1
|
Lynch Y, Vande Vusse LK. Diffuse Alveolar Hemorrhage in Hematopoietic Cell Transplantation. J Intensive Care Med 2024; 39:1055-1070. [PMID: 37872657 DOI: 10.1177/08850666231207331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Diffuse alveolar hemorrhage (DAH) is a morbid syndrome that occurs after autologous and allogeneic hematopoietic cell transplantation in children and adults. DAH manifests most often in the first few weeks following transplantation. It presents with pneumonia-like symptoms and acute respiratory failure, often requiring high levels of oxygen supplementation or mechanical ventilatory support. Hemoptysis is variably present. Chest radiographs typically feature widespread alveolar filling, sometimes with peripheral sparing and pleural effusions. The diagnosis is suspected when serial bronchoalveolar lavages return increasingly bloody fluid. DAH is differentiated from infectious causes of alveolar hemorrhage when extensive microbiological testing reveals no pulmonary pathogens. The cause is poorly understood, though preclinical and clinical studies implicate pretransplant conditioning regimens, particularly those using high doses of total-body-irradiation, acute graft-versus-host disease (GVHD), medications used to prevent GVHD, and other factors. Treatment consists of supportive care, systemic corticosteroids, platelet transfusions, and sometimes includes antifibrinolytic drugs and topical procoagulant factors. Therapeutic blockade of tumor necrosis factor-α showed promise in observational studies, but its benefit for DAH remains uncertain after small clinical trials. Even with these treatments, mortality from progression and relapse is high. Future investigational therapies could target the vascular endothelial cell biology theorized to contribute to alveolar bleeding and pathways that contribute to susceptibility, inflammation, cellular resilience, and tissue repair. This review will help clinicians navigate through the limited evidence to diagnose and treat DAH, counsel patients and families, and plan for future research.
Collapse
Affiliation(s)
- Ylinne Lynch
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lisa K Vande Vusse
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Wang Y, Ullah MA, Waltner OG, Bhise SS, Ensbey KS, Schmidt CR, Legg SR, Sekiguchi T, Nelson EL, Kuns RD, Nemychenkov NS, Atilla E, Yeh AC, Takahashi S, Boiko JR, Varelias A, Blazar BR, Koyama M, Minnie SA, Clouston AD, Furlan SN, Zhang P, Hill GR. Calcineurin inhibition rescues alloantigen-specific central memory T cell subsets that promote chronic GVHD. J Clin Invest 2024; 134:e170125. [PMID: 38828727 PMCID: PMC11142741 DOI: 10.1172/jci170125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/09/2024] [Indexed: 06/05/2024] Open
Abstract
Calcineurin inhibitors (CNIs) constitute the backbone of modern acute graft-versus-host disease (aGVHD) prophylaxis regimens but have limited efficacy in the prevention and treatment of chronic GVHD (cGVHD). We investigated the effect of CNIs on immune tolerance after stem cell transplantation with discovery-based single-cell gene expression and T cell receptor (TCR) assays of clonal immunity in tandem with traditional protein-based approaches and preclinical modeling. While cyclosporin and tacrolimus suppressed the clonal expansion of CD8+ T cells during GVHD, alloreactive CD4+ T cell clusters were preferentially expanded. Moreover, CNIs mediated reversible dose-dependent suppression of T cell activation and all stages of donor T cell exhaustion. Critically, CNIs promoted the expansion of both polyclonal and TCR-specific alloreactive central memory CD4+ T cells (TCM) with high self-renewal capacity that mediated cGVHD following drug withdrawal. In contrast to posttransplant cyclophosphamide (PT-Cy), CSA was ineffective in eliminating IL-17A-secreting alloreactive T cell clones that play an important role in the pathogenesis of cGVHD. Collectively, we have shown that, although CNIs attenuate aGVHD, they paradoxically rescue alloantigen-specific TCM, especially within the CD4+ compartment in lymphoid and GVHD target tissues, thus predisposing patients to cGVHD. These data provide further evidence to caution against CNI-based immune suppression without concurrent approaches that eliminate alloreactive T cell clones.
Collapse
Affiliation(s)
- Yewei Wang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Md Ashik Ullah
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Olivia G. Waltner
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Shruti S. Bhise
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kathleen S. Ensbey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Christine R. Schmidt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Samuel R.W. Legg
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tomoko Sekiguchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ethan L. Nelson
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Rachel D. Kuns
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nicole S. Nemychenkov
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Erden Atilla
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Albert C. Yeh
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Shuichiro Takahashi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Julie R. Boiko
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Bruce R. Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Motoko Koyama
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Simone A. Minnie
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Scott N. Furlan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Pediatrics and
| | - Ping Zhang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Geoffrey R. Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Zhang P, Fleming P, Andoniou CE, Waltner OG, Bhise SS, Martins JP, McEnroe BA, Voigt V, Daly S, Kuns RD, Ekwe AP, Henden AS, Saldan A, Olver S, Varelias A, Smith C, Schmidt CR, Ensbey KS, Legg SR, Sekiguchi T, Minnie SA, Gradwell M, Wagenaar I, Clouston AD, Koyama M, Furlan SN, Kennedy GA, Ward ES, Degli-Esposti MA, Hill GR, Tey SK. IL-6-mediated endothelial injury impairs antiviral humoral immunity after bone marrow transplantation. J Clin Invest 2024; 134:e174184. [PMID: 38557487 PMCID: PMC10977988 DOI: 10.1172/jci174184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Endothelial function and integrity are compromised after allogeneic bone marrow transplantation (BMT), but how this affects immune responses broadly remains unknown. Using a preclinical model of CMV reactivation after BMT, we found compromised antiviral humoral responses induced by IL-6 signaling. IL-6 signaling in T cells maintained Th1 cells, resulting in sustained IFN-γ secretion, which promoted endothelial cell (EC) injury, loss of the neonatal Fc receptor (FcRn) responsible for IgG recycling, and rapid IgG loss. T cell-specific deletion of IL-6R led to persistence of recipient-derived, CMV-specific IgG and inhibited CMV reactivation. Deletion of IFN-γ in donor T cells also eliminated EC injury and FcRn loss. In a phase III clinical trial, blockade of IL-6R with tocilizumab promoted CMV-specific IgG persistence and significantly attenuated early HCMV reactivation. In sum, IL-6 invoked IFN-γ-dependent EC injury and consequent IgG loss, leading to CMV reactivation. Hence, cytokine inhibition represents a logical strategy to prevent endothelial injury, thereby preserving humoral immunity after immunotherapy.
Collapse
Affiliation(s)
- Ping Zhang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Peter Fleming
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Christopher E. Andoniou
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Olivia G. Waltner
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Shruti S. Bhise
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jose Paulo Martins
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Valentina Voigt
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Sheridan Daly
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Rachel D. Kuns
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Adaeze P. Ekwe
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andrea S. Henden
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- University of Queensland, St Lucia, Queensland, Australia
- Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - Alda Saldan
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- University of Queensland, St Lucia, Queensland, Australia
| | - Stuart Olver
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- University of Queensland, St Lucia, Queensland, Australia
| | - Corey Smith
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Christine R. Schmidt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kathleen S. Ensbey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Samuel R.W. Legg
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tomoko Sekiguchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Simone A. Minnie
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mark Gradwell
- Cancer Sciences Unit, Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Irma Wagenaar
- Cancer Sciences Unit, Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | | | - Motoko Koyama
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Scott N. Furlan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Pediatrics and
| | - Glen A. Kennedy
- University of Queensland, St Lucia, Queensland, Australia
- Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - E Sally Ward
- Cancer Sciences Unit, Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Mariapia A. Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Geoffrey R. Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - Siok-Keen Tey
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- University of Queensland, St Lucia, Queensland, Australia
- Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| |
Collapse
|
4
|
Liao M, Wang C, Zhang M, Qiao K. Insight on immune cells in rejection and infection postlung transplant. Immun Inflamm Dis 2023; 11:e868. [PMID: 37506156 PMCID: PMC10336664 DOI: 10.1002/iid3.868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE The aim of this study is to provide a concise overview of the role of immune cells in rejection and infection after lung transplantation. METHODS Based on previous clinical and basic studies, the role of various types of immune cells in the development of rejection and infection after lung transplantation is summarized. RESULTS Immune cell functional status is strongly associated with common complications after lung transplantation, such as primary graft dysfunction, infection and occlusive bronchitis syndrome. Targeted balancing of immune cell tolerance and rejection is an important tool for successful lung transplantation. CONCLUSION A comprehensive understanding of immune cell function and the mechanisms that balance immune tolerance and immune rejection may be a crucial factor in improving survival after lung transplantation.
Collapse
Affiliation(s)
- Mingfeng Liao
- Guangdong Key Lab for Diagnosis & Treatment of Emerging Infectious DiseasesShenzhen Third People's HospitalShenzhenGuangdong ProvincePeople's Republic of China
| | - Chaoxi Wang
- Department of Thoracic SurgeryShenzhen Third People's HospitalShenzhenGuangdong ProvincePeople's Republic of China
| | - Mingxia Zhang
- Guangdong Key Lab for Diagnosis & Treatment of Emerging Infectious DiseasesShenzhen Third People's HospitalShenzhenGuangdong ProvincePeople's Republic of China
| | - Kun Qiao
- Department of Thoracic SurgeryShenzhen Third People's HospitalShenzhenGuangdong ProvincePeople's Republic of China
| |
Collapse
|
5
|
Seo SK, Kwon B. Immune regulation through tryptophan metabolism. Exp Mol Med 2023; 55:1371-1379. [PMID: 37394584 PMCID: PMC10394086 DOI: 10.1038/s12276-023-01028-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 07/04/2023] Open
Abstract
Amino acids are fundamental units of molecular components that are essential for sustaining life; however, their metabolism is closely interconnected to the control systems of cell function. Tryptophan (Trp) is an essential amino acid catabolized by complex metabolic pathways. Several of the resulting Trp metabolites are bioactive and play central roles in physiology and pathophysiology. Additionally, various physiological functions of Trp metabolites are mutually regulated by the gut microbiota and intestine to coordinately maintain intestinal homeostasis and symbiosis under steady state conditions and during the immune response to pathogens and xenotoxins. Cancer and inflammatory diseases are associated with dysbiosis- and host-related aberrant Trp metabolism and inactivation of the aryl hydrocarbon receptor (AHR), which is a receptor of several Trp metabolites. In this review, we focus on the mechanisms through which Trp metabolism converges to AHR activation for the modulation of immune function and restoration of tissue homeostasis and how these processes can be targeted using therapeutic approaches for cancer and inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Su-Kil Seo
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan, 47392, Republic of Korea.
