1
|
Zhu Y, Liu J, Wang B. Integrated Approach for Biomarker Discovery and Mechanistic Insights into the Co-Pathogenesis of Type 2 Diabetes Mellitus and Non-Hodgkin Lymphoma. Diabetes Metab Syndr Obes 2025; 18:267-282. [PMID: 39906693 PMCID: PMC11793108 DOI: 10.2147/dmso.s503449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is associated with an increased risk of non-Hodgkin lymphoma (NHL), but the underlying mechanisms remain unclear. This study aimed to identify potential biomarkers and elucidate the molecular mechanisms underlying the co-pathogenesis of T2DM and NHL. Methods Microarray datasets of T2DM and NHL were downloaded from the Gene Expression Omnibus database. Subsequently, a protein-protein interaction network was constructed based on the common differentially expressed genes (DEGs) between T2DM and NHL to explore regulatory interactions. Functional analyses were performed to explore underlying mechanisms. Topological analysis and machine learning algorithms were applied to refine hub gene selection. Finally, quantitative real-time polymerase chain reaction was performed to validate hub genes in clinical samples. Results Intersection analysis of DEGs from the T2DM and NHL datasets identified 81 shared genes. Functional analyses suggested that immune-related pathways played a significant role in the co-pathogenesis of T2DM and NHL. Topological analysis and machine learning identified three hub genes: GZMM, HSPG2, and SERPING1. Correlation analysis revealed significant correlations between these hub genes and immune cells, underscoring the importance of immune dysregulation in shared pathogenesis. The expression of these genes was successfully validated in clinical samples. Conclusion This study suggested the pivotal role of immune dysregulation in the co-pathogenesis of T2DM and NHL and identified and validated three hub genes as key contributors. These findings provide insight into the complex interplay between T2DM and NHL.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Jun Liu
- Department of Traditional Chinese Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Bo Wang
- Department of Endocrinology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People’s Republic of China
| |
Collapse
|
2
|
Goleij P, Khazeei Tabari MA, Ahmed ARD, Mohamed LME, Saleh GAH, Abdu Hassan MTM, Moahmmednoor AGM, Khan H. Molecular Secrets Revealed: How Diabetes may be Paving the Way for Leukemia. Curr Treat Options Oncol 2024; 25:1563-1579. [PMID: 39585587 DOI: 10.1007/s11864-024-01281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
OPINION STATEMENT Type 2 Diabetes Mellitus (T2DM) and leukemia are two major global health concerns, both contributing significantly to morbidity and mortality. Epidemiological evidence demonstrates a strong correlation between T2DM and an increased risk of leukemia, particularly driven by insulin resistance, hyperglycemia, and the resultant metabolic dysregulation. Key shared risk factors, including obesity and chronic inflammation, create a conducive environment for leukemogenesis, intensifying cancer cell proliferation and resistance to standard therapies. Insulin resistance, in particular, triggers oncogenic pathways such as PI3K/AKT and MAPK, exacerbating the aggressive phenotype seen in leukemia patients with T2DM. Additionally, clonal hematopoiesis of indeterminate potential (CHIP) is implicated in the higher leukemia risk observed in diabetic populations, especially among the elderly. Molecular mechanisms like the insulin-like growth factor (IGF) system further highlight the intricate link between these diseases, promoting survival and proliferation of leukemia cells. The coexistence of T2DM in leukemia patients is associated with poorer prognostic outcomes, including increased susceptibility to infections, reduced survival, and greater treatment resistance. Antidiabetic agents, notably metformin and pioglitazone, show promise in enhancing chemotherapy efficacy and improving patient outcomes by targeting metabolic pathways. These results highlight the need for comprehensive treatment approaches that target both metabolic abnormalities and cancer-related mechanisms in patients suffering from both T2DM and leukemia.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran.
| | | | | | | | | | | | | | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
3
|
Cao H, Xiao J, Baylink DJ, Nguyen V, Shim N, Lee J, Mallari DJR, Wasnik S, Mirshahidi S, Chen CS, Abdel-Azim H, Reeves ME, Xu Y. Development of a Competitive Nutrient-Based T-Cell Immunotherapy Designed to Block the Adaptive Warburg Effect in Acute Myeloid Leukemia. Biomedicines 2024; 12:2250. [PMID: 39457563 PMCID: PMC11504511 DOI: 10.3390/biomedicines12102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: T-cell-based adoptive cell therapies have emerged at the forefront of cancer immunotherapies; however, failed long-term survival and inevitable exhaustion of transplanted T lymphocytes in vivo limits clinical efficacy. Leukemia blasts possess enhanced glycolysis (Warburg effect), exploiting their microenvironment to deprive nutrients (e.g., glucose) from T cells, leading to T-cell dysfunction and leukemia progression. Methods: Thus, we explored whether genetic reprogramming of T-cell metabolism could improve their survival and empower T cells with a competitive glucose-uptake advantage against blasts and inhibit their uncontrolled proliferation. Results: Here, we discovered that high-glucose concentration reduced the T-cell expression of glucose transporter GLUT1 (SLC2A1) and TFAM (mitochondrion transcription factor A), an essential transcriptional regulator of mitochondrial biogenesis, leading to their impaired expansion ex vivo. To overcome the glucose-induced genetic deficiency in metabolism, we engineered T cells with lentiviral overexpression of SLC2A1 and/or TFAM transgene. Multi-omics analyses revealed that metabolic reprogramming promoted T-cell proliferation by increasing IL-2 release and reducing exhaustion. Moreover, the engineered T cells competitively deprived glucose from allogenic blasts and lessened leukemia burden in vitro. Conclusions: Our findings propose a novel T-cell immunotherapy that utilizes a dual strategy of starving blasts and cytotoxicity for preventing uncontrolled leukemia proliferation.
Collapse
Affiliation(s)
- Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Vinh Nguyen
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Nathan Shim
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jae Lee
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Dave J. R. Mallari
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Saied Mirshahidi
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Biospecimen Laboratory, Department of Medicine and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hisham Abdel-Azim
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Transplant and Cell Therapy, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
- Division of Hematology and Oncology, Department of Pediatrics, Loma Linda University, Loma Linda, CA 92354, USA
| | - Mark E. Reeves
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
4
|
Bende RJ, Donner N, Wormhoudt TA, Beentjes A, Scantlebery A, Grobben M, Tejjani K, Chandler F, Sikkema RS, Langerak AW, Guikema JE, van Noesel CJ. Distinct groups of autoantigens as drivers of ocular adnexal MALT lymphoma pathogenesis. Life Sci Alliance 2024; 7:e202402841. [PMID: 38977312 PMCID: PMC11231493 DOI: 10.26508/lsa.202402841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Chronic B-cell receptor signals incited by cognate antigens are believed to play a crucial role in the pathogenesis of mucosa-associated lymphoid tissue lymphomas. We have explored the immunoglobulin variable regions (IGHV) expressed by 124 ocular adnexal MALT lymphomas (OAML) and tested the in vitro reactivity of recombinant IgM derived from 23 OAMLs. Six of 124 OAMLs (5%) were found to express a high-affinity stereotyped rheumatoid factor. OAMLs have a biased IGHV4-34 usage, which confers intrinsic super auto-antigen reactivity with poly-N-acetyllactosamine (NAL) epitopes, present on cell surface glycoproteins of erythrocytes and B cells. Twenty-one OAMLs (17%) expressed IGHV4-34-encoded B-cell receptors. Five of the 23 recombinant OAML IgMs expressed IGHV4-34, four of which bound to the linear NAL i epitope expressed on B cells but not to the branched NAL I epitope on erythrocytes. One non-IGHV4-34-encoded OAML IgM was also reactive with B cells. Interestingly, three of the 23 OAML IgMs (13%) specifically reacted with proteins of U1-/U-snRNP complexes, which have been implicated as cognate-antigens in various autoimmune diseases such as systemic lupus erythematosus and mixed connective tissue disease. The findings indicate that local autoimmune reactions are instrumental in the pathogenesis of a substantial fraction of OAMLs.
Collapse
MESH Headings
- Humans
- Lymphoma, B-Cell, Marginal Zone/immunology
- Lymphoma, B-Cell, Marginal Zone/genetics
- Autoantigens/immunology
- Immunoglobulin M/immunology
- Immunoglobulin M/metabolism
- Eye Neoplasms/immunology
- Eye Neoplasms/genetics
- Female
- Middle Aged
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/genetics
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Male
- Aged
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Aged, 80 and over
- Epitopes/immunology
- Adult
- Rheumatoid Factor/immunology
Collapse
Affiliation(s)
- Richard J Bende
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, Netherlands
- Cancer Center Amsterdam (CCA), Amsterdam, Netherlands
| | - Naomi Donner
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Thera Am Wormhoudt
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, Netherlands
- Cancer Center Amsterdam (CCA), Amsterdam, Netherlands
| | - Anna Beentjes
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Angelique Scantlebery
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | | | - Reina S Sikkema
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Anton W Langerak
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, Rotterdam, Netherlands
| | - Jeroen Ej Guikema
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, Netherlands
- Cancer Center Amsterdam (CCA), Amsterdam, Netherlands
| | - Carel Jm van Noesel
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, Netherlands
- Cancer Center Amsterdam (CCA), Amsterdam, Netherlands
| |
Collapse
|
5
|
Vainer N, Rotbain Curovic V, Niemann CU, Slager SL, Rotbain EC. Understanding the interplay between chronic lymphocytic leukemia and type 2 diabetes. Expert Rev Hematol 2024; 17:617-629. [PMID: 39041465 DOI: 10.1080/17474086.2024.2383417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Comorbidities play an important role in the management of chronic lymphocytic leukemia (CLL) and may influence survival and treatment outcomes. Considering the aging general population and increasing incidence of type 2 diabetes (T2D), a comprehensive understanding of the interplay between CLL and T2D is essential for optimizing care and outcomes. AREAS COVERED We present current knowledge on co-existing CLL and T2D including prevalence, shared etiology and risk factors and how the conditions and treatment hereof may influence the outcome of one another. A literature search was performed using PubMed with the cutoff date on 1 February 2024. EXPERT OPINION The increased mortality observed in persons with CLL who have co-existing T2D is partially ascribed to infections, prompting physicians managing individuals with both conditions to consider closer monitoring during instances of infection and individualized prophylaxis. People with CLL and T2D should be managed for CLL in accordance with the international working group on CLL criteria, and we recommend that physicians exercise particular care not to delay treatment for these individuals. Multidisciplinary approaches with involvement of several specialties may be required for optimal supportive care of co-occurring T2D and CLL.
Collapse
Affiliation(s)
- Noomi Vainer
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Hematology Group, Danish Cancer Institute, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Carsten Utoft Niemann
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Susan L Slager
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Emelie Curovic Rotbain
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Hematology Group, Danish Cancer Institute, Copenhagen, Denmark
| |
Collapse
|
6
|
Pliszka M, Szablewski L. Associations between Diabetes Mellitus and Selected Cancers. Int J Mol Sci 2024; 25:7476. [PMID: 39000583 PMCID: PMC11242587 DOI: 10.3390/ijms25137476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer is one of the major causes of mortality and is the second leading cause of death. Diabetes mellitus is a serious and growing problem worldwide, and its prevalence continues to grow; it is the 12th leading cause of death. An association between diabetes mellitus and cancer has been suggested for more than 100 years. Diabetes is a common disease diagnosed among patients with cancer, and evidence indicates that approximately 8-18% of patients with cancer have diabetes, with investigations suggesting an association between diabetes and some particular cancers, increasing the risk for developing cancers such as pancreatic, liver, colon, breast, stomach, and a few others. Breast and colorectal cancers have increased from 20% to 30% and there is a 97% increased risk of intrahepatic cholangiocarcinoma or endometrial cancer. On the other hand, a number of cancers and cancer therapies increase the risk of diabetes mellitus. Complications due to diabetes in patients with cancer may influence the choice of cancer therapy. Unfortunately, the mechanisms of the associations between diabetes mellitus and cancer are still unknown. The aim of this review is to summarize the association of diabetes mellitus with selected cancers and update the evidence on the underlying mechanisms of this association.
