1
|
Song Z, Wang Y, Zhang D, Wang T, Liu N, Gao L, Wang L, Yang J. Disseminated intravascular coagulation is an underestimated but fatal adverse event associated with blinatumomab therapy: A pharmacovigilance analysis of FAERS. Int J Cancer 2025; 156:1033-1042. [PMID: 39533880 DOI: 10.1002/ijc.35235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Hematologic adverse events (AEs) are common and serious toxicities in patients with hematologic malignancies undergoing blinatumomab therapy. However, restrictive selection criteria in pivotal clinical trials can lead to an underestimation of rare but fatal toxicities. In this study, we systematically analyzed hematologic AEs associated with blinatumomab using the Food and Drug Administration Adverse Event Reporting System (FAERS) from October 2014 to December 2023. Disproportionate analysis was performed to identify overreported AEs, with a reporting odds ratio (ROR), and a lower bound of the 95% confidence interval (ROR025) exceeding one considered significant. Additionally, adjusted mortality rates and risk ratios (RR) of the top 10 reported hematologic AEs were calculated using a logistic regression model. Among 4745 blinatumomab-related cases, 418 (8.81%) involved hematologic AEs. We identified 22 significantly overreporting hematologic AEs compared to the full database, with myelosuppression (n = 39 [9.33%], ROR025 = 8.04), disseminated intravascular coagulation (DIC, n = 31 [7.42%], ROR025 = 15.14), and bone marrow failure (n = 14 [3.35%], ROR025 = 3.41) notably underestimated in clinical trials. DIC resulted in a substantial mortality rate of 45.16%. Finally, DIC was found to be independently associated with death in a multivariable logistic regression analysis (RR = 2.47 [95% CI: 1.11-3.83]). These findings could aid clinicians in the early detection of these rarely reported but fatal hematologic AEs, thereby reducing the risk of severe toxicities in blinatumomab recipients.
Collapse
Affiliation(s)
- Zhiqiang Song
- Department of Hematology, Institute of Hematology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yang Wang
- Department of Hematology, Institute of Hematology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dongliang Zhang
- Department of Hematology, Institute of Hematology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Hematology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Xiamen, China
| | - Tao Wang
- Department of Hematology, Institute of Hematology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Na Liu
- Department of Hematology, Institute of Hematology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Gao
- Department of Hematology, Institute of Hematology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Libing Wang
- Department of Hematology, Institute of Hematology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Yang
- Department of Hematology, Institute of Hematology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Wen Y, He H, Ma Y, Bao D, Cai LC, Wang H, Li Y, Zhao B, Cai Z. Computing hematopoiesis plasticity in response to genetic mutations and environmental stimulations. Life Sci Alliance 2025; 8:e202402971. [PMID: 39537342 PMCID: PMC11561260 DOI: 10.26508/lsa.202402971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Cell plasticity (CP), describing a dynamic cell state, plays a crucial role in maintaining homeostasis during organ morphogenesis, regeneration, and trauma-to-repair biological process. Single-cell-omics datasets provide an unprecedented resource to empower CP analysis. Hematopoiesis offers fertile opportunities to develop quantitative methods for understanding CP. In this study, we generated high-quality lineage-negative single-cell RNA-sequencing datasets under various conditions and introduced a working pipeline named scPlasticity to interrogate naïve and disturbed plasticity of hematopoietic stem and progenitor cells with mutational or environmental challenges. Using embedding methods UMAP or FA, a continuum of hematopoietic development is visually observed in wild type where the pipeline confirms a low proportion of hybrid cells ( P hc , with bias range: 0.4∼0.6) on a transition trajectory. Upon Tet2 mutation, a driver of leukemia, or treatment of DSS, an inducer of colitis, P hc is increased and plasticity of hematopoietic stem and progenitor cells was enhanced. We prioritized several transcription factors and signaling pathways, which are responsible for P hc alterations. In silico perturbation suggests knocking out EGR regulons or pathways of IL-1R1 and β-adrenoreceptor partially reverses P hc promoted by Tet2 mutation and inflammation.
Collapse
Affiliation(s)
- Yuchen Wen
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hang He
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yunxi Ma
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Dengyi Bao
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Lorie Chen Cai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
| | - Yanmei Li
- Department of Rheumatology and Immunology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
| | - Baobing Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhigang Cai
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
- Department of Rheumatology and Immunology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
| |
Collapse
|
3
|
Stevens CS, Carmichael JC, Watkinson R, Kowdle S, Reis RA, Hamane K, Jang J, Park A, Pernet O, Khamaikawin W, Hong P, Thibault P, Gowlikar A, An DS, Lee B. A temperature-sensitive and less immunogenic Sendai virus for efficient gene editing. J Virol 2024; 98:e0083224. [PMID: 39494910 PMCID: PMC11650993 DOI: 10.1128/jvi.00832-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
The therapeutic potential of gene editing technologies hinges on the development of safe and effective delivery methods. In this study, we developed a temperature-sensitive and less immunogenic Sendai virus (ts SeV) as a novel delivery vector for CRISPR-Cas9 and for efficient gene editing in sensitive human cell types with limited induction of an innate immune response. ts SeV demonstrates high transduction efficiency in human CD34+ hematopoietic stem and progenitor cells (HSPCs) including transduction of the CD34+/CD38-/CD45RA-/CD90+(Thy1+)/CD49fhigh stem cell enriched subpopulation. The frequency of CCR5 editing exceeded 90% and bi-allelic CCR5 editing exceeded 70% resulting in significant inhibition of HIV-1 infection in primary human CD14+ monocytes. These results demonstrate the potential of the ts SeV platform as a safe, efficient, and flexible addition to the current gene-editing tool delivery methods, which may help further expand the possibilities in personalized medicine and the treatment of genetic disorders. IMPORTANCE Gene editing has the potential to be a powerful tool for the treatment of human diseases including HIV, β-thalassemias, and sickle cell disease. Recent advances have begun to overcome one of the major limiting factors of this technology, namely delivery of the CRISPR-Cas9 gene editing machinery, by utilizing viral vectors. However, gene editing therapies have yet to be implemented due to inherent risks associated with the DNA viral vectors typically used for delivery. As an alternative strategy, we have developed an RNA-based Sendai virus CRISPR-Cas9 delivery vector that does not integrate into the genome, is temperature sensitive, and does not induce a significant host interferon response. This recombinant SeV successfully delivered CRISPR-Cas9 in primary human CD14+ monocytes ex vivo resulting in a high level of CCR5 editing and inhibition of HIV infection.
Collapse
Affiliation(s)
- Christian S. Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jillian C. Carmichael
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ruth Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rebecca A. Reis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kory Hamane
- UCLA School of Nursing, Los Angeles, California, USA
- UCLA AIDS Institute, Los Angeles, California, USA
| | - Jason Jang
- UCLA School of Nursing, Los Angeles, California, USA
- UCLA AIDS Institute, Los Angeles, California, USA
| | - Arnold Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Olivier Pernet
- UCLA School of Nursing, Los Angeles, California, USA
- UCLA AIDS Institute, Los Angeles, California, USA
| | - Wannisa Khamaikawin
- UCLA School of Nursing, Los Angeles, California, USA
- UCLA AIDS Institute, Los Angeles, California, USA
| | - Patrick Hong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patricia Thibault
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya Gowlikar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dong Sung An
- UCLA School of Nursing, Los Angeles, California, USA
- UCLA AIDS Institute, Los Angeles, California, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
4
|
Ruffinatto L, Groult Y, Iacono J, Sarrazin S, de Laval B. Hematopoietic stem cell a reservoir of innate immune memory. Front Immunol 2024; 15:1491729. [PMID: 39720722 PMCID: PMC11666435 DOI: 10.3389/fimmu.2024.1491729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/30/2024] [Indexed: 12/26/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are a rare, long-lived and multipotent population that give rise to majority of blood cells and some tissue-resident immune cells. There is growing evidence that inflammatory stimuli can trigger persistent reprogramming in HSCs that enhances or inhibits the cellular functions of these HSCs and their progeny in response to subsequent infections. This newly discovered property makes HSCs a reservoir for innate immune memory. The molecular mechanisms underlying innate immune memory in HSCs are similar to those observed in innate immune cells, although their full elucidation is still pending. In this review, we examine the current state of knowledge on how an inflammatory response leads to reprogramming of HSCs. Understanding the full spectrum of consequences of reshaping early hematopoiesis is critical for assessing the potential benefits and risks under physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Bérengère de Laval
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut
National de la Santé et de la Recherche Médicale (INSERM), Centre d’Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
5
|
McClory SE, Oved JH. Transplantation for immune dysregulatory disorders: current themes and future expectations. Curr Opin Pediatr 2024; 36:693-701. [PMID: 39345097 DOI: 10.1097/mop.0000000000001401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
PURPOSE OF REVIEW Primary immune regulatory disorders (PIRDs) are an increasing indication for hematopoietic stem cell transplant (HCT) in pediatric patients. Here, we provide an updated overview of HCT for PIRDs, and discuss future avenues for improvement in outcomes. RECENT FINDINGS There are now more than 50 described monogenic PIRDs, which impact all aspects of immune tolerance, regulation, and suppression. Disease characteristics are highly variable, and HCT remains the only option for cure. We review advances in targeted therapies for individual PIRDs, which have significantly improved outcomes and the ability to safely bridge to transplant. Additionally, advances in GVHD prevention, graft manipulation, personalized conditioning regimens, and supportive care have all increased survival after HCT. The high inflammatory state increases the risk of nonengraftment, rejection, and autologous reconstitution. Therapy to reduce the inflammatory state may further improve outcomes. In addition, although younger patients with fewer comorbidities have better outcomes, the clinical courses of these diseases may be extremely variable thereby complicating the decision to proceed to HCT. SUMMARY HCT for PIRDs is a growing consideration in cell therapy. Yet, there remain significant gaps in our understanding of which patients this curative therapy could benefit the most. Here, we review the current data supporting HCT for PIRDs as well as areas for future improvement.
Collapse
Affiliation(s)
- Susan E McClory
- Program for Integrated Immunodeficiency and Cell Therapy, The Children's Hospital of Philadelphia
- Cell Therapy and Transplant, Division of Oncology, The Children's Hospital of Philadelphia
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph H Oved
- Transplant and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
6
|
Arleo A, Montagner A, Giovannini C, Suzzi F, Piscaglia F, Gramantieri L. Multifaceted Aspects of Dysfunctional Myelopoiesis in Cancer and Therapeutic Perspectives with Focus on HCC. Biomolecules 2024; 14:1496. [PMID: 39766202 PMCID: PMC11673139 DOI: 10.3390/biom14121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Myelopoiesis provides for the formation and continued renewal of cells belonging primarily to the innate immune system. It is a highly plastic process that secures the response to external and internal stimuli to face acute and changing needs. Infections and chronic diseases including cancer can modulate it by producing several factors, impacting proliferation and differentiation programs. While the lymphocytic compartment has attracted major attention due to the role of adaptive immunity in anticancer immune response, in recent years, research has found convincing evidence that confirms the importance of innate immunity and the key function played by emergency myelopoiesis. Due to cancer's ability to manipulate myelopoiesis to its own advantage, the purpose of this review is to outline myelopoiesis processes within the tumor microenvironment and suggest possible therapeutic lines of research to restore the physiological functioning of the host's immune system, with a special outlook on hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Andrea Arleo
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Annapaola Montagner
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Fabrizia Suzzi
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
7
|
Hu Q, Liu Y, Yue Q, Zhou S, Jin X, Lin F, Huang XJ, Zhuang J, Lu J, Gao X, Lee HY. Lenalidomide-induced pure red cell aplasia is associated with elevated expression of MHC-I molecules on erythrocytes. Nat Commun 2024; 15:10131. [PMID: 39578482 PMCID: PMC11584757 DOI: 10.1038/s41467-024-54571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
The RVd therapy, combining lenalidomide, bortezomib, and dexamethasone, is a mainstay treatment for multiple myeloma. A multiple myeloma patient developed pure red cell aplasia (PRCA) following RVd treatment, despite the absence of common PRCA triggers. In vitro analyses reveal lenalidomide as a pivotal disruptor of erythropoiesis. Single-cell transcriptome analysis unveils hyperactive CD8+ T cells and impaired erythropoiesis in the patient's bone marrow. Unexpectedly, the patient's erythroid cells display abnormally high expression of genes in the antigen presentation pathway, particularly those for major histocompatibility class I (MHC-I) molecules. Functional assays demonstrate that lenalidomide treatment further augmented MHC-I expression in the patient's erythroid cells. Blocking MHC-I or depleting T cells alleviates the defective erythropoiesis of PRCA, suggesting that the interaction between erythroid cells with elevated MHC-I and T cells in the bone marrow might contribute to PRCA. Taken together, our study implicates a mechanism underlying lenalidomide-induced PRCA in treating cancer patients.
