austria, and
| | - Nicolai Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia.,Auckland University of Technology, 55 Wellesley Street East, 1010, Auckland, New Zealand
| |
Collapse
|
14
|
Szabo Z, Koczka V, Marosvolgyi T, Szabo E, Frank E, Polyak E, Fekete K, Erdelyi A, Verzar Z, Figler M. Possible Biochemical Processes Underlying the Positive Health Effects of Plant-Based Diets-A Narrative Review. Nutrients 2021; 13:2593. [PMID: 34444753 PMCID: PMC8398942 DOI: 10.3390/nu13082593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Plant-based diets are becoming more popular for many reasons, and epidemiological as well as clinical data also suggest that a well-balanced vegan diet can be adopted for the prevention, and in some cases, in the treatment of many diseases. In this narrative review, we provide an overview of the relationships between these diets and various conditions and their potential biochemical background. As whole plant foods are very rich in food-derived antioxidants and other phytochemicals, they have many positive physiological effects on different aspects of health. In the background of the beneficial health effects, several biochemical processes could stand, including the reduced formation of trimethylamine oxide (TMAO) or decreased serum insulin-like growth factor 1 (IGF-1) levels and altered signaling pathways such as mechanistic target of rapamycin (mTOR). In addition, the composition of plant-based diets may play a role in preventing lipotoxicity, avoiding N-glycolylneuraminic acid (Neu5Gc), and reducing foodborne endotoxin intake. In this article, we attempt to draw attention to the growing knowledge about these diets and provide starting points for further research.
Collapse
Affiliation(s)
- Zoltan Szabo
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Viktor Koczka
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary; (V.K.); (E.S.)
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary
| | - Tamas Marosvolgyi
- Institute of Bioanalysis, Medical School, University of Pecs, 7624 Pecs, Hungary;
- Szentagothai Research Center, University of Pecs, 7624 Pecs, Hungary
| | - Eva Szabo
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary; (V.K.); (E.S.)
| | - Eszter Frank
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Eva Polyak
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Kata Fekete
- Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Attila Erdelyi
- Institute of Health Insurance, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary;
| | - Zsofia Verzar
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Maria Figler
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
- 2nd Department of Internal Medicine and Nephrology Centre, Clinical Centre, University of Pecs, 7624 Pecs, Hungary
| |
Collapse
|
15
|
Seo N, Ko J, Lee D, Jeong H, Oh MJ, Kim U, Lee DH, Kim J, Choi YJ, An HJ. In-depth characterization of non-human sialic acid (Neu5Gc) in human serum using label-free ZIC-HILIC/MRM-MS. Anal Bioanal Chem 2021; 413:5227-5237. [PMID: 34235565 DOI: 10.1007/s00216-021-03495-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023]
Abstract
Sialic acid Neu5Gc, a non-human glycan, is recognized as a new harmful substance that can cause vascular disease and cancer. Humans are unable to synthesize Neu5Gc due to a genetic defect that converts Neu5Ac to Neu5Gc, but Neu5Gc is often observed in human biological samples. Therefore, the demand for accurately measuring the amount of Neu5Gc present in human blood or tissues is rapidly increasing, but there is still no method to reliably quantify trace amounts of a non-human sugar. In particular, selective isolation and detection of Neu5Gc from human serum is analytically challenging due to the presence of excess sialic acid Neu5Ac, which has physicochemical properties very similar to Neu5Gc. Herein, we developed the label-free approach based on ZIC-HILIC/MRM-MS that can enrich sialic acids released from human serum and simultaneously monitor Neu5Ac and Neu5Gc. The combination of complete separation of Neu5Gc from abundant Neu5Ac by hydrophilic and electrostatic interactions with selective monitoring of structure-specific cross-ring cleavage ions generated by negative CID-MS/MS was remarkably effective for quantification of Neu5Ac and Neu5Gc at the femtomole level. Indeed, we were able to successfully determine the absolute quantitation of Neu5Gc from 30 healthy donors in the range of 3.336 ± 1.252 pg/μL (mean ± SD), 10,000 times lower than Neu5Ac. In particular, analysis of sialic acids in protein-free serum revealed that both Neu5Ac and Neu5G are mostly bound to proteins and/or lipids, but not in free form. In addition, the correlation between expression level of Neu5Gc and biological factors such as BMI, age, and sex was investigated. This method can be widely used in studies requiring sialic acid-related measurements such as disease diagnosis or prediction of immunogenicity in biopharmaceuticals as it is both fast and highly sensitive.
Collapse
Affiliation(s)
- Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.,Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Jaekyoung Ko
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.,Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Daum Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.,Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Heejin Jeong
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.,Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Myung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.,Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Unyong Kim
- Biocomplete Co., Ltd., Seoul, 08389, Republic of Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Budang Hospital, Seongnam, 13620, Republic of Korea
| | - Jaehan Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yoon Jin Choi
- Department of Internal Medicine, Seoul National University Budang Hospital, Seongnam, 13620, Republic of Korea. .,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea. .,Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
16
|
Li D, Lou Y, Zhang Y, Liu S, Li J, Tao J. Sialylated immunoglobulin G: a promising diagnostic and therapeutic strategy for autoimmune diseases. Am J Cancer Res 2021; 11:5430-5446. [PMID: 33859756 PMCID: PMC8039950 DOI: 10.7150/thno.53961] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Human immunoglobulin G (IgG), especially autoantibodies, has major implications for the diagnosis and management of a wide range of autoimmune diseases. However, some healthy individuals also have autoantibodies, while a portion of patients with autoimmune diseases test negative for serologic autoantibodies. Recent advances in glycomics have shown that IgG Fc N-glycosylations are more reliable diagnostic and monitoring biomarkers than total IgG autoantibodies in a wide variety of autoimmune diseases. Furthermore, these N-glycosylations of IgG Fc, particularly sialylation, have been reported to exert significant anti-inflammatory effects by upregulating inhibitory FcγRIIb on effector macrophages and reducing the affinity of IgG for either complement protein or activating Fc gamma receptors. Therefore, sialylated IgG is a potential therapeutic strategy for attenuating pathogenic autoimmunity. IgG sialylation-based therapies for autoimmune diseases generated through genetic, metabolic or chemoenzymatic modifications have made some advances in both preclinical studies and clinical trials.
Collapse
|
17
|
Kawanishi K, Saha S, Diaz S, Vaill M, Sasmal A, Siddiqui SS, Choudhury B, Sharma K, Chen X, Schoenhofen IC, Sato C, Kitajima K, Freeze HH, Münster-Kühnel A, Varki A. Evolutionary conservation of human ketodeoxynonulosonic acid production is independent of sialoglycan biosynthesis. J Clin Invest 2021; 131:137681. [PMID: 33373330 DOI: 10.1172/jci137681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Human metabolic incorporation of nonhuman sialic acid (Sia) N-glycolylneuraminic acid into endogenous glycans generates inflammation via preexisting antibodies, which likely contributes to red meat-induced atherosclerosis acceleration. Exploring whether this mechanism affects atherosclerosis in end-stage renal disease (ESRD), we instead found serum accumulation of 2-keto-3-deoxy-d-glycero-d-galacto-2-nonulosonic acid (Kdn), a Sia prominently expressed in cold-blooded vertebrates. In patients with ESRD, levels of the Kdn precursor mannose also increased, but within a normal range. Mannose ingestion by healthy volunteers raised the levels of urinary mannose and Kdn. Kdn production pathways remained conserved in mammals but were diminished by an M42T substitution in a key biosynthetic enzyme, N-acetylneuraminate synthase. Remarkably, reversion to the ancestral methionine then occurred independently in 2 lineages, including humans. However, mammalian glycan databases contain no Kdn-glycans. We hypothesize that the potential toxicity of excess mannose in mammals is partly buffered by conversion to free Kdn. Thus, mammals probably conserve Kdn biosynthesis and modulate it in a lineage-specific manner, not for glycosylation, but to control physiological mannose intermediates and metabolites. However, human cells can be forced to express Kdn-glycans via genetic mutations enhancing Kdn utilization, or by transfection with fish enzymes producing cytidine monophosphate-Kdn (CMP-Kdn). Antibodies against Kdn-glycans occur in pooled human immunoglobulins. Pathological conditions that elevate Kdn levels could therefore result in antibody-mediated inflammatory pathologies.