Collapse
Affiliation(s)
- Monika Pliszka
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| |
Collapse
|
7
|
Dou ZY, Xia B, Wang CY, Xu YJ, Zhang YZ. Influence of diabetes mellitus on the biochemical parameters and outcomes of multiple myeloma. Hematology 2023; 28:2179218. [PMID: 36799658 DOI: 10.1080/16078454.2023.2179218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
OBJECTIVE The incidence of MM in most registries remains stable or showing only a slightly increase. However, prevalence of MM is increasing due to the increase in overall survival in the last two decades. The aim of this study was to observe changes in biochemical parameters during the diagnosis and treatment of MM. METHODS A retrospective analysis was made of the biochemical indicators, survival time, and related adverse events of 196 patients with MM. RESULTS Of the 196 patients with MM, 26 were diagnosed with DM (DM-MM group) at the first diagnosis, 31 with steroid-induced diabetes mellitus (SID-MM group) during treatment, and 139 without DM (MM group). There was no significant difference between the three groups in the mean age of onset, sex ratio, incidence of hypercalcemia, renal dysfunction, anemia, abnormal lactate dehydrogenase, and median value of D-dimer and fibrinogen during diagnosis and treatment. There was no significant difference in survival time between the SID-MM and MM groups, but there was a significant difference between the DM-MM and MM groups. CONCLUSION There was no significant difference between the three groups in the incidence of hypercalcemia, anemia, and renal function impairment. The survival time of patients with DM was shorter than that of patients without DM.
Collapse
Affiliation(s)
- Zheng-Yue Dou
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Bing Xia
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Chao-Yu Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yan-Jie Xu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yi-Zhuo Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| |
Collapse
|
8
|
Maskarinec G, Brown SM, Lee J, Bogumil D, Walsh C, Haiman CA, Setiawan VW, Shvetsov YB, Marchand LL. Association of Obesity and Type 2 Diabetes with Non-Hodgkin Lymphoma: The Multiethnic Cohort. Cancer Epidemiol Biomarkers Prev 2023; 32:1348-1355. [PMID: 37555836 PMCID: PMC10592150 DOI: 10.1158/1055-9965.epi-23-0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Given the role of the immune system in non-Hodgkin lymphoma (NHL) etiology, obesity and type 2 diabetes (T2D) may impact NHL development. We examined the association of body mass index (BMI) and T2D with NHL in the multiethnic cohort (MEC). METHODS The MEC recruited >215,000 participants in Hawaii and Los Angeles from five racial/ethnic groups; NHL cases were identified through cancer registry linkages. T2D status, and BMI at age 21 and cohort entry were derived from repeated self-reports; for T2D, Medicare claims were also applied. HRs and 95% confidence intervals (CI) for BMI and T2D as predictors of NHL were determined using Cox regression adjusted for relevant covariates. RESULTS Among 192,424 participants, 3,472 (1.8%) with NHL and 68,850 (36%) with T2D after 19.2 ± 6.6 years follow-up, no significant association between T2D and NHL (HR, 1.04; 95% CI, 0.96-1.13) was observed. Stratification by BMI at cohort entry showed a significant association of T2D with NHL among individuals with normal weight only (HR, 1.18; 95% CI, 1.03-1.37). In a model with both BMI values plus T2D, only overweight (HR, 1.13; 95% CI, 1.01-1.26) and obesity (HR, 1.25; 95% CI, 0.99-1.59) at age 21 were associated with NHL incidence. Stratification by sex, race/ethnicity, and NHL subtype indicated no differences. CONCLUSIONS Our findings suggest an association between T2D and NHL incidence in several subgroups but not in the total population and an elevated risk related to early-life BMI. IMPACT Excess body weight in early life, rather than T2D, may be a predictor of NHL incidence.
Collapse
Affiliation(s)
| | | | - Jordyn Lee
- University of Hawaii Cancer Center, Honolulu, HI
| | | | | | | | | | | | | |
Collapse
|
9
|
Grigoryan H, Imani P, Sacerdote C, Masala G, Grioni S, Tumino R, Chiodini P, Dudoit S, Vineis P, Rappaport SM. HSA Adductomics Reveals Sex Differences in NHL Incidence and Possible Involvement of Microbial Translocation. Cancer Epidemiol Biomarkers Prev 2023; 32:1217-1226. [PMID: 37409972 PMCID: PMC10529301 DOI: 10.1158/1055-9965.epi-23-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The higher incidence of non-Hodgkin lymphoma (NHL) in males is not well understood. Although reactive oxygen species (ROS) have been implicated as causes of NHL, they cannot be measured directly in archived blood. METHODS We performed untargeted adductomics of stable ROS adducts in human serum albumin (HSA) from 67 incident NHL cases and 82 matched controls from the European Prospective Investigation into Cancer and Nutrition-Italy cohort. Regression and classification methods were employed to select features associated with NHL in all subjects and in males and females separately. RESULTS Sixty seven HSA-adduct features were quantified by liquid chromatography-high-resolution mass spectrometry at Cys34 (n = 55) and Lys525 (n = 12). Three features were selected for association with NHL in all subjects, while seven were selected for males and five for females with minimal overlap. Two selected features were more abundant in cases and seven in controls, suggesting that altered homeostasis of ROS may affect NHL incidence. Heat maps revealed differential clustering of features between sexes, suggesting differences in operative pathways. CONCLUSIONS Adduct clusters dominated by Cys34 oxidation products and disulfides further implicate ROS and redox biology in the etiology of NHL. Sex differences in dietary and alcohol consumption also help to explain the limited overlap of feature selection between sexes. Intriguingly, a disulfide of methanethiol from enteric microbial metabolism was more abundant in male cases, thereby implicating microbial translocation as a potential contributor to NHL in males. IMPACT Only two of the ROS adducts associated with NHL overlapped between sexes and one adduct implicates microbial translocation as a risk factor.
Collapse
Affiliation(s)
- Hasmik Grigoryan
- School of Public Health, University of California, Berkeley, California, 94720, United States
| | - Partow Imani
- School of Public Health, University of California, Berkeley, California, 94720, United States
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology Città della Salute e della Scienza University-Hospital, 10126, Turin, Italy
| | - Giovanna Masala
- Institute of Cancer Research, Prevention and Clinical Network (ISPRO), 50139, Florence, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE-ONLUS, 97100, Ragusa, Italy
| | - Paolo Chiodini
- Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, Università degli Studi della Campania ‘Luigi Vanvitelli’, 80138, Naples, Italy
| | - Sandrine Dudoit
- School of Public Health, University of California, Berkeley, California, 94720, United States
- Department of Statistics, University of California, Berkeley, CA, 94720, United States
| | - Paolo Vineis
- Unit of Cancer Epidemiology Città della Salute e della Scienza University-Hospital, 10126, Turin, Italy
- MRC-PHE Centre for Environment and Health, Imperial College, Norfolk Place London W21PG, UK
| | - Stephen M. Rappaport
- School of Public Health, University of California, Berkeley, California, 94720, United States
| |
Collapse
|
10
|
Bilgihan MT, Ciftciler R. The Effect of Obesity and Body Mass Index on Hematologic Malignancies. Metab Syndr Relat Disord 2023; 21:353-361. [PMID: 37410513 DOI: 10.1089/met.2023.0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
A thorough examination of the available literature has revealed a well-established association of obesity and high body mass index (BMI) with an increased risk of various types of cancers, including hematologic malignancies. Specifically, the studies reviewed indicate a clear correlation between obesity and an increased risk of leukemias, lymphomas, multiple myeloma, myelodysplastic syndrome, and myeloproliferative diseases. Despite the established association of obesity and high BMI with hematologic malignancies, the underlying mechanisms remain largely undetermined. The development of hematologic malignancies may be influenced by several mechanisms associated with obesity and high BMI, including chronic inflammation, hormonal imbalances, adiposopathies, and metabolic dysregulation. Furthermore, there is mounting evidence indicating that obesity and high BMI may have a negative impact on the response to treatment and overall survival in patients with hematologic malignancies. This article aims to increase awareness and summarize the current state of research on the impact of obesity on hematologic malignancies, including the mechanisms by which obesity may influence the development and progression of these diseases. In addition, the current review highlights the need for effective weight management strategies in patients with hematologic malignancies to improve outcomes and mitigate the risk of complications.
Collapse
Affiliation(s)
| | - Rafiye Ciftciler
- Department of Hematology, Selcuk University, Faculty of Medicine, Konya, Turkey
| |
Collapse
|
11
|
Cheng S, Li H, Chi J, Zhao W, Lin J, Liu X, Xu C. FTO-mediated m 6A modification promotes malignant transformation of gastric mucosal epithelial cells in chronic Cag A + Helicobacter pylori infection. J Cancer Res Clin Oncol 2023; 149:7327-7340. [PMID: 36918410 PMCID: PMC10374804 DOI: 10.1007/s00432-023-04684-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVES Cag A+ Helicobacter pylori chronic infection cause malignant transformation of the human gastric mucosa. N6-methyladenosine (m6A) modifications are the most common and abundant mRNA modifications and one of the pathways affecting tumorigenicity and tumor progression. However, the role of m6A modification in the process of chronic H. pylori infection leading to malignant transformation of gastric mucosa is unclear. METHODS In this study, we used Cag A- and Cag A+H. pylori chronic infection to establish cellular models in GES-1 cells and analyzed the cellular morphology, proliferation, apoptosis, invasiveness and tumorigenicity of gastric mucosal epithelial cells. The m6A expression levels of GES-1 cells after chronic infection with Cag A- and Cag A+H. pylori were examined, and modifying effect of FTO (the fat mass and obesity-associated protein) on CD44 was verified by MeRIP-qPCR. Finally, the FTO expression changes and m6A expression levels were further validated in clinical gastric cancer tissues. RESULTS Chronic Cag A+H. pylori-infected GES-1 cells exhibit altered cell morphology, apoptosis inhibition, abnormal proliferation, enhanced migration, colony formation, and increased stem cell-like properties. Meanwhile, FTO and CD44 expression was enhanced, and FTO may induce malignant transformation of gastric mucosa by regulating CD44 mRNA m6A methylation modifications. CONCLUSIONS We verified the effect of chronic stimulation of Cag A+H. pylori on malignant transformation of gastric mucosal epithelium. revealing the possibility of FTO in promoting malignant transformation of gastric mucosa by modifying CD44 mRNA methylation, suggesting that FTO expression is a potential molecule for malignant transformation of gastric mucosal epithelial cells.
Collapse
Affiliation(s)
- Sha Cheng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Huan Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Jingshu Chi
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Wenfang Zhao
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Jiahui Lin
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Xiaoming Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Canxia Xu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
12
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales MA. Association between diabetes and cancer. Current mechanistic insights into the association and future challenges. Mol Cell Biochem 2023; 478:1743-1758. [PMID: 36565361 DOI: 10.1007/s11010-022-04630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022]
Abstract
Compelling pieces of epidemiological, clinical, and experimental research have demonstrated that Diabetes mellitus (DM) is a major risk factor associated with increased cancer incidence and mortality in many human neoplasms. In the pathophysiology context of DM, many of the main classical actors are relevant elements that can fuel the different steps of the carcinogenesis process. Hyperglycemia, hyperinsulinemia, metabolic inflammation, and dyslipidemia are among the classic contributors to this association. Furthermore, new emerging actors have received particular attention in the last few years, and compelling data support that the microbiome, the epigenetic changes, the reticulum endoplasmic stress, and the increased glycolytic influx also play important roles in promoting the development of many cancer types. The arsenal of glucose-lowering therapeutic agents used for treating diabetes is wide and diverse, and a growing body of data raised during the last two decades has tried to clarify the contribution of therapeutic agents to this association. However, this research area remains controversial, because some anti-diabetic drugs are now considered as either promotors or protecting elements. In the present review, we intend to highlight the compelling epidemiological shreds of evidence that support this association, as well as the mechanistic contributions of many of these potential pathological mechanisms, some controversial points as well as future challenges.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| | - Ivan Schneider
- Medicine Faculty, Catholic University of Maule, Talca, Chile
| | | | - Ileana Gonzalez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Miguel A Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
13
|
Kim MJ, Song H, Koh Y, Lee H, Park HE, Choi SH, Yoon JW, Choi SY. Clonal hematopoiesis as a novel risk factor for type 2 diabetes mellitus in patients with hypercholesterolemia. Front Public Health 2023; 11:1181879. [PMID: 37457265 PMCID: PMC10345505 DOI: 10.3389/fpubh.2023.1181879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Clonal hematopoiesis of indeterminate potential (CHIP) is associated with atherosclerosis and cardiovascular disease. It has been suggested that CHIP may be related to diabetes, so we investigated the association between CHIP and new-onset type 2 diabetes. Methods This study included 4,047 subjects aged >=40 years without diabetes. To detect CHIP, targeted gene sequencing of genomic DNA from peripheral blood cells was performed. The incidence of new-onset type 2 diabetes during the follow-up period was evaluated. Results Of the total subjects, 635 (15.7%) had CHIP. During the median follow-up of 5.1 years, the incidence of new-onset diabetes was significantly higher in CHIP carriers than in subjects without CHIP (11.8% vs. 9.1%, p = 0.039). In a univariate analysis, CHIP significantly increased the risk of new-onset diabetes (HR 1.32, 95% CI 1.02-1.70, p = 0.034), but in a multivariate analysis, it was not significant. The CHIP-related risk of new onset diabetes differed according to LDL cholesterol level. In the hyper-LDL cholesterolemia group, CHIP significantly increased the risk of diabetes (HR 1.64, 95% CI 1.09-2.47, p = 0.018), but it did not increase the risk in the non-hyper-LDL cholesterolemia group. The subjects with CHIP and hyper-LDL-cholesterolemia had approximately twice the risk of diabetes than subjects without CHIP and with low LDL cholesterol (HR 2.05, 95% CI 1.40-3.00, p < 0.001). Conclusion The presence of CHIP was a significant risk factor for new-onset type 2 diabetes, especially in subjects with high LDL cholesterol. These results show the synergism between CHIP and high LDL cholesterol as a high-risk factor for diabetes.