Collapse
Affiliation(s)
- Qi Hu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yang Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, 100871, China
| | - Qiuyu Yue
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shuo Zhou
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xianghong Jin
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fan Lin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, 100871, China
| | - Xiao-Jun Huang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, 100871, China
| | - Junling Zhuang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jin Lu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, 100871, China.
| | - Xiaofei Gao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Hsiang-Ying Lee
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, 100871, China.
| |
Collapse
|
8
|
Tajer P, Karakaslar EO, Canté-Barrett K, Naber BAE, Vloemans SA, van Eggermond MCJA, van der Hoorn ML, van den Akker E, Pike-Overzet K, Staal FJT. Utilizing epigenetic regulators to improve HSC-based lentiviral gene therapy. Blood Adv 2024; 8:4936-4947. [PMID: 38916861 PMCID: PMC11421325 DOI: 10.1182/bloodadvances.2024013047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
ABSTRACT The curative benefits of autologous and allogeneic transplantation of hematopoietic stem cells (HSCs) have been proven in various diseases. However, the low number of true HSCs that can be collected from patients and the subsequent in vitro maintenance and expansion of true HSCs for genetic correction remains challenging. Addressing this issue, we here focused on optimizing culture conditions to improve ex vivo expansion of true HSCs for gene therapy purposes. In particular, we explored the use of epigenetic regulators to enhance the effectiveness of HSC-based lentiviral (LV) gene therapy. The histone deacetylase inhibitor quisinostat and bromodomain inhibitor CPI203 each promoted ex vivo expansion of functional HSCs, as validated by xenotransplantation assays and single-cell RNA sequencing analysis. We confirmed the stealth effect of LV transduction on the loss of HSC numbers in commonly used culture protocols, whereas the addition of quisinostat or CPI203 improved the expansion of HSCs in transduction protocols. Notably, we demonstrated that the addition of quisinostat improved the LV transduction efficiency of HSCs and early progenitors. Our suggested culture conditions highlight the potential therapeutic effects of epigenetic regulators in HSC biology and their clinical applications to advance HSC-based gene correction.
Collapse
Affiliation(s)
- Parisa Tajer
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emin Onur Karakaslar
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, The Netherlands
| | | | - Brigitta A. E. Naber
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sandra A. Vloemans
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Erik van den Akker
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, The Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Wang J, Zhang Y, Li L, Wang L, Sun S, Wang B, Ge Y, Zhang Z. Nudt15-mediated inflammatory signaling contributes to divergent outcomes in leukemogenesis and hematopoiesis. Leukemia 2024; 38:1958-1970. [PMID: 39025986 DOI: 10.1038/s41375-024-02352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
NUDT15 encodes nucleotide triphosphate diphosphatase that is responsible for metabolizing purine analog drugs, and its genetic mutation results in severe side effects from thiopurine therapy. However, the functions of Nudt15 in leukemic stem cells (LSCs) and hematopoietic stem cells (HSCs) remain unknown. Here we reveal the Nudt15-regulating self-renewal of both mouse LSCs and HSCs. Our data show that Nudt15 negatively regulates murine leukemogenesis and its deficiency prolongs the survival of murine AML recipients by impairing LSC self-renewal, while Nudt15 ablation markedly enhances mouse HSC regenerative potential and self-renewal. Mechanistically, Nudt15 modulates inflammatory signaling in mouse LSCs and HSCs, leading to divergent self-renewal outcomes. Nudt15 depletion inhibits mouse LSC self-renewal by downregulating Ifi30, resulting in elevating intracellular ROS level. Gata2, a key regulator, is required for Nudt15-mediating inflammatory signaling in mouse HSCs. Collectively, our results present new crucial roles of Nudt15 in maintaining the functions of mouse LSC and HSC through inflammatory signaling and have a new insight into clinical implications.
Collapse
Affiliation(s)
- Jiachen Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liujiao Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Shuainan Sun
- Qianweichang College, Shanghai University, Shanghai, 200444, China
| | - Bowu Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yanwen Ge
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhonghui Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
- Shaoxing Institute of Technology, Shanghai University, Shaoxing, 312000, China.
| |
Collapse
|
10
|
Navarro-Bailón A, López-Parra M, Veiga-Vaz Á, Villarón EM, Díez-Campelo M, Martín AÁ, Pérez-López E, Cabrero M, Vázquez L, López-Corral L, Sánchez-Guijo F. Treatment of post-allogeneic hematopoietic stem cell transplant cytopenias with sequential doses of multipotent mesenchymal stromal/stem cells. Cytotherapy 2024; 26:806-812. [PMID: 38727653 DOI: 10.1016/j.jcyt.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND AIMS Cytopenias after allogeneic stem cell transplantation (allo-SCT) are a common complication, the underlying pathogenic mechanisms of which remain incompletely understood. Multipotent mesenchymal stromal/stem cell (MSC) therapy has been successfully employed in the treatment of immune-related disorders and can aid in the restoration of the hematopoietic niche. METHODS A phase II clinical trial to assess the efficacy and safety of administering four sequential doses of ex-vivo expanded bone marrow MSCs from a third-party donor to patients with persistent severe cytopenias after allo-SCT was performed. RESULTS The overall response rate on day 90 was 75% among the 27 evaluable patients (comprising 12 complete responses, 8 partial responses, and 7 with no response). The median time to respond was 14.5 days. Responses were observed across different profiles, including single or multiple affected lineages, primary or secondary timing, and potential immune-mediated or post-infectious pathophysiology versus idiopathic origin. With a median follow-up for surviving patients of 85 months after MSC infusion, 53% of patients are alive. Notably, no adverse events related to MSC therapy were reported. CONCLUSIONS In summary, the sequential infusion of third-party MSCs emerges as a viable and safe therapeutic option, exhibiting potential benefits for patients experiencing cytopenias following allo-SCT.
Collapse
Affiliation(s)
- Almudena Navarro-Bailón
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain; Faculty of Medicine, University of Salamanca, Salamanca, Spain; Network Center for Regenerative Medicine and Cellular Therapy of Castilla y León, Spain; RICORS of Advanced Therapies (TERAV), ISCIII, Spain.
| | - Miriam López-Parra
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain; Network Center for Regenerative Medicine and Cellular Therapy of Castilla y León, Spain; RICORS of Advanced Therapies (TERAV), ISCIII, Spain
| | - Álvaro Veiga-Vaz
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain
| | - Eva María Villarón
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain; Network Center for Regenerative Medicine and Cellular Therapy of Castilla y León, Spain; RICORS of Advanced Therapies (TERAV), ISCIII, Spain
| | - María Díez-Campelo
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain; Faculty of Medicine, University of Salamanca, Salamanca, Spain; Network Center for Regenerative Medicine and Cellular Therapy of Castilla y León, Spain; RICORS of Advanced Therapies (TERAV), ISCIII, Spain; Biomedical Research Networking Center for Cancer (CIBERONC), ISCIII, Spain
| | - Ana África Martín
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain
| | - Estefanía Pérez-López
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain
| | - Mónica Cabrero
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain
| | - Lourdes Vázquez
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain; Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Lucía López-Corral
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain; Faculty of Medicine, University of Salamanca, Salamanca, Spain; Network Center for Regenerative Medicine and Cellular Therapy of Castilla y León, Spain; RICORS of Advanced Therapies (TERAV), ISCIII, Spain; Biomedical Research Networking Center for Cancer (CIBERONC), ISCIII, Spain
| | - Fermín Sánchez-Guijo
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain; Faculty of Medicine, University of Salamanca, Salamanca, Spain; Network Center for Regenerative Medicine and Cellular Therapy of Castilla y León, Spain; RICORS of Advanced Therapies (TERAV), ISCIII, Spain; Biomedical Research Networking Center for Cancer (CIBERONC), ISCIII, Spain
| |
Collapse
|
11
|
Cox ST, Patterson W, Duggleby R, Jones OJR, Madrigal JA, Querol S, Salvador FR, Mata MJH, Volt F, Gluckman É, Szydlo R, Danby RD, Hernandez D. Impact of donor NKG2D and MICA gene polymorphism on clinical outcomes of adult and paediatric allogeneic cord blood transplantation for malignant diseases. Eur J Haematol 2024; 113:32-43. [PMID: 38511389 DOI: 10.1111/ejh.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVES NKG2D is an activating receptor expressed by natural killer (NK) and CD8+ T cells and activation intensity varies by NKG2D expression level or nature of its ligand. An NKG2D gene polymorphism determines high (HNK1) or low (LNK1) expression. MICA is the most polymorphic NKG2D ligand and stronger effector cell activation associates with methionine rather than valine at residue 129. We investigated correlation between cord blood (CB) NKG2D and MICA genotypes and haematopoietic stem cell (HSC) transplant outcome. METHODS We retrospectively studied 267 CB HSC recipients (178 adult and 87 paediatric) who underwent transplant for malignant disease between 2007 and 2018, analysing CB graft DNA for NKG2D and MICA polymorphisms using Sanger sequencing. Multivariate analysis was used to correlate these results with transplant outcomes. RESULTS In adult patients, LNK1 homozygous CB significantly improved 60-day neutrophil engraftment (hazard ratio (HR) 0.6; 95% confidence interval (CI) 0.4-0.9; p = .003). In paediatrics, HNK1 homozygous CB improved 60-day engraftment (HR 0.4; 95% CI 0.2-0.7; p = .003), as did MICA-129 methionine+ CB grafts (HR 1.7 95% CI 1.1-2.6; p = .02). CONCLUSION CB NKG2D and MICA genotypes potentially improve CB HSC engraftment. However, results contrast between adult and paediatric recipients and may reflect transplant procedure disparities between cohorts.
Collapse
Affiliation(s)
- Steven T Cox
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
| | - Warren Patterson
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
| | - Richard Duggleby
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
| | - Owen J R Jones
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
| | | | | | | | | | - Fernanda Volt
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Éliane Gluckman
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Richard Szydlo
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Robert D Danby
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
- Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Diana Hernandez
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
| |
Collapse
|
12
|
Rejeski K, Jain MD, Shah NN, Perales MA, Subklewe M. Immune effector cell-associated haematotoxicity after CAR T-cell therapy: from mechanism to management. Lancet Haematol 2024; 11:e459-e470. [PMID: 38734026 DOI: 10.1016/s2352-3026(24)00077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 05/13/2024]
Abstract
Genetically engineered chimeric antigen receptor (CAR) T cells have become an effective treatment option for several advanced B-cell malignancies. Haematological side-effects, classified in 2023 as immune effector cell-associated haematotoxicity (ICAHT), are very common and can predispose for clinically relevant infections. As haematopoietic reconstitution after CAR T-cell therapy differs from chemotherapy-associated myelosuppression, a novel classification system for early and late ICAHT has been introduced. Furthermore, a risk stratification score named CAR-HEMATOTOX has been developed to identify candidates at high risk of ICAHT, thereby enabling risk-based interventional strategies. Therapeutically, growth factor support with granulocyte colony-stimulating factor (G-CSF) is the mainstay of treatment, with haematopoietic stem cell (HSC) boosts available for patients who are refractory to G-CSF (if available). Although the underlying pathophysiology remains poorly understood, translational studies from the past 3 years suggest that CAR T-cell-induced inflammation and baseline haematopoietic function are key contributors to prolonged cytopenia. In this Review, we provide an overview of the spectrum of haematological toxicities after CAR T-cell therapy and offer perspectives on future translational and clinical developments.