Collapse
Affiliation(s)
- Kunio Kawanishi
- Glycobiology Research and Training Center.,Department of Cellular and Molecular Medicine, and
| | - Sudeshna Saha
- Glycobiology Research and Training Center.,Department of Cellular and Molecular Medicine, and
| | - Sandra Diaz
- Glycobiology Research and Training Center.,Department of Cellular and Molecular Medicine, and
| | - Michael Vaill
- Glycobiology Research and Training Center.,Department of Cellular and Molecular Medicine, and.,Center for Academic Research and Training in Anthropogeny, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Aniruddha Sasmal
- Glycobiology Research and Training Center.,Department of Cellular and Molecular Medicine, and
| | - Shoib S Siddiqui
- Glycobiology Research and Training Center.,Department of Cellular and Molecular Medicine, and
| | | | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis (UCD), Davis, California, USA
| | - Ian C Schoenhofen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | | - Ajit Varki
- Glycobiology Research and Training Center.,Department of Cellular and Molecular Medicine, and.,Center for Academic Research and Training in Anthropogeny, University of California, San Diego (UCSD), La Jolla, California, USA.,Department of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
18
|
Pruimboom L. SARS-CoV 2; Possible alternative virus receptors and pathophysiological determinants. Med Hypotheses 2021; 146:110368. [PMID: 33189453 PMCID: PMC7645279 DOI: 10.1016/j.mehy.2020.110368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highjacks epithelial cells and infiltrates the lung, as well as other organs and tissues, is essential for developing treatment strategies and vaccines against this highly contagious virus. Another major goal is to fully elucidate the mechanisms by which SARS-CoV- 2 bypasses the innate immune system and induces a cytokine storm, and its effects on mortality. Currently, SARS- CoV-2 is thought to evade innate antiviral immunity, undergo endocytosis, and fuse with the host cell membrane by exploiting ACE2 receptors and the protease TMMPRSS2, with cathepsin B/L as alternative protease, for entry into the epithelial cells of tissues vulnerable to developing coronavirus disease 2019 (COVID-19) symptoms. However, the incorporation of new and unique binding sites, i.e., O-linked glycans, and the preservation and augmentation of effective binding sites (N-linked glycans) on the outer membrane of SARS-CoV-2 may represent other strategies of infecting the human host. Here, I will rationalize the possibility that other host molecules-i.e., sugar molecules and the sialic acidsN-glycolylneuraminic acid, N-acetylneuraminic acid, and their derivates could be viable candidates for the use as virus receptors by SARS-CoV-2 and/or serve as determinants for the adherence on ACE2 of SARS-CoV-2.
Collapse
Affiliation(s)
- Leo Pruimboom
- Pontifical University of Salamanca, Spain; PNI Europe, The Hague, The Netherlands.
| |
Collapse
|
19
|
Yang H, Lu L, Chen X. An overview and future prospects of sialic acids. Biotechnol Adv 2020; 46:107678. [PMID: 33285252 DOI: 10.1016/j.biotechadv.2020.107678] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Sialic acids (Sias) are negatively charged functional monosaccharides present in a wide variety of natural sources (plants, animals and microorganisms). Sias play an important role in many life processes, which are widely applied in the medical and food industries as intestinal antibacterials, antivirals, anti-oxidative agents, food ingredients, and detoxification agents. Most Sias are composed of N-acetylneuraminic acid (Neu5Ac, >99%), and Sia is its most commonly used name. In this article, we review Sias in terms of their structures, applications, determination methods, metabolism, and production strategies. In particular, we summarise and compare different production strategies, including extraction from natural sources, chemical synthesis, polymer decomposition, enzymatic synthesis, whole-cell catalysis, and de novo biosynthesis via microorganism fermentation. We also discuss research on their physiological functions and applications, barriers to efficient production, and strategies for overcoming these challenges. We focus on efficient de novo biosynthesis strategies for Neu5Ac via microbial fermentation using novel synthetic biology tools and methods that may be applied in future. This work provides a comprehensive overview of recent advances on Sias, and addresses future challenges regarding their functions, applications, and production.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Liping Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; College of life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
20
|
Alteration of the goat milk glycoproteins N/O-glycome at different lactation stages. Food Chem 2020; 342:128221. [PMID: 33092920 DOI: 10.1016/j.foodchem.2020.128221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022]
Abstract
Goat milk oligosaccharides represent an unexplored multi-functional ingredient for the dairy industry. Here, we qualitatively and quantitatively compared the N/O-glycome at different lactation stages via online hydrophilic interaction chromatography-tandem mass spectrometry. Complex N-glycans and high mannose N-glycans constituted 82.1% and 17.9% of the glycan pool, respectively. N-glycans with isomers containing non-bisected antenna complex structures accounted for 30.8%. N-glycans modified with Neu5Ac, Neu5Gc and fucosylated were 3.7%, 5.3% and 35.3%. The triantennary trifucosylated complex N-glycan (H5N5F3) was reported for the first time. A comparison between colostrum and mature milk revealed a 1.20-fold decrease in total N-glycans and 1.66-fold decrease in fucosylation with ongoing lactation, echoing the trend in human milk. Similarly, Neu5Ac- and Neu5Gc-modified sialylation decreased by 1.69 and 3.62 times, respectively. In the O-glycome, 46.2% of structures were O-linked core 1, 23.1% were O-linked core 2, 7.7% were O-linked core 3 and core 4. As lactation progressed, overall O-glycans content decreased by 1.26-fold. Unlike human milk, Neu5Ac- and Neu5Gc-modified sialylation increased by 4.4 and 2 times, respectively. These findings will facilitate research on the structure-function relationship of goat milk oligosaccharides and the development of formula food targeting different age groups.
Collapse
|
21
|
Soulillou JP, Cozzi E, Bach JM. Challenging the Role of Diet-Induced Anti-Neu5Gc Antibodies in Human Pathologies. Front Immunol 2020; 11:834. [PMID: 32655538 PMCID: PMC7325919 DOI: 10.3389/fimmu.2020.00834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, and Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Emanuele Cozzi
- Department of Cardiac, Thoracic and Vascular Sciences, Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Jean-Marie Bach
- IECM, Immuno-Endocrinology, USC1383, Oniris, INRAE, Nantes, France
| |
Collapse
|
22
|
Gulati S, Schoenhofen IC, Lindhout-Djukic T, Schur MJ, Landig CS, Saha S, Deng L, Lewis LA, Zheng B, Varki A, Ram S. Therapeutic CMP-Nonulosonates against Multidrug-Resistant Neisseria gonorrhoeae. THE JOURNAL OF IMMUNOLOGY 2020; 204:3283-3295. [PMID: 32434942 DOI: 10.4049/jimmunol.1901398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/08/2020] [Indexed: 12/29/2022]
Abstract
Neisseria gonorrhoeae deploys a unique immune evasion strategy wherein the lacto-N-neotetraose termini of lipooligosaccharide (LOS) are "capped" by a surface LOS sialyltransferase (Lst), using extracellular host-derived CMP-sialic acid (CMP-Neu5Ac in humans). LOS sialylation enhances complement resistance by recruiting factor H (FH; alternative complement pathway inhibitor) and also by limiting classical pathway activation. Sialylated LOS also engages inhibitory Siglecs on host leukocytes, dampening innate immunity. Previously, we showed that analogues of CMP-sialic acids (CMP-nonulosonates [CMP-NulOs]), such as CMP-Leg5,7Ac2 and CMP-Neu5Ac9N3, are also substrates for Lst. Incorporation of Leg5,7Ac2 and Neu5Ac9N3 into LOS results in N. gonorrhoeae being fully serum sensitive. Importantly, intravaginal administration of CMP-Leg5,7Ac2 attenuated N. gonorrhoeae colonization of mouse vaginas. In this study, we characterize and develop additional candidate therapeutic CMP-NulOs. CMP-ketodeoxynonulosonate (CMP-Kdn) and CMP-Kdn7N3, but not CMP-Neu4,5Ac2, were substrates for Lst, further elucidating gonococcal Lst specificity. Lacto-N-neotetraose LOS capped with Kdn and Kdn7N3 bound FH to levels ∼60% of that seen with Neu5Ac and enabled gonococci to resist low (3.3%) but not higher (10%) concentrations of human complement. CMP-Kdn, CMP-Neu5Ac9N3, and CMP-Leg5,7Ac2 administered intravaginally (10 μg/d) to N. gonorrhoeae-colonized mice were equally efficacious. Of the three CMP-NulOs above, CMP-Leg5,7Ac2 was the most pH and temperature stable. In addition, Leg5,7Ac2-fed human cells did not display this NulO on their surface. Moreover, CMP-Leg5,7Ac2 was efficacious against several multidrug-resistant gonococci in mice with a humanized sialome (Cmah-/- mice) or humanized complement system (FH/C4b-binding protein transgenic mice). CMP-Leg5,7Ac2 and CMP-Kdn remain viable leads as topical preventive/therapeutic agents against the global threat of multidrug-resistant N. gonorrhoeae.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ian C Schoenhofen
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada;
| | - Theresa Lindhout-Djukic
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Melissa J Schur
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Corinna S Landig
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093; and.,Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Sudeshna Saha
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093; and.,Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Lingquan Deng
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093; and.,Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ajit Varki
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093; and.,Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
23
|
Tector AJ, Mosser M, Tector M, Bach JM. The Possible Role of Anti-Neu5Gc as an Obstacle in Xenotransplantation. Front Immunol 2020; 11:622. [PMID: 32351506 PMCID: PMC7174778 DOI: 10.3389/fimmu.2020.00622] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Seventy to ninety percentage of preformed xenoreactive antibodies in human serum bind to the galactose-α(1,3)-galactose Gal epitope, and the creation of Gal knockout (KO) pigs has eliminated hyperacute rejection as a barrier to xenotransplantation. Now other glycan antigens are barriers to move ahead with xenotransplantation, and the N-glycolyl neuraminic acid, Neu5Gc (or Hanganutziu-Deicher antigen), is also a major pig xenoantigen. Humans have anti-Neu5Gc antibodies. Several data indicate a strong immunogenicity of Neu5Gc in humans that may contribute to an important part in antibody-dependent injury to pig xenografts. Pig islets express Neu5Gc, which reacted with diet-derived human antibodies and mice deleted for Neu5Gc reject pancreatic islets from wild-type counterpart. However, Neu5Gc positive heart were not rejected in Neu5Gc KO mice indicating that the role of Neu5Gc-specific antibodies has to be nuanced and depend of the graft situation parameters (organ/tissue, recipient, implication of other glycan antigens). Recently generated Gal/Neu5Gc KO pigs eliminate the expression of Gal and Neu5Gc, and improve the crossmatch of humans with the pig. This review summarizes the current and recent experimental and (pre)clinical data on the Neu5Gc immunogenicity and emphasize of the potential impact of anti-Neu5Gc antibodies in limiting xenotransplantation in humans.