Collapse
Affiliation(s)
- Min Joo Kim
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han Song
- Genome Opinion Incorporation, Seoul, Republic of Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Genome Opinion Incorporation, Seoul, Republic of Korea
| | - Heesun Lee
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo Eun Park
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Won Yoon
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su-Yeon Choi
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Saewai C, Fumaneeshoat O, Thongsuksai P, Ingviya T. Diabetes Mellitus as Cancer Risk: A 14-year, Cross-Sectional Analysis. Nutr Cancer 2023:1-10. [PMID: 37099762 DOI: 10.1080/01635581.2023.2205054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Diabetes mellitus is widely thought to be a risk factors of cancers, but evidence of the association remains inconclusive, especially in Asian countries where few relevant studies have been conducted. Our study aimed to estimate overall and specific types of cancer risks among diabetes patients in Southern Thailand. Patients diagnosed with diabetes who visited the outpatient clinic of Songklanagarind Hospital during 2004 to 2018 were included. Newly diagnosed cancer patients were identified using the hospital-based cancer registry. Age-standardized incidence ratios (ASRs) and standardized incidence ratios (SIRs) were used to estimate and compare the cancer risks among diabetes patients and the general population in Southern Thailand. Of 29,314 diabetes patients identified during the study period, 1,113 patients had developed cancer. An increased risk for overall cancer was observed in both genders, with SIRs [95% CI] of 2.99 [2.65, 3.39] in men and 3.51 [3.12, 3.96] in women. Increases in the risk of several site-specific cancers including liver cancer, non-melanoma skin cancer, colon cancer and lung cancer in both sexes; prostate cancer, lymphoid leukemia, and multiple myeloma in men; and endometrial, breast, and thyroid cancer in women were observed. Our study found that diabetes generally increased the risk of both overall and site-specific cancers.
Collapse
Affiliation(s)
- Chutchawan Saewai
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Orapan Fumaneeshoat
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Paramee Thongsuksai
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Thammasin Ingviya
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Research Center for Cancer Control in Thailand, Prince of Songkla University, Songkhla, Thailand
- Division of Digital Innovation and Data Analytics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
15
|
Wang Z, Phillips LS, Rohan TE, Ho GYF, Shadyab AH, Bidulescu A, Rudick CN, Pan K, Chen Z, Luo J. Diabetes, metformin use and risk of non-Hodgkin's lymphoma in postmenopausal women: A prospective cohort analysis in the Women's Health Initiative. Int J Cancer 2023; 152:1556-1569. [PMID: 36444502 DOI: 10.1002/ijc.34376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022]
Abstract
Epidemiologic evidence is limited about associations between T2DM, metformin, and the risk of non-Hodgkin's lymphoma (NHL). We aimed to examine associations between T2DM, metformin, and the risk of NHL in the Women's Health Initiative (WHI) Study. Information on T2DM status (diabetes status/types of antidiabetic drug use/diabetes duration) from study enrollment and during follow-up were assessed. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to evaluate associations of T2DM status with risks of overall NHL and its three major subtypes [diffuse large B-cell lymphoma (DLBCL, n = 476), follicular lymphoma (FL, n = 301) and chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL, n = 136)] based on multivariable-adjusted Cox proportional hazards models. During a median follow-up of 18.86 years (range, 0.01-25.13; SD ± 6.55), a total of 1637 women developed NHL among 147 885 postmenopausal women. Women with T2DM and with self-reported oral medication use had 38% and 55% higher risk of DLBCL, respectively [multivariable-adjusted model HR = 1.38, 95% CI (1.06-1.81) and HR = 1.55, 95% CI (1.16-2.06)] compared to the reference group (nondiabetics/untreated diabetes). Risks of NHL and DLBCL [multivariable-adjusted model: HR = 1.28, 95% CI (1.06-1.54) and HR = 1.56, 95% CI (1.13-2.14), respectively] were significantly higher in associations with relatively short duration (≤7 years) of diabetes, compared to reference group. Additionally, an increased risk of DLBCL [HR = 1.76, 95% CI (1.13-2.75)] was found in metformin users compared to the reference group. Postmenopausal women who had T2DM, who were oral antidiabetic drug users, especially metformin, and who had a shorter diabetes duration may have higher risks of DLBCL. Further well-designed research is needed to confirm our findings.
Collapse
Affiliation(s)
- Zikun Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Lawrence S Phillips
- Atlanta VA Medical Center, Decatur, Georgia, USA.,Division of Endocrinology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Gloria Y F Ho
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, California, USA
| | - Aurelian Bidulescu
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Charles N Rudick
- Department of Pharmacology and Toxicology, Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, Indiana, USA
| | - Kathy Pan
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Zhongxue Chen
- Department of Mathematics and Statistics, College of Arts, Sciences and Education, Florida International University, Miami, Florida, USA
| | - Juhua Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
16
|
Wang C, Nistala R, Cao M, Pan Y, Behrens M, Doll D, Hammer RD, Nistala P, Chang HM, Yeh ETH, Kang X. Dipeptidylpeptidase 4 promotes survival and stemness of acute myeloid leukemia stem cells. Cell Rep 2023; 42:112105. [PMID: 36807138 PMCID: PMC10432577 DOI: 10.1016/j.celrep.2023.112105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/11/2022] [Accepted: 01/29/2023] [Indexed: 02/19/2023] Open
Abstract
Leukemic-stem-cell-specific targeting may improve the survival of patients with acute myeloid leukemia (AML) by avoiding the ablative effects of standard regimens on normal hematopoiesis. Herein, we perform an unbiased screening of compounds targeting cell surface proteins and identify clinically used DPP4 inhibitors as strong suppressors of AML development in both murine AML models and primary human AML cells xenograft model. We find in retrovirus-induced AML mouse models that DPP4-deficient AML cell-transplanted mice exhibit delay and reversal of AML development, whereas deletion of DPP4 has no significant effect on normal hematopoiesis. DPP4 activates and sustains survival of AML stem cells that are critical for AML development in both human and animal models via binding with Src kinase and activation of nuclear factor κB (NF-κB) signaling. Thus, inhibition of DPP4 is a potential therapeutic strategy against AML development through suppression of survival and stemness of AML cells.
Collapse
Affiliation(s)
- Chen Wang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ravi Nistala
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; Division of Nephrology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Min Cao
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yi Pan
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Madelaine Behrens
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Donald Doll
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Richard D Hammer
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Puja Nistala
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Hui-Ming Chang
- Department of Pharmacology and Toxicology, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Internal Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Edward T H Yeh
- Department of Internal Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - XunLei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| |
Collapse
|
17
|
Xu R, Zheng T, Ouyang C, Ding X, Ge C. Causal associations between site-specific cancer and diabetes risk: A two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1110523. [PMID: 36860363 PMCID: PMC9968794 DOI: 10.3389/fendo.2023.1110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Both cancer and diabetes are complex chronic diseases that have high economic costs for society. The co-occurrence of these two diseases in people is already well known. The causal effects of diabetes on the development of several malignancies have been established, but the reverse causation of these two diseases (e.g., what type of cancer can cause T2D) has been less investigated. METHODS Multiple Mendelian randomization (MR) methods, such as the inverse-variance weighted (IVW) method, weighted median method, MR-Egger, and MR pleiotropy residual sum and outlier test, were performed to evaluate the causal association of overall and eight site-specific cancers with diabetes risk using genome-wide association study summary data from different consortia, such as Finngen and UK biobank. RESULTS A suggestive level of evidence was observed for the causal association between lymphoid leukaemia and diabetes by using the IVW method in MR analyses (P = 0.033), indicating that lymphoid leukaemia increased diabetes risk with an odds ratio of 1.008 (95% confidence interval, 1.001-1.014). Sensitivity analyses using MR-Egger and weighted median methods showed consistent direction of the association compared with the IVW method. Overall and seven other site-specific cancers under investigation (i.e., multiple myeloma, non-Hodgkin lymphoma, and cancer of bladder, brain, stomach, lung, and pancreas) were not causally associated with diabetes risk. CONCLUSIONS The causal relationship between lymphoid leukaemia and diabetes risk points to the necessity of diabetes prevention amongst leukaemia survivors as a strategy for ameliorating the associated disease burden.
Collapse
Affiliation(s)
- Rong Xu
- Department of Pharmacy, Quanzhou Medical College, Quanzhou, China
- *Correspondence: Rong Xu, ; Chenjin Ge,
| | - Tingjin Zheng
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Chaoqun Ouyang
- Department of Pharmacy, Quanzhou Medical College, Quanzhou, China
| | - Xiaoming Ding
- Department of Basic Medicine, Quanzhou Medical College, Quanzhou, China
| | - Chenjin Ge
- Department of Medical Imaging, Shanghai Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Rong Xu, ; Chenjin Ge,
| |
Collapse
|
18
|
Zhu D, Ouyang X, Zhang Y, Yu X, Su K, Li L. A promising new cancer marker: Long noncoding RNA EGFR-AS1. Front Oncol 2023; 13:1130472. [PMID: 36910672 PMCID: PMC9999470 DOI: 10.3389/fonc.2023.1130472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Cancer consists of a group of diseases with the salient properties of an uncontrolled cell cycle, metastasis, and evasion of the immune response, mainly driven by the genomic instability of somatic cells and the physicochemical environment. Long noncoding RNAs (lncRNAs) are defined as noncoding RNAs with a length of more than 200 nucleotides. LncRNA dysregulation participates in diverse disease types and is tightly associated with patient clinical features, such as age, disease stage, and prognosis. In addition, an increasing number of lncRNAs have been confirmed to regulate a series of biological and pathological processes through numerous mechanisms. The lncRNA epidermal growth factor receptor antisense RNA 1 (EGFR-AS1) was recently discovered to be aberrantly expressed in many types of diseases, particularly in cancers. A high level of EGFR-AS1 was demonstrated to correlate with multiple patient clinical characteristics. More importantly, EGFR-AS1 was found to be involved in the mediation of various cellular activities, including cell proliferation, invasion, migration, chemosensitivity, and stemness. Therefore, EGFR-AS1 is a promising marker for cancer management. In this review, we introduce the expression profile, molecular mechanisms, biological functions, and clinical value of EGFR-AS1 in cancers.