- Parenchyma Biotech, Busan, 47392, Republic of Korea.
| | - Byungsuk Kwon
- Parenchyma Biotech, Busan, 47392, Republic of Korea.
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
6
|
Klein OR, Ktena YP, Pierce E, Fu HH, Haile A, Liu C, Cooke KR. Defibrotide modulates pulmonary endothelial cell activation and protects against lung inflammation in pre-clinical models of LPS-induced lung injury and idiopathic pneumonia syndrome. Front Immunol 2023; 14:1186422. [PMID: 37441074 PMCID: PMC10335747 DOI: 10.3389/fimmu.2023.1186422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction A multiple organ dysfunction syndrome (MODS) workshop convened by the National Institute of Child Health and Human Development in 2015 identified acute respiratory distress syndrome (ARDS) and complications of allogeneic blood and marrow transplantation (allo-BMT) as contributors to MODS in pediatric patients. Pulmonary dysfunction also remains a significant complication of allo-BMT. Idiopathic pneumonia syndrome (IPS) defines non-infectious, acute, lung injury that occurs post-transplant. Injury and activation to endothelial cells (ECs) contribute to each form of lung inflammation. Methods Two murine models were employed. In an ARDS model, naïve B6 mice receive an intravenous (i.v.) injection of lipopolysaccharide (LPS). In the established model of IPS, naïve B6D2F1 mice receive lethal total body irradiation followed by BMT from either allogeneic (B6) or syngeneic (B6D2F1) donors. Lung inflammation was subsequently assessed in each scenario. Results Intravenous injection of LPS to B6 mice resulted in enhanced mRNA expression of TNFα, IL-6, Ang-2, E-, and P-selectin in whole lung homogenates. The expression of Ang-2 in this context is regulated in part by TNFα. Additionally, EC activation was associated with increased total protein and cellularity in broncho-alveolar lavage fluid (BALF). Similar findings were noted during the development of experimental IPS. We hypothesized that interventions maintaining EC integrity would reduce the severity of ARDS and IPS. Defibrotide (DF) is FDA approved for the treatment of BMT patients with sinusoidal obstruction syndrome and renal or pulmonary dysfunction. DF stabilizes activated ECs and protect them from further injury. Intravenous administration of DF before and after LPS injection significantly reduced mRNA expression of TNFα, IL6, Ang-2, E-, and P-selectin compared to controls. BALF showed decreased cellularity, reflecting less EC damage and leak. Allogeneic BMT mice were treated from day -1 through day 14 with DF intraperitoneally, and lungs were harvested at 3 weeks. Compared to controls, DF treatment reduced mRNA expression of TNFα, IL6, Ang-2, E-, and P- selectin, BALF cellularity, and lung histopathology. Conclusion The administration of DF modulates EC injury in models of ARDS and IPS. Cytokine inhibition in combination with agents that stabilize EC integrity may be an attractive strategy for patients in each setting.
Collapse
Affiliation(s)
- Orly R. Klein
- Department of Oncology, Pediatric Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Yiouli P. Ktena
- Department of Oncology, Pediatric Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Elizabeth Pierce
- Department of Pediatrics, Pediatric Blood and Marrow Transplant Program, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| | - Han-Hsuan Fu
- Department of Oncology, Pediatric Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Azeb Haile
- Department of Oncology, Pediatric Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Kenneth R. Cooke
- Department of Oncology, Pediatric Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| |
Collapse
|
7
|
Ilan U, Brivio E, Algeri M, Balduzzi A, Gonzalez-Vincent M, Locatelli F, Zwaan CM, Baruchel A, Lindemans C, Bautista F. The Development of New Agents for Post-Hematopoietic Stem Cell Transplantation Non-Infectious Complications in Children. J Clin Med 2023; 12:2149. [PMID: 36983151 PMCID: PMC10054172 DOI: 10.3390/jcm12062149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is often the only curative treatment option for patients suffering from various types of malignant diseases and some non-cancerous conditions. Nevertheless, it is associated with a high risk of complications leading to transplant-related mortality and long-term morbidity. An increasing number of therapeutic and prevention strategies have been developed over the last few years to tackle the complications arising in patients receiving an HSCT. These strategies have been mainly carried out in adults and some are now being translated into children. In this manuscript, we review the recent advancements in the development and implementation of treatment options for post-HSCT non-infectious complications in pediatric patients with leukemia and other non-malignant conditions, with a special attention on the new agents available within clinical trials. We focused on the following conditions: graft failure, prevention of relapse and early interventions after detection of minimal residual disease positivity following HSCT in acute lymphoblastic and myeloid leukemia, chronic graft versus host disease, non-infectious pulmonary complications, and complications of endothelial origin.
Collapse
Affiliation(s)
- Uri Ilan
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Erica Brivio
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Mattia Algeri
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, 00165 Rome, Italy
| | - Adriana Balduzzi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, 20900 Monza, Italy
| | - Marta Gonzalez-Vincent
- Department of Stem Cell Transplantation, Hospital Infantil Universitario Nino Jesus, 28009 Madrid, Spain
| | - Franco Locatelli
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, 00165 Rome, Italy
| | | | - Andre Baruchel
- Department of Pediatric Hematology, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Caroline Lindemans
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Stem Cell Transplantation, Regenerative Medicine Center, University Medical Center, 3584 CX Utrecht, The Netherlands
| | - Francisco Bautista
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
8
|
Fraebel J, Engelhardt BG, Kim TK. Noninfectious Pulmonary Complications after Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2023; 29:82-93. [PMID: 36427785 DOI: 10.1016/j.jtct.2022.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Pulmonary complications after hematopoietic stem cell transplantation (HSCT) are important sources of morbidity and mortality. Improvements in infection-related complications have made noninfectious pulmonary complications an increasingly significant driver of transplantation-related mortality. Broadly, these complications can be characterized as either early or late complications, with idiopathic pneumonia syndrome and bronchiolitis obliterans syndrome the most prevalent early and late complications, respectively. Outcomes with historical treatment consisting mainly of corticosteroids are often poor, highlighting the need for a deeper understanding of these complications' underlying disease biology to guide the adoption of novel therapies that are being increasingly used in the modern era.
Collapse
Affiliation(s)
- Johnathan Fraebel
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian G Engelhardt
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee; Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Center for Immunobiology, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee; Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee.
| |
Collapse
|
9
|
Assadiasl S, Nicknam MH. Cytokines in Lung Transplantation. Lung 2022; 200:793-806. [PMID: 36348053 DOI: 10.1007/s00408-022-00588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Lung transplantation has developed significantly in recent years, but post-transplant care and patients' survival still need to be improved. Moreover, organ shortage urges novel modalities to improve the quality of unsuitable lungs. Cytokines, the chemical mediators of the immune system, might be used for diagnostic and therapeutic purposes in lung transplantation. Cytokine monitoring pre- and post-transplant could be applied to the prevention and early diagnosis of injurious inflammatory events including primary graft dysfunction, acute cellular rejection, bronchiolitis obliterans syndrome, restrictive allograft syndrome, and infections. In addition, preoperative cytokine removal, specific inhibition of proinflammatory cytokines, and enhancement of anti-inflammatory cytokines gene expression could be considered therapeutic options to improve lung allograft survival. Therefore, it is essential to describe the cytokines alteration during inflammatory events to gain a better insight into their role in developing the abovementioned complications. Herein, cytokine fluctuations in lung tissue, bronchoalveolar fluid, peripheral blood, and exhaled breath condensate in different phases of lung transplantation have been reviewed; besides, cytokine gene polymorphisms with clinical significance have been summarized.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, No. 142, Nosrat St., Tehran, 1419733151, Iran.
| | - Mohammad Hossein Nicknam
- Molecular Immunology Research Center, Tehran University of Medical Sciences, No. 142, Nosrat St., Tehran, 1419733151, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Reactive granulopoiesis depends on T-cell production of IL-17A and neutropenia-associated alteration of gut microbiota. Proc Natl Acad Sci U S A 2022; 119:e2211230119. [PMID: 36409919 PMCID: PMC9860329 DOI: 10.1073/pnas.2211230119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Granulopoiesis in the bone marrow adjusts cellular output as demand for neutrophils changes. Reactive granulopoiesis is induced by profound neutropenia, but its mechanism remains to be clarified. We herein explored its mechanisms using mouse models of syngeneic hematopoietic stem cell transplantation (SCT) and 5-fluorouracil-induced neutropenia. After SCT, T cell production of IL-17A was up-regulated. Neutrophil recovery was significantly delayed in IL-17A-deficient or T cell-deficient RAG1-/- mice, and adoptive transfer of wild-type (WT) T cells facilitated neutrophil engraftment. Gut decontamination with oral antibiotics suppressed T cell production of IL-17A and impaired neutrophil recovery. Transplantation of fecal microbiota collected from neutropenic, not naive, mice promoted neutrophil recovery in these mice, suggesting that neutropenia-associated microbiota had a potential to stimulate reactive granulopoiesis. Our study uncovered a cross talk between gut microbiota and neutropenia after SCT and chemotherapy.