Collapse
Affiliation(s)
- Alfred Joseph Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Mathilde Mosser
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| | - Matthew Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Jean-Marie Bach
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| |
Collapse
|
24
|
The Roles of Siglec7 and Siglec9 on Natural Killer Cells in Virus Infection and Tumour Progression. J Immunol Res 2020; 2020:6243819. [PMID: 32322597 PMCID: PMC7165337 DOI: 10.1155/2020/6243819] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
The function of natural killer (NK) cells, defending against virus infection and tumour progression, is regulated by multiple activating and inhibiting receptors expressed on NK cells, among which sialic acid-bind immunoglobulin-like lectins (Siglecs) act as a vital inhibitory group. Previous studies have shown that Siglec7 and Siglec9 are expressed on NK cells, which negatively regulate the function of NK cells and modulate the immune response through the interaction of sialic acid-containing ligands. Siglec7 and Siglec9 are very similar in distribution, gene encoding, protein sequences, ligand affinity, and functions in regulating the immune system against virus and cancers, but differences still exist between them. In this review, we aim to discuss the similarities and differences between Siglec7 and Siglec9 and analyze their functions in virus infection and tumour progression in order to develop better anti-viral and anti-tumor immunotherapy in the future.
Collapse
|
25
|
Suzuki N. Glycan diversity in the course of vertebrate evolution. Glycobiology 2020; 29:625-644. [PMID: 31287538 DOI: 10.1093/glycob/cwz038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 11/12/2022] Open
Abstract
Vertebrates are estimated to have arisen over 500 million years ago in the Cambrian Period. Species that survived the Big Five extinction events at a global scale underwent repeated adaptive radiations along with habitat expansions from the sea to the land and sky. The development of the endoskeleton and neural tube enabled more complex body shapes. At the same time, vertebrates became suitable for the invasion and proliferation of foreign organisms. Adaptive immune systems were acquired for responses to a wide variety of pathogens, and more sophisticated systems developed during the evolution of mammals and birds. Vertebrate glycans consist of common core structures and various elongated structures, such as Neu5Gc, Galα1-3Gal, Galα1-4Gal, and Galβ1-4Gal epitopes, depending on the species. During species diversification, complex glycan structures were generated, maintained or lost. Whole-genome sequencing has revealed that vertebrates harbor numerous and even redundant glycosyltransferase genes. The production of various glycan structures is controlled at the genetic level in a species-specific manner. Because cell surface glycans are often targets of bacterial and viral infections, glycan structural diversity is presumed to be protective against infections. However, the maintenance of apparently redundant glycosyltransferase genes and investment in species-specific glycan structures, even in higher vertebrates with highly developed immune systems, are not well explained. This fact suggests that glycans play important roles in unknown biological processes.
Collapse
Affiliation(s)
- Noriko Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
26
|
Quin C, Vicaretti SD, Mohtarudin NA, Garner AM, Vollman DM, Gibson DL, Zandberg WF. Influence of sulfonated and diet-derived human milk oligosaccharides on the infant microbiome and immune markers. J Biol Chem 2020; 295:4035-4048. [PMID: 32014993 DOI: 10.1074/jbc.ra119.011351] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Human milk oligosaccharides (HMOs) promote the development of the neonatal intestinal, immune, and nervous systems and has recently received considerable attention. Here we investigated how the maternal diet affects HMO biosynthesis and how any diet-induced HMO alterations influence the infant gut microbiome and immunity. Using capillary electrophoresis and MS-based analyses, we extracted and measured HMOs from breast milk samples and then correlated their levels with results from validated 24-h diet recall surveys and breast milk fatty acids. We found that fruit intake and unsaturated fatty acids in breast milk were positively correlated with an increased absolute abundance of numerous HMOs, including 16 sulfonated HMOs we identified here in humans for the first time. The diet-derived monosaccharide 5-N-glycolyl-neuraminic acid (Neu5Gc) was unambiguously detected in all samples. To gain insights into the potential impact of Neu5Gc on the infant microbiome, we used a constrained ordination approach and identified correlations between Neu5Gc levels and Bacteroides spp. in infant stool. However, Neu5Gc was not associated with marked changes in infant immune markers, in contrast with sulfonated HMOs, whose expression correlated with suppression of two major Th2 cytokines, IL-10 and IL-13. The findings of our work highlight the importance of maternal diet for HMO biosynthesis and provide as yet unexplored targets for future studies investigating interactions between HMOs and the intestinal microbiome and immunity in infants.
Collapse
Affiliation(s)
- Candice Quin
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Sara D Vicaretti
- Department of Chemistry, I. K. Barber School of Arts and Sciences, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Nina A Mohtarudin
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Alexander M Garner
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Deanna M Vollman
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Deanna L Gibson
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7 .,Department of Medicine, Faculty of Medicine, 317-2194 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Wesley F Zandberg
- Department of Chemistry, I. K. Barber School of Arts and Sciences, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| |
Collapse
|
27
|
Yehuda S, Padler-Karavani V. Glycosylated Biotherapeutics: Immunological Effects of N-Glycolylneuraminic Acid. Front Immunol 2020; 11:21. [PMID: 32038661 PMCID: PMC6989436 DOI: 10.3389/fimmu.2020.00021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
The emerging field of biotherapeutics provides successful treatments for various diseases, yet immunogenicity and limited efficacy remain major concerns for many products. Glycosylation is a key factor determining the pharmacological properties of biotherapeutics, including their stability, solubility, bioavailability, pharmacokinetics, and immunogenicity. Hence, an increased attention is directed at optimizing the glycosylation properties of biotherapeutics. Currently, most biotherapeutics are produced in non-human mammalian cells in light of their ability to produce human-like glycosylation. However, most mammals produce the sialic acid N-glycolylneuraminic acid (Neu5Gc), while humans cannot due to a specific genetic defect. Humans consume Neu5Gc in their diet from mammalian derived foods (red meat and dairy) and produce polyclonal antibodies against diverse Neu5Gc-glycans. Moreover, Neu5Gc can metabolically incorporate into human cells and become presented on surface or secreted glycans, glycoproteins, and glycolipids. Several studies in mice suggested that the combination of Neu5Gc-containing epitopes and anti-Neu5Gc antibodies could contribute to exacerbation of chronic inflammation-mediated diseases (e.g., cancer, cardiovascular diseases, and autoimmunity). This could potentially become complicated with exposure to Neu5Gc-containing biotherapeutics, bio-devices or xenografts. Indeed, Neu5Gc can be found on various approved and marketed biotherapeutics. Here, we provide a perspective review on the possible consequences of Neu5Gc glycosylation of therapeutic protein drugs due to the limited published evidence of Neu5Gc glycosylation on marketed biotherapeutics and studies on their putative effects on immunogenicity, drug efficacy, and safety.