Collapse
Affiliation(s)
- Kai Rejeski
- Adult BMT and Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany; Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany.
| | - Michael D Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miguel-Angel Perales
- Adult BMT and Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marion Subklewe
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany; Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany.
| |
Collapse
|
13
|
Stevens CS, Carmichael J, Watkinson R, Kowdle S, Reis RA, Hamane K, Jang J, Park A, Pernet O, Khamaikawin W, Hong P, Thibault P, Gowlikar A, An DS, Lee B. A temperature-sensitive and interferon-silent Sendai virus vector for CRISPR-Cas9 delivery and gene editing in primary human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592383. [PMID: 38746439 PMCID: PMC11092779 DOI: 10.1101/2024.05.03.592383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The transformative potential of gene editing technologies hinges on the development of safe and effective delivery methods. In this study, we developed a temperature-sensitive and interferon-silent Sendai virus (ts SeV) as a novel delivery vector for CRISPR-Cas9 and for efficient gene editing in sensitive human cell types without inducing IFN responses. ts SeV demonstrates unprecedented transduction efficiency in human CD34+ hematopoietic stem and progenitor cells (HSPCs) including transduction of the CD34+/CD38-/CD45RA-/CD90+(Thy1+)/CD49fhigh stem cell enriched subpopulation. The frequency of CCR5 editing exceeded 90% and bi-allelic CCR5 editing exceeded 70% resulting in significant inhibition of HIV-1 infection in primary human CD14+ monocytes. These results demonstrate the potential of the ts SeV platform as a safe, efficient, and flexible addition to the current gene-editing tool delivery methods, which may help to further expand the possibilities in personalized medicine and the treatment of genetic disorders.
Collapse
Affiliation(s)
- Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jillian Carmichael
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ruth Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rebecca A Reis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kory Hamane
- UCLA School of Nursing, Los Angeles, California, 90095
- UCLA AIDS Institute, Los Angeles, California, 90095
| | - Jason Jang
- UCLA School of Nursing, Los Angeles, California, 90095
- UCLA AIDS Institute, Los Angeles, California, 90095
| | - Arnold Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Olivier Pernet
- UCLA School of Nursing, Los Angeles, California, 90095
- UCLA AIDS Institute, Los Angeles, California, 90095
| | - Wannisa Khamaikawin
- UCLA School of Nursing, Los Angeles, California, 90095
- UCLA AIDS Institute, Los Angeles, California, 90095
| | - Patrick Hong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Patricia Thibault
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Aditya Gowlikar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Dong Sung An
- UCLA School of Nursing, Los Angeles, California, 90095
- UCLA AIDS Institute, Los Angeles, California, 90095
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
14
|
Wijshake T, Rose J, Wang J, Zielke J, Marlar-Pavey M, Chen W, Collins JJ, Agathocleous M. Schistosome Infection Impacts Hematopoiesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:607-616. [PMID: 38169327 PMCID: PMC10872488 DOI: 10.4049/jimmunol.2300195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Helminth infections are common in animals. However, the impact of a helminth infection on the function of hematopoietic stem cells (HSCs) and other hematopoietic cells has not been comprehensively defined. In this article, we describe the hematopoietic response to infection of mice with Schistosoma mansoni, a parasitic flatworm that causes schistosomiasis. We analyzed the frequency or number of hematopoietic cell types in the bone marrow, spleen, liver, thymus, and blood and observed multiple hematopoietic changes caused by infection. Schistosome infection impaired bone marrow HSC function after serial transplantation. Functional HSCs were present in the infected liver. Infection blocked bone marrow erythropoiesis and augmented spleen erythropoiesis, observations consistent with the anemia and splenomegaly prevalent in schistosomiasis patients. This work defines the hematopoietic response to schistosomiasis, a debilitating disease afflicting more than 200 million people, and identifies impairments in HSC function and erythropoiesis.
Collapse
Affiliation(s)
- Tobias Wijshake
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joseph Rose
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jipeng Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
- Current address: State Key Laboratory of Genetic Engineering, School of Life Sciences at Fudan University, Shanghai, China
| | - Jacob Zielke
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Madeleine Marlar-Pavey
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weina Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michalis Agathocleous
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Liu Y, Zhang L, Wang L, Tang X, Wan S, Huang Q, Ran M, Shen H, Yang Y, Chiampanichayakul S, Tima S, Anuchapreeda S, Wu J. Targeting CD38/ ADP-ribosyl cyclase as a novel therapeutic strategy for identification of three potent agonists for leukopenia treatment. Pharmacol Res 2024; 200:107068. [PMID: 38232908 DOI: 10.1016/j.phrs.2024.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Leukopenia is the most common side effect of chemotherapy and radiotherapy. It potentially deteriorates into a life-threatening complication in cancer patients. Despite several agents being approved for clinical administration, there are still high incidences of pathogen-related disease due to a lack of functional immune cells. ADP-ribosyl cyclase of CD38 displays a regulatory effect on leukopoiesis and the immune system. To explore whether the ADP-ribosyl cyclase was a potential therapeutic target of leukopenia. We established a drug screening model based on an ADP-ribosyl cyclase-based pharmacophore generation algorithm and discovered three novel ADP-ribosyl cyclase agonists: ziyuglycoside II (ZGSII), brevifolincarboxylic acid (BA), and 3,4-dihydroxy-5-methoxybenzoic acid (DMA). Then, in vitro experiments demonstrated that these three natural compounds significantly promoted myeloid differentiation and antibacterial activity in NB4 cells. In vivo, experiments confirmed that the compounds also stimulated the recovery of leukocytes in irradiation-induced mice and zebrafish. The mechanism was investigated by network pharmacology, and the top 12 biological processes and the top 20 signaling pathways were obtained by intersecting target genes among ZGSII, BA, DMA, and leukopenia. The potential signaling molecules involved were further explored through experiments. Finally, the ADP-ribosyl cyclase agonists (ZGSII, BA, and DMA) has been found to regenerate microbicidal myeloid cells to effectively ameliorate leukopenia-associated infection by activating CD38/ADP-ribosyl cyclase-Ca2+-NFAT. In summary, this study constructs a drug screening model to discover active compounds against leukopenia, reveals the critical roles of ADP-ribosyl cyclase in promoting myeloid differentiation and the immune response, and provides a promising strategy for the treatment of radiation-induced leukopenia.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Linwei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoqin Tang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengli Wan
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qianqian Huang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mei Ran
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hongping Shen
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Yang
- Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Sawitree Chiampanichayakul
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Singkome Tima
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Songyot Anuchapreeda
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
16
|
Rejeski K, Subklewe M, Locke FL. Recognizing, defining, and managing CAR-T hematologic toxicities. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:198-208. [PMID: 38066881 PMCID: PMC10727074 DOI: 10.1182/hematology.2023000472] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Autologous CAR-T cell therapy (CAR-T) has improved outcomes for patients with B-cell malignancies. It is associated with the well-described canonical toxicities cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), which may be abrogated by corticosteroids and the anti-IL6 receptor antagonist tocilizumab. Practitioners and researchers should be aware of additional toxicities. Here we review current understanding and management of hematologic toxicities after CAR-T, including cytopenias, coagulopathies, bleeding and clotting events, hemophagocytic-lymphohistiocytosis, and tumor lysis syndrome. We pay particular attention to cytopenias, recently termed immune effector cell-associated hematological toxicity (ICAHT). While the "H" is silent, hematotoxicity is not: ICAHT has the highest cumulative incidence of all immune adverse events following CAR-T. Early cytopenia (day 0-30) is closely linked to lymphodepleting chemotherapy and CRS-related inflammatory stressors. Late ICAHT (after day 30) can present either with or without antecedent count recovery (e.g., "intermittent" vs "aplastic" phenotype), and requires careful evaluation and management strategies. Growth factor support is the mainstay of treatment, with recent evidence demonstrating safety and feasibility of early granulocyte colony-stimulating factor (G-CSF) (e.g., within week 1). In G-CSF refractory cases, autologous stem cell boosts represent a promising treatment avenue, if available. The CAR-HEMATOTOX scoring system, validated for use across lymphoid malignancies (B-NHL, multiple myeloma), enables pretherapeutic risk assessment and presents the potential for risk-adapted management. Recent expert panels have led to diagnostic scoring criteria, severity grading systems, and management strategies for both ICAHT and the recently termed immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome (IEC-HS), now clarified and defined as a distinct entity from CRS.
Collapse
Affiliation(s)
- Kai Rejeski
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
17
|
Liu Q, Hu T, Li H, Shen Y, Wu D, Ye B. Prolonged haematologic toxicity in CAR-T-cell therapy: A review. J Cell Mol Med 2023; 27:3662-3671. [PMID: 37702530 PMCID: PMC10718150 DOI: 10.1111/jcmm.17930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Chimeric antigen receptor-T-cell (CAR-T-cell) therapy is a novel immunotherapy with encouraging results for treatment of relapsed/refractory haematologic malignancies. With increasing use, our understanding of immune-mediated side effects such as cytokine release syndrome and neurotoxicity has improved; nevertheless, prolonged haematologic toxicity (PHT), with a high incidence rate, remains underrecognized. Owing to heterogeneity in populations, the CAR-T cells used and diseases treated as well as differences in the definition of PHT, its rate, risk factors and management vary across studies. In this review, we provide a narrative of PHT occurring in patients following CAR-T-cell therapy; evidence of PHT treatment strategies is also presented, with the aim of contributing to systematic understanding of PHT.
Collapse
Affiliation(s)
- Qi Liu
- Department of HematologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
- The First School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Tonglin Hu
- Department of HematologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
- The First School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Hangchao Li
- Department of HematologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
- The First School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Yingying Shen
- Department of HematologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
- The First School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Dijiong Wu
- Department of HematologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
- The First School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Baodong Ye
- Department of HematologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
- The First School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
18
|
Liu DX, Pahar B, Perry DL, Xu H, Cooper TK, Huzella LM, Hart RJ, Hischak AMW, Bernbaum J, St Claire M, Byrum R, Bennett RS, Warren T, Holbrook MR, Hensley LE, Crozier I, Schmaljohn CS. Depletion of Bone Marrow Hematopoietic Cells in Ebolavirus-Infected Rhesus Macaques: A Possible Cause of Hematologic Abnormalities in Ebolavirus Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2031-2046. [PMID: 37689386 PMCID: PMC10699128 DOI: 10.1016/j.ajpath.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
The pathophysiology of long-recognized hematologic abnormalities in Ebolavirus (EBOV) disease (EVD) is unknown. From limited human sampling (of peripheral blood), it has been postulated that emergency hematopoiesis plays a role in severe EVD, but the systematic characterization of the bone marrow (BM) has not occurred in human disease or in nonhuman primate models. In a lethal rhesus macaque model of EVD, 18 sternal BM samples exposed to the Kikwit strain of EBOV were compared to those from uninfected controls (n = 3). Immunohistochemistry, RNAscope in situ hybridization, transmission electron microscopy, and confocal microscopy showed that EBOV infects BM monocytes/macrophages and megakaryocytes. EBOV exposure was associated with severe BM hypocellularity, including depletion of myeloid, erythroid, and megakaryocyte hematopoietic cells. These depletions were negatively correlated with cell proliferation (Ki67 expression) and were not associated with BM apoptosis during disease progression. In EBOV-infected rhesus macaques with terminal disease, BM showed marked hemophagocytosis, megakaryocyte emperipolesis, and the release of immature hematopoietic cells into the sinusoids. Collectively, these data demonstrate not only direct EBOV infection of BM monocytes/macrophages and megakaryocytes but also that disease progression is associated with hematopoietic failure, notably in peripheral cytopenia. These findings inform current pathophysiologic unknowns and suggest a crucial role for BM dysfunction and/or failure, including emergency hematopoiesis, as part of the natural history of severe human disease.
Collapse
Affiliation(s)
- David X Liu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland.
| | - Bapi Pahar
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Donna L Perry
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Huanbin Xu
- Department of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, Frederick, Maryland
| | - Timothy K Cooper
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Louis M Huzella
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Randy J Hart
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Amanda M W Hischak
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - John Bernbaum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Marisa St Claire
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Russell Byrum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Richard S Bennett
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Travis Warren
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Connie S Schmaljohn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
19
|
Rejeski K, Wang Y, Albanyan O, Munoz J, Sesques P, Iacoboni G, Lopez-Corral L, Ries I, Bücklein VL, Mohty R, Dreyling M, Baluch A, Shah B, Locke FL, Hess G, Barba P, Bachy E, Lin Y, Subklewe M, Jain MD. The CAR-HEMATOTOX score identifies patients at high risk for hematological toxicity, infectious complications, and poor treatment outcomes following brexucabtagene autoleucel for relapsed or refractory MCL. Am J Hematol 2023; 98:1699-1710. [PMID: 37584447 PMCID: PMC10659121 DOI: 10.1002/ajh.27056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 08/17/2023]
Abstract
CD19-directed CAR T-cell therapy with brexucabtagene autoleucel (brexu-cel) has substantially improved treatment outcomes for patients with relapsed/refractory mantle cell lymphoma (r/r MCL). Prolonged cytopenias and infections represent common and clinically relevant side effects. In this multicenter observational study, we describe cytopenias and infections in 103 r/r MCL patients receiving brexu-cel. Furthermore, we report associations between the baseline CAR-HEMATOTOX (HT) score and toxicity events, non-relapse mortality (NRM), and progression-free/overall survival (PFS/OS). At lymphodepletion, 56 patients were HTlow (score 0-1) while 47 patients were HThigh (score ≥2). The HThigh cohort exhibited prolonged neutropenia (median 14 vs. 6 days, p < .001) and an increased rate of severe infections (30% vs. 5%, p = .001). Overall, 1-year NRM was 10.4%, primarily attributed to infections, and differed by baseline HT score (high vs. low: 17% vs. 4.6%, p = .04). HThigh patients experienced inferior 90-day complete response rate (68% vs. 93%, p = .002), PFS (median 9 months vs. not-reached, p < .0001), and OS (median 26 months vs. not-reached, p < .0001). Multivariable analyses showed that high HT scores were independently associated with severe hematotoxicity, infections, and poor PFS/OS. In conclusion, infections and hematotoxicity are common after brexu-cel and contribute to NRM. The baseline HT score identified patients at increased risk of poor treatment outcomes.