Collapse
|
11
|
Albrecht M, Halle O, Gaedcke S, Pallenberg ST, Camargo Neumann J, Witt M, Roediger J, Schumacher M, Jirmo AC, Warnecke G, Jonigk D, Braubach P, DeLuca D, Hansen G, Dittrich AM. Interleukin-17A and interleukin-22 production by conventional and non-conventional lymphocytes in three different end-stage lung diseases. Clin Transl Immunology 2022; 11:e1398. [PMID: 35757569 PMCID: PMC9202301 DOI: 10.1002/cti2.1398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives The contribution of adaptive vs. innate lymphocytes to IL-17A and IL-22 secretion at the end stage of chronic lung diseases remains largely unexplored. In order to uncover tissue- and disease-specific secretion patterns, we compared production patterns of IL-17A and IL-22 in three different human end-stage lung disease entities. Methods Production of IL-17A, IL-22 and associated cytokines was assessed in supernatants of re-stimulated lymphocytes by multiplex assays and multicolour flow cytometry of conventional T cells, iNKT cells, γδ T cells and innate lymphoid cells in bronchial lymph node and lung tissue from patients with emphysema (n = 19), idiopathic pulmonary fibrosis (n = 14) and cystic fibrosis (n = 23), as well as lung donors (n = 17). Results We detected secretion of IL-17A and IL-22 by CD4+ T cells, CD8+ T cells, innate lymphoid cells, γδ T cells and iNKT cells in all end-stage lung disease entities. Our analyses revealed disease-specific contributions of individual lymphocyte subpopulations to cytokine secretion patterns. We furthermore found the high levels of microbial detection in CF samples to associate with a more pronounced IL-17A signature upon antigen-specific and unspecific re-stimulation compared to other disease entities and lung donors. Conclusion Our results show that both adaptive and innate lymphocyte populations contribute to IL-17A-dependent pathologies in different end-stage lung disease entities, where they establish an IL-17A-rich microenvironment. Microbial colonisation patterns and cytokine secretion upon microbial re-stimulation suggest that pathogens drive IL-17A secretion patterns in end-stage lung disease.
Collapse
Affiliation(s)
- Melanie Albrecht
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Molecular Allergology Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines Langen Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Olga Halle
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Svenja Gaedcke
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Sophia T Pallenberg
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Julia Camargo Neumann
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Marius Witt
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Johanna Roediger
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Marina Schumacher
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Adan Chari Jirmo
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Gregor Warnecke
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany.,Department of Cardiac Surgery Heidelberg Medical School Heidelberg Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany.,Institute of Pathology Hannover Medical School Hannover Germany
| | - Peter Braubach
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany.,Institute of Pathology Hannover Medical School Hannover Germany
| | - David DeLuca
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Gesine Hansen
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Anna-Maria Dittrich
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| |
Collapse
|
12
|
Aryl hydrocarbon receptor-targeted therapy for CD4+ T cell-mediated idiopathic pneumonia syndrome in mice. Blood 2022; 139:3325-3339. [PMID: 35226727 DOI: 10.1182/blood.2021013849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
We previously demonstrated that interferon γ (IFN-γ) derived from donor T cells co-opts the indoleamine 2,3-dioxygenase 1 (IDO1) → aryl hydrocarbon receptor (AHR) axis to suppress idiopathic pneumonia syndrome (IPS). Here we report that the dysregulated expression of AP-1 family genes in Ahr-/- lung epithelial cells exacerbated IPS in allogeneic bone marrow transplantation settings. AHR repressed transcription of Jund by preventing STAT1 from binding to its promoter. As a consequence, decreased interleukin-6 impaired the differentiation of CD4+ T cells toward Th17 cells. IFN-γ- and IDO1-independent induction of Ahr expression indicated that the AHR agonist might be a better therapeutic target for IPS than the IDO1 activator. We developed a novel synthetic AHR agonist (referred to here as PB502) that potently inhibits Jund expression. PB502 was highly effective at inducing AHR activation and ameliorating IPS. Notably, PB502 was by far superior to the endogenous AHR ligand, L-kynurenine, in promoting the differentiation of both mouse and human FoxP3+ regulatory CD4+ T cells. Our results suggest that the IDO1-AHR axis in lung epithelial cells is associated with IPS repression. A specific AHR agonist may exhibit therapeutic activity against inflammatory and autoimmune diseases by promoting regulatory T-cell differentiation.
Collapse
|
13
|
Tvedt THA, Rose-John S, Tsykunova G, Ahmed AB, Gedde-Dahl T, Ersvær E, Bruserud Ø. IL-6 Responsiveness of CD4+ and CD8+ T Cells after Allogeneic Stem Cell Transplantation Differs between Patients and Is Associated with Previous Acute Graft versus Host Disease and Pretransplant Antithymocyte Globulin Therapy. J Clin Med 2022; 11:jcm11092530. [PMID: 35566660 PMCID: PMC9104003 DOI: 10.3390/jcm11092530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Graft-versus-host disease (GVHD), one of the most common and serious complications after allogeneic stem cell transplantation, is mediated by allocative T cells. IL-6 mediates both pro- and anti-inflammatory effects and modulates T cell response through classical signaling and trans-signaling. We investigated the effects on the mTOR and JAK/STAT pathways after various types of IL-6 signaling for circulating T cells were derived from 31 allotransplant recipients 90 days post-transplant. Cells were stimulated with IL-6 alone, hyper-IL-6 (trans-signaling), IL-6+IL-6 receptor (IL-6R; classical + trans-signaling) and IL-6+IL-6R+soluble gp130-Fc (classical signaling), and flow cytometry was used to investigate the effects on phosphorylation of AKT (Thr308), mTOR (Ser2442), STAT3 (Ser727) and STAT3 (Tyr705). CD3+CD4+ and CD3+C8+ T cells responded to classical and trans IL-6 stimulation with increased STAT3 (Tyr705) phosphorylation; these responses were generally stronger for CD3+CD4+ cells. STAT3 (Tyr705) responses were stronger for patients with previous acute GVHD; CD3+CD4+ cells from GVHD patients showed an additional STAT3 (Ser727) response, whereas patients without acute GVHD showed additional mTOR (Ser2448) responses. Furthermore, treatment with antithymocyte globulin as a part of GVHD prophylaxis was associated with generally weaker STAT3 (Tyr705) responses and altered STAT3 (Ser727) responsiveness of CD3+CD4+ cells together with increased mTOR (Ser2448) responses for the CD3+CD8+ cells. Thus, early post-transplant CD3+CD4+ and CD3+ CD8+ T cell subsets differ in their IL-6 responsiveness; this responsiveness is modulated by antithymocyte globulin and differs between patients with and without previous acute GVHD. These observations suggest that allotransplant recipients will be heterogeneous with regard to the effects of post-transplant IL-6 targeting.
Collapse
Affiliation(s)
- Tor Henrik Anderson Tvedt
- Department of Hematology, University of Oslo, 0424 Oslo, Norway;
- Section for Hematology, Institute of Clinical Science, University of Bergen, 5007 Bergen, Norway;
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.T.); (A.B.A.)
- Correspondence: Correspondence:
| | - Stefan Rose-John
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, 24118 Kiel, Germany;
| | - Galina Tsykunova
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.T.); (A.B.A.)
| | - Aymen Bushra Ahmed
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.T.); (A.B.A.)
| | - Tobias Gedde-Dahl
- Department of Hematology, University of Oslo, 0424 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Elisabeth Ersvær
- Department of Biomedical Laboratory Scientist Education, Western Norway University of Applied Sciences, 5063 Bergen, Norway;
| | - Øystein Bruserud
- Section for Hematology, Institute of Clinical Science, University of Bergen, 5007 Bergen, Norway;
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.T.); (A.B.A.)
| |
Collapse
|
14
|
PARP-1 Inhibition Repressed Imbalance of Th17 and Treg Cells in Preterm Rats with Intrauterine Infection-Induced Acute Respiratory Distress Syndrome by Reducing the Expression Level of IL-6. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1255674. [PMID: 35190759 PMCID: PMC8858042 DOI: 10.1155/2022/1255674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022]
Abstract
Background. Abundant reports have uncovered an imbalance of Treg and Th17 cells in pulmonary diseases. Hereon, we intend to explore the impact of PARP-1 on the imbalance of Th17/Treg and the potential mechanism in premature rats with acute respiratory distress syndrome (ARDS). Methods. Preterm ARDS infants and healthy term infants were enrolled in this investigation. To induce a rat model of ARDS, E.coli suspension was given to rats through two vaginal dilator-guided intramuscular injections. H&E staining was used to perform histopathological examination. Flow cytometry was employed to assess the proportion of Th17 or Treg cells accounted for CD4+ T cells. ELISA was applied to measure levels of IL-6, IL-17A, and IL-10 in the serum of ARDS patients. Moreover, the mRNA and protein expression levels of PARP-1, IL-6, IL-17A, and IL-10 were detected through qRT-PCR and western blotting. Results. An increased Th17/Treg ratio was observed in preterm infants and rats with ARDS. The PARP-1 expression level was raised in the lung tissues of ARDS rats, and PARP-1 downregulation alleviated E.coli-induced lung injury in preterm rats. Expression levels of PARP-1, IL-6, and IL-17A were raised, and the IL-10 level was reduced in the lung tissues of rats after E.coli treatment, which was all reversed by PARP-1 suppression. Importantly, the ratio of Th17/Treg differentiated from purified CD4+ T cells of the E.coli + PARP-1 inhibitor group was elevated by recombinant IL-6. Conclusion. PARP-1 downregulation repressed the imbalance of Th17 and Treg cells via reducing the expression level of IL-6, implying that PARP-1 may be a promising target for ARDS therapy.