Collapse
Affiliation(s)
- Sharon Yehuda
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Can we extrapolate from a Cmah -/- Ldlr -/- mouse model a susceptibility for atherosclerosis in humans? Proc Natl Acad Sci U S A 2020; 117:1845-1846. [PMID: 31964838 DOI: 10.1073/pnas.1915658117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
29
|
Reply to Soulillou et al.: Difficulties in extrapolating from animal models exemplify unusual human atherosclerosis susceptibility and mechanisms via CMAH loss. Proc Natl Acad Sci U S A 2020; 117:1847-1848. [PMID: 31964837 DOI: 10.1073/pnas.1917278117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
30
|
Zhang C, Chen J, Liu Y, Xu D. Sialic acid metabolism as a potential therapeutic target of atherosclerosis. Lipids Health Dis 2019; 18:173. [PMID: 31521172 PMCID: PMC6745061 DOI: 10.1186/s12944-019-1113-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/30/2019] [Indexed: 01/08/2023] Open
Abstract
Sialic acid (Sia), the acylated derivative of the nine-carbon sugar neuraminic acid, is a terminal component of the oligosaccharide chains of many glycoproteins and glycolipids. In light of its important biological and pathological functions, the relationship between Sia and coronary artery disease (CAD) has been drawing great attentions recently. Large-scale epidemiological surveys have uncovered a positive correlation between plasma total Sia and CAD risk. Further research demonstrated that N-Acetyl-Neuraminic Acid, acting as a signaling molecule, triggered myocardial injury via activation of Rho/ROCK-JNK/ERK signaling pathway both in vitro and in vivo. Moreover, there were some evidences showing that the aberrant sialylation of low-density lipoprotein, low-density lipoprotein receptor and blood cells was involved in the pathological process of atherosclerosis. Significantly, the Sia regulates immune response by binding to sialic acid-binding immunoglobulin-like lectin (Siglecs). The Sia-Siglecs axis is involved in the immune inflammation of atherosclerosis. The generation of Sia and sialylation of glycoconjugate both depend on many enzymes, such as sialidase, sialyltransferase and trans-sialidase. Abnormal activation or level of these enzymes associated with atherosclerosis, and inhibitors of them might be new CAD treatments. In this review, we focus on summarizing current understanding of Sia metabolism and of its relevance to atherosclerosis.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.,Department of Health Management Center, Hunan Provincial People's Hospital, 61 Jiefang West Road, Changsha, 410005, Hunan, China
| | - Jingyuan Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yuhao Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
31
|
Kooner AS, Yu H, Chen X. Synthesis of N-Glycolylneuraminic Acid (Neu5Gc) and Its Glycosides. Front Immunol 2019; 10:2004. [PMID: 31555264 PMCID: PMC6724515 DOI: 10.3389/fimmu.2019.02004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Sialic acids constitute a family of negatively charged structurally diverse monosaccharides that are commonly presented on the termini of glycans in higher animals and some microorganisms. In addition to N-acetylneuraminic acid (Neu5Ac), N-glycolyl neuraminic acid (Neu5Gc) is among the most common sialic acid forms in nature. Nevertheless, unlike most animals, human cells loss the ability to synthesize Neu5Gc although Neu5Gc-containing glycoconjugates have been found on human cancer cells and in various human tissues due to dietary incorporation of Neu5Gc. Some pathogenic bacteria also produce Neu5Ac and the corresponding glycoconjugates but Neu5Gc-producing bacteria have yet to be found. In addition to Neu5Gc, more than 20 Neu5Gc derivatives have been found in non-human vertebrates. To explore the biological roles of Neu5Gc and its naturally occurring derivatives as well as the corresponding glycans and glycoconjugates, various chemical and enzymatic synthetic methods have been developed to obtain a vast array of glycosides containing Neu5Gc and/or its derivatives. Here we provide an overview on various synthetic methods that have been developed. Among these, the application of highly efficient one-pot multienzyme (OPME) sialylation systems in synthesizing compounds containing Neu5Gc and derivatives has been proven as a powerful strategy.
Collapse
Affiliation(s)
| | - Hai Yu
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Human species-specific loss of CMP- N-acetylneuraminic acid hydroxylase enhances atherosclerosis via intrinsic and extrinsic mechanisms. Proc Natl Acad Sci U S A 2019; 116:16036-16045. [PMID: 31332008 DOI: 10.1073/pnas.1902902116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) events due to atherosclerosis cause one-third of worldwide deaths and risk factors include physical inactivity, age, dyslipidemia, hypertension, diabetes, obesity, smoking, and red meat consumption. However, ∼15% of first-time events occur without such factors. In contrast, coronary events are extremely rare even in closely related chimpanzees in captivity, despite human-like CVD-risk-prone blood lipid profiles, hypertension, and mild atherosclerosis. Similarly, red meat-associated enhancement of CVD event risk does not seem to occur in other carnivorous mammals. Thus, heightened CVD risk may be intrinsic to humans, and genetic changes during our evolution need consideration. Humans exhibit a species-specific deficiency of the sialic acid N-glycolylneuraminic acid (Neu5Gc), due to pseudogenization of cytidine monophosphate-N-acetylneuraminic acid (Neu5Ac) hydroxylase (CMAH), which occurred in hominin ancestors ∼2 to 3 Mya. Ldlr -/- mice with human-like Cmah deficiency fed a sialic acids (Sias)-free high-fat diet (HFD) showed ∼1.9-fold increased atherogenesis over Cmah wild-type Ldlr -/- mice, associated with elevated macrophage cytokine expression and enhanced hyperglycemia. Human consumption of Neu5Gc (from red meat) acts as a "xeno-autoantigen" via metabolic incorporation into endogenous glycoconjugates, as interactions with circulating anti-Neu5Gc "xeno-autoantibodies" potentiate chronic inflammation ("xenosialitis"). Cmah -/- Ldlr -/- mice immunized with Neu5Gc-bearing antigens to generate human-like anti-Neu5Gc antibodies suffered a ∼2.4-fold increased atherosclerosis on a Neu5Gc-rich HFD, compared with Neu5Ac-rich or Sias-free HFD. Lesions in Neu5Gc-immunized and Neu5Gc-rich HFD-fed Cmah -/- Ldlr -/- mice were more advanced but unexplained by lipoprotein or glucose changes. Human evolutionary loss of CMAH likely contributes to atherosclerosis predisposition via multiple intrinsic and extrinsic mechanisms, and future studies could consider this more human-like model.
Collapse
|
33
|
Le Berre L, Danger R, Mai HL, Amon R, Leviatan Ben-Arye S, Bruneau S, Senage T, Perreault H, Teraiya M, Nguyen TVH, Le Tourneau T, Yu H, Chen X, Galli C, Roussel JC, Manez R, Costa C, Brouard S, Galinanes M, Harris KM, Gitelman S, Cozzi E, Charreau B, Padler-Karavani V, Soulillou JP. Elicited and pre-existing anti-Neu5Gc antibodies differentially affect human endothelial cells transcriptome. Xenotransplantation 2019; 26:e12535. [PMID: 31293002 DOI: 10.1111/xen.12535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Humans cannot synthesize N-glycolylneuraminic acid (Neu5Gc) but dietary Neu5Gc can be absorbed and deposited on endothelial cells (ECs) and diet-induced anti-Neu5Gc antibodies (Abs) develop early in human life. While the interaction of Neu5Gc and diet-induced anti-Neu5Gc Abs occurs in all normal individuals, endothelium activation by elicited anti-Neu5Gc Abs following a challenge with animal-derived materials, such as following xenotransplantation, had been postulated. Ten primary human EC preparations were cultured with affinity-purified anti-Neu5Gc Abs from human sera obtained before or after exposure to Neu5Gc-glycosylated rabbit IgGs (elicited Abs). RNAs of each EC preparation stimulated in various conditions by purified Abs were exhaustively sequenced. EC transcriptomic patterns induced by elicited anti-Neu5Gc Abs, compared with pre-existing ones, were analyzed. qPCR, cytokines/chemokines release, and apoptosis were tested on some EC preparations. The data showed that anti-Neu5Gc Abs induced 967 differentially expressed (DE) genes. Most DE genes are shared following EC activation by pre-existing or anti-human T-cell globulin (ATG)-elicited anti-Neu5Gc Abs. Compared with pre-existing anti-Neu5Gc Abs, which are normal component of ECs environment, elicited anti-Neu5Gc Abs down-regulated 66 genes, including master genes of EC function. Furthermore, elicited anti-Neu5Gc Abs combined with complement-containing serum down-regulated most transcripts mobilized by serum alone. Both types of anti-Neu5Gc Abs-induced a dose- and complement-dependent release of selected cytokines and chemokines. Altogether, these data show that, compared with pre-existing anti-Neu5Gc Abs, ATG-elicited anti-Neu5Gc Abs specifically modulate genes related to cytokine responses, MAPkinase cascades, chemotaxis, and integrins and do not skew the EC transcriptome toward a pro-inflammatory profile in vitro.