Collapse
Affiliation(s)
- Kai Rejeski
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
| | - Yucai Wang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Omar Albanyan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, USA
| | - Javier Munoz
- Division of Hematology and Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Pierre Sesques
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, Pierre-Bénite, France
| | - Gloria Iacoboni
- Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, Universitat Autònoma of Barcelona (UAB), Department of Medicine, Barcelona, Spain
| | - Lucia Lopez-Corral
- Department of Hematology, Hospital Clínico Universitario de Salamanca, IBSAL, CIBERONC, Salamanca, Spain
- Centro de Investigación del Cáncer-IBMCC, Salamanca, Spain
| | - Isabelle Ries
- Department of Hematology, Oncology and Pneumology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Veit L. Bücklein
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Razan Mohty
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, USA
| | - Martin Dreyling
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Aliyah Baluch
- Infectious Diseases, Moffitt Cancer Center, Tampa, USA
| | - Bijal Shah
- Dept. of Malignant Hematology, Moffitt Cancer Center, Tampa, USA
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, USA
| | - Georg Hess
- Department of Hematology, Oncology and Pneumology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Pere Barba
- Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, Universitat Autònoma of Barcelona (UAB), Department of Medicine, Barcelona, Spain
| | - Emmanuel Bachy
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, Pierre-Bénite, France
| | - Yi Lin
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Marion Subklewe
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
| | - Michael D. Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, USA
| |
Collapse
|
20
|
Rundberg Nilsson AJ, Xian H, Shalapour S, Cammenga J, Karin M. IRF1 regulates self-renewal and stress responsiveness to support hematopoietic stem cell maintenance. SCIENCE ADVANCES 2023; 9:eadg5391. [PMID: 37889967 PMCID: PMC10610924 DOI: 10.1126/sciadv.adg5391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Hematopoietic stem cells (HSCs) are tightly controlled to maintain a balance between blood cell production and self-renewal. While inflammation-related signaling is a critical regulator of HSC activity, the underlying mechanisms and the precise functions of specific factors under steady-state and stress conditions remain incompletely understood. We investigated the role of interferon regulatory factor 1 (IRF1), a transcription factor that is affected by multiple inflammatory stimuli, in HSC regulation. Our findings demonstrate that the loss of IRF1 from mouse HSCs significantly impairs self-renewal, increases stress-induced proliferation, and confers resistance to apoptosis. In addition, given the frequent abnormal expression of IRF1 in leukemia, we explored the potential of IRF1 expression level as a stratification marker for human acute myeloid leukemia. We show that IRF1-based stratification identifies distinct cancer-related signatures in patient subgroups. These findings establish IRF1 as a pivotal HSC controller and provide previously unknown insights into HSC regulation, with potential implications to IRF1 functions in the context of leukemia.
Collapse
Affiliation(s)
- Alexandra J. S. Rundberg Nilsson
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Molecular Medicine and Gene Therapy, Institution for Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
- Lund Stem Cell Center, Medical Faculty, Lund University, Lund, Sweden
| | - Hongxu Xian
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jörg Cammenga
- Division of Molecular Medicine and Gene Therapy, Institution for Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
- Lund Stem Cell Center, Medical Faculty, Lund University, Lund, Sweden
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Rejeski K, Perez A, Iacoboni G, Blumenberg V, Bücklein VL, Völkl S, Penack O, Albanyan O, Stock S, Müller F, Karschnia P, Petrera A, Reid K, Faramand R, Davila ML, Modi K, Dean EA, Bachmeier C, von Bergwelt-Baildon M, Locke FL, Bethge W, Bullinger L, Mackensen A, Barba P, Jain MD, Subklewe M. Severe hematotoxicity after CD19 CAR-T therapy is associated with suppressive immune dysregulation and limited CAR-T expansion. SCIENCE ADVANCES 2023; 9:eadg3919. [PMID: 37738350 PMCID: PMC10516499 DOI: 10.1126/sciadv.adg3919] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Prolonged cytopenias after chimeric antigen receptor (CAR) T cell therapy are a significant clinical problem and the underlying pathophysiology remains poorly understood. Here, we investigated how (CAR) T cell expansion dynamics and serum proteomics affect neutrophil recovery phenotypes after CD19-directed CAR T cell therapy. Survival favored patients with "intermittent" neutrophil recovery (e.g., recurrent neutrophil dips) compared to either "quick" or "aplastic" recovery. While intermittent patients displayed increased CAR T cell expansion, aplastic patients exhibited an unfavorable relationship between expansion and tumor burden. Proteomics of patient serum collected at baseline and in the first month after CAR-T therapy revealed higher markers of endothelial dysfunction, inflammatory cytokines, macrophage activation, and T cell suppression in the aplastic phenotype group. Prolonged neutrophil aplasia thus occurs in patients with systemic immune dysregulation at baseline with subsequently impaired CAR-T expansion and myeloid-related inflammatory changes. The association between neutrophil recovery and survival outcomes highlights critical interactions between host hematopoiesis and the immune state stimulated by CAR-T infusion.
Collapse
Affiliation(s)
- Kai Rejeski
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
| | - Ariel Perez
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
- Blood and Marrow Transplant Program, Miami Cancer Institute, Miami, FL, USA
| | - Gloria Iacoboni
- Department of Hematology, University Hospital Vall d’Hebron, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Viktoria Blumenberg
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
| | - Veit L. Bücklein
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
| | - Simon Völkl
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Olaf Penack
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Department of Hematology, Oncology and Tumorimmunology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Omar Albanyan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
- Adult Hematology-Oncology and Stem Cell Transplantation, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Sophia Stock
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
| | - Fabian Müller
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Agnese Petrera
- Metabolomics and Proteomics Core Facility, Helmholtz Zentrum Munich – German Research Center for Environmental Health, Munich, Germany
| | - Kayla Reid
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Rawan Faramand
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Marco L. Davila
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Karnav Modi
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Erin A. Dean
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Christina Bachmeier
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Michael von Bergwelt-Baildon
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Wolfgang Bethge
- Department of Hematology, Oncology, Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Lars Bullinger
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Department of Hematology, Oncology and Tumorimmunology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Mackensen
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Pere Barba
- Department of Hematology, University Hospital Vall d’Hebron, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Michael D. Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Marion Subklewe
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
| |
Collapse
|
22
|
Rejeski K, Subklewe M, Aljurf M, Bachy E, Balduzzi A, Barba P, Bruno B, Benjamin R, Carrabba MG, Chabannon C, Ciceri F, Corradini P, Delgado J, Di Blasi R, Greco R, Houot R, Iacoboni G, Jäger U, Kersten MJ, Mielke S, Nagler A, Onida F, Peric Z, Roddie C, Ruggeri A, Sánchez-Guijo F, Sánchez-Ortega I, Schneidawind D, Schubert ML, Snowden JA, Thieblemont C, Topp M, Zinzani PL, Gribben JG, Bonini C, Sureda A, Yakoub-Agha I. Immune effector cell-associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations. Blood 2023; 142:865-877. [PMID: 37300386 DOI: 10.1182/blood.2023020578] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Hematological toxicity is the most common adverse event after chimeric antigen receptor (CAR) T-cell therapy. Cytopenias can be profound and long-lasting and can predispose for severe infectious complications. In a recent worldwide survey, we demonstrated that there remains considerable heterogeneity in regard to current practice patterns. Here, we sought to build consensus on the grading and management of immune effector cell-associated hematotoxicity (ICAHT) after CAR T-cell therapy. For this purpose, a joint effort between the European Society for Blood and Marrow Transplantation (EBMT) and the European Hematology Association (EHA) involved an international panel of 36 CAR T-cell experts who met in a series of virtual conferences, culminating in a 2-day meeting in Lille, France. On the basis of these deliberations, best practice recommendations were developed. For the grading of ICAHT, a classification system based on depth and duration of neutropenia was developed for early (day 0-30) and late (after day +30) cytopenia. Detailed recommendations on risk factors, available preinfusion scoring systems (eg, CAR-HEMATOTOX score), and diagnostic workup are provided. A further section focuses on identifying hemophagocytosis in the context of severe hematotoxicity. Finally, we review current evidence and provide consensus recommendations for the management of ICAHT, including growth factor support, anti-infectious prophylaxis, transfusions, autologous hematopoietic stem cell boost, and allogeneic hematopoietic cell transplantation. In conclusion, we propose ICAHT as a novel toxicity category after immune effector cell therapy, provide a framework for its grading, review literature on risk factors, and outline expert recommendations for the diagnostic workup and short- and long-term management.
Collapse
Affiliation(s)
- Kai Rejeski
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mahmoud Aljurf
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Emmanuel Bachy
- Department of Hematology, Hospices Civils de Lyon and Université Claude Bernard Lyon 1, Lyon, France
| | - Adriana Balduzzi
- Pediatric Transplantation Unit, Department of Medicine and Surgery, University of Milan-Bicocca-Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Pere Barba
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Benedetto Bruno
- Division of Hematology and Cell Therapy Unit, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Reuben Benjamin
- School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Matteo G Carrabba
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Milan, Italy
| | - Christian Chabannon
- Institut Paoli-Calmettes Comprehensive Cancer Centre and Module Biothérapies du Centre d'Investigations Cliniques de Marseille, INSERM-Aix-Marseille Université-AP-HM-IPC, CBT-1409, Marseille, France
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Milan, Italy
| | - Paolo Corradini
- Division of Hematology and Stem Cell Transplantation, Fondazione IRCCS Instituto Nazionale dei Tumori, University of Milan, Milan, Italy
| | - Julio Delgado
- Oncoimmunotherapy Unit, Department of Hematology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Roberta Di Blasi
- Université de Paris, Assistance Publique-Hopitaux de Paris, Service d'hémato-oncologie, Paris, France
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Milan, Italy
| | - Roch Houot
- Department of Hematology, CHU Rennes, University of Rennes, INSERM U1236, Rennes, France
| | - Gloria Iacoboni
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ulrich Jäger
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Marie José Kersten
- Department of Hematology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Stephan Mielke
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Department of Laboratory Medicine and Medicine Huddinge, Karolinska University Hospital and Institute, Stockholm, Sweden
| | - Arnon Nagler
- Division of Hematology, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Francesco Onida
- Hematology and Bone Marrow Transplantation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Zinaida Peric
- Department of Hematology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Claire Roddie
- Department of Hematology, University College London Hospital, London, United Kingdom
| | - Annalisa Ruggeri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Milan, Italy
| | - Fermín Sánchez-Guijo
- University of Salamanca, IBSAL-University Hospital of Salamanca, Salamanca, Spain
| | - Isabel Sánchez-Ortega
- Executive Office, European Society for Blood and Marrow Transplantation, Barcelona, Spain
| | - Dominik Schneidawind
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Catherine Thieblemont
- Université de Paris, Assistance Publique-Hopitaux de Paris, Service d'hémato-oncologie, Paris, France
| | - Max Topp
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - John G Gribben
- Barts Cancer Institute, Queen Mary, University of London, London, United Kingdom
| | - Chiara Bonini
- Division of Immunology, Transplantation and Infectious Disease, Experimental Hematology Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Sureda
- Clinical Hematology Department, Institut Català d'Oncologia-L'Hospitalet, Barcelona, Spain
| | | |
Collapse
|
23
|
Maceiras AR, Silvério D, Gonçalves R, Cardoso MS, Saraiva M. Infection with hypervirulent Mycobacterium tuberculosis triggers emergency myelopoiesis but not trained immunity. Front Immunol 2023; 14:1211404. [PMID: 37383236 PMCID: PMC10296772 DOI: 10.3389/fimmu.2023.1211404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction During infection, bone marrow (BM) hematopoiesis is reprogrammed toward myeloid cell production, a mechanism named emergency myelopoiesis. In addition to replenishing myeloid cells, emergency myelopoiesis has been linked to trained immunity, a process that allows enhanced innate immune responses to secondary challenges. Although hematopoietic alterations during tuberculosis (TB) have been described and Mycobacterium tuberculosis may colonize the BM, studies using the mouse model of infection and the laboratory reference strain M. tuberculosis H37Rv have demonstrated limited emergency myelopoiesis and trained immunity. Methods To further address this issue, we aerosol- infected C57BL/6 mice with high doses of the hypervirulent M. tuberculosis isolate HN878 and monitored alterations to the BM. This experimental model better resembles the human blood immune signature of TB. Results and discussion We found increased frequencies of lineage-Sca-1+cKit+ (LSK) cells and the granulocyte/macrophage progenitor (GMP) population. At the mature cell level, we observed an increase of monocytes and neutrophils in the blood and lung, likely reflecting the increased BM myeloid output. Monocytes or monocyte-derived macrophages recovered from the BM of M. tuberculosis HN878-infected mice did not show signs of trained immunity, suggesting an uncoupling of emergency myelopoiesis and trained immunity in the BM. Surprisingly, M. tuberculosis HN878-induced emergency myelopoiesis was not fully dependent on IFNγ, as mice lacking this cytokine and infected under the same conditions as wild-type mice still presented BM alterations. These data expand our understanding of the immune response to M. tuberculosis and raise awareness of pathogen strain-imposed differences to host responses.