Collapse
Affiliation(s)
- Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kunkai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Zhang Y, Fan X, Zhao C, Yuan Z, Cheng Y, Wu Y, Han J, Yuan Z, Zhao Y, Lu K. Association between metabolic obesity phenotypes and multiple myeloma hospitalization burden: A national retrospective study. Front Oncol 2023; 13:1116307. [PMID: 36910611 PMCID: PMC9996033 DOI: 10.3389/fonc.2023.1116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background & purpose Obesity and metabolic disorders were associated with increased risk of MM, a disease characterized by high risk of relapsing and require frequent hospitalizations. In this study, we conducted a retrospective cohort study to explore the association of metabolic obesity phenotypes with the readmission risk of MM. Patients & methods We analyzed 34,852 patients diagnosed with MM from the Nationwide Readmissions Database (NRD), a nationally representative database from US. Hospitalization diagnosis of patients were obtained using ICD-10 diagnosis codes. According to obesity and metabolic status, the population was divided into four phenotypes: metabolically healthy non-obese (MHNO), metabolically unhealthy non-obese (MUNO), metabolically healthy obese (MHO), and metabolically unhealthy obese (MUO). The patients with different phenotypes were observed for hospital readmission at days 30-day, 60-day, 90-day and 180-day. Multivariate cox regression model was used to estimate the relationship between obesity metabolic phenotypes and readmissions risk. Results There were 5,400 (15.5%), 7,255 (22.4%), 8,025 (27.0%) and 7,839 (35.6%) unplanned readmissions within 30-day, 60-day, 90-day and 180-day follow-up, respectively. For 90-day and 180-day follow-up, compared with patients with the MHNO phenotype, those with metabolic unhealthy phenotypes MUNO (90-day: P = 0.004; 180-day: P = < 0.001) and MUO (90-day: P = 0.049; 180-day: P = 0.004) showed higher risk of readmission, while patients with only obesity phenotypes MHO (90-day: P = 0.170; 180-day: P = 0.090) experienced no higher risk. However, similar associations were not observed for 30-day and 60-day. Further analysis in 90-day follow-up revealed that, readmission risk elevated with the increase of the combined factor numbers, with aHR of 1.068 (CI: 1.002-1.137, P = 0.043, with one metabolic risk factor), 1.109 (CI: 1.038-1.184, P = 0.002, with two metabolic risk factors) and 1.125 (95% CI: 1.04-1.216, P = 0.003, with three metabolic risk factors), respectively. Conclusion Metabolic disorders, rather than obesity, were independently associated with higher readmission risk in patients with MM, whereas the risk elevated with the increase of the number of combined metabolic factors. However, the effect of metabolic disorders on MM readmission seems to be time-dependent. For MM patient combined with metabolic disorders, more attention should be paid to advance directives to reduce readmission rate and hospitalization burden.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.,Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China.,Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.,Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China.,Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Chunhui Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.,Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China.,Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Zinuo Yuan
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.,Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China.,Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yiping Cheng
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.,Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China.,Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yafei Wu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.,Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China.,Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Junming Han
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.,Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China.,Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Yuanfei Zhao
- Beijing Institute of Heart, Lung and Blood, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Keke Lu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
| |
Collapse
|
20
|
Weng H, Huang H, Chen J. N 6-Methyladenosine RNA Modification in Normal and Malignant Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:105-123. [PMID: 38228961 DOI: 10.1007/978-981-99-7471-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Over 170 nucleotide variants have been discovered in messenger RNAs (mRNAs) and non-coding RNAs so far. However, only a few of them, including N6-methyladenosine (m6A), 5-methylcytidine (m5C), and N1-methyladenosine (m1A), could be mapped in the transcriptome. These RNA modifications appear to be dynamically regulated, with writer, eraser, and reader proteins being identified for each modification. As a result, there is a growing interest in studying their biological impacts on normal bioprocesses and tumorigenesis over the past few years. As the most abundant internal modification in eukaryotic mRNAs, m6A plays a vital role in the post-transcriptional regulation of mRNA fate via regulating almost all aspects of mRNA metabolism, including RNA splicing, nuclear export, RNA stability, and translation. Studies on mRNA m6A modification serve as a great example for exploring other modifications on mRNA. In this chapter, we will review recent advances in the study of biological functions and regulation of mRNA modifications, specifically m6A, in both normal hematopoiesis and malignant hematopoiesis. We will also discuss the potential of targeting mRNA modifications as a treatment for hematopoietic disorders.
Collapse
Affiliation(s)
- Hengyou Weng
- The First Affiliated Hospital, The Fifth Affiliated Hospital, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory, Guangzhou, China.
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
- Gehr Family Center for Leukemia Research and City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA.
| |
Collapse
|
21
|
Second malignant neoplasms in lymphomas, secondary lymphomas and lymphomas in metabolic disorders/diseases. Cell Biosci 2022; 12:30. [PMID: 35279210 PMCID: PMC8917635 DOI: 10.1186/s13578-022-00763-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
With inconsistent findings, evidence has been obtained in recent years that metabolic disorders are closely associated with the development of lymphomas. Studies and multiple analyses have been published also indicating that some solid tumor survivors develop a secondary lymphoma, whereas some lymphoma survivors subsequently develop a second malignant neoplasm (SMN), particularly solid tumors. An interaction between the multiple etiologic factors such as genetic factors and late effects of cancer therapy may play an important role contributing to the carcinogenesis in patients with metabolic diseases or with a primary cancer. In this review, we summarize the current knowledge of the multiple etiologic factors for lymphomagenesis, focusing on the SMN in lymphoma, secondary lymphomas in primary cancers, and the lymphomas associated to metabolic disorders/diseases, which have been received less attention previously. Further, we also review the data of coexistence of lymphomas and hepatocellular carcinoma (HCC) in patients with infection of hepatitis C virus and hepatitis B virus.
Collapse
|
22
|
Tseng CH. The Risk of Multiple Myeloma Is Reduced in Metformin Initiators: A Retrospective Cohort Study in Taiwanese Patients with Type 2 Diabetes Mellitus. Cancers (Basel) 2022; 14:cancers14225637. [PMID: 36428730 PMCID: PMC9688273 DOI: 10.3390/cancers14225637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Whether metformin might reduce the risk of multiple myeloma (MM) has not been extensively researched in humans. METHODS The study subjects were enrolled from the reimbursement database of Taiwan's National Health Insurance. A total of 739,553 patients who had a new diagnosis of type 2 diabetes mellitus during 1999-2009 were identified. They were categorized as metformin initiators (metformin (+)) and non-metformin initiators (metformin (-)) based on the prescriptions of antidiabetic drugs that included metformin and did not include metformin within the initial 12 months, respectively. MM incidence was calculated after the initial 12 months of treatment group assignment until 31 December 2011. Hazard ratios based on intention-to-treat (ITT) and per-protocol (PP) approaches were estimated by Cox regression weighted by propensity scores. RESULTS In the ITT analyses, the respective incidence rates for 497,248 metformin (+) and 242,305 metformin (-) were 9.97 and 14.33 per 100,000 person-years. The hazard ratio that compared metformin (+) to metformin (-) in the ITT analysis was 0.710 (95% confidence interval 0.593-0.850). In the PP analysis, the respective incidence rates were 5.14 and 13.98 per 100,000 person-years, and the hazard ratio was 0.355 (95% confidence interval, 0.270-0.466). The lower risk of MM among metformin (+) was supported by subgroup and sensitivity analyses. CONCLUSIONS Type 2 diabetes patients who are initiated with metformin treatment have a significantly lower risk of MM, especially when they adhere to metformin treatment.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan;
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
- National Institute of Environmental Health Sciences, Zhunan 35053, Taiwan
| |
Collapse
|
23
|
Murphy AJ, Dragoljevic D, Natarajan P, Wang N. Hematopoiesis of Indeterminate Potential and Atherothrombotic Risk. Thromb Haemost 2022; 122:1435-1442. [PMID: 35445383 PMCID: PMC9420552 DOI: 10.1055/a-1830-2147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Hematopoiesis is the process of blood production, essential for the continued supply of immune cells and red blood cells. However, the proliferative nature of hematopoietic stem cells (HSCs) renders them susceptible to developing somatic mutations. HSCs carrying a mutation can gain a selective advantage over normal HSCs and result in hematological disorders. One such disorder is termed clonal hematopoiesis of indeterminate potential (CHIP), a premalignant state associated with aging, where the mutant HSCs are responsible for producing a small portion of mature immune cells in the circulation and subsequently in tissues. People with CHIP have been shown to have an increased risk of mortality due to cardiovascular disease (CVD). Why this occurs is under rigorous investigation, but the majority of the studies to date have suggested that increased atherosclerosis is due to heightened inflammatory cytokine release from mutant lesional macrophages. However, given CHIP is driven by several mutations, other hematopoietic lineages can be altered to promote CVD. In this review we explore the relationship between mutations in genes causing CHIP and atherothrombotic disorders, along with potential mechanisms of enhanced clonal outgrowth and potential therapies and strategies to slow CHIP progression.
Collapse
Grants
- National Heart, Lung, and Blood Institute R01HL148071
- National Health and Medical Research Council APP1194329
- National Heart, Lung, and Blood Institute R01HL142711
- National Heart, Lung, and Blood Institute R01HL148050
- National Heart, Lung, and Blood Institute R01HL151283
- National Heart, Lung, and Blood Institute R01HL127564
- National Institute of Diabetes and Digestive and Kidney Diseases R01DK125782
- National Heart, Lung, and Blood Institute R01HL118567
- Fondation Leducq TNE-18CVD04
- National Heart, Lung, and Blood Institute R01HL135242
- National Heart, Lung, and Blood Institute R01HL151152
- R01 HL148050 NHLBI NIH HHS
- National Heart, Lung, and Blood Institute R01HL148565
- National Health and Medical Research Council APP1142938
Collapse
Affiliation(s)
- Andrew J. Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Dragana Dragoljevic
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Pradeep Natarajan
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, New York, United States
| |
Collapse
|
24
|
Jafari-Delouei N, Naimi-Tabiei M, Farajollahi M, Sedaghat SM, Khandoozi S, Ghasemi-Kebria F, Dinparastisaleh R, Pourkhani A, Roshandel G. Incidence, Time Trends and Geographical Distribution of Leukemia and Multiple Myeloma in Golestan Province, Northern Iran, 2004-2017. ARCHIVES OF IRANIAN MEDICINE 2022; 25:360-365. [PMID: 35943015 DOI: 10.34172/aim.2022.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/22/2021] [Indexed: 06/15/2023]
Abstract
BACKGROUND Leukemia and multiple myeloma (MM) are the most common hematologic malignancies in Iran. This paper describes the geographic and temporal changes in their incidence in Golestan, northern Iran. METHODS Data on cases of leukemia and MM during 2004-2017 were obtained from the Golestan Population-based Cancer Registry (GPCR). The GPCR is a dynamic database of Golestan residents diagnosed with primary cancers. Age-standardized incidence rates (ASRs) (per 100000) of leukemia and MM were calculated using direct standardization method considering the world standard population. We used Joinpoint regression to assess incidence trends using the average annual percent change (AAPC). RESULTS In total, 2119 new cases of leukemia and MM were registered by the GPCR during 2004-2017. The ASRs of leukemia were 9.71 and 6.70 in males and females, respectively, while the rates were lower for MM: 2.66 and 1.97 in males and females, respectively. The incidence rates of leukemia suggested an increasing trend in urban population (AAPC=2.73; P value=0.154), while in rural area, the incidence rates were slightly decreasing (AAPC=- 0.73; P value=0.658). There were high incidence areas of leukemia in the central and western regions of Golestan. CONCLUSION Our results suggested high incidence rates of leukemia and MM in the Golestan province. We also found geographical diversities and increasing trends in the incidence of leukemia in the urban population. Exposure to occupational and environmental carcinogens including pesticides may partly explain high rates and the observed trends. Further investigations should be considered to clarify these points in our population.
Collapse
Affiliation(s)
- Nastaran Jafari-Delouei
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Mehran Farajollahi
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | | | | | - Fatemeh Ghasemi-Kebria
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Roshan Dinparastisaleh
- Outcomes After Critical Illness and Surgery Group, Johns Hopkins University, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
25
|
Recent Advances of m6A Demethylases Inhibitors and Their Biological Functions in Human Diseases. Int J Mol Sci 2022; 23:ijms23105815. [PMID: 35628623 PMCID: PMC9144293 DOI: 10.3390/ijms23105815] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A) is a post-transcriptional RNA modification and one of the most abundant types of RNA chemical modifications. m6A functions as a molecular switch and is involved in a range of biomedical aspects, including cardiovascular diseases, the central nervous system, and cancers. Conceptually, m6A methylation can be dynamically and reversibly modulated by RNA methylation regulatory proteins, resulting in diverse fates of mRNAs. This review focuses on m6A demethylases fat-mass- and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5), which especially erase m6A modification from target mRNAs. Recent advances have highlighted that FTO and ALKBH5 play an oncogenic role in various cancers, such as acute myeloid leukemias (AML), glioblastoma, and breast cancer. Moreover, studies in vitro and in mouse models confirmed that FTO-specific inhibitors exhibited anti-tumor effects in several cancers. Accumulating evidence has suggested the possibility of FTO and ALKBH5 as therapeutic targets for specific diseases. In this review, we aim to illustrate the structural properties of these two m6A demethylases and the development of their specific inhibitors. Additionally, this review will summarize the biological functions of these two m6A demethylases in various types of cancers and other human diseases.