Collapse
|
15
|
Integrated Network Pharmacology and Experimental Validation Approach to Investigate the Therapeutic Effects of Capsaicin on Lipopolysaccharide-Induced Acute Lung Injury. Mediators Inflamm 2022; 2022:9272896. [PMID: 35140545 PMCID: PMC8818435 DOI: 10.1155/2022/9272896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/18/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
An integrated method combining network pharmacology and in vivo experiment was performed to investigate the therapeutic mechanism of capsaicin (Cap) against acute lung injury. The potential key genes and signaling pathways involved in the therapeutic effect of Cap were predicted by the network pharmacology analyses. Additionally, the histological assessment, ELISA, and RT-qPCR were performed to confirm the therapeutic effect and the potential mechanism action involved. Our findings showed that TNF, IL-6, CXCL1, CXCL2, and CXCL10 were part of the top 50 genes. Enrichment analysis revealed that those potential genes were enriched in the TNF signaling pathway and IL-17 signaling pathway. In vivo experiment results showed that Cap alleviated histopathological changes, decreased inflammatory infiltrated cells and inflammatory cytokines, and improved antioxidative enzyme activities in the bronchoalveolar lavage fluid (BALF). Furthermore, Cap treatment effectively downregulated TNF, IL-6, NF-κB, CXCL1, CXCL2, and CXCL10 in lung tissue. Thus, our findings demonstrated that Cap has the therapeutic effect on LPS-induced acute lung injury in neonatal rats via suppression of the TNF signaling pathway and IL-17 signaling pathway.
Collapse
|
16
|
Williams KM. Noninfectious complications of hematopoietic cell transplantation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:578-586. [PMID: 34889438 PMCID: PMC8791176 DOI: 10.1182/hematology.2021000293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Noninfectious lung diseases contribute to nonrelapse mortality. They constitute a spectrum of diseases that can affect the parenchyma, airways, or vascular pulmonary components and specifically exclude cardiac and renal causes. The differential diagnoses of these entities differ as a function of time after hematopoietic cell transplantation. Specific diagnosis, prognosis, and optimal treatment remain challenging, although progress has been made in recent decades.
Collapse
Affiliation(s)
- Kirsten M. Williams
- Correspondence Kirsten M. Williams, Blood and Marrow
Transplant Program, Aflac Cancer and Blood Disorders Center, Emory University
School of Medicine, Children's Healthcare of Atlanta, 1760 Haygood Dr,
3rd floor W362, Atlanta, GA 30322; e-mail:
| |
Collapse
|
17
|
Tomomasa D, Isoda T, Mitsuiki N, Yamashita M, Morishita A, Tomoda T, Okano T, Endo A, Kamiya T, Yanagimachi M, Imai K, Kanegane H, Takagi M, Morio T. Successful ruxolitinib administration for a patient with steroid-refractory idiopathic pneumonia syndrome following hematopoietic stem cell transplantation: A case report and literature review. Clin Case Rep 2021; 9:e05242. [PMID: 34987813 PMCID: PMC8693824 DOI: 10.1002/ccr3.5242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Idiopathic pneumonia syndrome (IPS) is an acute lung complication observed after the early posthematopoietic stem cell transplantation (HSCT) period. Ruxolitinib was effective for a patient with myelodysplastic syndrome who developed severe IPS after second HSCT. No severe adverse effects were observed. Ruxolitinib may be an alternative choice for HSCT-related IPS.
Collapse
Affiliation(s)
- Dan Tomomasa
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental UniversityTokyoJapan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental UniversityTokyoJapan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental UniversityTokyoJapan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental UniversityTokyoJapan
| | - Aoi Morishita
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental UniversityTokyoJapan
| | - Takahiro Tomoda
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental UniversityTokyoJapan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental UniversityTokyoJapan
| | - Akifumi Endo
- Clinical Research CenterTokyo Medical and Dental UniversityTokyoJapan
| | - Takahiro Kamiya
- Clinical Research CenterTokyo Medical and Dental UniversityTokyoJapan
| | - Masakatsu Yanagimachi
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental UniversityTokyoJapan
- Department of Hematology and OncologyKanagawa Children's Medical CenterYokohamaJapan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Hirokazu Kanegane
- Department of Child Health and DevelopmentTokyo Medical and Dental UniversityTokyoJapan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental UniversityTokyoJapan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
18
|
Al-Heilfi A, Nataraja C, Cooley H, Batt T. Large-vessel vasculitis in graft-versus-host disease: a case report. J Med Case Rep 2021; 15:478. [PMID: 34579779 PMCID: PMC8477472 DOI: 10.1186/s13256-021-03067-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Graft-versus-host disease is a common complication seen with allogenic stem cell transplant, which is used to treat a variety of hematological malignancies. Graft-versus-host disease is an allogenic syndrome and can present in a variety of ways, including symptoms mimicking various autoimmune diseases; however, it is quite rare to see graft-versus-host disease affecting the vascular system and causing vasculitis. CASE PRESENTATION We describe a case of a 59-year-old Caucasian man with follicular lymphoma and diffuse large B-cell transformation who developed graft-versus-host disease post allogenic hematopoietic stem cell transplantation and later progressed to neurological complication foot drop and large-vessel vasculitis. CONCLUSION The life-threatening vascular complications associated with large-vessel vasculitis include arterial aneurysms and dissections, and ischemic or hemorrhagic stroke. Thus, this rare immunological association needs to be recognized and treated in a timely manner to prevent the long-term complications.
Collapse
Affiliation(s)
| | | | | | - Tracey Batt
- Royal Hobart Hospital, Hobart, TAS, Australia
| |
Collapse
|
19
|
Hirani D, Alvira CM, Danopoulos S, Milla C, Donato M, Tian L, Mohr J, Dinger K, Vohlen C, Selle J, Koningsbruggen-Rietschel SV, Barbarino V, Pallasch C, Rose-John S, Odenthal M, Pryhuber GS, Mansouri S, Savai R, Seeger W, Khatri P, Al Alam D, Dötsch J, Alejandre Alcazar MA. Macrophage-derived IL-6 trans-signaling as a novel target in the pathogenesis of bronchopulmonary dysplasia. Eur Respir J 2021; 59:13993003.02248-2020. [PMID: 34446466 PMCID: PMC8850688 DOI: 10.1183/13993003.02248-2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/24/2021] [Indexed: 11/17/2022]
Abstract
Rationale Premature infants exposed to oxygen are at risk for bronchopulmonary dysplasia (BPD), which is characterised by lung growth arrest. Inflammation is important, but the mechanisms remain elusive. Here, we investigated inflammatory pathways and therapeutic targets in severe clinical and experimental BPD. Methods and results First, transcriptomic analysis with in silico cellular deconvolution identified a lung-intrinsic M1-like-driven cytokine pattern in newborn mice after hyperoxia. These findings were confirmed by gene expression of macrophage-regulating chemokines (Ccl2, Ccl7, Cxcl5) and markers (Il6, Il17A, Mmp12). Secondly, hyperoxia-activated interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signalling was measured in vivo and related to loss of alveolar epithelial type II cells (ATII) as well as increased mesenchymal marker. Il6 null mice exhibited preserved ATII survival, reduced myofibroblasts and improved elastic fibre assembly, thus enabling lung growth and protecting lung function. Pharmacological inhibition of global IL-6 signalling and IL-6 trans-signalling promoted alveolarisation and ATII survival after hyperoxia. Third, hyperoxia triggered M1-like polarisation, possibly via Krüppel-like factor 4; hyperoxia-conditioned medium of macrophages and IL-6-impaired ATII proliferation. Finally, clinical data demonstrated elevated macrophage-related plasma cytokines as potential biomarkers that identify infants receiving oxygen at increased risk of developing BPD. Moreover, macrophage-derived IL6 and active STAT3 were related to loss of epithelial cells in BPD lungs. Conclusion We present a novel IL-6-mediated mechanism by which hyperoxia activates macrophages in immature lungs, impairs ATII homeostasis and disrupts elastic fibre formation, thereby inhibiting lung growth. The data provide evidence that IL-6 trans-signalling could offer an innovative pharmacological target to enable lung growth in severe neonatal chronic lung disease. M1-like macrophage activation is linked to IL-6/STAT3 axis in clinical and experimental BPD. Inhibition of macrophage-related IL-6 trans-signalling promotes ATII survival and lung growth in experimental BPD as a new therapy for preterm infants.https://bit.ly/3AhF7GP
Collapse
Affiliation(s)
- Dharmesh Hirani
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Koln, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Koln, Germany
| | - Cristina M Alvira
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Soula Danopoulos
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Carlos Milla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michele Donato
- Biomedical Informatics Research-Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Stanford, USA
| | - Jasmine Mohr
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Koln, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Koln, Germany
| | - Katharina Dinger
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Koln, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Koln, Germany
| | - Christina Vohlen
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Koln, Germany.,Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Koln, Germany
| | - Jaco Selle
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Koln, Germany
| | - Silke V Koningsbruggen-Rietschel
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Koln, Germany
| | - Verena Barbarino
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, University of Cologne, Koln, Germany
| | - Christian Pallasch
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, University of Cologne, Koln, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Margarete Odenthal
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Pathology, Koln, Germany
| | - Gloria S Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Siavash Mansouri
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Institute for Lung Health (ILH), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL)
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Institute for Lung Health (ILH), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL)
| | - Purvesh Khatri
- Biomedical Informatics Research-Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California, USA
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Koln, Germany
| | - Miguel A Alejandre Alcazar
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Koln, Germany .,University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Koln, Germany.,Institute for Lung Health (ILH), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL).,University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
20
|
Pulmonary Complications of Pediatric Hematopoietic Cell Transplantation. A National Institutes of Health Workshop Summary. Ann Am Thorac Soc 2021; 18:381-394. [PMID: 33058742 DOI: 10.1513/annalsats.202001-006ot] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Approximately 2,500 pediatric hematopoietic cell transplants (HCTs), most of which are allogeneic, are performed annually in the United States for life-threatening malignant and nonmalignant conditions. Although HCT is undertaken with curative intent, post-HCT complications limit successful outcomes, with pulmonary dysfunction representing the leading cause of nonrelapse mortality. To better understand, predict, prevent, and/or treat pulmonary complications after HCT, a multidisciplinary group of 33 experts met in a 2-day National Institutes of Health Workshop to identify knowledge gaps and research strategies most likely to improve outcomes. This summary of Workshop deliberations outlines the consensus focus areas for future research.