Collapse
Affiliation(s)
- Ana Raquel Maceiras
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Diogo Silvério
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Rute Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Marcos S. Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Margarida Saraiva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
24
|
Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther 2023; 8:239. [PMID: 37291105 PMCID: PMC10248351 DOI: 10.1038/s41392-023-01502-8] [Citation(s) in RCA: 306] [Impact Index Per Article: 153.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Aging is characterized by systemic chronic inflammation, which is accompanied by cellular senescence, immunosenescence, organ dysfunction, and age-related diseases. Given the multidimensional complexity of aging, there is an urgent need for a systematic organization of inflammaging through dimensionality reduction. Factors secreted by senescent cells, known as the senescence-associated secretory phenotype (SASP), promote chronic inflammation and can induce senescence in normal cells. At the same time, chronic inflammation accelerates the senescence of immune cells, resulting in weakened immune function and an inability to clear senescent cells and inflammatory factors, which creates a vicious cycle of inflammation and senescence. Persistently elevated inflammation levels in organs such as the bone marrow, liver, and lungs cannot be eliminated in time, leading to organ damage and aging-related diseases. Therefore, inflammation has been recognized as an endogenous factor in aging, and the elimination of inflammation could be a potential strategy for anti-aging. Here we discuss inflammaging at the molecular, cellular, organ, and disease levels, and review current aging models, the implications of cutting-edge single cell technologies, as well as anti-aging strategies. Since preventing and alleviating aging-related diseases and improving the overall quality of life are the ultimate goals of aging research, our review highlights the critical features and potential mechanisms of inflammation and aging, along with the latest developments and future directions in aging research, providing a theoretical foundation for novel and practical anti-aging strategies.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China
| | - Chentao Li
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Wanying Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yanan Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Thapa R, Elfassy E, Olender L, Sharabi O, Gazit R. Rapid activation of hematopoietic stem cells. Stem Cell Res Ther 2023; 14:152. [PMID: 37280691 DOI: 10.1186/s13287-023-03377-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
Adult hematopoietic stem cells (HSCs) in the bone marrow (BM) are quiescent. Following perturbations, such as blood loss or infection, HSCs may undergo activation. Surprisingly, little is known about the earliest stages of HSCs activation. We utilize surface markers of HSCs activation, CD69 and CD317, revealing a response as early as 2 h after stimulation. The dynamic expression of HSCs activation markers varies between viral-like (poly-Inosinic-poly-Cytidylic) or bacterial-like (Lipopolysaccharide) immune stimuli. We further quantify dose response, revealing a low threshold, and similar sensitivity of HSCs and progenitors in the BM. Finally, we find a positive correlation between the expression of surface activation markers and early exit from quiescence. Our data show that the response of adult stem cells to immune stimulation is rapid and sensitive, rapidly leading HSCs out of quiescence.
Collapse
Affiliation(s)
- Roshina Thapa
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, National Institute for Biotechnology in the Negev, The Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Erez Elfassy
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, National Institute for Biotechnology in the Negev, The Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| | - Leonid Olender
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, National Institute for Biotechnology in the Negev, The Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Omri Sharabi
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, National Institute for Biotechnology in the Negev, The Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, National Institute for Biotechnology in the Negev, The Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
26
|
Vieri M, Rolles B, Crocioni M, Schemionek-Reinders M, Isfort S, Panse J, Brümmendorf TH, Beier F. Eltrombopag Preserves the Clonogenic Potential of Hematopoietic Stem Cells During Treatment With Antithymocyte Globulin in Patients With Aplastic Anemia. Hemasphere 2023; 7:e906. [PMID: 37304936 PMCID: PMC10249716 DOI: 10.1097/hs9.0000000000000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Aplastic anemia (AA) is frequently caused by a T-cell mediated autoimmune depletion of the hematopoietic stem and progenitor cell (HSPC) compartment. Immunosuppressive therapy (IST) with antithymocyte globulin (ATG) and cyclosporine represents the first-line treatment of AA. One side effect of ATG therapy is the release of proinflammatory cytokines such as interferon-gamma (IFN-γ), which is considered a major factor in the pathogenic autoimmune depletion of HSPC. Recently, eltrombopag (EPAG) was introduced for therapy of refractory AA patients due to its ability to bypass IFN-γ-mediated HSPC inhibition among other mechanisms. Clinical trials have evidenced that EPAG started simultaneously with IST leads to a higher response rate compared with its later administration schedules. We hypothesize that EPAG might protect HSPC from negative effects of ATG-induced release of cytokines. We observed a significant decrease in colony numbers when both healthy peripheral blood (PB) CD34+ cells and AA-derived bone marrow cells were cultured in the presence of serum from patients under ATG treatment, as compared with before treatment. Consistent with our hypothesis, this effect could be rescued by adding EPAG in vitro to both healthy and AA-derived cells. By employing an IFN-γ neutralizing antibody, we also demonstrated that the deleterious early ATG effects on the healthy PB CD34+ compartment were mediated at least partially by IFN-γ. Hence, we provide evidence for the hitherto unexplained clinical observation that concomitant use of EPAG in addition to IST comprising ATG leads to improved response in patients with AA.
Collapse
Affiliation(s)
- Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Benjamin Rolles
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Maria Crocioni
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
- Department of Medicine and Surgery, University of Perugia, Italy
| | - Mirle Schemionek-Reinders
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Susanne Isfort
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| |
Collapse
|
27
|
Rundberg Nilsson A, Xian H, Shalapour S, Cammenga J, Karin M. IRF1 regulates self-renewal and stress-responsiveness to support hematopoietic stem cell maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525321. [PMID: 36747722 PMCID: PMC9900858 DOI: 10.1101/2023.01.24.525321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inflammatory mediators induce emergency myelopoiesis and cycling of adult hematopoietic stem cells (HSCs) through incompletely understood mechanisms. To suppress the unwanted effects of inflammation and preserve its beneficial outcomes, the mechanisms by which inflammation affects hematopoiesis need to be fully elucidated. Rather than focusing on specific inflammatory stimuli, we here investigated the role of transcription factor Interferon (IFN) regulatory factor 1 (IRF1), which receives input from several inflammatory signaling pathways. We identify IRF1 as a master HSC regulator. IRF1 loss impairs HSC self-renewal, increases stress-induced cell cycle activation, and confers apoptosis resistance. Transcriptomic analysis revealed an aged, inflammatory signature devoid of IFN signaling with reduced megakaryocytic/erythroid priming and antigen presentation in IRF1-deficient HSCs. Finally, we conducted IRF1-based AML patient stratification to identify groups with distinct proliferative, survival and differentiation features, overlapping with our murine HSC results. Our findings position IRF1 as a pivotal regulator of HSC preservation and stress-induced responses.
Collapse
Affiliation(s)
- Alexandra Rundberg Nilsson
- Department of Pharmacology, Laboratory of Gene Regulation and
Signal Transduction, University of California San Diego (UCSD), United States
- Medical Faculty, Division of Molecular Medicine and Gene Therapy,
Institution for Laboratory Medicine, Lund University, Sweden
- Medical Faculty, Lund Stem Cell Center, Lund University,
Sweden
- Lead contact
| | - Hongxu Xian
- Department of Pharmacology, Laboratory of Gene Regulation and
Signal Transduction, University of California San Diego (UCSD), United States
| | - Shabnam Shalapour
- Department of Pharmacology, Laboratory of Gene Regulation and
Signal Transduction, University of California San Diego (UCSD), United States
- Department of Cancer Biology, The University of Texas MD Anderson
Cancer Center, United States
| | - Jörg Cammenga
- Medical Faculty, Division of Molecular Medicine and Gene Therapy,
Institution for Laboratory Medicine, Lund University, Sweden
- Medical Faculty, Lund Stem Cell Center, Lund University,
Sweden
| | - Michael Karin
- Department of Pharmacology, Laboratory of Gene Regulation and
Signal Transduction, University of California San Diego (UCSD), United States
| |
Collapse
|
28
|
Gurnari C, Visconte V. From bone marrow failure syndromes to VEXAS: Disentangling clonal hematopoiesis, immune system, and molecular drivers. Leuk Res 2023; 127:107038. [PMID: 36841022 DOI: 10.1016/j.leukres.2023.107038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
Clonal hematopoiesis (CH) is a result of the selective expansion of hematopoietic stem and progenitor cells (HSPCs) carrying somatic mutations originating from a primary HSC. The advent of modern genomic technologies has helped recognizing that CH is common in elderly healthy subjects as a result of the aging bone marrow (BM). CH in healthy subjects without abnormalities in blood counts is known as CH of indeterminate potential. CH is also seen in BM failure (BMF) disorders. Whether CH alarms for the risk to develop malignant evolution in BMF or creates an adaptation to selective pressure is a matter of controversy. As such, a continuum might exist from pre-malignant to malignant hematopoietic diseases. This review summarizes how somatic mutations and immune derangement in HSCs shape disease evolution and describes the complexity of disorders such as VEXAS as the prototypic tetrad of somatic mutations, morphologic features, inflammatory pathways and immune overshooting. In such a view, we interconnect the axis aging and immune-hematopoietic system, which all convey important clues for the risk to develop malignancies.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
29
|
Wijshake T, Wang J, Rose J, Marlar-Pavey M, Collins JJ, Agathocleous M. Helminth infection impacts hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528073. [PMID: 36798229 PMCID: PMC9934639 DOI: 10.1101/2023.02.10.528073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Helminth infections are common in animals. However, the impact of a helminth infection on the function of hematopoietic stem cells (HSCs) and other hematopoietic cells has not been comprehensively defined. Here we describe the hematopoietic response to infection of mice with Schistosoma mansoni, a parasitic flatworm which causes schistosomiasis. We analyzed the frequency or number of hematopoietic cell types in the bone marrow, spleen, liver, thymus, and blood, and observed multiple hematopoietic changes caused by infection. Schistosome infection impaired bone marrow HSC function after serial transplantation. Functional HSCs were present in the infected liver. Infection blocked bone marrow erythropoiesis and augmented spleen erythropoiesis, observations consistent with the anemia and splenomegaly prevalent in schistosomiasis patients. This work defines the hematopoietic response to schistosomiasis, a debilitating disease afflicting more than 200 million people, and identifies impairments in HSC function and erythropoiesis.