Collapse
|
26
|
Sánchez-Maldonado JM, Collado R, Cabrera-Serrano AJ, Ter Horst R, Gálvez-Montosa F, Robles-Fernández I, Arenas-Rodríguez V, Cano-Gutiérrez B, Bakker O, Bravo-Fernández MI, García-Verdejo FJ, López JAL, Olivares-Ruiz J, López-Nevot MÁ, Fernández-Puerta L, Cózar-Olmo JM, Li Y, Netea MG, Jurado M, Lorente JA, Sánchez-Rovira P, Álvarez-Cubero MJ, Sainz J. Type 2 Diabetes-Related Variants Influence the Risk of Developing Prostate Cancer: A Population-Based Case-Control Study and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14102376. [PMID: 35625981 PMCID: PMC9139180 DOI: 10.3390/cancers14102376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
In this study, we have evaluated whether 57 genome-wide association studies (GWAS)-identified common variants for type 2 diabetes (T2D) influence the risk of developing prostate cancer (PCa) in a population of 304 Caucasian PCa patients and 686 controls. The association of selected single nucleotide polymorphisms (SNPs) with the risk of PCa was validated through meta-analysis of our data with those from the UKBiobank and FinnGen cohorts, but also previously published genetic studies. We also evaluated whether T2D SNPs associated with PCa risk could influence host immune responses by analysing their correlation with absolute numbers of 91 blood-derived cell populations and circulating levels of 103 immunological proteins and 7 steroid hormones. We also investigated the correlation of the most interesting SNPs with cytokine levels after in vitro stimulation of whole blood, peripheral mononuclear cells (PBMCs), and monocyte-derived macrophages with LPS, PHA, Pam3Cys, and Staphylococcus Aureus. The meta-analysis of our data with those from six large cohorts confirmed that each copy of the FTOrs9939609A, HNF1Brs7501939T, HNF1Brs757210T, HNF1Brs4430796G, and JAZF1rs10486567A alleles significantly decreased risk of developing PCa (p = 3.70 × 10-5, p = 9.39 × 10-54, p = 5.04 × 10-54, p = 1.19 × 10-71, and p = 1.66 × 10-18, respectively). Although it was not statistically significant after correction for multiple testing, we also found that the NOTCH2rs10923931T and RBMS1rs7593730 SNPs associated with the risk of developing PCa (p = 8.49 × 10-4 and 0.004). Interestingly, we found that the protective effect attributed to the HFN1B locus could be mediated by the SULT1A1 protein (p = 0.00030), an arylsulfotransferase that catalyzes the sulfate conjugation of many hormones, neurotransmitters, drugs, and xenobiotic compounds. In addition to these results, eQTL analysis revealed that the HNF1Brs7501939, HNF1Brs757210, HNF1Brs4430796, NOTCH2rs10923931, and RBMS1rs7593730 SNPs influence the risk of PCa through the modulation of mRNA levels of their respective genes in whole blood and/or liver. These results confirm that functional TD2-related variants influence the risk of developing PCa, but also highlight the need of additional experiments to validate our functional results in a tumoral tissue context.
Collapse
Affiliation(s)
- José Manuel Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
| | - Ricardo Collado
- Medical Oncology Department, Hospital de San Pedro Alcántara, 10003 Cáceres, Spain; (R.C.); (M.I.B.-F.); (J.O.-R.)
| | - Antonio José Cabrera-Serrano
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
| | - Fernando Gálvez-Montosa
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - Inmaculada Robles-Fernández
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
| | - Verónica Arenas-Rodríguez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
| | - Blanca Cano-Gutiérrez
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
| | - Olivier Bakker
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | | | - Francisco José García-Verdejo
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - José Antonio López López
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - Jesús Olivares-Ruiz
- Medical Oncology Department, Hospital de San Pedro Alcántara, 10003 Cáceres, Spain; (R.C.); (M.I.B.-F.); (J.O.-R.)
| | | | | | | | - Yang Li
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Manuel Jurado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
- Department of Medicine, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Jose Antonio Lorente
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Department of Legal Medicine, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Pedro Sánchez-Rovira
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - María Jesús Álvarez-Cubero
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-95871-5500 (ext. 126); Fax: +34-9-5863-7071
| |
Collapse
|
27
|
Xu A, Zhang J, Zuo L, Yan H, Chen L, Zhao F, Fan F, Xu J, Zhang B, Zhang Y, Yin X, Cheng Q, Gao S, Deng J, Mei H, Huang Z, Sun C, Hu Y. FTO promotes multiple myeloma progression by posttranscriptional activation of HSF1 in an m 6A-YTHDF2-dependent manner. Mol Ther 2022; 30:1104-1118. [PMID: 34915192 PMCID: PMC8899603 DOI: 10.1016/j.ymthe.2021.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/23/2021] [Accepted: 12/10/2021] [Indexed: 01/27/2023] Open
Abstract
N6-methyladenosine (m6A), as the most pervasive internal modification of eukaryotic mRNA, plays a crucial role in various cancers, but its role in multiple myeloma (MM) pathogenesis has not yet been investigated. In this study, we revealed significantly decreased m6A methylation in plasma cells (PCs) from MM patients and showed that the abnormal m6A level resulted mainly from upregulation of the demethylase fat mass and obesity-associated protein (FTO). Gain- and loss-of-function studies demonstrated that FTO plays a tumor-promoting and pro-metastatic role in MM. Combined m6A and RNA sequencing (RNA-seq) and subsequent validation and functional studies identified heat shock factor 1 (HSF1) as a functional target of FTO-mediated m6A modification. FTO significantly promotes MM cell proliferation, migration, and invasion by targeting HSF1/HSPs in a YTHDF2-dependent manner. FTO inhibition, especially when combined with bortezomib (BTZ) treatment, synergistically inhibited myeloma bone tumor formation and extramedullary spread in NOD-Prkdcem26Cd52il2rgem26Cd22/Nju (NCG) mice. We demonstrated the functional importance of m6A demethylase FTO in MM progression, especially in promoting extramedullary myeloma (EMM) formation, and proposed the FTO-HSF1/HSP axis as a potential novel therapeutic target in MM.
Collapse
Affiliation(s)
- Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiasi Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liping Zuo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Zhao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuyang Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuejiao Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianwen Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Su Gao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiping Huang
- Department of Hematology, Jingzhou Central Hospital, Jingzhou 434020, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
28
|
Jeon KH, Jeong SM, Shin DW, Han K, Kim D, Yoo JE, Choi T. Associations between alcohol consumption patterns and risk of multiple myeloma: A nationwide cohort study in South Korea. Cancer Epidemiol Biomarkers Prev 2021; 31:670-678. [PMID: 34937793 DOI: 10.1158/1055-9965.epi-21-0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Among the potential modifiable risk factors, the association between alcohol consumption and the risk of multiple myeloma (MM) remains controversial. We investigated the effects of weekly average alcohol consumption and drinking pattern on the risk of MM using a nationwide representative database. METHODS We identified 11,737,467 subjects who participated in the Korean national health screening program in 2009-2010. Cox regression analyses were performed to calculate the risk of MM according to weekly alcohol consumption, drinking frequency, and amount per session. RESULTS During a mean follow-up period of 6.8 years after a one-year time lag, 6,981 subjects (3,921 men and 3,060 women) were diagnosed with MM. Compared with non-drinkers, all drinkers were at a significantly lower risk for MM. The risk of MM was reduced in a dose-dependent manner: mild drinkers, adjusted hazard ratio (aHR) 0.89, 95% confidence interval (CI) 0.84-0.95; moderate drinkers, aHR 0.83, 95% CI 0.76-0.91; and heavy drinkers, aHR 0.76, 95% CI 0.69-0.85. Furthermore, both drinking frequency and amount per drinking session showed inverse association with the risk of MM. CONCLUSIONS Our large population-based study suggested an inverse dose-dependent association between total average alcohol consumption and the risk of MM, and drinking frequency and amount per drinking session seemed to not differ in their relative contribution to the risk of MM. IMPACT Based on the unprecedently large number of study population analyzed in this study, our study provides solid epidemiologic evidence of alcohol consumption on MM risk.
Collapse
Affiliation(s)
- Keun Hye Jeon
- Department of Family Medicine, CHA Gumi Medical Center, CHA University, Gumi, Republic of Korea
| | - Su-Min Jeong
- Supportive Care Center/Department of Family Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Dong Wook Shin
- Supportive Care Center/Department of Family Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Department of Clinical Research Design & Evaluation/Department of Digital Health, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Dahye Kim
- Department of Medical Statistics, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Eun Yoo
- Department of Family Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Taewoong Choi
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
29
|
Insulin Resistance and Cancer: In Search for a Causal Link. Int J Mol Sci 2021; 22:ijms222011137. [PMID: 34681797 PMCID: PMC8540232 DOI: 10.3390/ijms222011137] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin resistance (IR) is a condition which refers to individuals whose cells and tissues become insensitive to the peptide hormone, insulin. Over the recent years, a wealth of data has made it clear that a synergistic relationship exists between IR, type 2 diabetes mellitus, and cancer. Although the underlying mechanism(s) for this association remain unclear, it is well established that hyperinsulinemia, a hallmark of IR, may play a role in tumorigenesis. On the other hand, IR is strongly associated with visceral adiposity dysfunction and systemic inflammation, two conditions which favor the establishment of a pro-tumorigenic environment. Similarly, epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNA, in IR states, have been often associated with tumorigenesis in numerous types of human cancer. In addition to these observations, it is also broadly accepted that gut microbiota may play an intriguing role in the development of IR-related diseases, including type 2 diabetes and cancer, whereas potential chemopreventive properties have been attributed to some of the most commonly used antidiabetic medications. Herein we provide a concise overview of the most recent literature in this field and discuss how different but interrelated molecular pathways may impact on tumor development.
Collapse
|
30
|
Zhao JZ, Lu YC, Wang YM, Xiao BL, Li HY, Lee SC, Wang LJ. Association between diabetes and acute lymphocytic leukemia, acute myeloid leukemia, non-Hopkin lymphoma, and multiple myeloma. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Abstract
Objective
Diabetes increases the risk for cancers. However, whether it is associated with hematologic malignancies is not clear. The present study investigated the association between diabetes and acute lymphocytic leukemia (ALL), acute myeloid leukemia (ML), non-Hopkin lymphoma (NHL), and multiple myeloma (MM).
Methods
Newly diagnosed adult cancer patients were recruited consecutively from our clinical database. Peoples from a local enterprise were recruited to create a small-scale population-based dataset. We compared the diabetes prevalence between the cancer patients and the local people; an increase in diabetes prevalence in the cancer patients suggests an association between diabetes and the cancer(s).
Results
We found that the prevalence of diabetes was 19.7%, 21.3%, 12.5%, and 12.0% in ALL, AML, NHL, and MM, respectively, which was higher than that (9.1%) in the local people. Despite that there were more male than female cancer patients, there were more female than male diabetic patients. The increase in diabetes prevalence occurred in ALL and NHL patients aged 18 to 39 years old as well as in AML patients over 40. In MM patients, the increase in diabetes prevalence (18.6%) occurred only in females. Approximately 70% of the diabetic patients were undiagnosed before the diagnosis of the blood cancer. Approximately half of the pre-existing diabetic patients had anti-diabetic treatment, with over 70% of them still had poor glycemic control.
Conclusions
Our results suggest that diabetes is associated with ALL, AML, NHL, and MM, at least in adult patients.
Collapse
|
31
|
Kang J, Jin SM, Kim SJ, Kim D, Han K, Jeong SM, Chang J, Rhee SY, Choi T, Shin DW. Obesity-Independent Association between Glycemic Status and the Risk of Hematologic Malignancy: A Nationwide Population-Based Longitudinal Cohort Study. Cancers (Basel) 2021; 13:4760. [PMID: 34638244 PMCID: PMC8507554 DOI: 10.3390/cancers13194760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
There have been conflicting results regarding the association between diabetes and the risk of hematologic malignancies, and its interaction with obesity is unknown. This study determined the risk of hematologic malignancies according to the glycemic status in a population-based study involving health screening 9,774,625 participants. The baseline glycemic status of the participants was categorized into no diabetes, impaired fasting glucose (IFG), newly detected diabetes, diabetes duration <5 years, and diabetes duration ≥5 year groups. The risks of overall and specific hematologic malignancies were estimated using a Cox regression analysis. During a median follow up of 7.3 years, 14,733 hematologic malignancies developed. The adjusted hazard ratio (aHR) for the risk of all the hematologic malignancies was 0.99 (95% confidence interval (CI) 0.95-1.02) for IFG, 0.99 (95% CI 0.91-1.08) for newly detected diabetes, 1.03 (95% CI 0.96-1.11) for diabetes duration <5 years, and 1.11 (95% CI 1.03, 1.20) for diabetes duration ≥5 year groups. The association was independent from obesity. The risk of non-Hodgkin's lymphoma (NHL) increased according to the progression of dysglycemia towards a longer diabetes duration, while Hodgkin's lymphoma did not. This study in Korea demonstrated diabetes to be associated with an increased risk of hematologic malignancies independent of obesity. The NHL risk increased with the diabetes duration.