Collapse
|
21
|
IL-6 levels are dramatically high in the sputum from children with sickle cell disease during acute chest syndrome. Blood Adv 2021; 4:6130-6134. [PMID: 33351109 DOI: 10.1182/bloodadvances.2020003519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/09/2020] [Indexed: 02/02/2023] Open
Abstract
Key Points
Sputum interleukin-6 (IL-6) level is high during acute chest syndrome (ACS) in pediatric sickle cell disease, supporting anti–IL-6 trials. Sputum IL-8, CCL2, and CCL3 levels are also high during ACS, possibly contributing to recruitment of inflammatory cells in the lungs.
Collapse
|
22
|
Hill GR, Betts BC, Tkachev V, Kean LS, Blazar BR. Current Concepts and Advances in Graft-Versus-Host Disease Immunology. Annu Rev Immunol 2021; 39:19-49. [PMID: 33428454 PMCID: PMC8085043 DOI: 10.1146/annurev-immunol-102119-073227] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
- Division of Medical Oncology University of Washington, Seattle, Washington 98109, USA
| | - Brian C Betts
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
23
|
A phase 3 double-blind study of the addition of tocilizumab vs placebo to cyclosporin/methotrexate GVHD prophylaxis. Blood 2021; 137:1970-1979. [PMID: 33512442 DOI: 10.1182/blood.2020009050] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
We determined the efficacy of tocilizumab (TCZ) in preventing grade 2-4 acute graft-versus-host disease (aGVHD) in patients with acute leukemia or myelodysplasia undergoing matched sibling donor (MSD) or volunteer unrelated donor (VUD) allogeneic stem cell transplantation after myeloablative or reduced-intensity conditioning across 5 Australian centers. A total of 145 patients (50 MSD, 95 VUD) were randomly assigned to placebo or TCZ on day -1. All patients received T-cell-replete peripheral blood stem cell grafts and graft-versus-host disease (GVHD) prophylaxis with cyclosporin/methotrexate. A planned substudy analyzed the VUD cohort. With a median follow-up of 746 days, the incidence of grade 2-4 aGVHD at day 100 for the entire cohort was 36% for placebo vs 27% for TCZ (hazard ratio [HR], 0.69; 95% confidence interval [CI], 0.38-1.26; P = .23) and 45% vs 32% (HR, 0.61; 95% CI, 0.31-1.22; P = .16) for the VUD subgroup. The incidence of grade 2-4 aGVHD at day 180 for the entire cohort was 40% for placebo vs 29% for TCZ (HR, 0.68; 95% CI, 0.38-1.22; P = .19) and 48% vs 32% (HR, 0.59; 95% CI, 0.30-1.16; P = .13) for the VUD subgroup. Reductions in aGVHD were predominantly in grade 2 disease. For the entire cohort, transplant-related mortality occurred in 8% vs 11% of placebo-treated vs TCZ-treated patients, respectively (P = .56), and overall survival was 79% vs 71% (P = .27). Median day to neutrophil and platelet engraftment was delayed by 2 to 3 days in TCZ-treated patients, whereas liver toxicity and infectious complications were similar between groups. In this phase 3 randomized double-blind trial, TCZ showed nonsignificant trends toward reduced incidence of grade 2-4 aGVHD in recipients from HLA-matched VUDs but no improvements in long term-survival.
Collapse
|
24
|
Gurczynski SJ, Pereira NL, Hrycaj SM, Wilke C, Zemans RL, Moore BB. Stem cell transplantation uncovers TDO-AHR regulation of lung dendritic cells in herpesvirus-induced pathology. JCI Insight 2021; 6:139965. [PMID: 33491663 PMCID: PMC7934859 DOI: 10.1172/jci.insight.139965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
The aryl-hydrocarbon receptor (AHR) is an intracellular sensor of aromatic hydrocarbons that sits at the top of various immunomodulatory pathways. Here, we present evidence that AHR plays a role in controlling IL-17 responses and the development of pulmonary fibrosis in response to respiratory pathogens following bone marrow transplant (BMT). Mice infected intranasally with gamma-herpesvirus 68 (γHV-68) following BMT displayed elevated levels of the AHR ligand, kynurenine (kyn), in comparison with control mice. Inhibition or genetic ablation of AHR signaling resulted in a significant decrease in IL-17 expression as well as a reduction in lung pathology. Lung CD103+ DCs expressed AHR following BMT, and treatment of induced CD103+ DCs with kyn resulted in altered cytokine production in response to γHV-68. Interestingly, mice deficient in the kyn-producing enzyme indolamine 2-3 dioxygenase showed no differences in cytokine responses to γHV-68 following BMT; however, isolated pulmonary fibroblasts infected with γHV-68 expressed the kyn-producing enzyme tryptophan dioxygenase (TDO2). Our data indicate that alterations in the production of AHR ligands in response to respiratory pathogens following BMT results in a pro-Th17 phenotype that drives lung pathology. We have further identified the TDO2/AHR axis as a potentially novel form of intercellular communication between fibroblasts and DCs that shapes immune responses to respiratory pathogens.
Collapse
Affiliation(s)
- Stephen J Gurczynski
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, and
| | - Nicolas L Pereira
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, and
| | - Steven M Hrycaj
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, and
| | - Carol Wilke
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, and
| | - Rachel L Zemans
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, and
| | - Bethany B Moore
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, and.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Mariotti J, Penack O, Castagna L. Acute Graft-versus-Host-Disease Other Than Typical Targets: Between Myths and Facts. Transplant Cell Ther 2020; 27:115-124. [PMID: 33017661 DOI: 10.1016/j.bbmt.2020.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/15/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023]
Abstract
Donor alloreactivity after allogeneic hematopoietic stem cell transplantation results in graft-versus-host reaction (GVHR) that may affect different organs. While skin, liver, and gastrointestinal tract are well-recognized targets of such alloreactivity early after transplant, commonly identified as acute graft-versus-host-disease (aGVHD), there is accumulating evidence from the literature that early GVHR may be directed also against other tissues. In particular, organs such as kidney, bone marrow, central nervous system, and lungs may be involved in patients experiencing aGVHD, but whether these sites represent targets or collateral damages of donor alloreactivity is matter of debate. This review summarizes the current knowledge, the potential applications, and the clinical relevance of GFHR in nontypical target organs during aGVHD. The objective of this article is to lay the basis for future efforts aiming at including these organs in grading and management of aGVHD.
Collapse
Affiliation(s)
- Jacopo Mariotti
- Bone Marrow Transplant Unit, Humanitas Clinical and Research Center, Rozzano, Italy.
| | - Olaf Penack
- Medical Clinic, Department for Haematology, Oncology and Tumorimmunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Luca Castagna
- Bone Marrow Transplant Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
26
|
Hill GR, Koyama M. Cytokines and costimulation in acute graft-versus-host disease. Blood 2020; 136:418-428. [PMID: 32526028 PMCID: PMC7378458 DOI: 10.1182/blood.2019000952] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is an important curative therapy for high-risk hematological malignancies, but the development of severe and/or steroid-refractory acute graft-versus-host disease (aGVHD) remains a significant limitation to optimal outcomes. New approaches to prevent and treat aGVHD remain an unmet need that can be best addressed by understanding the complex disease pathophysiology. It is now clear that chemoradiotherapy used prior to alloSCT induces the release of endogenous alarmins (eg, HMGB-1, ATP, IL-1α, IL-33) from recipient tissue. Exogenous pathogen-derived molecules (eg, lipopolysaccharide, nucleic acids) also translocate from the gastrointestinal tract lumen. Together, these danger signals activate antigen-presenting cells (APCs) to efficiently present alloantigen to donor T cells while releasing cytokines (eg, interleukin-12 [IL-12], IL-23, IL-6, IL-27, IL-10, transforming growth factor-β) that expand and differentiate both pathogenic and regulatory donor T cells. Concurrent costimulatory signals at the APC-T-cell interface (eg, CD80/CD86-CD28, CD40-CD40L, OX40L-OX40, CD155/CD112-DNAM-1) and subsequent coinhibitory signals (eg, CD80/CD86-CTLA4, PDL1/2-PD1, CD155/CD112-TIGIT) are critical to the acquisition of effector T-cell function and ensuing secretion of pathogenic cytokines (eg, IL-17, interferon-γ, tissue necrosis factor, granulocyte-macrophage colony-stimulating factor) and cytolytic degranulation pathway effectors (eg, perforin/granzyme). This review focuses on the combination of cytokine and costimulatory networks at the T-cell surface that culminates in effector function and subsequent aGVHD in target tissue. Together, these pathways now represent robust and clinically tractable targets for preventing the initiation of deleterious immunity after alloSCT.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Motoko Koyama
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| |
Collapse
|
27
|
Increased P2X7 expression in the gastrointestinal tract and skin in a humanised mouse model of graft-versus-host disease. Clin Sci (Lond) 2020; 134:207-223. [PMID: 31934722 DOI: 10.1042/cs20191086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Allogeneic haematopoietic stem cell transplantation (HSCT) is a curative therapy for blood cancers; but results in the development of graft-versus-host disease (GVHD) in up to 70% of recipients. During GVHD, tissue damage results in ATP release into the extracellular compartment activating P2X7 on antigen-presenting cells, leading to the release of pro-inflammatory cytokines and subsequent activation of donor T cells. Therefore, the aim of the present study was to examine murine (m) P2rx7 and human (h) P2RX7 gene expression in GVHD target organs of humanised mice, and further characterise disease impact in these organs. METHODS NOD-scid IL2Rγnull (NSG) mice were injected with human peripheral blood mononuclear cells (hu-PBMC-NSG mice) or phosphate-buffered saline (PBS, control). Leucocytes were assessed by flow cytometry; gene expression was measured by quantitative polymerase chain reaction (qPCR), and tissue sections examined by histology. RESULTS Compared with control mice, hu-PBMC-NSG mice had increased mP2rx7 and mP2rx4 expression in the duodenum, ileum and skin. hP2RX7 was expressed in all tissues examined. hu-PBMC-NSG mice also displayed increased mReg3g expression in the duodenum and ileum, despite limited histological gut GVHD. hu-PBMC-NSG mice showed histological evidence of GVHD in the skin, liver and lung. Compared with control mice, hu-PBMC-NSG mice displayed increased ear swelling. CONCLUSION Combined data revealed that P2rx7 is up-regulated in gut and skin GVHD and that P2RX7 is present in target tissues of GVHD, corresponding to human leucocyte infiltration. Data also reveal increased mReg3g expression and ear swelling in hu-PBMC-NSG mice, offering new measurements of early-stage gut GVHD and skin GVHD, respectively.