Collapse
Affiliation(s)
- Ludmilla Le Berre
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Hoa L Mai
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Ron Amon
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sarah Bruneau
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Thomas Senage
- Service de Chirurgie Cardio-Thoracique, CHU Nantes, Hopital Laennec, Nantes, France
| | - Helene Perreault
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Milan Teraiya
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thi Van Ha Nguyen
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | | | - Hai Yu
- Department of Chemistry, University of California-Davis, Davis, California
| | - Xi Chen
- Department of Chemistry, University of California-Davis, Davis, California
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies and Fondazione Avantea, Cremona, Italy
| | | | - Rafael Manez
- Intensive Care Medicine Department, Hospital Universitario de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.,Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Costa
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Manuel Galinanes
- Department of Cardiac Surgery/Reparative Therapy of the Heart, Vall d'Hebron Research Institute and University Hospital Vall d'Hebron, Barcelona, Spain
| | - Kristina M Harris
- Immune Tolerance Network, Massachusetts General Hospital, Bathesda, Maryland
| | - Stephen Gitelman
- Division of Pediatric Endocrinology and Diabetes, University of California at San Francisco, San Francisco, California
| | - Emanuele Cozzi
- Transplantation Immunology Unit, Padua University Hospital, Padova, Italy
| | - Beatrice Charreau
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
34
|
Nontypeable Haemophilus influenzae Has Evolved Preferential Use of N-Acetylneuraminic Acid as a Host Adaptation. mBio 2019; 10:mBio.00422-19. [PMID: 31064827 PMCID: PMC6509186 DOI: 10.1128/mbio.00422-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Host-adapted bacterial pathogens such as NTHi cannot survive out of their host environment and have evolved host-specific mechanisms to obtain nutrients and evade the immune response. Relatively few of these host adaptations have been characterized at the molecular level. NTHi utilizes sialic acid as a nutrient and also incorporates this sugar into LOS, which is important in biofilm formation and immune evasion. In the present study, we showed that NTHi has evolved to preferentially utilize the Neu5Ac form of sialic acid. This adaptation is due to the substrate preference of the enzyme CMP-Neu5Ac synthetase, which synthesizes the activated form of Neu5Ac for macromolecule biosynthesis. This adaptation allows NTHi to evade killing by a human antibody response against the nonhuman sialic acid Neu5Gc. Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that is adapted exclusively to human hosts. NTHi utilizes sialic acid from the host as a carbon source and as a terminal sugar on the outer membrane glycolipid lipooligosaccharide (LOS). Sialic acid expressed on LOS is critical in NTHi biofilm formation and immune evasion. There are two major forms of sialic acids in most mammals, N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter of which is derived from Neu5Ac. Humans lack the enzyme to convert Neu5Ac to Neu5Gc and do not express Neu5Gc in normal tissues; instead, Neu5Gc is recognized as a foreign antigen. A recent study showed that dietary Neu5Gc can be acquired by NTHi colonizing humans and then presented on LOS, which acts as an antigen for the initial induction of anti-Neu5Gc antibodies. Here we examined Neu5Gc uptake and presentation on NTHi LOS. We show that, although Neu5Gc and Neu5Ac are utilized equally well as sole carbon sources, Neu5Gc is not incorporated efficiently into LOS. When equal amounts of Neu5Gc and Neu5Ac are provided in culture media, there is ∼4-fold more Neu5Ac incorporated into LOS, suggesting a bias in a step of the LOS biosynthetic pathway. CMP-Neu5Ac synthetase (SiaB) was shown to have ∼4,000-fold-higher catalytic efficiency for Neu5Ac than for Neu5Gc. These data suggest that NTHi has adapted preferential utilization of Neu5Ac, thus avoiding presentation of the nonhuman Neu5Gc in the bacterial cell surface. The selective pressure for this adaptation may represent the human antibody response to the Neu5Gc xenoantigen.
Collapse
|
35
|
Altman MO, Gagneux P. Absence of Neu5Gc and Presence of Anti-Neu5Gc Antibodies in Humans-An Evolutionary Perspective. Front Immunol 2019; 10:789. [PMID: 31134048 PMCID: PMC6524697 DOI: 10.3389/fimmu.2019.00789] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022] Open
Abstract
The glycocalyx of human cells differs from that of many other mammals by the lack of the sialic acid N-glycolylneuraminic acid (Neu5Gc) and increased abundance of its precursor N-acetylneuraminic acid (Neu5Ac). Most humans also have circulating antibodies specifically targeting the non-human sialic acid Neu5Gc. Recently, several additional mammalian species have been found to also lack Neu5Gc. In all cases, loss-of-function mutations in the gene encoding the sialic acid-modifying enzyme CMAH are responsible for the drastic change in these species. Unlike other glycan antigens, Neu5Gc apparently cannot be produced by microbes, raising the question about the origin of these antibodies in humans. Dietary exposure and presentation on bacteria coating themselves with Neu5Gc from the diet are distinct possibilities. However, the majority of the non-human species that lack Neu5Gc do not consume diets rich in Neu5Gc, making it unlikely that they will have been immunized against this sialic acid. A notable exception are mustelids (ferrets, martens and their relatives) known for preying on various small mammal species rich in Neu5Gc. No studies exist on levels of anti-Neu5Gc antibodies in non-human species. Evolutionary scenarios for the repeated, independent fixation of CMAH loss-of-function mutations at various time points in the past include strong selection by parasites, especially enveloped viruses, stochastic effects of genetic drift, and directional selection via female immunity to paternal Neu5Gc. Convergent evolution of losses of the vertebrate-specific self-glycan Neu5Gc are puzzling and may represent a prominent way in which glycans become agents of evolutionary change in their own right. Such change may include the reconfiguration of innate immune lectins that use self-sialic acids as recognition patterns.
Collapse
Affiliation(s)
- Meghan O Altman
- Department of Pathology, Biomedical Research and Training Facility 2, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| | - Pascal Gagneux
- Department of Pathology, Biomedical Research and Training Facility 2, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States.,Department of Anthropology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
36
|
Leviatan Ben-Arye S, Schneider C, Yu H, Bashir S, Chen X, von Gunten S, Padler-Karavani V. Differential Recognition of Diet-Derived Neu5Gc-Neoantigens on Glycan Microarrays by Carbohydrate-Specific Pooled Human IgG and IgA Antibodies. Bioconjug Chem 2019; 30:1565-1574. [PMID: 30994337 DOI: 10.1021/acs.bioconjchem.9b00273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sialic acids (Sias) cover vertebrate cell surface glycans. N-Acetylneuraminic acid (Neu5Ac) and its hydroxylated form N-glycolylneuraminic acid (Neu5Gc) are common Sia in mammals. Humans cannot synthesize Neu5Gc but accumulate it on cells through red-meat rich diets, generating numerous immunogenic Neu5Gc-neoantigens. Consequently, humans have diverse anti-Neu5Gc antibodies affecting xenotransplantation, cancer, atherosclerosis, and infertility. Anti-Neu5Gc antibodies circulate as IgG, IgM, and IgA isotypes; however, repertoires of the different isotypes in a large population have not been studied yet. Here, we used glycan microarrays to investigate anti-Neu5Gc IgGs and IgAs in intravenous immunoglobulin (IVIG) or pooled human IgA, respectively. Binding patterns on microarrays fabricated with Neu5Gc- and Neu5Ac-glycans, together with inhibition assays, revealed that different IVIG preparations have highly specific anti-Neu5Gc IgG reactivity with closely related repertoires, while IgAs show cross-reactivity against several Neu5Ac-glycans. Such different anti-Neu5Gc IgG/IgA repertoires in individuals could possibly mediate distinctive effects on human diseases.
Collapse
Affiliation(s)
- Shani Leviatan Ben-Arye
- The George S. Wise Faculty of Life Sciences, Department of Cell Research and Immunology , Tel Aviv University , Tel Aviv 69978 , Israel
| | | | - Hai Yu
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| | - Salam Bashir
- The George S. Wise Faculty of Life Sciences, Department of Cell Research and Immunology , Tel Aviv University , Tel Aviv 69978 , Israel
| | - Xi Chen
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| | - Stephan von Gunten
- Institute of Pharmacology , University of Bern , Bern 3010 , Switzerland
| | - Vered Padler-Karavani
- The George S. Wise Faculty of Life Sciences, Department of Cell Research and Immunology , Tel Aviv University , Tel Aviv 69978 , Israel
| |
Collapse
|
37
|
Dhar C, Sasmal A, Varki A. From "Serum Sickness" to "Xenosialitis": Past, Present, and Future Significance of the Non-human Sialic Acid Neu5Gc. Front Immunol 2019; 10:807. [PMID: 31057542 PMCID: PMC6481270 DOI: 10.3389/fimmu.2019.00807] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 01/01/2023] Open
Abstract
The description of "serum sickness" more than a century ago in humans transfused with animal sera eventually led to identification of a class of human antibodies directed against glycans terminating in the common mammalian sialic acid N-Glycolylneuraminic acid (Neu5Gc), hereafter called "Neu5Gc-glycans." The detection of such glycans in malignant and fetal human tissues initially raised the possibility that it was an oncofetal antigen. However, "serum sickness" antibodies were also noted in various human disease states. These findings spurred further research on Neu5Gc, and the discovery that it is not synthesized in the human body due to a human-lineage specific genetic mutation in the enzyme CMAH. However, with more sensitive techniques Neu5Gc-glycans were detected in smaller quantities on certain human cell types, particularly epithelia and endothelia. The likely explanation is metabolic incorporation of Neu5Gc from dietary sources, especially red meat of mammalian origin. This incorporated Neu5Gc on glycans appears to be the first example of a "xeno-autoantigen," against which varying levels of "xeno-autoantibodies" are present in all humans. The resulting chronic inflammation or "xenosialitis" may have important implications in human health and disease, especially in conditions known to be aggravated by consumption of red meat. In this review, we will cover the early history of the discovery of "serum sickness" antibodies, the subsequent recognition that they were partly directed against Neu5Gc-glycans, the discovery of the genetic defect eliminating Neu5Gc production in humans, and the later recognition that this was not an oncofetal antigen but the first example of a "xeno-autoantigen." Further, we will present comments about implications for disease risks associated with red meat consumption such as cancer and atherosclerosis. We will also mention the potential utility of these anti-Neu5Gc-glycan antibodies in cancer immunotherapy and provide some suggestions and perspectives for the future. Other reviews in this special issue cover many other aspects of this unusual pathological process, for which there appears to be no other described precedent.