Collapse
Affiliation(s)
- Tobias Wijshake
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jipeng Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
- State Key Laboratory of Genetic Engineering, School of Life Sciences at Fudan University, Shanghai, China
| | - Joseph Rose
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Madeleine Marlar-Pavey
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michalis Agathocleous
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
30
|
Cytokine profiles are associated with prolonged hematologic toxicities after B-cell maturation antigen targeted chimeric antigen receptor-T-cell therapy. Cytotherapy 2023; 25:192-201. [PMID: 36496302 DOI: 10.1016/j.jcyt.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS The considerable efficacy of B-cell maturation antigen-targeted chimeric antigen receptor (CAR)-T-cell therapy has been extensively demonstrated in the treatment of relapsed or refractory multiple myeloma. Nevertheless, in clinical practice, prolonged hematologic toxicity (PHT) extends hospital stay and impairs long-term survival. METHODS This retrospective study reviewed 99 patients with relapsed or refractory multiple myeloma who underwent B-cell maturation antigen CAR-T-cell therapy at our institution between April 2018 and September 2021 (ChiCTR1800017404). RESULTS Among 93 evaluable patients, the incidence of prolonged hematologic toxicities was high after CAR-T-cell infusion, including 38.71% (36/93) of patients with prolonged neutropenia, 22.58% (21/93) with prolonged anemia and 59.14% (55/93) with prolonged thrombocytopenia. In addition, 9.68% (9/93) of patients experienced prolonged pancytopenia. Our multivariate analyses identified that cytokine profiles were independent risk factors for PHTs, whereas a sufficient baseline hematopoietic function and high CD4/CD8 ratio of CAR-T cells were protective factors for PHTs after CAR-T-cell infusion. Subgroup analyses found that the kinetics of post-CAR-T hematologic parameters were primarily determined by the collective effects of cytokine release syndrome and baseline hematopoietic functions, and showed influential weights for the three lineages. CONCLUSIONS Our findings improve the understanding of the impact of cytokines on hematopoietic functions, which could contribute to the mechanism investigation and exploration of potential intervention strategies.
Collapse
|
31
|
Mazet JM, Mahale JN, Tong O, Watson RA, Lechuga-Vieco AV, Pirgova G, Lau VWC, Attar M, Koneva LA, Sansom SN, Fairfax BP, Gérard A. IFNγ signaling in cytotoxic T cells restricts anti-tumor responses by inhibiting the maintenance and diversity of intra-tumoral stem-like T cells. Nat Commun 2023; 14:321. [PMID: 36658158 PMCID: PMC9852295 DOI: 10.1038/s41467-023-35948-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
IFNγ is an immune mediator with concomitant pro- and anti-tumor functions. Here, we provide evidence that IFNγ directly acts on intra-tumoral CD8 T cells to restrict anti-tumor responses. We report that expression of the IFNγ receptor β chain (IFNγR2) in CD8 T cells negatively correlates with clinical responsiveness to checkpoint blockade in metastatic melanoma patients, suggesting that the loss of sensitivity to IFNγ contributes to successful antitumor immunity. Indeed, specific deletion of IFNγR in CD8 T cells promotes tumor control in a mouse model of melanoma. Chronic IFNγ inhibits the maintenance, clonal diversity and proliferation of stem-like T cells. This leads to decreased generation of T cells with intermediate expression of exhaustion markers, previously associated with beneficial anti-tumor responses. This study provides evidence of a negative feedback loop whereby IFNγ depletes stem-like T cells to restrict anti-tumor immunity. Targeting this pathway might represent an alternative strategy to enhance T cell-based therapies.
Collapse
Affiliation(s)
- Julie M Mazet
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Jagdish N Mahale
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Orion Tong
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | - Gabriela Pirgova
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Vivian W C Lau
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Moustafa Attar
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Lada A Koneva
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Stephen N Sansom
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Cui W, Hull L, Zizzo A, Wang L, Lin B, Zhai M, Xiao M. Pharmacokinetic Study of rhIL-18BP and Its Effect on Radiation-Induced Cytokine Changes in Mouse Serum and Intestine. TOXICS 2022; 11:toxics11010035. [PMID: 36668761 PMCID: PMC9863660 DOI: 10.3390/toxics11010035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 05/14/2023]
Abstract
Administration of recombinant human IL-18 binding protein (rhIL-18BP), a natural antagonist of IL-18, significantly increased mouse survival after lethal doses of irradiation. To further understand the roles of IL-18BP in radiation mitigation, we studied the pharmacokinetic (PK) parameters of rhIL-18BP, and the serum and intestinal cytokine changes in CD2F1 mice treated with vehicle or rhIL-18BP after 9.0 Gy total body irradiation (TBI). For the PK study, non-compartmental pharmacokinetic analysis was performed using PKsolver. Serum and intestine specimens were collected to measure 44-cytokine levels. Principal component analysis showed a clear separation of the non-irradiated samples from the irradiated samples; and partial separation with or without rhIL-18BP treatment. Cytokine clusters that were significantly correlated in the serum or intestine, respectively were identified. On the individual cytokine levels, serum and intestinal cytokines that were significantly changed by irradiation and rhIL-18BP treatment were identified. Finally, cytokines that were significantly correlated between their serum and intestinal levels were identified. The current study established the PK parameters of rhIL-18BP in mice, identified significantly changed cytokines in mouse serum and intestine after radiation exposure and rhIL-18BP treatment. Current data provide critical insights into IL-18BP's mechanism of action as a radiation mitigator.
Collapse
Affiliation(s)
- Wanchang Cui
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: (W.C.); (M.X.); Tel.: +1-301-295-0695 (W.C.); +1-301-295-2597 (M.X.)
| | - Lisa Hull
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Alex Zizzo
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Li Wang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Bin Lin
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Min Zhai
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Mang Xiao
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Correspondence: (W.C.); (M.X.); Tel.: +1-301-295-0695 (W.C.); +1-301-295-2597 (M.X.)
| |
Collapse
|
33
|
Wang J, Erlacher M, Fernandez-Orth J. The role of inflammation in hematopoiesis and bone marrow failure: What can we learn from mouse models? Front Immunol 2022; 13:951937. [PMID: 36032161 PMCID: PMC9403273 DOI: 10.3389/fimmu.2022.951937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Hematopoiesis is a remarkable system that plays an important role in not only immune cell function, but also in nutrient transport, hemostasis and wound healing among other functions. Under inflammatory conditions, steady-state hematopoiesis switches to emergency myelopoiesis to give rise to the effector cell types necessary to fight the acute insult. Sustained or aberrant exposure to inflammatory signals has detrimental effects on the hematopoietic system, leading to increased proliferation, DNA damage, different forms of cell death (i.e., apoptosis, pyroptosis and necroptosis) and bone marrow microenvironment modifications. Together, all these changes can cause premature loss of hematopoiesis function. Especially in individuals with inherited bone marrow failure syndromes or immune-mediated aplastic anemia, chronic inflammatory signals may thus aggravate cytopenias and accelerate disease progression. However, the understanding of the inflammation roles in bone marrow failure remains limited. In this review, we summarize the different mechanisms found in mouse models regarding to inflammatory bone marrow failure and discuss implications for future research and clinical practice.
Collapse
Affiliation(s)
- Jun Wang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Juncal Fernandez-Orth
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
- *Correspondence: Juncal Fernandez-Orth,
| |
Collapse
|
34
|
Barakos GP, Hatzimichael E. Microenvironmental Features Driving Immune Evasion in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Diseases 2022; 10:diseases10020033. [PMID: 35735633 PMCID: PMC9221594 DOI: 10.3390/diseases10020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Bone marrow, besides the known functions of hematopoiesis, is an active organ of the immune system, functioning as a sanctuary for several mature immune cells. Moreover, evidence suggests that hematopoietic stem cells (the bone marrow’s functional unit) are capable of directly sensing and responding to an array of exogenous stimuli. This chronic immune stimulation is harmful to normal hematopoietic stem cells, while essential for the propagation of myeloid diseases, which show a dysregulated immune microenvironment. The bone marrow microenvironment in myelodysplastic syndromes (MDS) is characterized by chronic inflammatory activity and immune dysfunction, that drive excessive cellular death and through immune evasion assist in cancer cell expansion. Acute myeloid leukemia (AML) is another example of immune response failure, with features that augment immune evasion and suppression. In this review, we will outline some of the functions of the bone marrow with immunological significance and describe the alterations in the immune landscape of MDS and AML that drive disease progression.
Collapse
Affiliation(s)
- Georgios Petros Barakos
- First Department of Internal Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece;
| | - Eleftheria Hatzimichael
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece
- Correspondence:
| |
Collapse
|
35
|
Morales-Mantilla DE, King KY. FGD5 marks a subpopulation of HSPCs that resists IFN-γ-mediated differentiation. Exp Hematol 2022; 112-113:35-43. [DOI: 10.1016/j.exphem.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/04/2022]
|
36
|
Chen C, Man N, Liu F, Martin GM, Itonaga H, Sun J, Nimer SD. Epigenetic and transcriptional regulation of innate immunity in cancer. Cancer Res 2022; 82:2047-2056. [PMID: 35320354 DOI: 10.1158/0008-5472.can-21-3503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Innate immune cells participate in the detection of tumor cells via complex signaling pathways mediated by pattern-recognition receptors, such as Toll-like receptors (TLR) and NOD-like receptors (NLR). These pathways are finely tuned via multiple mechanisms, including epigenetic regulation. It is well established that hematopoietic progenitors generate innate immune cells that can regulate cancer cell behavior, and the disruption of normal hematopoiesis in pathologic states may lead to altered immunity and the development of cancer. In this review, we discuss the epigenetic and transcriptional mechanisms that underlie the initiation and amplification of innate immune signaling in cancer. We also discuss new targeting possibilities for cancer control that exploit innate immune cells and signaling molecules, potentially heralding the next generation of immunotherapy.
Collapse
Affiliation(s)
- Chuan Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Fan Liu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Gloria Mas Martin
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Hidehiro Itonaga
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jun Sun
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
37
|
Prabahran A, Koldej R, Chee L, Ritchie D. Clinical features, pathophysiology, and therapy of poor graft function post-allogeneic stem cell transplantation. Blood Adv 2022; 6:1947-1959. [PMID: 34492685 PMCID: PMC8941468 DOI: 10.1182/bloodadvances.2021004537] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
Poor graft function (PGF), defined by the presence of multilineage cytopenias in the presence of 100% donor chimerism, is a serious complication of allogeneic stem cell transplant (alloSCT). Inducers or potentiators of alloimmunity such as cytomegalovirus reactivation and graft-versus-host disease are associated with the development of PGF, however, more clinical studies are required to establish further risk factors and describe outcomes of PGF. The pathophysiology of PGF can be conceptualized as dysfunction related to the number or productivity of the stem cell compartment, defects in bone marrow microenvironment components such as mesenchymal stromal cells and endothelial cells, or immunological suppression of post-alloSCT hematopoiesis. Treatment strategies focused on improving stem cell number and function and microenvironment support of hematopoiesis have been attempted with variable success. There has been limited use of immune manipulation as a therapeutic strategy, but emerging therapies hold promise. This review details the current understanding of the causes of PGF and methods of treatment to provide a framework for clinicians managing this complex problem.
Collapse
Affiliation(s)
- Ashvind Prabahran
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Rachel Koldej
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Lynette Chee
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - David Ritchie
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
38
|
Gopal A, Ibrahim R, Fuller M, Umlandt P, Parker J, Tran J, Chang L, Wegrzyn-Woltosz J, Lam J, Li J, Lu M, Karsan A. TIRAP drives myelosuppression through an Ifnγ-Hmgb1 axis that disrupts the endothelial niche in mice. J Exp Med 2022; 219:212987. [PMID: 35089323 PMCID: PMC8932532 DOI: 10.1084/jem.20200731] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022] Open
Abstract
Inflammation is associated with bone marrow failure syndromes, but how specific molecules impact the bone marrow microenvironment is not well elucidated. We report a novel role for the miR-145 target, Toll/interleukin-1 receptor domain containing adaptor protein (TIRAP), in driving bone marrow failure. We show that TIRAP is overexpressed in various types of myelodysplastic syndromes (MDS) and suppresses all three major hematopoietic lineages. TIRAP expression promotes up-regulation of Ifnγ, leading to myelosuppression through Ifnγ-Ifnγr–mediated release of the alarmin, Hmgb1, which disrupts the bone marrow endothelial niche. Deletion of Ifnγ blocks Hmgb1 release and is sufficient to reverse the endothelial defect and restore myelopoiesis. Contrary to current dogma, TIRAP-activated Ifnγ-driven bone marrow suppression is independent of T cell function or pyroptosis. In the absence of Ifnγ, TIRAP drives myeloproliferation, implicating Ifnγ in suppressing the transformation of MDS to acute leukemia. These findings reveal novel, noncanonical roles of TIRAP, Hmgb1, and Ifnγ in the bone marrow microenvironment and provide insight into the pathophysiology of preleukemic syndromes.