Collapse
|
28
|
Engel JA, Lee HJ, Williams CG, Kuns R, Olver S, Lansink LI, Soon MS, Andersen SB, Powell JE, Svensson V, Teichmann SA, Hill GR, Varelias A, Koyama M, Haque A. Single-cell transcriptomics of alloreactive CD4+ T cells over time reveals divergent fates during gut graft-versus-host disease. JCI Insight 2020; 5:137990. [PMID: 32484791 PMCID: PMC7406307 DOI: 10.1172/jci.insight.137990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/21/2020] [Indexed: 08/05/2023] Open
Abstract
Acute gastrointestinal (GI) graft-versus-host disease (GVHD) is a primary determinant of mortality after allogeneic hematopoietic stem cell transplantation (alloSCT). The condition is mediated by alloreactive donor CD4+ T cells that differentiate into pathogenic subsets expressing IFN-γ, IL-17A, or GM-CSF and is regulated by subsets expressing IL-10 and/or Foxp3. Developmental relationships between Th cell states during priming in mesenteric lymph nodes (mLNs) and effector function in the GI tract remain undefined at genome scale. We applied scRNA-Seq and computational modeling to a mouse model of donor DC-mediated GVHD exacerbation, creating an atlas of putative CD4+ T cell differentiation pathways in vivo. Computational trajectory inference suggested emergence of pathogenic and regulatory states along a single developmental trajectory in mLNs. Importantly, we inferred an unexpected second trajectory, categorized by little proliferation or cytokine expression, reduced glycolysis, and high tcf7 expression. TCF1hi cells upregulated α4β7 before gut migration and failed to express cytokines. These cells exhibited recall potential and plasticity following secondary transplantation, including cytokine or Foxp3 expression, but reduced T cell factor 1 (TCF1). Thus, scRNA-Seq suggested divergence of alloreactive CD4+ T cells into quiescent and effector states during gut GVHD exacerbation by donor DC, reflecting putative heterogeneous priming in vivo. These findings, which are potentially the first at a single-cell level during GVHD over time, may assist in examination of T cell differentiation in patients undergoing alloSCT.
Collapse
Affiliation(s)
- Jessica A. Engel
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Hyun Jae Lee
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Cameron G. Williams
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Rachel Kuns
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Stuart Olver
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Lianne I.M. Lansink
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Megan S.F. Soon
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Stacey B. Andersen
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Joseph E. Powell
- Garvan-Weizmann Centre for Cellular Genomics, Sydney, New South Wales, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Geoffrey R. Hill
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, St. Lucia, Queensland, Australia
| | - Motoko Koyama
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
- Department of Microbiology and Immunology, University of Melbourne, located at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Abstract
PURPOSE Tocilizumab, a monoclonal antibody directed against the IL-6 receptor, might block detrimental effects of IL-6 on transplantation. IL-6 plays a considerable role in cytokine storm after stem cell transplantation as well as graft versus host disease, and it has also been shown to be involved in solid organ allograft rejection; therefore, tocilizumab is expected to promote graft survival. Nonetheless, due to the small number of studies and disparate methods of drug administration and outcome evaluation, for which types of transplantation, at which stages, and to what extent tocilizumab could be applied remains to be defined. METHODS The Pubmed, SCOPUS and Google Scholar search engines were used to collect data. The keywords were determined by Pubmed MeSH. No time limitation was set and all types of articles were allowed. RESULTS: According to the potential of Tocilozumab in controlling both cellular and humoral immunity it could be considered as a promising agent in tolerance induction; however, blocking IL-6 signaling might result in augmented infection rate in recipients. CONCLUSION The need for providing effective and safe immunosuppressive agents to protect transplanted cells and organs against allo-reactivity urges the collection and discussion of all available findings about inhibition of determining immune components including cytokines; herein, we have summarized the clinical consequences of blocking IL-6 by tocilizumab in stem cell and solid organ transplantations.
Collapse
|
30
|
Wilkinson AN, Chang K, Kuns RD, Henden AS, Minnie SA, Ensbey KS, Clouston AD, Zhang P, Koyama M, Hidalgo J, Rose-John S, Varelias A, Vuckovic S, Gartlan KH, Hill GR. IL-6 dysregulation originates in dendritic cells and mediates graft-versus-host disease via classical signaling. Blood 2019; 134:2092-2106. [PMID: 31578204 DOI: 10.1182/blood.2019000396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/22/2019] [Indexed: 12/13/2022] Open
Abstract
Graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (alloSCT) is characterized by interleukin-6 (IL-6) dysregulation. IL-6 can mediate effects via various pathways, including classical, trans, and cluster signaling. Given the recent availability of agents that differentially inhibit these discrete signaling cascades, understanding the source and signaling and cellular targets of this cytokine is paramount to inform the design of clinical studies. Here we demonstrate that IL-6 secretion from recipient dendritic cells (DCs) initiates the systemic dysregulation of this cytokine. Inhibition of DC-driven classical signaling after targeted IL-6 receptor (IL-6R) deletion in T cells eliminated pathogenic donor Th17/Th22 cell differentiation and resulted in long-term survival. After engraftment, donor DCs assume the same role, maintaining classical IL-6 signaling-dependent GVHD responses. Surprisingly, cluster signaling was not active after transplantation, whereas inhibition of trans signaling with soluble gp130Fc promoted severe, chronic cutaneous GVHD. The latter was a result of exaggerated polyfunctional Th22-cell expansion that was reversed by IL-22 deletion or IL-6R inhibition. Importantly, inhibition of IL-6 classical signaling did not impair the graft-versus-leukemia effect. Together, these data highlight IL-6 classical signaling and downstream Th17/Th22 differentiation as important therapeutic targets after alloSCT.
Collapse
Affiliation(s)
- Andrew N Wilkinson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Karshing Chang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andrea S Henden
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Simone A Minnie
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | | | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Motoko Koyama
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Juan Hidalgo
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, and
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Slavica Vuckovic
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kate H Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, University of Washington, Seattle, WA
| |
Collapse
|
31
|
Wenger DS, Triplette M, Crothers K, Cheng GS, Hill JA, Milano F, Shahrir S, Schoch G, Vande Vusse LK. Incidence, Risk Factors, and Outcomes of Idiopathic Pneumonia Syndrome after Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2019; 26:413-420. [PMID: 31605819 PMCID: PMC7035790 DOI: 10.1016/j.bbmt.2019.09.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 11/26/2022]
Abstract
Our current knowledge of idiopathic pneumonia syndrome (IPS) predates improved specificity in the diagnosis of IPS and advances in hematopoietic cell transplantation (HCT) and critical care practices. In this study, we describe and update the incidence, risk factors, and outcomes of IPS. We performed a retrospective cohort study of all adults who underwent allogeneic HCT at the Fred Hutchinson Cancer Research Center between 2006 and 2013 (n = 1829). IPS was defined using the National Heart, Lung, and Blood Institute consensus definition: multilobar airspace opacities on chest imaging, absence of lower respiratory tract infection, and hypoxemia. We described IPS incidence and mortality within 120 and 365 days after HCT. We examined conditioning intensity (nonmyeloablative versus myeloablative with high-dose total body irradiation [TBI] versus myeloablative with low-dose TBI) as an IPS risk factor in a time-to-event analysis using Cox models, controlled for age at transplant, HLA matching, stem cell source, and pretransplant Lung function Score (a combined measure of impairment in Forced Expiratory Volume in the first second (FEV1) and Diffusion capacity for carbon monoxide (DLCO)). Among 1829 HCT recipients, 67 fulfilled IPS criteria within 120 days (3.7%). Individuals who developed IPS were more likely to be black/non-Hispanic versus other racial groups and have severe pulmonary impairment but were otherwise similar to participants without IPS. In adjusted models, myeloablative conditioning with high-dose TBI was associated with increased risk of IPS (hazard ratio, 2.5; 95% confidence interval, 1.2 to 5.2). Thirty-one patients (46.3%) with IPS died within the first 120 days of HCT and 47 patients (70.1%) died within 365 days of HCT. In contrast, among the 1762 patients who did not acquire IPS in the first 120 days, 204 (11.6%) died within 120 days of HCT and 510 (29.9%) died within 365 days of HCT. Our findings suggest that although the incidence of IPS may be declining, it remains associated with post-transplant mortality. Future study should focus on early detection and identifying pathologic mediators of IPS to facilitate timely, targeted therapies for those most susceptible to lung injury post-HCT.