Collapse
Affiliation(s)
- Jihun Kang
- Department of Family Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan 49267, Korea;
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Seok Jin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Dahye Kim
- Department of Medical Statistics, The Catholic University of Korea, Seoul 03083, Korea;
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul 06978, Korea;
| | - Su-Min Jeong
- Department of Family Medicine, Boramae Medical Center, Seoul Metropolitan Government-Seoul National University, Seoul 07061, Korea;
| | - JiWon Chang
- Supportive Care Center, Samsung Medical Center, Seoul 06351, Korea;
- Department of Family Medicine, Samsung Medical Center, Seoul 06351, Korea
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul 02453, Korea;
| | - Taewoong Choi
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC 27710, USA;
| | - Dong Wook Shin
- Supportive Care Center, Samsung Medical Center, Seoul 06351, Korea;
- Department of Family Medicine, Samsung Medical Center, Seoul 06351, Korea
- Department of Clinical Research Design & Evaluation/Department of Digital Health, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
32
|
Cai Z, Lu X, Zhang C, Nelanuthala S, Aguilera F, Hadley A, Ramdas B, Fang F, Nephew K, Kotzin JJ, Williams A, Henao-Mejia J, Haneline L, Kapur R. Hyperglycemia cooperates with Tet2 heterozygosity to induce leukemia driven by proinflammatory cytokine-induced lncRNA Morrbid. J Clin Invest 2021; 131:140707. [PMID: 33090974 DOI: 10.1172/jci140707] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a risk factor for cancer. The role of DM-induced hyperglycemic (HG) stress in blood cancer is poorly understood. Epidemiologic studies show that individuals with DM are more likely to have a higher rate of mutations in genes found in pre-leukemic hematopoietic stem and progenitor cells (pre-LHSPCs) including TET2. TET2-mutant pre-LHSPCs require additional hits to evolve into full-blown leukemia and/or an aggressive myeloproliferative neoplasm (MPN). Intrinsic mutations have been shown to cooperate with Tet2 to promote leukemic transformation. However, the extrinsic factors are poorly understood. Using a mouse model carrying Tet2 haploinsufficiency to mimic the human pre-LHSPC condition and HG stress, in the form of an Ins2Akita/+ mutation, which induces hyperglycemia and type 1 DM, we show that the compound mutant mice developed a lethal form of MPN and/or acute myeloid leukemia (AML). RNA-Seq revealed that this was due in part to upregulation of proinflammatory pathways, thereby generating a feed-forward loop, including expression of the antiapoptotic, long noncoding RNA (lncRNA) Morrbid. Loss of Morrbid in the compound mutants rescued the lethality and mitigated MPN/AML. We describe a mouse model for age-dependent MPN/AML and suggest that hyperglycemia acts as an environmental driver for myeloid neoplasms, which could be prevented by reducing expression levels of the inflammation-related lncRNA Morrbid.
Collapse
Affiliation(s)
- Zhigang Cai
- Herman B Wells Center for Pediatric Research.,Department of Microbiology and Immunology
| | - Xiaoyu Lu
- Department of Medical and Molecular Genetics
| | - Chi Zhang
- Department of Medical and Molecular Genetics
| | | | | | | | | | - Fang Fang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kenneth Nephew
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jonathan J Kotzin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Reuben Kapur
- Herman B Wells Center for Pediatric Research.,Department of Microbiology and Immunology.,Department of Medical and Molecular Genetics
| |
Collapse
|
33
|
Shah UA, Rögnvaldsson S, Derkach A, Björkholm M, Turesson I, David Y, Hultcrantz M, Tan C, Hassoun H, Korde N, Lesokhin A, Mailankody S, Kristinsson SY, Landgren CO. Diabetes mellitus and risk of plasma cell and lymphoproliferative disorders in 94,579 cases and 368,348 matched controls. Haematologica 2021; 107:284-286. [PMID: 34474548 PMCID: PMC8719074 DOI: 10.3324/haematol.2021.278772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Urvi A Shah
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York.
| | | | - Andriy Derkach
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York
| | - Magnus Björkholm
- Department of Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm
| | | | - Yael David
- Department of Chemical Biology, Sloan Kettering Institute, New York
| | - Malin Hultcrantz
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York
| | - Carlyn Tan
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York
| | - Hani Hassoun
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York
| | - Neha Korde
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York
| | - Alexander Lesokhin
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York
| | - Sham Mailankody
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York
| | - Sigurður Yngvi Kristinsson
- Department of Medicine, University of Iceland, Iceland; Department of Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm
| | - C Ola Landgren
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami
| |
Collapse
|
34
|
Han Z, Xu H, Zhao M, Jing F, Xue H, Xiao S. Diabetes and the Prognosis in Patients With Non-Hodgkin Lymphoma: A Meta-analysis of Cohort Studies. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 22:e77-e88. [PMID: 34593361 DOI: 10.1016/j.clml.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Consensus lacks regarding the association between diabetes mellitus (DM) and the prognosis of patients with non-Hodgkin lymphoma (NHL). We aimed to systematically evaluate the above association, as well as the potential influence of metformin use in a meta-analysis of cohort studies. MATERIALS AND METHODS Cohort studies investigating the association between DM and survival outcomes of patients with NHL were included by search of electronic databases that included PubMed, Embase, and Web of Science. A random-effects model was adopted to combine the results. RESULTS Eight cohort studies including 8652 patients with NHL were analyzed. Compared to non-DM patients with NHL, DM was associated with poor overall survival (OS, hazard ratio [HR] = 1.49, 95% confidence interval [CI]: 1.18-1.89, P < .001, I2 = 69%), progression-free survival (PFS, HR = 1.30, 95% CI: 1.09-1.56, P = .004, I2 = 0%), and lymphoma-specific survival (LSS, HR = 1.86, 95% CI: 1.41-2.45, P < .001, I2 = 0%). Subgroup analysis showed consistent results in patients with diffuse large B-cell lymphoma (DLBCL, HR = 1.42, 1.35, and 1.95 for outcomes of OS, PFS, and LSS, respectively; P values all <.05). However, the associations between DM and these survival outcomes became nonsignificant in subgroup analysis limited to DM patients with concurrent use of metformin (HR = 1.30, 1.12, and 1.43 for outcomes of OS, PFS, and LSS, respectively; P values all > .10). CONCLUSIONS DM is associated with poor survival outcomes in patients with B-cell NHL, which is consistent in patients with DLBCL. Concurrent metformin use in DM patients with NHL may be associated with improved survival outcomes.
Collapse
Affiliation(s)
- Zhen Han
- Department of Lymphoma, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 26600, China
| | - Hong Xu
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 26600, China
| | - Meiqing Zhao
- Department of Hematology, the Eighth People's Hospital of Qingdao, Qingdao, Shandong, 26600, China
| | - Fanjing Jing
- Department of Lymphoma, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 26600, China
| | - Hongwei Xue
- Department of Lymphoma, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 26600, China
| | - Shuxin Xiao
- Department of Lymphoma, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 26600, China.
| |
Collapse
|
35
|
A Polylobar Nucleus Identifying and Extracting Method for Leukocyte Counting. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5565156. [PMID: 34335863 PMCID: PMC8324374 DOI: 10.1155/2021/5565156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/28/2021] [Accepted: 07/04/2021] [Indexed: 11/17/2022]
Abstract
Accurate counting of leukocytes is an important method for diagnosing human blood diseases. Because most nuclei of neutrophils and eosinophils are polylobar, it is easily confused with the unilobar nuclei in nucleus segmentation. Therefore, it is very essential to accurately identify and determine the polylobar leukocytes. In this paper, a polylobar nucleus identification and extracting method is proposed. Firstly, by using the Otsu threshold and area threshold method, the nuclei of leukocytes are accurately segmented. According to the morphological characteristics of polylobar leukocytes, the edges of the mitotic polylobar leukocytes are detected, and the numbers of polylobar leukocytes are determined according to the minimal distance rule. Therefore, the accurate counting of leukocytes can be realized. From the experimental results, we can see that using the Otsu method and the area threshold to segment the polylobar nuclear leukocytes, the segmentation ratio of the leukocyte nucleus reached 98.3%. After using the morphological features, the polylobar nuclear leukocytes can be accurately counted. The experimental results have verified the feasibility and practicability of the proposed method.
Collapse
|
36
|
The Impact of Sedentary Lifestyle, High-fat Diet, Tobacco Smoke, and Alcohol Intake on the Hematopoietic Stem Cell Niches. Hemasphere 2021; 5:e615. [PMID: 34291194 PMCID: PMC8288907 DOI: 10.1097/hs9.0000000000000615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
Hematopoietic stem and progenitor cells maintain hematopoiesis throughout life by generating all major blood cell lineages through the process of self-renewal and differentiation. In adult mammals, hematopoietic stem cells (HSCs) primarily reside in the bone marrow (BM) at special microenvironments called “niches.” Niches are thought to extrinsically orchestrate the HSC fate including their quiescence and proliferation. Insight into the HSC niches mainly comes from studies in mice using surface marker identification and imaging to visualize HSC localization and association with niche cells. The advantage of mouse models is the possibility to study the 3-dimensional BM architecture and cell interactions in an intact traceable system. However, this may not be directly translational to human BM. Sedentary lifestyle, unhealthy diet, excessive alcohol intake, and smoking are all known risk factors for various diseases including hematological disorders and cancer, but how do lifestyle factors impact hematopoiesis and the associated niches? Here, we review current knowledge about the HSC niches and how unhealthy lifestyle may affect it. In addition, we summarize epidemiological data concerning the influence of lifestyle factors on hematological disorders and malignancies.
Collapse
|
37
|
Shi Z, Zhang M. Emerging Roles for the Gut Microbiome in Lymphoid Neoplasms. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 15:11795549211024197. [PMID: 34211309 PMCID: PMC8216388 DOI: 10.1177/11795549211024197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Lymphoid neoplasms encompass a heterogeneous group of malignancies with a predilection for immunocompromised individuals, and the disease burden of lymphoid neoplasms has been rising globally over the last decade. At the same time, mounting studies delineated a crucial role of the gut microbiome in the aetiopathogenesis of various diseases. Orchestrated interactions between myriad microorganisms and the gastrointestinal mucosa establish a defensive barrier for a range of physiological processes, especially immunity and metabolism. These findings provide new perspectives to harness our knowledge of the gut microbiota for preclinical and clinical studies of lymphoma. Here, we review recent findings that support a role for the gut microbiota in the development of lymphoid neoplasms and pinpoint relevant molecular mechanisms. Accordingly, we propose the microbiota-gut-lymphoma axis as a promising target for clinical translation, including auxiliary diagnosis, novel prevention and treatment strategies, and predicting clinical outcomes and treatment-related adverse effects of the disease in the future. This review will reveal a fascinating avenue of research in the microbiota-mediated lymphoma field.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| |
Collapse
|
38
|
Avivi I, Yekutiel N, Cohen I, Cohen YC, Chodick G, Weil C. Diabetes, but not pre-diabetes, is associated with shorter time to second-line therapy and worse outcomes in patients with multiple myeloma. Leuk Lymphoma 2021; 62:2785-2792. [PMID: 34098831 DOI: 10.1080/10428194.2021.1933474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
About 20% of MM patients have T2DM. We assessed the impact of T2DM/pre-T2DM on MM progression and OS. We collected retrospective data of newly diagnosed MM patients in Maccabi health services, Israel, between 2012 and 2016. The study included 503 MM patients, median age 67.2 years (IQR: 33.5-91.2). Median follow-up was 32 months (IQR 19.4-47). T2DM and pre-T2DM were recorded in 24.1% and 51% patients, respectively. Median TT2T and OS in the cohort were 17.5 months (95% confidence interval (CI) 15-20) and unreached, respectively. T2DM patients had shorter TT2T (HR = 1.31, 95%CI 1.0-1.72, p=.047), particularly transplanted patients; 20.2 vs. 40 months (HR = 2.09, 95%CI 1.18-3.71, p=.012). In a multivariable model, T2DM had a borderline significant risk of all-cause mortality, adjusted HR 1.38 (p=.09). Pre-diabetes had no impact on TT2T or OS. T2DM predicted a shorter TT2T, particularly in transplanted patients, and tended to be associated with shorter survival.