Collapse
Affiliation(s)
- Chirag Dhar
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| | - Aniruddha Sasmal
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| | - Ajit Varki
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
38
|
Rousse J, Salama A, Leviatan Ben-Arye S, Hruba P, Slatinska J, Evanno G, Duvaux O, Blanchard D, Yu H, Chen X, Bach JM, Padler-Karavani V, Viklicky O, Soulillou JP. Quantitative and qualitative changes in anti-Neu5Gc antibody response following rabbit anti-thymocyte IgG induction in kidney allograft recipients. Eur J Clin Invest 2019; 49:e13069. [PMID: 30620396 DOI: 10.1111/eci.13069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/18/2018] [Accepted: 01/06/2019] [Indexed: 01/02/2023]
Abstract
Antibodies of non-human mammals are glycosylated with carbohydrate antigens, such as galactose-α-1-3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc). These non-human carbohydrate antigens are highly immunogenic in humans due to loss-of-function mutations of the key genes involved in their synthesis. Such immunogenic carbohydrates are expressed on therapeutic polyclonal rabbit anti-human T-cell IgGs (anti-thymocyte globulin; ATG), the most popular induction treatment in allograft recipients. To decipher the quantitative and qualitative response against these antigens in immunosuppressed patients, particularly against Neu5Gc, which may induce endothelial inflammation in both the graft and the host. We report a prospective study of the antibody response against α-Gal and Neu5Gc-containing glycans following rabbit ATG induction compared to controls. We show a drop in the overall levels of anti-Neu5Gc antibodies at 6 and 12 months post-graft compared to the pre-existing levels due to the major early immunosuppression. However, in contrast, in a cross-sectional study there was a highly significant increase in anti-Neu5Gc IgGs levels at 6 months post-graft in the ATG-treated compared to non-treated patients(P = 0.007), with a clear hierarchy favouring anti-Neu5Gc over anti-Gal response. A sialoglycan microarray analysis revealed that the increased anti-Neu5Gc IgG response was still highly diverse against multiple different Neu5Gc-containing glycans. Furthermore, some of the ATG-treated patients developed a shift in their anti-Neu5Gc IgG repertoire compared with the baseline, recognizing different patterns of Neu5Gc-glycans. In contrast to Gal, Neu5Gc epitopes remain antigenic in severely immunosuppressed patients, who also develop an anti-Neu5Gc repertoire shift. The clinical implications of these observations are discussed.
Collapse
Affiliation(s)
| | | | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Petra Hruba
- Transplant Laboratory, Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Janka Slatinska
- Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | - Hai Yu
- Department of Chemistry, University of California-Davis, Davis, California
| | - Xi Chen
- Department of Chemistry, University of California-Davis, Davis, California
| | - Jean-Marie Bach
- Immuno-Endocrinology Unit, EA4644 University/ONIRIS USC1383 INRA, Pathophysiology Department, ONIRIS-Nantes-Atlantic College of Veterinary Medicine and Food Sciences, Nantes, France
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ondrej Viklicky
- Transplant Laboratory, Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
39
|
Sialylated Oligosaccharides and Glycoconjugates of Human Milk. The Impact on Infant and Newborn Protection, Development and Well-Being. Nutrients 2019; 11:nu11020306. [PMID: 30717166 PMCID: PMC6413137 DOI: 10.3390/nu11020306] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/19/2023] Open
Abstract
Human milk not only has nutritional value, but also provides a wide range of biologically active molecules, which are adapted to meet the needs of newborns and infants. Mother’s milk is a source of sialylated oligosaccharides and glycans that are attached to proteins and lipids, whose concentrations and composition are unique. Sialylated human milk glycoconjugates and oligosaccharides enrich the newborn immature immune system and are crucial for their proper development and well-being. Some of the milk sialylated oligosaccharide structures can locally exert biologically active effects in the newborn’s and infant’s gut. Sialylated molecules of human milk can be recognized and bound by sialic acid-dependent pathogens and inhibit their adhesion to the epithelial cells of newborns and infants. A small amount of intact sialylated oligosaccharides can be absorbed from the intestine and remain in the newborn’s circulation in concentrations high enough to modulate the immunological system at the cellular level and facilitate proper brain development during infancy. Conclusion: The review summarizes the current state of knowledge on sialylated human milk oligosaccharides and glycoconjugates, discusses the significance of sialylated structures of human milk in newborn protection and development, and presents the advantages of human milk over infant formula.
Collapse
|
40
|
Oaks M, Michel K, Downey FX, Thohan V. Xenoreactive antibodies and latent fibrin formation in VAD and cardiac transplant recipients can confound the detection and measurement of anti-AT1R antibodies. Am J Transplant 2018; 18:2763-2771. [PMID: 29603642 DOI: 10.1111/ajt.14753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/09/2018] [Accepted: 03/24/2018] [Indexed: 01/25/2023]
Abstract
Autoantibodies to the angiotensin II type 1 receptor (AT1R) are thought to be important in antibody-mediated rejection (AMR), especially in the absence of anti-HLA antibodies. We used a variety of methods to examine the specificity of a commercially available kit designed to quantitate anti-AT1R antibodies. We found that fibrin formation in serum samples from patients awaiting cardiac transplantation with ventricular assist devices (VADs) can produce falsely elevated anti-AT1R values. In addition, absorption studies with a variety of cell lines with or without expression of human AT1R, and those that express xenoantigens, suggest that many of the antibodies detected in the AT1R test system are heterophilic and have reactivity to xenoantigens. Furthermore, we provide data that show that reactivity to the sialic acid Neu5Gc is a common finding among samples that are highest in anti-AT1R levels. We conclude that a common laboratory method for quantitation of anti-AT1R antibodies is nonspecific and overestimates the frequency of true positives. A reevaluation of the role that anti-AT1R antibodies play in allograft function and patient outcomes is warranted.
Collapse
Affiliation(s)
- Martin Oaks
- Transplant Research Lab, Aurora St. Luke's Medical Center, Milwaukee, WI, USA
| | - Karen Michel
- Transplant Research Lab, Aurora St. Luke's Medical Center, Milwaukee, WI, USA
| | - Francis X Downey
- Aurora Cardiovascular Services, Aurora St. Luke's Medical Center, Milwaukee, WI, USA
| | - Vinay Thohan
- Aurora Cardiovascular Services, Aurora St. Luke's Medical Center, Milwaukee, WI, USA
| |
Collapse
|
41
|
Soulillou JP, Süsal C, Döhler B, Opelz G. No Increase in Colon Cancer Risk Following Induction with Neu5Gc-Bearing Rabbit Anti-T Cell IgG (ATG) in Recipients of Kidney Transplants. Cancers (Basel) 2018; 10:cancers10090324. [PMID: 30213027 PMCID: PMC6162487 DOI: 10.3390/cancers10090324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
Because of a mutation of the gene allowing the synthesis of the Neu5Gc form of neuraminidic acid, humans lack the Neu5Gc present in other mammals and develop anti-Neu5Gc. However, humans can absorb dietary Neu5Gc and normal colon epithelium displays minute amounts of Neu5Gc. The potential "physiological" formation of in situ immune complexes has been proposed as a risk factor for colon cancer and as the link between red meat-rich diet and colon carcinoma. In this article, we took advantage of evidence that polyclonal rabbit IgG (ATG) elicits an immune response against Neu5Gc and we consulted a large data base of allograft recipients treated or not with animal-derived IgG to discuss this hypothesis. Based on data from 173,960 and 38,505 patients without and with ATG induction, respectively, we found no evidence that exposure to higher levels of anti-Neu5Gc is associated with a higher incidence of colon carcinoma.
Collapse
Affiliation(s)
- Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France.