Collapse
Affiliation(s)
- David S Wenger
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington Medical Center, Seattle, Washington.
| | - Matthew Triplette
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington Medical Center, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kristina Crothers
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington Medical Center, Seattle, Washington; VA Puget Sound Healthcare System, University of Washington, Seattle, Washington
| | - Guang-Shing Cheng
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington Medical Center, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Joshua A Hill
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington; Vaccine and Infectious Disease Division & Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Filippo Milano
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Hematology and Oncology, Seattle Cancer Care Alliance, Seattle, Washington
| | - Shahida Shahrir
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington Medical Center, Seattle, Washington
| | - Gary Schoch
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Lisa K Vande Vusse
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington Medical Center, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
32
|
Greco R, Lorentino F, Nitti R, Lupo Stanghellini MT, Giglio F, Clerici D, Xue E, Lazzari L, Piemontese S, Mastaglio S, Assanelli A, Marktel S, Corti C, Bernardi M, Ciceri F, Peccatori J. Interleukin-6 as Biomarker for Acute GvHD and Survival After Allogeneic Transplant With Post-transplant Cyclophosphamide. Front Immunol 2019; 10:2319. [PMID: 31632401 PMCID: PMC6779849 DOI: 10.3389/fimmu.2019.02319] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Although the outcome of allogeneic hematopoietic stem cell transplantation (allo-HSCT) has dramatically improved in the past decade, it is still compromised by transplant-related mortality (TRM), mainly caused by Graft-vs. -Host Disease (GvHD). Methods: We conducted a prospective observational study to ascertain the potential of serum interleukin-6 (IL6) levels, measured before conditioning and 7 days after allo-HSCT, in predicting acute GvHD, TRM and survival after allo-HSCT with Post-Transplant Cyclophosphamide (PT-Cy) based GvHD prophylaxis. Results: Between April 2014 and June 2017, we collected samples from 166 consecutive allo-HSCT patients. By ROC analysis, we identified a threshold of 2.5 pg/ml for pre-transplant IL6 and 16.5 pg/ml for post-transplant IL6. Both univariate and multivariate analyses confirmed the ability of high baseline IL6 levels to predict worse OS (HR 4.3; p < 0.01) and grade II-IV acute GvHD (HR 1.8; p = 0.04), and of high post-transplant IL6 to identify patients with worse OS (HR 3.3; p < 0.01) and higher risk of grade II-IV (HR 5; p < 0.01) and grade III-IV acute GvHD (HR 10.2; p < 0.01). In multivariate analysis, both baseline (HR 6.7; p < 0.01) and post-transplant high IL6 levels (HR 3.5; p = 0.02) predicted higher TRM. Conclusions: IL6 may contribute to the risk stratification of patients at major risk for aGvHD and TRM, potentially providing a window for additional prophylactic or preemptive strategies to improve the quality of life in the early post-transplant phase and the outcome of allo-HSCT.
Collapse
Affiliation(s)
- Raffaella Greco
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Lorentino
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosamaria Nitti
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Fabio Giglio
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Clerici
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Xue
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Lazzari
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Piemontese
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Mastaglio
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Assanelli
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sarah Marktel
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Consuelo Corti
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Bernardi
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Jacopo Peccatori
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
33
|
Koyama M, Mukhopadhyay P, Schuster IS, Henden AS, Hülsdünker J, Varelias A, Vetizou M, Kuns RD, Robb RJ, Zhang P, Blazar BR, Thomas R, Begun J, Waddell N, Trinchieri G, Zeiser R, Clouston AD, Degli-Esposti MA, Hill GR. MHC Class II Antigen Presentation by the Intestinal Epithelium Initiates Graft-versus-Host Disease and Is Influenced by the Microbiota. Immunity 2019; 51:885-898.e7. [PMID: 31542340 DOI: 10.1016/j.immuni.2019.08.011] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/15/2019] [Accepted: 08/13/2019] [Indexed: 12/30/2022]
Abstract
Graft-versus-host disease (GVHD) in the gastrointestinal (GI) tract is the principal determinant of lethality following allogeneic bone marrow transplantation (BMT). Here, we examined the mechanisms that initiate GVHD, including the relevant antigen-presenting cells. MHC class II was expressed on intestinal epithelial cells (IECs) within the ileum at steady state but was absent from the IECs of germ-free mice. IEC-specific deletion of MHC class II prevented the initiation of lethal GVHD in the GI tract. MHC class II expression on IECs was absent from mice deficient in the TLR adaptors MyD88 and TRIF and required IFNγ secretion by lamina propria lymphocytes. IFNγ responses are characteristically driven by IL-12 secretion from myeloid cells. Antibiotic-mediated depletion of the microbiota inhibited IL-12/23p40 production by ileal macrophages. IL-12/23p40 neutralization prevented MHC class II upregulation on IECs and initiation of lethal GVHD in the GI tract. Thus, MHC class II expression by IECs in the ileum initiates lethal GVHD, and blockade of IL-12/23p40 may represent a readily translatable therapeutic strategy.
Collapse
Affiliation(s)
- Motoko Koyama
- Bone Marrow Transplantation Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Pamela Mukhopadhyay
- Medical Genomics Laboratory, Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Iona S Schuster
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA 6009, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia; Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Andrea S Henden
- Bone Marrow Transplantation Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia
| | - Jan Hülsdünker
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert Ludwigs University Freiburg, Freiburg 79106, Germany; Spemann Graduate School of Biology and Medicine, University Freiburg, Freiburg 79085, Germany; Faculty of Biology, University Freiburg, Freiburg 79104, Germany
| | - Antiopi Varelias
- Bone Marrow Transplantation Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Marie Vetizou
- Cancer and Inflammation Program, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Rachel D Kuns
- Bone Marrow Transplantation Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Renee J Robb
- Bone Marrow Transplantation Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Ping Zhang
- Bone Marrow Transplantation Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ranjeny Thomas
- Diamantina Institute, Translational Research Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Jakob Begun
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Nicola Waddell
- Medical Genomics Laboratory, Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert Ludwigs University Freiburg, Freiburg 79106, Germany
| | | | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA 6009, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia; Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Medical Oncology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
34
|
Zhou X, O’Dwyer DN, Xia M, Miller HK, Chan PR, Trulik K, Chadwick MM, Hoffman TC, Bulte C, Sekerak K, Wilke CA, Patel SJ, Yokoyama WM, Murray S, Yanik GA, Moore BB. First-Onset Herpesviral Infection and Lung Injury in Allogeneic Hematopoietic Cell Transplantation. Am J Respir Crit Care Med 2019; 200:63-74. [PMID: 30742492 PMCID: PMC6603051 DOI: 10.1164/rccm.201809-1635oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Rationale: "Noninfectious" pulmonary complications are significant causes of morbidity and mortality after allogeneic hematopoietic cell transplant. Early-onset viral reactivations or infections are common after transplant. Whether the first-onset viral infection causes noninfectious pulmonary complications is unknown. Objectives: To determine whether the first-onset viral infection within 100 days after transplant predisposes to development of noninfectious pulmonary complications. Methods: We performed a retrospective review of 738 allogeneic hematopoietic cell transplant patients enrolled from 2005 to 2011. We also established a novel bone marrow transplantation mouse model to test whether herpesviral reactivation after transplant causes organ injury. Measurements and Main Results: First-onset viral infections with human herpesvirus 6 or Epstein-Barr virus within 100 days after transplant increase the risk of developing idiopathic pneumonia syndrome (adjusted hazard ratio [aHR], 5.52; 95% confidence interval [CI], 1.61-18.96; P = 0.007; and aHR, 9.21; 95% CI, 2.63-32.18; P = 0.001, respectively). First infection with human cytomegalovirus increases risk of bronchiolitis obliterans syndrome (aHR, 2.88; 95% CI, 1.50-5.55; P = 0.002) and grade II-IV acute graft-versus-host disease (aHR, 1.59; 95% CI, 1.06-2.39; P = 0.02). Murine roseolovirus, a homolog of human herpesvirus 6, can also be reactivated in the lung and other organs after bone marrow transplantation. Reactivation of murine roseolovirus induced an idiopathic pneumonia syndrome-like phenotype and aggravated acute graft-versus-host disease. Conclusions: First-onset herpesviral infection within 100 days after allogeneic hematopoietic cell transplant increases risk of pulmonary complications. Experimentally reactivating murine roseolovirus causes organ injury similar to phenotypes seen in human transplant recipients.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - David N. O’Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Meng Xia
- Department of Biostatistics, School of Public Health and
| | - Holly K. Miller
- Department of Hematology/Oncology, Phoenix Children’s Hospital, Phoenix, Arizona; and
| | - Paul R. Chan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Kelsey Trulik
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Mathew M. Chadwick
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Timothy C. Hoffman
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Camille Bulte
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kevin Sekerak
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Carol A. Wilke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Swapneel J. Patel
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Susan Murray
- Department of Biostatistics, School of Public Health and
| | - Gregory A. Yanik
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bethany B. Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
35
|
Diverse Activity of IL-17 + Cells in Chronic Skin and Mucosa Graft-Versus-Host Disease. Arch Immunol Ther Exp (Warsz) 2019; 67:311-323. [PMID: 31177288 PMCID: PMC6732123 DOI: 10.1007/s00005-019-00549-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/30/2019] [Indexed: 01/10/2023]
Abstract
Excessive inflammatory environment in a course of chronic graft-versus-host disease (cGvHD) is associated with T-cell trafficking into inflamed tissues. This study focused on the identification of IL-17-producing cells in the tissue biopsies of cGvHD patients. Forty-one biopsy specimens of cGvHD lesions of the skin (n = 27), gastrointestinal tract (n = 9) and oral mucosa (n = 5), examined in 24 patients, were morphologically defined according to the NIH criteria and analyzed for the presence of cellular infiltrations including: IL-17+, FOXP3+ and CCR6+ cells. IL-17+ cells were identified in 26/27 skin and in all gut and oral mucosa biopsies, being more frequent in mucosa lesions than in the skin (11/14 vs 14/26, respectively; NS: not significant). Double staining documented that CD138+/IL-17+ cells were commonly seen in the gut than in the skin (5/8 vs 3/11, respectively; NS). In the skin, cells expressing trafficking receptor CCR6+ were more frequent than IL-17+ cells compared to the mucosa (23/26 vs 2/13, respectively; p < 0.0001). CCR6 was present on a majority of IL-17+ cells in all examined skin biopsies but only in 6 out of 11 digestive tract biopsies (p = 0.0112). FOXP3+ cells were identified only in five patients (with mild lesions) at least in one biopsy. In this study group, results documented that local expansion of IL-17-producing cells in the digestive tract correlate with moderate and severe clinical symptoms of cGvHD, in contrast to the skin, where IL-17+ cells are rather scarcely present (p = 0.0301) and the course of cGvHD is slowly progressing with final organ deterioration.