Collapse
Affiliation(s)
- Irit Avivi
- Hematology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naama Yekutiel
- Maccabitech Institute for Research & Innovation, Maccabi Healthcare Services, Tel Aviv, Israel
| | - Inbar Cohen
- Hematology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael C Cohen
- Hematology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gabriel Chodick
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Maccabitech Institute for Research & Innovation, Maccabi Healthcare Services, Tel Aviv, Israel
| | - Clara Weil
- Maccabitech Institute for Research & Innovation, Maccabi Healthcare Services, Tel Aviv, Israel
| |
Collapse
|
39
|
Pearson-Stuttard J, Papadimitriou N, Markozannes G, Cividini S, Kakourou A, Gill D, Rizos EC, Monori G, Ward HA, Kyrgiou M, Gunter MJ, Tsilidis KK. Type 2 Diabetes and Cancer: An Umbrella Review of Observational and Mendelian Randomization Studies. Cancer Epidemiol Biomarkers Prev 2021; 30:1218-1228. [PMID: 33737302 PMCID: PMC9398112 DOI: 10.1158/1055-9965.epi-20-1245] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/22/2020] [Accepted: 02/25/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) has been associated with an increased risk of developing several common cancers, but it is unclear whether this association is causal. We aimed to summarize the evidence on T2DM and cancer and evaluate the validity of associations from both observational and Mendelian randomization (MR) studies. METHODS We performed an umbrella review of the evidence across meta-analyses of observational studies that examined associations of T2DM with risk of developing or dying from site-specific cancers, and MR studies that explored the potential causal association of T2DM and associated biomarkers with cancer risk. RESULTS We identified eligible observational meta-analyses that assessed associations between T2DM and cancer incidence for 18 cancer sites, cancer mortality for seven sites, and cancer incidence or mortality for four sites. Positive associations between T2DM and six cancers reached strong or highly suggestive evidence. We found eight MR studies assessing the association of genetically predicted T2DM and seven and eight studies assessing the association of genetically predicted fasting insulin or fasting glucose concentrations, respectively, upon site-specific cancers. Positive associations were found between genetically predicted T2DM and fasting insulin and risk of six cancers. There was no association between genetically predicted fasting plasma glucose and cancer except for squamous cell lung carcinoma. CONCLUSIONS We found robust observational evidence for the association between T2DM and colorectal, hepatocellular, gallbladder, breast, endometrial, and pancreatic cancers. IMPACT Potential causal associations were identified for genetically predicted T2DM and fasting insulin concentrations and risk of endometrial, pancreas, kidney, breast, lung, and cervical cancers.
Collapse
Affiliation(s)
- Jonathan Pearson-Stuttard
- Department of Epidemiology and Biostatistics, MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom.
| | - Nikos Papadimitriou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Sofia Cividini
- Department of Health Data Science, University of Liverpool, Liverpool, United Kingdom
| | - Artemisia Kakourou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Evangelos C Rizos
- Department of Internal Medicine, University Hospital of Ioannina, Ioannina, Greece
- School of Medicine, European University of Cyprus, Nicosia, Cyprus
| | - Grace Monori
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Heather A Ward
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Maria Kyrgiou
- Department of Gut, Metabolism and Reproduction, and Surgery and Cancer, IRDB, Imperial College London, London, United Kingdom
- West London Gynecological Cancer Center, Imperial NHS Trust, London, United Kingdom
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
40
|
Li A, Liu J, Ding F, Wu X, Pan C, Wang Q, Gao M, Duan S, Han X, Xia K, Liu S, Wu Y, Zhou Z, Zhang X, Gao X. Maca extracts regulate glucose and lipid metabolism in insulin-resistant HepG2 cells via the PI3K/AKT signalling pathway. Food Sci Nutr 2021; 9:2894-2907. [PMID: 34136157 PMCID: PMC8194906 DOI: 10.1002/fsn3.2246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/23/2022] Open
Abstract
This work focused on the separation of the active ingredients of maca (Lepidium meyenii Walpers) and evaluated the antioxidative capability of these components with effects on improving glucose and lipid metabolism in insulin-resistant HepG2 cells. DPPH free radical scavenging and reducing power assays were used to evaluate the antioxidant activity of maca extracts. An insulin-resistant HepG2 cell model induced by glucose, fructose, oleic acid, and palmitic acid was adopted to investigate the effects of maca extracts on regulating glucose and lipid metabolism in this study. LC-MS/MS was then used for determination of the maca n-butanol (NBT) subfraction. The results showed that maca ethanol extract and subfractions of this extract exhibited certain antioxidant capacity. Furthermore, the NBT subfraction reversed the disorders in glucose and lipid metabolism in insulin-resistant HepG2 cells and significantly increased the mRNA expression of phosphoinositide 3-kinases (PI3K) and AKT in insulin-resistant HepG2 cells in a dose-dependent manner. In addition, the LC-MS/MS results showed that the NBT subfraction contained many active ingredients. Overall, this study suggests that the NBT subfraction of the ethanol extract rich in glucosinolates modulates insulin resistance via PI3K/AKT activation in insulin-resistant HepG2 cells and might exert potentially beneficial effects in improving or treating glucose and lipid metabolic disorders.
Collapse
Affiliation(s)
- Aimin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
- New Era Health Industry (Group) CO., Ltd.BeijingChina
| | - Jia Liu
- Beijing Key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic DiseaseBeijingChina
- China National Research Institute of Food and Fermentation IndustriesBeijingChina
| | - Fangli Ding
- Beijing Key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic DiseaseBeijingChina
- China National Research Institute of Food and Fermentation IndustriesBeijingChina
| | - Xiaolei Wu
- New Era Health Industry (Group) CO., Ltd.BeijingChina
| | - Cong Pan
- Beijing Key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic DiseaseBeijingChina
- China National Research Institute of Food and Fermentation IndustriesBeijingChina
| | - Qing Wang
- Beijing Key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic DiseaseBeijingChina
- China National Research Institute of Food and Fermentation IndustriesBeijingChina
| | - Ming Gao
- Beijing Key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic DiseaseBeijingChina
- China National Research Institute of Food and Fermentation IndustriesBeijingChina
| | - Shenglin Duan
- Beijing Key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic DiseaseBeijingChina
- China National Research Institute of Food and Fermentation IndustriesBeijingChina
| | - Xiaofeng Han
- Beijing Key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic DiseaseBeijingChina
- China National Research Institute of Food and Fermentation IndustriesBeijingChina
| | - Kai Xia
- Beijing Key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic DiseaseBeijingChina
- China National Research Institute of Food and Fermentation IndustriesBeijingChina
| | - Shiwei Liu
- Beijing Key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic DiseaseBeijingChina
- China National Research Institute of Food and Fermentation IndustriesBeijingChina
| | - Yimin Wu
- Beijing Key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic DiseaseBeijingChina
- China National Research Institute of Food and Fermentation IndustriesBeijingChina
| | - Zhiqiao Zhou
- Beijing Key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic DiseaseBeijingChina
- China National Research Institute of Food and Fermentation IndustriesBeijingChina
| | - Xi Zhang
- Shimadzu(China) Co. Ltd.BeijingChina
| | - Xiao‐Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
| |
Collapse
|
41
|
Liu S, Lao Y, Wang Y, Li R, Fang X, Wang Y, Gao X, Dong Z. Role of RNA N6-Methyladenosine Modification in Male Infertility and Genital System Tumors. Front Cell Dev Biol 2021; 9:676364. [PMID: 34124065 PMCID: PMC8190709 DOI: 10.3389/fcell.2021.676364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022] Open
Abstract
Epigenetic alterations, particularly RNA methylation, play a crucial role in many types of disease development and progression. Among them, N6-methyladenosine (m6A) is the most common epigenetic RNA modification, and its important roles are not only related to the occurrence, progression, and aggressiveness of tumors but also affect the progression of many non-tumor diseases. The biological effects of RNA m6A modification are dynamically and reversibly regulated by methyltransferases (writers), demethylases (erasers), and m6A binding proteins (readers). This review summarized the current finding of the RNA m6A modification regulators in male infertility and genital system tumors and discussed the role and potential clinical application of the RNA m6A modification in spermatogenesis and male genital system tumors.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Gansu Nephro-Urological Clinical Center, Institute of Urology, Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yongfeng Lao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Gansu Nephro-Urological Clinical Center, Institute of Urology, Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Gansu Nephro-Urological Clinical Center, Institute of Urology, Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Rongxin Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Gansu Nephro-Urological Clinical Center, Institute of Urology, Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xuefeng Fang
- Department of Urology, People's Hospital of Jinchang, Jinchang, China
| | - Yunchang Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolong Gao
- Department of Urology, People's Hospital of Jinchang, Jinchang, China
| | - Zhilong Dong
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Gansu Nephro-Urological Clinical Center, Institute of Urology, Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
42
|
Yan P, Wang Y, Fu T, Liu Y, Zhang ZJ. The association between type 1 and 2 diabetes mellitus and the risk of leukemia: a systematic review and meta-analysis of 18 cohort studies. Endocr J 2021; 68:281-289. [PMID: 33087643 DOI: 10.1507/endocrj.ej20-0138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus (DM) is widely considered to be associated with the risk of diverse cancers; however, the association between DM and the risk of leukemia is still controversial. Thus, a detailed meta-analysis of cohort studies was conducted to elucidate this association. Eligible studies were screened through the electronic searches in PubMed, Web of Science, and Embase from their inception to August 11, 2020. Summary relative risks (RRs) and 95% confidence intervals (CIs) were computed through the random-effects model. Eighteen articles involving 10,516 leukemia cases among a total of 4,094,235 diabetic patients were included in this meta-analysis. Overall, twenty-five RRs were synthesized for type 2 diabetes mellitus (T2DM) and yielded a summary RR of 1.33 (95%CI, 1.21-1.47; p < 0.001). For type 1 diabetes mellitus (T1DM), 7 RRs were combined, however, the pooled RR was insignificant (RR, 1.08; 95%CI, 0.87-1.34; p = 0.48). Interestingly, the summary RR for East Asia (RR, 1.83, 95%CI, 1.63-2.06) was significantly higher than that for Europe (RR, 1.11, 95%CI, 1.06-1.15), Western Asia (RR, 1.40, 95%CI, 1.25-1.54), North America (RR, 1.14, 95%CI, 1.08-1.20), and Australia (RR, 1.47, 95%CI, 1.25-1.71). Moreover, we found that patients with a shorter T2DM duration (1-5 years) had a higher risk of leukemia compared to those with a longer duration (5.1-10 years). Overall, this meta-analysis suggests there is a moderately increased risk of leukemia among T2DM patients, but not in T1DM patients. Further investigation is warranted.
Collapse
Affiliation(s)
- Pengfei Yan
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Yongbo Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Yu Liu
- Department of Statistics and Management, School of Management, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Jiang Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
43
|
Gong IY, Cheung MC, Read S, Na Y, Lega IC, Lipscombe LL. Association between diabetes and haematological malignancies: a population-based study. Diabetologia 2021; 64:540-551. [PMID: 33409570 DOI: 10.1007/s00125-020-05338-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Contemporary data for the association of diabetes with haematological malignancies are lacking. We evaluated the risk of developing haematological malignancies and subsequent mortality in individuals with diabetes compared with those without diabetes. METHODS We conducted a population-based observational study using healthcare databases from Ontario, Canada. All Ontario residents 30 years of age or older free of cancer and diabetes between 1 January 1996 and 31 December 2015 were eligible for inclusion. Using Cox regression analyses, we explored the association between diabetes and the risk and mortality of haematological malignancies (leukaemia, lymphoma, multiple myeloma). The impact of timing on associations was evaluated with analyses stratified by time since diabetes diagnosis (<3 months, 3 months to 1 year, ≥1 year). RESULTS We identified 1,003,276 individuals with diabetes and age and sex matched these to 2,006,552 individuals without diabetes. Compared with individuals without diabetes, those with diabetes had a modest but significantly higher risk of a haematological malignancy (adjusted HR 1.10 [95% CI 1.08, 1.12] p < 0.0001). This association persisted across all time periods since diabetes diagnosis. Among those with haematological malignancies, diabetes was associated with a higher all-cause mortality (HR 1.36 [95% CI 1.31, 1.41] p < 0.0001) compared with no diabetes, as well as cause-specific mortality. CONCLUSIONS/INTERPRETATION Diabetes is associated with a higher risk of haematological malignancies and is an independent risk factor of all-cause and cause-specific mortality. Greater efforts for lifestyle modification may not only reduce diabetes burden and its complications but may also potentially lower risk of malignancy and mortality. Graphical abstract.