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France.
| | - Caner Süsal
- Institute of Immunology, Heidelberg University, 69120 Heidelberg, Germany.
| | - Bernd Döhler
- Institute of Immunology, Heidelberg University, 69120 Heidelberg, Germany.
| | - Gerhard Opelz
- Institute of Immunology, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
42
|
Wylie AD, Zandberg WF. Quantitation of Sialic Acids in Infant Formulas by Liquid Chromatography-Mass Spectrometry: An Assessment of Different Protein Sources and Discovery of New Analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8114-8123. [PMID: 29730930 DOI: 10.1021/acs.jafc.8b01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glycosidically bound, but not free, dietary sialic acids are used for the biosynthesis of new glycoconjugates in humans, making the quantitation of these two forms in infant food sources important, as in neonates the demand for sialic acid may exceed the de novo biosynthetic supply. Here, a rapid high-performance liquid chromatography-mass spectrometry method was developed to identify and quantitate glycosidically bound and free sialic acids in infant formulas. The sialic acid contents of eight commercially available infant formulas with varying protein source or manufacturer were investigated. The formula protein sources (whey vs casein) did not have a large impact on the ratios of free to bound sialic acids, nor did protein hydrolysis or sample form (solid vs liquid). Hydrolyzed bovine whey protein-based formulas were found to contain the highest amount of the most abundant human sialic acid, 5- N-acetylneuraminic acid (Neu5Ac). O-Acetylated Neu5Ac was quantified in all formulas tested and, for the first time, 2-keto-3-deoxy-d-glycero-d-galacto-nononic acid (Kdn) was detected in several infant formulas.
Collapse
Affiliation(s)
- Aaron D Wylie
- The University of British Columbia , Chemistry Department, Charles E. Fipke Centre for Innovative Research , 3247 University Way , Kelowna , British Columbia , V1V 1V7 , Canada
| | - Wesley F Zandberg
- The University of British Columbia , Chemistry Department, Charles E. Fipke Centre for Innovative Research , 3247 University Way , Kelowna , British Columbia , V1V 1V7 , Canada
| |
Collapse
|
43
|
Paul A, Padler-Karavani V. Evolution of sialic acids: Implications in xenotransplant biology. Xenotransplantation 2018; 25:e12424. [PMID: 29932472 PMCID: PMC6756921 DOI: 10.1111/xen.12424] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
All living cells are covered with a dense “sugar-coat” of carbohydrate chains (glycans) conjugated to proteins and lipids. The cell surface glycome is determined by a non-template driven process related to the collection of enzymes that assemble glycans in a sequential manner. In mammals, many of these glycans are topped with sialic acids (Sia), a large family of acidic sugars. The “Sialome” is highly diverse owing to various Sia types, linkage to underlying glycans, range of carriers, and complex spatial organization. Presented at the front of cells, Sia play a major role in immunity and recognition of “self” versus “non-self,” largely mediated by the siglecs family of Sia-binding host receptors. Albeit many mammalian pathogens have evolved to hijack this recognition system to avoid host immune attack, presenting a fascinating host-pathogen evolutionary arms race. Similarly, cancer cells exploit Sia for their own survival and propagation. As part of this ongoing fitness, humans lost the ability to synthesize the Sia type N-glycolylneuraminic acid (Neu5Gc), in contrast to other mammals. While this loss had provided an advantage against certain pathogens, humans are continuously exposed to Neu5Gc through mammalian-derived diet (eg, red meat), consequently generating a complex immune response against it. Circulating anti-Neu5Gc antibodies together with Neu5Gc on some human tissues mediate chronic inflammation “xenosialitis” that exacerbate various human diseases (eg, cancer and atherosclerosis). Similarly, Neu5Gc-containing xenografts are exposed to human anti-Neu5Gc antibodies with implications to sustainability. This review aimed to provide a glimpse into the evolution of Sia and their implications to xenotransplantation.
Collapse
Affiliation(s)
- Anu Paul
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
44
|
Samraj AN, Bertrand KA, Luben R, Khedri Z, Yu H, Nguyen D, Gregg CJ, Diaz SL, Sawyer S, Chen X, Eliassen H, Padler-Karavani V, Wu K, Khaw KT, Willett W, Varki A. Polyclonal human antibodies against glycans bearing red meat-derived non-human sialic acid N-glycolylneuraminic acid are stable, reproducible, complex and vary between individuals: Total antibody levels are associated with colorectal cancer risk. PLoS One 2018; 13:e0197464. [PMID: 29912879 PMCID: PMC6005533 DOI: 10.1371/journal.pone.0197464] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND N-glycolylneuraminic acid (Neu5Gc) is a non-human red-meat-derived sialic acid immunogenic to humans. Neu5Gc can be metabolically incorporated into glycan chains on human endothelial and epithelial surfaces. This represents the first example of a "xeno-autoantigen", against which circulating human "xeno-autoantibodies" can react. The resulting inflammation ("xenosialitis") has been demonstrated in human-like Neu5Gc-deficient mice and contributed to carcinoma progression via antibody-mediated inflammation. Anti-Neu5Gc antibodies have potential as biomarkers for diseases associated with red meat consumption such as carcinomas, atherosclerosis, and type 2 diabetes. METHODS ELISA assays measured antibodies against Neu5Gc or Neu5Gc-glycans in plasma or serum samples from the Nurses' Health Studies, the Health Professionals Follow-up Study, and the European Prospective Investigation into Cancer and Nutrition, including inter-assay reproducibility, stability with delayed sample processing, and within-person reproducibility over 1-3 years in archived samples. We also assessed associations between antibody levels and coronary artery disease risk (CAD) or red meat intake. A glycan microarray was used to detected antibodies against multiple Neu5Gc-glycan epitopes. A nested case-control study design assessed the association between total anti-Neu5Gc antibodies detected in the glycan array assay and the risk of colorectal cancer (CRC). RESULTS ELISA assays showed a wide range of anti-Neu5Gc responses and good inter-assay reproducibility, stability with delayed sample processing, and within-person reproducibility over time, but these antibody levels did not correlate with CAD risk or red meat intake. Antibodies against Neu5Gc alone or against individual Neu5Gc-bearing epitopes were also not associated with colorectal cancer (CRC) risk. However, a sialoglycan microarray study demonstrated positive association with CRC risk when the total antibody responses against all Neu5Gc-glycans were combined. Individuals in the top quartile of total anti-Neu5Gc IgG antibody concentrations had nearly three times the risk compared to those in the bottom quartile (Multivariate Odds Ratio comparing top to bottom quartile: 2.98, 95% CI: 0.80, 11.1; P for trend = 0.02). CONCLUSIONS Further work harnessing the utility of these anti-Neu5Gc antibodies as biomarkers in red meat-associated diseases must consider diversity in individual antibody profiles against different Neu5Gc-bearing glycans. Traditional ELISA assays for antibodies directed against Neu5Gc alone, or against specific Neu5Gc-glycans may not be adequate to define risk associations. Our finding of a positive association of total anti-Neu5Gc antibodies with CRC risk also warrants confirmation in larger prospective studies.
Collapse
Affiliation(s)
- Annie N. Samraj
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Kimberly A. Bertrand
- Slone Epidemiology Center, Boston University, Boston, Massachusetts, United States of America
| | - Robert Luben
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Zahra Khedri
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Hai Yu
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Dzung Nguyen
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Christopher J. Gregg
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Sandra L. Diaz
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Sherilyn Sawyer
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Heather Eliassen
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Vered Padler-Karavani
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Walter Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Ajit Varki
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| |
Collapse
|
45
|
Yamamoto T, Iwase H, King TW, Hara H, Cooper DKC. Skin xenotransplantation: Historical review and clinical potential. Burns 2018; 44:1738-1749. [PMID: 29602717 DOI: 10.1016/j.burns.2018.02.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/02/2018] [Accepted: 02/27/2018] [Indexed: 12/22/2022]
Abstract
Half a million patients in the USA alone require treatment for burns annually. Following an extensive burn, it may not be possible to provide sufficient autografts in a single setting. Pig skin xenografts may provide temporary coverage. However, preformed xenoreactive antibodies in the human recipient activate complement, and thus result in rapid rejection of the graft. Because burn patients usually have some degree of immune dysfunction and are therefore at increased risk of infection, immunosuppressive therapy is undesirable. Genetic engineering of the pig has increased the survival of pig heart, kidney, islet, and corneal grafts in immunosuppressed non-human primates from minutes to months or occasionally years. We summarize the current status of research into skin xenotransplantation for burns, with special emphasis on developments in genetic engineering of pigs to protect the graft from immunological injury. A genetically-engineered pig skin graft now survives as long as an allograft and, importantly, rejection of a skin xenograft is not detrimental to a subsequent allograft. Nevertheless, currently, systemic immunosuppressive therapy would still be required to inhibit a cellular response, and so we discuss what further genetic manipulations could be carried out to inhibit the cellular response.