Collapse
Affiliation(s)
- Aparna Gopal
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Rawa Ibrahim
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Megan Fuller
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Patricia Umlandt
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Jeremy Parker
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Jessica Tran
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Linda Chang
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanna Wegrzyn-Woltosz
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey Lam
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Jenny Li
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Melody Lu
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Apple CG, Kelly LS, Kannan KB, Ungaro RF, Moore FA, Brakenridge SC, Moldawer LL, Efron PA, Mohr AM. Ineffective Erythropoietin Response to Anemia in Sepsis. Surg Infect (Larchmt) 2022; 23:142-149. [PMID: 34958257 PMCID: PMC8892986 DOI: 10.1089/sur.2021.152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: To determine whether degree of anemia at sepsis onset is predictive of inflammatory cytokine trajectory, erythropoietin response, and recovery. Patients and Methods: Critically ill patients with sepsis were stratified into three groups based on initial hemoglobin (Hgb): Hgb <8 g/dL (severe); 8-10 g/dL (moderate); and >10 g/dL (mild). Granulocyte colony stimulating factor (G-CSF), interferon (IFN)-γ, tumor necrosis factor (TNF)-α, C-reactive protein (CRP), erythropoietin (EPO), and Zubrod scores were measured serially. Results: Thirty-four percent had severe anemia (Hgb, 7.2 ± 0.7g/dL), 35% had moderate anemia (Hgb, 9.1 ± 0.6g/dL), and 31% had mild anemia (Hgb, 11.3 ± 1.1g/dL). All groups experienced persistently high EPO levels without resolution of anemia. IFN-γ and CRP was persistently elevated in all groups. At three, six, and 12 months, the severe anemia group had higher Zubrod scores. Conclusions: Degree of anemia at sepsis onset was not associated with a difference in proinflammatory cytokine trajectory but was associated with a worse functional outcome. Despite initial elevated EPO levels, it did not correlate with resolution of anemia.
Collapse
Affiliation(s)
- Camille G. Apple
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida, USA
| | - Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida, USA
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida, USA
| | - Ricardo F. Ungaro
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida, USA
| | - Frederick A. Moore
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida, USA
| | - Scott C. Brakenridge
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida, USA
| | - Lyle L. Moldawer
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida, USA
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida, USA
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida, USA.,Address correspondence to: Dr. Alicia M. Mohr, Department of Surgery, University of Florida, 1600 SW Archer Road, Box 100108, Gainesville, FL 32610, USA
| |
Collapse
|
40
|
Landelouci K, Sinha S, Pépin G. Type-I Interferon Signaling in Fanconi Anemia. Front Cell Infect Microbiol 2022; 12:820273. [PMID: 35198459 PMCID: PMC8859461 DOI: 10.3389/fcimb.2022.820273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/14/2022] [Indexed: 01/07/2023] Open
Abstract
Fanconi Anemia (FA) is a genome instability syndrome caused by mutations in one of the 23 repair genes of the Fanconi pathway. This heterogenous disease is usually characterized by congenital abnormalities, premature ageing and bone marrow failure. FA patients also show a high predisposition to hematological and solid cancers. The Fanconi pathway ensures the repair of interstrand crosslinks (ICLs) DNA damage. Defect in one of its proteins prevents functional DNA repair, leading to the accumulation of DNA breaks and genome instability. Accumulating evidence has documented a close relationship between genome instability and inflammation, including the production of type-I Interferon. In this context, type-I Interferon is produced upon activation of pattern recognition receptors by nucleic acids including by the cyclic GMP-AMP synthase (cGAS) that detects DNA. In mouse models of diseases displaying genome instability, type-I Interferon response is responsible for an important part of the pathological symptoms, including premature aging, short stature, and neurodegeneration. This is illustrated in mouse models of Ataxia-telangiectasia and Aicardi-Goutières Syndrome in which genetic depletion of either Interferon Receptor IFNAR, cGAS or STING relieves pathological symptoms. FA is also a genetic instability syndrome with symptoms such as premature aging and predisposition to cancer. In this review we will focus on the different molecular mechanisms potentially leading to type-I Interferon activation. A better understanding of the molecular mechanisms engaging type-I Interferon signaling in FA may ultimately lead to the discovery of new therapeutic targets to rescue the pathological inflammation and premature aging associated with Fanconi Anemia.
Collapse
Affiliation(s)
- Karima Landelouci
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Shruti Sinha
- Department of Biotechnology, GITAM Institute of Technology, GITAM deemed to be University, Visakhapatnam, India
| | - Geneviève Pépin
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
41
|
Zhao K, Liu J, Zhu Y, Dong X, Yin R, Liu X, Gao H, Xiao F, Gao R, Wang Q, Zhan Y, Yu M, Chen H, Ning H, Zhang C, Yang X, Li C. Hemgn Protects Hematopoietic Stem and Progenitor Cells Against Transplantation Stress Through Negatively Regulating IFN-γ Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103838. [PMID: 34923767 PMCID: PMC8844507 DOI: 10.1002/advs.202103838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) possess the remarkable ability to regenerate the whole blood system in response to ablated stress demands. Delineating the mechanisms that maintain HSPCs during regenerative stresses is increasingly important. Here, it is shown that Hemgn is significantly induced by hematopoietic stresses including irradiation and bone marrow transplantation (BMT). Hemgn deficiency does not disturb steady-state hematopoiesis in young mice. Hemgn-/- HSPCs display defective engraftment activity during BMT with reduced homing and survival and increased apoptosis. Transcriptome profiling analysis reveals that upregulated genes in transplanted Hemgn-/- HSPCs are enriched for gene sets related to interferon gamma (IFN-γ) signaling. Hemgn-/- HSPCs show enhanced responses to IFN-γ treatment and increased aging over time. Blocking IFN-γ signaling in irradiated recipients either pharmacologically or genetically rescues Hemgn-/- HSPCs engraftment defect. Mechanistical studies reveal that Hemgn deficiency sustain nuclear Stat1 tyrosine phosphorylation via suppressing T-cell protein tyrosine phosphatase TC45 activity. Spermidine, a selective activator of TC45, rescues exacerbated phenotype of HSPCs in IFN-γ-treated Hemgn-/- mice. Collectively, these results identify that Hemgn is a critical regulator for successful engraftment and reconstitution of HSPCs in mice through negatively regulating IFN-γ signaling. Targeted Hemgn may be used to improve conditioning regimens and engraftment during HSPCs transplantation.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Jin‐Fang Liu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Ya‐Xin Zhu
- School of Life SciencesHebei UniversityNo. 180 Wusi Dong Road, Lian Chi DistrictBaoding CityHebei Province071000China
| | - Xiao‐Ming Dong
- College of Life SciencesShanxi Normal UniversityNo. 199, South Chang'an Road, Yanta DistrictXi'an710062China
| | - Rong‐Hua Yin
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Xian Liu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Hui‐Ying Gao
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Feng‐Jun Xiao
- Department of Experimental Hematology and BiochemistryBeijing Institute of Radiation MedicineBeijing100850China
| | - Rui Gao
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Qi Wang
- An Hui Medical UniversitySchool of Basic Medical SciencesHefei230032China
| | - Yi‐Qun Zhan
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Miao Yu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Hui Chen
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Hong‐Mei Ning
- Department of Hematopoietic Stem Cell TransplantationThe Fifth Medical Center of Chinese PLA General HospitalBeijing100071China
| | - Cai‐Bo Zhang
- Department of Life SciencesQilu Normal UniversityNo. 2, Wenbo Road, Zhangqiu DistrictJinanShandong250013China
| | - Xiao‐Ming Yang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Chang‐Yan Li
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- School of Life SciencesHebei UniversityNo. 180 Wusi Dong Road, Lian Chi DistrictBaoding CityHebei Province071000China
- An Hui Medical UniversitySchool of Basic Medical SciencesHefei230032China
| |
Collapse
|
42
|
Inflammation Regulates Haematopoietic Stem Cells and Their Niche. Int J Mol Sci 2022; 23:ijms23031125. [PMID: 35163048 PMCID: PMC8835214 DOI: 10.3390/ijms23031125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Haematopoietic stem cells (HSCs) reside in the bone marrow and are supported by the specialised microenvironment, a niche to maintain HSC quiescence. To deal with haematopoietic equilibrium disrupted during inflammation, HSCs are activated from quiescence directly and indirectly to generate more mature immune cells, especially the myeloid lineage cells. In the process of proliferation and differentiation, HSCs gradually lose their self-renewal potential. The extensive inflammation might cause HSC exhaustion/senescence and malignant transformation. Here, we summarise the current understanding of how HSC functions are maintained, damaged, or exhausted during acute, prolonged, and pathological inflammatory conditions. We also highlight the inflammation-altered HSC niche and its impact on escalating the insults on HSCs.
Collapse
|
43
|
Elahi S. Hematopoietic responses to SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:187. [PMID: 35284964 PMCID: PMC8918078 DOI: 10.1007/s00018-022-04220-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023]
Abstract
Under physiological conditions, hematopoietic stem and progenitor cells (HSPCs) in the bone marrow niches are responsible for the highly regulated and interconnected hematopoiesis process. At the same time, they must recognize potential threats and respond promptly to protect the host. A wide spectrum of microbial agents/products and the consequences of infection-induced mediators (e.g. cytokines, chemokines, and growth factors) can have prominent impact on HSPCs. While COVID-19 starts as a respiratory tract infection, it is considered a systemic disease which profoundly alters the hematopoietic system. Lymphopenia, neutrophilia, thrombocytopenia, and stress erythropoiesis are the hallmark of SARS-CoV-2 infection. Moreover, thrombocytopenia and blood hypercoagulability are common among COVID-19 patients with severe disease. Notably, the invasion of erythroid precursors and progenitors by SARS-CoV-2 is a cardinal feature of COVID-19 disease which may in part explain the mechanism underlying hypoxia. These pieces of evidence support the notion of skewed steady-state hematopoiesis to stress hematopoiesis following SARS-CoV-2 infection. The functional consequences of these alterations depend on the magnitude of the effect, which launches a unique hematopoietic response that is associated with increased myeloid at the expense of decreased lymphoid cells. This article reviews some of the key pathways including the infectious and inflammatory processes that control hematopoiesis, followed by a comprehensive review that summarizes the latest evidence and discusses how SARS-CoV-2 infection impacts hematopoiesis.
Collapse
Affiliation(s)
- Shokrollah Elahi
- Faculty of Medicine and Dentistry, School of Dentistry, Division of Foundational Sciences, Department of Oncology, and Li Ka Shing Institute of Virology, University of Alberta, 7020 Katz Group Centre, 11361-87th Ave NW, Edmonton, AB T6G 2E1 Canada
| |
Collapse
|
44
|
Paudel S, Ghimire L, Jin L, Jeansonne D, Jeyaseelan S. Regulation of emergency granulopoiesis during infection. Front Immunol 2022; 13:961601. [PMID: 36148240 PMCID: PMC9485265 DOI: 10.3389/fimmu.2022.961601] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
During acute infectious and inflammatory conditions, a large number of neutrophils are in high demand as they are consumed in peripheral organs. The hematopoietic system rapidly responds to the demand by turning from steady state to emergency granulopoiesis to expedite neutrophil generation in the bone marrow (BM). How the hematopoietic system integrates pathogenic and inflammatory stress signals into the molecular cues of emergency granulopoiesis has been the subject of investigations. Recent studies in the field have highlighted emerging concepts, including the direct sensing of pathogens by BM resident or sentinel hematopoietic stem and progenitor cells (HSPCs), the crosstalk of HSPCs, endothelial cells, and stromal cells to convert signals to granulopoiesis, and the identification of novel inflammatory molecules, such as C/EBP-β, ROS, IL-27, IFN-γ, CXCL1 with direct effects on HSPCs. In this review, we will provide a detailed account of emerging concepts while reassessing well-established cellular and molecular players of emergency granulopoiesis. While providing our views on the discrepant results and theories, we will postulate an updated model of granulopoiesis in the context of health and disease.