Collapse
Affiliation(s)
- Inna Y Gong
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Matthew C Cheung
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- ICES, Toronto, Ontario, Canada
- Odette Cancer Center, Sunnybrook Health Sciences Center, Toronto, ON, Canada
| | - Stephanie Read
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| | - Yingbo Na
- ICES, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| | - Iliana C Lega
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- ICES, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| | - Lorraine L Lipscombe
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
- ICES, Toronto, Ontario, Canada.
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada.
| |
Collapse
|
44
|
Podhorecka M. Metformin - its anti-cancer effects in hematologic malignancies. Oncol Rev 2021; 15:514. [PMID: 33747367 PMCID: PMC7967492 DOI: 10.4081/oncol.2021.514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
The main anti-diabetic effect of metformin mediated through stimulation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) is the inhibition of hepatic gluconeogenesis and triggering glucose uptake in skeletal muscles. Additionally, some new pathways, besides the AMPK activation, were discovered, that can explain wide-range properties of metformin. All these properties are now attracting the attention of researchers in the fields other than diabetes and the drug has been reported to have anti-cancer, immunoregulatory and anti-aging effects. Among others, the beneficial effects of metformin in hematological disorders like leukemias, lymphomas, and multiple myeloma were reported. Despite a great progress in therapy, these diseases are still incurable in most cases. Thus, there is an urgent need to discover novel, less toxic and more effective drugs especially for older or chemotherapy-resistant patients. In this review article, the current findings on the anti-cancer effect of metformin together with underlying possible mechanisms in blood cancers are discussed. However. to evaluate precisely these promising effects of metformin, more studies are required, because many of the published results are preclinical.
Collapse
Affiliation(s)
- Monika Podhorecka
- Department of Hematooncology and Bone Marrow Transplantation Medical University of Lublin, Poland
| |
Collapse
|
45
|
Effect of metabolic genetic variants on long-term disease comorbidity in patients with type 2 diabetes. Sci Rep 2021; 11:2794. [PMID: 33531528 PMCID: PMC7854581 DOI: 10.1038/s41598-021-82276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
Underlying genetic determinants contribute to developing type 2 diabetes (T2D) future diseases. The present study aimed to identify which genetic variants are associated with the incident of the major T2D co-morbid disease. First, we conducted a discovery study by investigating the genetic associations of comorbid diseases within the framework of the Utrecht Cardiovascular Pharmacogenetic studies by turning information of > 25 years follow-up data of 1237 subjects whom were genotyped and included in the discovery study. We performed Cox proportional-hazards regression to examine associations between genetic variants and comorbid diseases including cardiovascular diseases (CVD), chronic eye disease, cancer, neurologic diseases and chronic kidney disease. Secondly, we replicated our findings in two independent cohorts consisting of 1041 subjects. Finally, we performed a meta-analysis by combining the discovery and two replication cohorts. We ascertained 390 (39.7%) incident cases of CVD, 182 (16.2%) of chronic eye disease, 155 (13.8%) of cancer, 31 (2.7%) of neurologic disease and 13 (1.1%) of chronic kidney disease during a median follow-up of 10.2 years. In the discovery study, we identified a total of 39 Single Nucleotide Polymorphisms (SNPs) associated with comorbid diseases. The replication study, confirmed that rs1870849 and rs8051326 may play a role in the incidence of chronic eye disease in T2D patients. Half of patients developed at least one comorbid disease, with CVD occurring most often and earliest followed by chronic eye disease. Further research is needed to confirm the associations of two associated SNPs with chronic eye disease in T2D.
Collapse
|
46
|
Sadras T, Chan LN, Xiao G, Müschen M. Metabolic Gatekeepers of Pathological B Cell Activation. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:323-349. [DOI: 10.1146/annurev-pathol-061020-050135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unlike other cell types, B cells undergo multiple rounds of V(D)J recombination and hypermutation to evolve high-affinity antibodies. Reflecting high frequencies of DNA double-strand breaks, adaptive immune protection by B cells comes with an increased risk of malignant transformation. In addition, the vast majority of newly generated B cells express an autoreactive B cell receptor (BCR). Thus, B cells are under intense selective pressure to remove autoreactive and premalignant clones. Despite stringent negative selection, B cells frequently give rise to autoimmune disease and B cell malignancies. In this review, we discuss mechanisms that we term metabolic gatekeepers to eliminate pathogenic B cell clones on the basis of energy depletion. Chronic activation signals from autoreactive BCRs or transforming oncogenes increase energy demands in autoreactive and premalignant B cells. Thus, metabolic gatekeepers limit energy supply to levels that are insufficient to fuel either a transforming oncogene or hyperactive signaling from an autoreactive BCR.
Collapse
Affiliation(s)
- Teresa Sadras
- Center of Molecular and Cellular Oncology, Yale Cancer Center, and Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| | - Lai N. Chan
- Center of Molecular and Cellular Oncology, Yale Cancer Center, and Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| | - Gang Xiao
- Current affiliation: Department of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale Cancer Center, and Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
47
|
da Cunha Júnior AD, Zanette DL, Pericole FV, Olalla Saad ST, Barreto Campello Carvalheira J. Obesity as a Possible Risk Factor for Progression from Monoclonal Gammopathy of Undetermined Significance Progression into Multiple Myeloma: Could Myeloma Be Prevented with Metformin Treatment? Adv Hematol 2021; 2021:6615684. [PMID: 33531904 PMCID: PMC7834834 DOI: 10.1155/2021/6615684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is increasingly associated with the transformation of monoclonal gammopathy of undetermined significance (MGUS) into multiple myeloma (MM). Obesity, MGUS, and MM share common etiopathogenesis mechanisms including altered insulin axis and the action of inflammatory cytokines. Consistent with this interconnection, metformin could predominantly exert inhibition of these pathophysiological factors and thus be an attractive therapeutic option for MGUS. Despite the possible clinical significance, only a limited number of epidemiological studies have focused on obesity as a risk factor for MGUS and MM. This review describes multiple biological pathways modulated by metformin at the cellular level and their possible impacts on the biology of MGUS and its progression into MM.
Collapse
Affiliation(s)
- Ademar Dantas da Cunha Júnior
- 1Division of Oncology, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- 2Hematology and Oncology Clinics, Cancer Hospital of Cascavel, União Oeste de Estudos e Combate ao Câncer (UOPECCAN), Cascavel, PR, Brazil
- 3Department of Internal Medicine, State University of Western Paraná (UNIOESTE), Cascavel, PR, Brazil
| | - Dalila Luciola Zanette
- 4Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute (ICC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Fernando Vieira Pericole
- 5Hematology and Blood Transfusion Center, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - José Barreto Campello Carvalheira
- 1Division of Oncology, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
48
|
Song Y, Chen S, Xiang W, Xiao M, Xiao H. The mechanism of treatment of multiple myeloma with metformin by way of metabolism. Arch Med Sci 2021; 17:1056-1063. [PMID: 34336033 PMCID: PMC8314393 DOI: 10.5114/aoms.2020.101305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/18/2019] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Multiple myeloma (MM) is a malignant hematologic tumor. Although many new drugs are currently found to significantly improve the median survival, MM is still not curable due partly to drug resistance recurrence. Epidemiological studies have shown that patients with type 2 diabetes have a high risk of malignancy, and patients' treatment with metformin could reduce the risk of cancer as well as associated mortality. MATERIAL AND METHODS We used chemotherapeutics - melphalan combined with metformin or the single drug - to treat RPMI8226 cells and used a series of tests to detect the drug sensitivity, apoptotic rate, DNA damage and the concentration of ATP. SPSS 17.0 was used to analyze the data. RESULTS The inhibitory effect of melphalan on RPMI8226 cells was significantly increased after metformin was added (p < 0.05), and the inhibitory effect was enhanced with the increasing concentration of melphalan. The comet assay showed that metformin increased melphalan-induced DNA damage and increased the apoptotic rate from 12.7 ±2.8% to 18.8 ±1.5% (p < 0.05). In the ATP concentration test, the concentration of ATP in the tumor cells was significantly decreased from 0.42 ±0.01 μmol/l to 0.08 ±0.02 μmol/l (p < 0.05). CONCLUSIONS Metformin can promote DNA damage induced by melphalan and decrease the concentration of ATP in the process of repairing DNA damage to hinder the anti-apoptotic process of tumor cells, which showed the pesticide effect of the enhanced sensitivity of multiple myeloma cells to melphalan.
Collapse
Affiliation(s)
- Yanyan Song
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Song Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Xiang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Muran Xiao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Xiao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Yang Q, Ouyang J, Sun F, Yang J. Short-Chain Fatty Acids: A Soldier Fighting Against Inflammation and Protecting From Tumorigenesis in People With Diabetes. Front Immunol 2020; 11:590685. [PMID: 33363537 PMCID: PMC7752775 DOI: 10.3389/fimmu.2020.590685] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Converging evidences showed that people with diabetes mellitus (DM) have significantly higher risk for different cancers, of which the exact mechanism underlying the association has not been fully realized. Short-chain fatty acids (SCFAs), the fermentation products of the intestinal microbiota, are an essential source for energy supply in gut epithelial cells. They have been reported to improve intestinal barrier integrity, prevent microbial translocation, and further dampen inflammation. Gut dysbiosis and reduction in SCFA-producing bacteria as well as SCFAs production in the intestine are commonly seen in metabolic disorders including DM and obesity. Moreover, inflammation can contribute to tumor initiation and progression through multiple pathways, such as enhancing DNA damage, accumulating mutations in tumor suppressor genes Tp53, and activating nuclear factor-kappa B (NF-κB) signaling pathways. Based on these facts, we hypothesize that lower levels of microbial SCFAs resulted from gut dysbiosis in diabetic individuals, enhance microbial translocation, and increase the inflammatory responses, inducing tumorigenesis ulteriorly. To this end, we will discuss protective properties of microbial SCFAs and explore the pivotal roles SCFAs played in the link of DM with cancer, so as to take early precautions to reduce the risk of cancer in patients with DM.
Collapse
Affiliation(s)
- Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Hospital, Chongqing, China
| | - Jing Ouyang
- Chongqing Public Health Medical Center, Chongqing, China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
50
|
Sohn W, Lee HW, Lee S, Lim JH, Lee MW, Park CH, Yoon SK. Obesity and the risk of primary liver cancer: A systematic review and meta-analysis. Clin Mol Hepatol 2020; 27:157-174. [PMID: 33238333 PMCID: PMC7820201 DOI: 10.3350/cmh.2020.0176] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Background/Aims In this systematic review and meta-analysis, we aimed to clarify the effect of obesity on the occurrence of and mortality from primary liver cancer. Methods This study was conducted using a systematic literature search of MEDLINE, EMBASE, and the Cochrane Library until November 2018 using the primary keywords “obesity,” “overweight,” “body mass index (BMI),” “body weight,” “liver,” “cancer,” “hepatocellular carcinoma,” “liver cancer,” “risk,” and “mortality.” Studies assessing the relationship between BMI and occurrence of or mortality from primary liver cancer in prospective cohorts and those reporting hazard ratios (HRs) or data that allow HR estimation were included. Results A total of 28 prospective cohort studies with 8,135,906 subjects were included in the final analysis. These included 22 studies with 6,059,561 subjects for cancer occurrence and seven studies with 2,077,425 subjects for cancer-related mortality. In the meta-analysis, an increase in BMI was associated with the occurrence of primary liver cancer (HR, 1.69; 95% confidence interval, 1.50–1.90, I2=56%). A BMI-dependent increase in the risk of occurrence of primary liver cancer was reported. HRs were 1.36 (95% CI, 1.02–1.81), 1.77 (95% CI, 1.56–2.01), and 3.08 (95% CI, 1.21–7.86) for BMI >25 kg/m2, >30 kg/m2, and >35 kg/m2, respectively. Furthermore, increased BMI resulted in enhanced liver cancer-related mortality (HR, 1.61; 95% CI, 1.14–2.27, I2=80%). Conclusions High BMI increases liver cancer mortality and occurrence of primary liver cancer. Obesity is an independent risk factor for the occurrence of and mortality from primary liver cancer.
Collapse
Affiliation(s)
- Won Sohn
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Woong Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sangheun Lee
- Department of Internal Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Korea
| | - Jin Hong Lim
- Department of General Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Min Woo Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Seung Kew Yoon
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University College of Medicine, Seoul, Korea
| |
Collapse
|