Collapse
Affiliation(s)
- Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy W King
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
46
|
Poor Patient and Graft Outcome After Induction Treatment by Antithymocyte Globulin in Recipients of a Kidney Graft After Nonrenal Organ Transplantation. Transplant Direct 2018; 4:e357. [PMID: 29707628 PMCID: PMC5908458 DOI: 10.1097/txd.0000000000000772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background End-stage renal failure occurs in a substantial number of patients having received a nonrenal transplantation (NRT), for whom a kidney transplantation is needed. The medical strategy regarding the use of immunosuppression (IS) for a kidney graft in patients after an NRT is not well established. The prekidney grafts long-term IS advocates for a mild induction, such as using anti-IL-2R antibodies, whereas addition of new incompatibilities and anti-HLA preimmunization may suggest using stronger IS such as induction by polyclonal antithymocyte globulins (ATG). Methods We performed Cox multivariate and propensity score analysis of our validated transplant database to study the impact of the type of induction therapy on kidney graft survival of recipients of a kidney graft after NRT. Results We report here that kidney transplantation after NRT treated with an ATG induction has a poorer outcome (kidney and recipient survival) than that with an anti-IL-2R induction. After accounting for potential baseline differences with a multivariate Cox model, or by adjusting on a propensity score, we found that despite patients having received ATG cumulate more risk factors, ATG appears independently involved. As animal-derived biotherapeutics induce antiglycan antibodies and particularly anti-N-glycolylneuraminic acid (Neu5Gc) IgGs which may activate endothelial cells in patients and grafts, we also investigated the magnitude and the nature of the anti-Neu5Gc elicited by the induction and showed that induction was associated with a shift in anti-Neu5Gc IgG repertoire. Possible reasons and mechanisms of a deleterious ATG usage in these patients are discussed. Conclusions Our study suggests that ATG induction after a kidney transplantation in recipients already under maintenance IS for a NRT should be used cautiously.
Collapse
|
47
|
Abstract
Protein glycosylation is post-translational modification (PTM) which is important for pharmacokinetics and immunogenicity of recombinant glycoprotein therapeutics. As a result of variations in monosaccharide composition, glycosidic linkages and glycan branching, glycosylation introduces considerable complexity and heterogeneity to therapeutics. The host cell line used to produce the glycoprotein has a strong influence on the glycosylation because different host systems may express varying repertoire of glycosylation enzymes and transporters that contributes to specificity and heterogeneity in glycosylation profiles. In this review, we discuss the types of host cell lines currently used for recombinant therapeutic production, their glycosylation potential and the resultant impact on glycoprotein properties. In addition, we compare the reported glycosylation profiles of four recombinant glycoproteins: immunoglobulin G (IgG), coagulation factor VII (FVII), erythropoietin (EPO) and alpha-1 antitrypsin (A1AT) produced in different mammalian cells to establish the influence of mammalian host cell lines on glycosylation.
Collapse
Affiliation(s)
- Justin Bryan Goh
- a Bioprocessing Technology Institute , Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore
| | - Say Kong Ng
- a Bioprocessing Technology Institute , Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore
| |
Collapse
|
48
|
Amon R, Ben-Arye SL, Engler L, Yu H, Lim N, Berre LL, Harris KM, Ehlers MR, Gitelman SE, Chen X, Soulillou JP, Padler-Karavani V. Glycan microarray reveal induced IgGs repertoire shift against a dietary carbohydrate in response to rabbit anti-human thymocyte therapy. Oncotarget 2017; 8:112236-112244. [PMID: 29348821 PMCID: PMC5762506 DOI: 10.18632/oncotarget.23096] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Humans have circulating antibodies against diverse glycans containing N-glycolylneuraminic acid (Neu5Gc) due to function-loss mutation of the CMAH gene. This xenogenic non-human carbohydrate is abundant in red meat, xenografts and biotherapeutics. Low levels of diet-derived Neu5Gc is also present on normal human endothelial cells, and together with anti-Neu5Gc antibodies could potentially mediate “xenosialitis” chronic-inflammation. Rabbit anti-human thymocyte globulin (ATG) is a drug containing polyclonal IgG glycoproteins commonly used as an immunosuppressant in human transplantation and autoimmune diseases. In type-1 diabetes patients, infusion of Neu5Gc-glycosylated ATG caused increased global anti-Neu5Gc response. Here, for the first time we explore changes in anti-Neu5Gc IgG repertoire following the immunization elicited by ATG, compared with the basal antibodies repertoire that reflect exposure to dietary-Neu5Gc. We used glycan microarrays with multiple Neu5Gc-glycans and controls to elucidate eventual differences in ATG-elicited repertoire, before/after ATG administration and track their kinetics (0, 1, 18 and 24 months). Response of all basal-pre-existing Neu5Gc-specific antibodies rapidly increased. This response peaked at one month post-ATG, with enhanced affinity, then resolved at 18–24 months. Induced-antibodies showed expanded diversity and de-novo recognition of different Neu5Gc-glycans, including endogenous glycolipids, that was further validated by affinity-purified anti-Neu5Gc antibodies from patients’ sera. These findings strongly suggest that ATG-induced anti-Neu5Gc IgGs represent a secondary exposure to this dietary carbohydrate-antigen in humans, with immune memory. Given their modified recognition patterns, ATG-evoked anti-Neu5Gc antibodies could potentially mediate biological effects different from pre-existing antibodies.
Collapse
Affiliation(s)
- Ron Amon
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | | | - Limor Engler
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Hai Yu
- Department of Chemistry, University of California-Davis, Davis, CA, USA
| | - Noha Lim
- Biomarker Discovery Research, Immune Tolerance Network, Bethesda, MD, USA
| | - Ludmilla Le Berre
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Kristina M Harris
- Biomarker Discovery Research, Immune Tolerance Network, Bethesda, MD, USA
| | - Mario R Ehlers
- Clinical Trials Group, Immune Tolerance Network, San Francisco, CA, USA
| | - Stephen E Gitelman
- Division of Pediatric Endocrinology and Diabetes, University of California San Francisco, San Francisco, CA, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, Davis, CA, USA
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | | |
Collapse
|
49
|
Bousquet PA, Sandvik JA, Jeppesen Edin NF, Krengel U. Hypothesis: Hypoxia induces de novo synthesis of NeuGc gangliosides in humans through CMAH domain substitute. Biochem Biophys Res Commun 2017; 495:1562-1566. [PMID: 29196263 DOI: 10.1016/j.bbrc.2017.11.183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 11/28/2017] [Indexed: 12/27/2022]
Abstract
Immunotherapy is a growing field in cancer research. A privileged tumor-associated antigen that has received much attention is N-glycolyl (NeuGc) GM3. This ganglioside is present in several types of cancer, but is almost undetectable in human healthy tissues. However, its non-hydroxylated variant, NeuAc GM3, is abundant in all mammals. Due to a deletion in the human gene encoding the key enzyme for synthesis of NeuGc, humans, in contrast to other mammals, cannot synthesize NeuGc GM3. Therefore the presence of this ganglioside in human cancer cells represents an enigma. It has been shown that hypoxic conditions trigger the expression of NeuGc gangliosides, which not only serve as attractive targets for cancer therapy, but also as diagnostic and prognostic tumor marker. Here, we confirm hypoxia-induced expression of the NeuGc GM3 ganglioside also in HeLa cells and reveal several candidate proteins, in particular GM3 synthase and subunit B of respiratory complex II (SDHB), that may be involved in the generation of NeuGc GM3 by SILAC-based proteome analysis. These findings have the potential to significantly advance our understanding of how this enigmatic tumor-associated antigen is produced in humans, and also suggest a possible mechanism of action of anti-tumor antibodies that recognize hypoxia markers, such as 14F7.
Collapse
Affiliation(s)
- Paula A Bousquet
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
| | - Joe Alexander Sandvik
- Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0315 Oslo, Norway
| | - Nina F Jeppesen Edin
- Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0315 Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
| |
Collapse
|
50
|
Anti-Gal and Anti-Neu5Gc Responses in Nonimmunosuppressed Patients After Treatment With Rabbit Antithymocyte Polyclonal IgGs. Transplantation 2017; 101:2501-2507. [PMID: 28198767 DOI: 10.1097/tp.0000000000001686] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Polyclonal antihuman thymocyte rabbit IgGs (antithymocyte globulin [ATG]) are popular immunosuppressive drugs used to prevent or treat organ or bone-marrow allograft rejection, graft versus host disease, and autoimmune diseases. However, animal-derived glycoproteins are also strongly immunogenic and rabbit ATG induces serum sickness disease in almost all patients without additional immunosuppressive drugs, as seen in the Study of Thymoglobulin to arrest Type 1 Diabetes (START) trial of ATG therapy in new-onset type 1 diabetes. METHODS Using enzyme-linked immunosorbent assay, we analyzed serial sera from the START study to decipher the various anti-ATG specificities developed by the patients in this study: antitotal ATG, but also antigalactose-α1-3-galactose (Gal) and anti-Neu5Gc antibodies, 2 xenocarbohydrate epitopes present on rabbit IgG glycans and lacking in humans. RESULTS We show that diabetic patients have substantial levels of preexisting antibodies of the 3 specificities, before infusion, but of similar levels as healthy individuals. ATG treatment resulted in highly significant increases of both IgM (for anti-ATG and anti-Neu5Gc) and IgG (for anti-ATG, -Gal, and -Neu5Gc), peaking at 1 month and still detectable 1 year postinfusion. CONCLUSIONS Treatment with rabbit polyclonal IgGs in the absence of additional immunosuppression results in a vigorous response against Gal and Neu5Gc epitopes, contributing to an inflammatory environment that may compromise the efficacy of ATG therapy. The results also suggest using IgGs lacking these major xenoantigens may improve safety and efficacy of ATG treatment.
Collapse
|