Collapse
Affiliation(s)
- Sagar Paudel
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Laxman Ghimire
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Liliang Jin
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Duane Jeansonne
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
45
|
De Zuani M, Frič J. Train the Trainer: Hematopoietic Stem Cell Control of Trained Immunity. Front Immunol 2022; 13:827250. [PMID: 35154147 PMCID: PMC8828730 DOI: 10.3389/fimmu.2022.827250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 01/14/2023] Open
Abstract
Recent evidence shows that innate immune cells, in addition to B and T cells, can retain immunological memory of their encounters and afford long-term resistance against infections in a process known as 'trained immunity'. However, the duration of the unspecific protection observed in vivo is poorly compatible with the average lifespan of innate immune cells, suggesting the involvement of long-lived cells. Accordingly, recent studies demonstrate that hematopoietic stem and progenitor cells (HSPCs) lay at the foundation of trained immunity, retaining immunological memory of infections and giving rise to a "trained" myeloid progeny for a long time. In this review, we discuss the research demonstrating the involvement of HSPCs in the onset of long-lasting trained immunity. We highlight the roles of specific cytokines and Toll-like receptor ligands in influencing HSPC memory phenotypes and the molecular mechanisms underlying trained immunity HSPCs. Finally, we discuss the potential benefits and drawbacks of the long-lasting trained immune responses, and describe the challenges that the field is facing.
Collapse
Affiliation(s)
- Marco De Zuani
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Jan Frič
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- *Correspondence: Jan Frič,
| |
Collapse
|
46
|
Barreira-Silva P, Melo-Miranda R, Nobrega C, Roque S, Serre-Miranda C, Borges M, Armada G, de Sá Calçada D, Behar SM, Appelberg R, Correia-Neves M. IFNγ and iNOS-Mediated Alterations in the Bone Marrow and Thymus and Its Impact on Mycobacterium avium-Induced Thymic Atrophy. Front Immunol 2021; 12:696415. [PMID: 34987496 PMCID: PMC8721011 DOI: 10.3389/fimmu.2021.696415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Disseminated infection with the high virulence strain of Mycobacterium avium 25291 leads to progressive thymic atrophy. We previously showed that M. avium-induced thymic atrophy results from increased glucocorticoid levels that synergize with nitric oxide (NO) produced by interferon gamma (IFNγ) activated macrophages. Where and how these mediators act is not understood. We hypothesized that IFNγ and NO promote thymic atrophy through their effects on bone marrow (BM) T cell precursors and T cell differentiation in the thymus. We show that M. avium infection cause a reduction in the percentage and number of common lymphoid progenitors (CLP). Additionally, BM precursors from infected mice show an overall impaired ability to reconstitute thymi of RAGKO mice, in part due to IFNγ. Thymi from infected mice present an IFNγ and NO-driven inflammation. When transplanted under the kidney capsule of uninfected mice, thymi from infected mice are unable to sustain T cell differentiation. Finally, we observed increased thymocyte death via apoptosis after infection, independent of both IFNγ and iNOS; and a decrease on active caspase-3 positive thymocytes, which is not observed in the absence of iNOS expression. Together our data suggests that M. avium-induced thymic atrophy results from a combination of defects mediated by IFNγ and NO, including alterations in the BM T cell precursors, the thymic structure and the thymocyte differentiation.
Collapse
Affiliation(s)
- Palmira Barreira-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
- *Correspondence: Palmira Barreira-Silva, ; Margarida Correia-Neves,
| | - Rita Melo-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Claudia Nobrega
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Cláudia Serre-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Margarida Borges
- Research Unit on Applied Molecular Biosciences (UCIBIO)/Rede de Química e Tecnologia (REQUINTE), Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Gisela Armada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Daniela de Sá Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Rui Appelberg
- Instituto de Investigação e Inovação em Saúde (i3S), Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Palmira Barreira-Silva, ; Margarida Correia-Neves,
| |
Collapse
|
47
|
Isringhausen S, Mun Y, Kovtonyuk L, Kräutler NJ, Suessbier U, Gomariz A, Spaltro G, Helbling PM, Wong HC, Nagasawa T, Manz MG, Oxenius A, Nombela-Arrieta C. Chronic viral infections persistently alter marrow stroma and impair hematopoietic stem cell fitness. J Exp Med 2021; 218:e20192070. [PMID: 34709350 PMCID: PMC8558839 DOI: 10.1084/jem.20192070] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/11/2021] [Accepted: 10/05/2021] [Indexed: 11/04/2022] Open
Abstract
Chronic viral infections are associated with hematopoietic suppression, bone marrow (BM) failure, and hematopoietic stem cell (HSC) exhaustion. However, how persistent viral challenge and inflammatory responses target BM tissues and perturb hematopoietic competence remains poorly understood. Here, we combine functional analyses with advanced 3D microscopy to demonstrate that chronic infection with lymphocytic choriomeningitis virus leads to (1) long-lasting decimation of the BM stromal network of mesenchymal CXCL12-abundant reticular cells, (2) proinflammatory transcriptional remodeling of remaining components of this key niche subset, and (3) durable functional defects and decreased competitive fitness in HSCs. Mechanistically, BM immunopathology is elicited by virus-specific, activated CD8 T cells, which accumulate in the BM via interferon-dependent mechanisms. Combined antibody-mediated inhibition of type I and II IFN pathways completely preempts degeneration of CARc and protects HSCs from chronic dysfunction. Hence, viral infections and ensuing immune reactions durably impact BM homeostasis by persistently decreasing the competitive fitness of HSCs and disrupting essential stromal-derived, hematopoietic-supporting cues.
Collapse
Affiliation(s)
- Stephan Isringhausen
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - YeVin Mun
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Larisa Kovtonyuk
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - Ute Suessbier
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Alvaro Gomariz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Gianluca Spaltro
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Patrick M. Helbling
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Hui Chyn Wong
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Takashi Nagasawa
- Department of Microbiology and Immunology, Osaka University, Osaka, Japan
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Li X, Liu T, Hai X, Li L. Interferon-α2b induced anemia in severe coronavirus disease 2019 patients: a single centered, retrospective study. Immunopharmacol Immunotoxicol 2021; 43:644-650. [PMID: 34698601 DOI: 10.1080/08923973.2021.1992634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The current outbreak of coronavirus disease 2019 (COVID-19) has rapidly spread throughout the world. During treatment, we found that the majority of patients had a decrease in hemoglobin (Hb). Interferon-α2b (IFN-α2b) was the primary suspected drug that was related to Hb reduction. Thus, the study aimed to investigate whether IFN-α2b could induce Hb reduction in severe patients with COVID-19 and its potential mechanism. MATERIAL AND METHODS A total of 50 patients who were admitted to the First Affiliated Hospital of Harbin Medical University with severe COVID-19 infection were enrolled from February 12th to 24th, 2020. The demographics, baseline characteristics, clinical data, and therapeutic regimen were collected retrospectively. The patients were divided into two groups according to the declined use of IFN-α2b on day 14. The Hb levels on admission, day 7, day14, and day 21 were collected and analyzed. The primary endpoint was the level of Hb on day 21. RESULTS A total of 31 patients in the IFN-stop group and 19 patients in the non-IFN-stop group were reviewed. The age, gender, comorbidities, clinical symptoms, nutritional status, disease severity, complications, and other factors of the patients were compared, no difference was found between the IFN-stop group and the non-IFN-stop group. The Hb levels of all patients significantly decreased on day 7 compared with that on admission (p < .0001). In the IFN-stop group, the Hb level was increased in 7 days after IFN-α2b was stopped (p = .0008), whereas no difference was found between day 14 and day 21 in the non-IFN-stop group (p = .3152). CONCLUSIONS IFN-α2b was associated with Hb reduction in the treatment of severe patients of COVID-19. Clinicians should be aware of the high incidence of Hb reduction for patients treated by IFN-α2b.
Collapse
Affiliation(s)
- Xina Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Hai
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
49
|
Lu J, Sun K, Yang H, Fan D, Huang H, Hong Y, Wu S, Zhou H, Fang F, Li Y, Meng L, Huang J, Bai Z. Sepsis Inflammation Impairs the Generation of Functional Dendritic Cells by Targeting Their Progenitors. Front Immunol 2021; 12:732612. [PMID: 34566996 PMCID: PMC8458800 DOI: 10.3389/fimmu.2021.732612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
Background Sepsis is a complex systemic immune dysfunction syndrome induced by infection. Sepsis has a high mortality rate, with most patients dying due to systemic organ failure or secondary infection. Dendritic cells (DCs) are professional antigen-presenting cells. Upon infection with microbes, DCs are activated to induce adaptive immune responses for controlling infection. DC generation and function are impaired during sepsis; however, the underlying mechanisms remain largely unknown. Methods Peripheral blood samples from sepsis patients were collected to examine DC subsets, DC progenitors, and apoptosis of DCs by flow cytometer. In vitro induction of DCs from hematopoietic stem/progenitor cells were established and a variety of sepsis-associated inflammatory mediators [e.g., interferon-gamma (IFN-γ), interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and granulocyte-colony stimulating factor (G-CSF)] and Lipopolysaccharide (LPS) were determined for the impact on DC generation and function in vitro. Results Our results demonstrate that sepsis-induced systemic inflammation impairs the capacity of hematopoietic stem and progenitor cells (HSPCs) to produce DCs, including conventional DCs (cDCs) and plasmacytoid DCs (pDCs). We investigated peripheral blood (PB) samples from 34 pediatric patients on days 1 to 7 following diagnosis. Compared to healthy donors (n = 18), the sepsis patients exhibited a significantly fewer percentage and number of pDCs and cDCs, and a lower expression of antigen presenting molecule HLD-DR and co-stimulatory molecules (e.g., CD86) on the surface of DCs. This sepsis-induced DC impairment was associated with significantly increased apoptotic death of DCs and marked decreases of progenitor cells that give rise to DCs. Furthermore, we observed that among the tested sepsis-associated cytokines (e.g., IFN-γ, IL-1β, TNF-α, and G-CSF), G-CSF and IFN-γ impaired DC development from cultured HSPCs. G-CSF also markedly decreased the expression of HLA-DR on HSPC-derived DCs and their cytokine production, including IL-12 and IFN-β. Conclusions Collectively, these findings indicate that sepsis impairs the survival of functional DCs and their development from HSPCs. Strategies for improving DC reconstitution following sepsis may restore DC progenitors and their associated function.
Collapse
Affiliation(s)
- Jie Lu
- Department of Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, China
| | - Kun Sun
- Department of Emergency, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| | - Huiping Yang
- Department of Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, China
| | - Dan Fan
- Department of Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, China
| | - He Huang
- Department of Emergency, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| | - Yi Hong
- Department of Pediatrics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Shuiyan Wu
- Department of Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, China
| | - HuiTing Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - YanHong Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Nephrology, Children's Hospital of Soochow University, Suzhou, China
| | - Lijun Meng
- Department of Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, China
| | - Jie Huang
- Department of Cardiovascular Medicine, Children Hospital of Soochow University, Suzhou, China
| | - Zhenjiang Bai
- Department of Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, China
| |
Collapse
|
50
|
Dynamics in Anemia Development and Dysregulation of Iron Homeostasis in Hospitalized Patients with COVID-19. Metabolites 2021; 11:metabo11100653. [PMID: 34677368 PMCID: PMC8540370 DOI: 10.3390/metabo11100653] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Anemia and disturbances of iron metabolism are frequently encountered in patients with COVID-19 and associated with an adverse clinical course. We retrospectively analyzed 645 consecutive COVID-19 patients hospitalized at the Innsbruck University Hospital. Pre-existing anemia was associated with increased risk for in-hospital death. We further found that the decline in hemoglobin levels during hospital stay is more pronounced in patients with signs of hyperinflammation upon admission, the latter being associated with a nearly two-fold higher risk for new onset anemia within one week. Anemia prevalence increased from 44.3% upon admission to 87.8% in patients who were still hospitalized after two weeks. A more distinct decrease in hemoglobin levels was observed in subjects with severe disease, and new-onset anemia was associated with a higher risk for ICU admission. Transferrin levels decreased within the first week of hospitalization in all patients, however, a continuous decline was observed in subjects who died. Hemoglobin, ferritin, and transferrin levels normalized in a median of 122 days after discharge from hospital. This study uncovers pre-existing anemia as well as low transferrin concentrations as risk factors for mortality in hospitalized COVID-19 patients, whereas new-onset anemia during hospitalization is a risk factor for ICU admission. Anemia and iron disturbances are mainly driven by COVID-19 associated inflammation, and cure from infection results in resolution of anemia and normalization of dysregulated iron homeostasis.
Collapse
|