Collapse
|
36
|
Piper C, Drobyski WR. Inflammatory Cytokine Networks in Gastrointestinal Tract Graft vs. Host Disease. Front Immunol 2019; 10:163. [PMID: 30853956 PMCID: PMC6395399 DOI: 10.3389/fimmu.2019.00163] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/18/2019] [Indexed: 11/23/2022] Open
Abstract
Graft vs. host disease (GVHD) is the major non-relapse complication associated with allogeneic hematopoietic stem cell transplantation (HSCT). Damage to the gastrointestinal (GI) tract from acute GVHD is a particularly serious event that can result in significant morbidity and mortality. Proinflammatory cytokines play a critical role in the pathophysiology of intestinal GVHD, in part by activating donor T cell populations which subsequently induce tissue damage. In this review, we summarize pre-clinical data derived from experimental murine models that have examined the role of inflammatory cytokine pathways that play critical roles in the pathophysiology of GVHD of the GI tract. Specific areas of focus are on STAT 3-dependent cytokines (e.g., IL-6, IL-23, and IL-21), and members of the IL-1 cytokine family, both of which have been shown to induce pathological damage within the GI tract during this disease. We also review established and ongoing efforts to translate these pre-clinical findings into the clinic in an effort to reduce morbidity and mortality due to this complication.
Collapse
Affiliation(s)
- Clint Piper
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - William R Drobyski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Bone Marrow Transplant Program, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
37
|
Vuckovic S, Minnie SA, Smith D, Gartlan KH, Watkins TS, Markey KA, Mukhopadhyay P, Guillerey C, Kuns RD, Locke KR, Pritchard AL, Johansson PA, Varelias A, Zhang P, Huntington ND, Waddell N, Chesi M, Miles JJ, Smyth MJ, Hill GR. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest 2018; 129:106-121. [PMID: 30300141 DOI: 10.1172/jci98888] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
Transplantation with autologous hematopoietic progenitors remains an important consolidation treatment for patients with multiple myeloma (MM) and is thought to prolong the disease plateau phase by providing intensive cytoreduction. However, transplantation induces inflammation in the context of profound lymphodepletion that may cause hitherto unexpected immunological effects. We developed preclinical models of bone marrow transplantation (BMT) for MM using Vk*MYC myeloma-bearing recipient mice and donor mice that were myeloma naive or myeloma experienced to simulate autologous transplantation. Surprisingly, we demonstrated broad induction of T cell-dependent myeloma control, most efficiently from memory T cells within myeloma-experienced grafts, but also through priming of naive T cells after BMT. CD8+ T cells from mice with controlled myeloma had a distinct T cell receptor (TCR) repertoire and higher clonotype overlap relative to myeloma-free BMT recipients. Furthermore, T cell-dependent myeloma control could be adoptively transferred to secondary recipients and was myeloma cell clone specific. Interestingly, donor-derived IL-17A acted directly on myeloma cells expressing the IL-17 receptor to induce a transcriptional landscape that promoted tumor growth and immune escape. Conversely, donor IFN-γ secretion and signaling were critical to protective immunity and were profoundly augmented by CD137 agonists. These data provide new insights into the mechanisms of action of transplantation in myeloma and provide rational approaches to improving clinical outcomes.
Collapse
Affiliation(s)
- Slavica Vuckovic
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia.,Multiple Myeloma Research Group, Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Simone A Minnie
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia
| | - David Smith
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kate H Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Kate A Markey
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia.,Division of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Camille Guillerey
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kelly R Locke
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Antonia L Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Genetics and Immunology, University of the Highlands and Islands, Inverness, United Kingdom
| | | | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia
| | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nicholas D Huntington
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology and.,Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - John J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Haematology, The Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
38
|
Early Blood Stream Infections after BMT are Associated with Cytokine Dysregulation and Poor Overall Survival. Biol Blood Marrow Transplant 2018. [DOI: 10.1016/j.bbmt.2018.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Yanir AD, Martinez CA, Sasa G, Leung K, Gottschalk S, Omer B, Ahmed N, Hegde M, Eunji J, Liu H, Heslop HE, Brenner MK, Krance RA, Naik S. Current Allogeneic Hematopoietic Stem Cell Transplantation for Pediatric Acute Lymphocytic Leukemia: Success, Failure and Future Perspectives—A Single-Center Experience, 2008 to 2016. Biol Blood Marrow Transplant 2018; 24:1424-1431. [DOI: 10.1016/j.bbmt.2018.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
|
40
|
Gurczynski SJ, Zhou X, Flaherty M, Wilke CA, Moore BB. Bone marrow transplant-induced alterations in Notch signaling promote pathologic Th17 responses to γ-herpesvirus infection. Mucosal Immunol 2018; 11:881-893. [PMID: 29044226 PMCID: PMC5906203 DOI: 10.1038/mi.2017.85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/22/2017] [Indexed: 02/04/2023]
Abstract
Idiopathic pneumonia syndrome (IPS) is a common, often fatal, complication following hematopoietic stem cell transplantation (HSCT) characterized by severe pneumonitis and interstitial fibrosis. Fully reconstituted syngeneic bone marrow transplant (BMT) mice infected with murine γ-herpesvirus-68 develop interleukin-17 (IL-17)-driven pneumonitis and fibrosis, which mimics clinical manifestations of IPS. We found CD103+ and CD11b+ dendritic cells (DCs) are selectively deficient for the Notch ligand, DLL4, following BMT and CD4+ T cells isolated from lungs and spleens of infected BMT mice display Notch signaling defects. Mice transplanted with CD4-Cre-driven dominant-negative Notch transcriptional regulator Mastermind-Like (CD4-Cre-DNMAML (CCD) mice) bone marrow displayed elevated IL-17 and transforming growth factor-β (TGF β) in the lungs, a further expansion of T-helper type 17 (Th17) cells, and developed more fibrosis than wild-type (WT)-BMT mice. Culture of BMT lung leukocytes with recombinant Notch ligand, DLL4, restored Notch signaling and decreased production of IL-17. Adoptive transfer of CD11c+ DCs could restore Th1 and limit Th17 in WT-BMT but not CCD-BMT mice, indicating that a specific DC/CD4+ T-cell Notch interaction modulates IL-17 production following reconstitution in syngeneic BMT mice. Given recent clinical observations showing that patients with pulmonary complications post-transplant harbor occult herpesvirus infections, these data provide mechanistic insight and suggest potential therapies for these devastating conditions.
Collapse
Affiliation(s)
- Stephen J. Gurczynski
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, MI
| | - Xiaofeng Zhou
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, MI
| | - Melanie Flaherty
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, MI
| | - Carol A. Wilke
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, MI
| | - Bethany B. Moore
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, MI,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
41
|
Affiliation(s)
- Chaopin Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Du
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
42
|
Varelias A, Bunting MD, Ormerod KL, Koyama M, Olver SD, Straube J, Kuns RD, Robb RJ, Henden AS, Cooper L, Lachner N, Gartlan KH, Lantz O, Kjer-Nielsen L, Mak JY, Fairlie DP, Clouston AD, McCluskey J, Rossjohn J, Lane SW, Hugenholtz P, Hill GR. Recipient mucosal-associated invariant T cells control GVHD within the colon. J Clin Invest 2018; 128:1919-1936. [PMID: 29629900 DOI: 10.1172/jci91646] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a unique innate-like T cell subset that responds to a wide array of bacteria and yeast through recognition of riboflavin metabolites presented by the MHC class I-like molecule MR1. Here, we demonstrate using MR1 tetramers that recipient MAIT cells are present in small but definable numbers in graft-versus-host disease (GVHD) target organs and protect from acute GVHD in the colon following bone marrow transplantation (BMT). Consistent with their preferential juxtaposition to microbial signals in the colon, recipient MAIT cells generate large amounts of IL-17A, promote gastrointestinal tract integrity, and limit the donor alloantigen presentation that in turn drives donor Th1 and Th17 expansion specifically in the colon after BMT. Allogeneic BMT recipients deficient in IL-17A also develop accelerated GVHD, suggesting MAIT cells likely regulate GVHD, at least in part, by the generation of this cytokine. Indeed, analysis of stool microbiota and colon tissue from IL-17A-/- and MR1-/- mice identified analogous shifts in microbiome operational taxonomic units (OTU) and mediators of barrier integrity that appear to represent pathways controlled by similar, IL-17A-dependent mechanisms. Thus, MAIT cells act to control barrier function to attenuate pathogenic T cell responses in the colon and, given their very high frequency in humans, likely represent an important population in clinical BMT.
Collapse
Affiliation(s)
- Antiopi Varelias
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, and
| | - Mark D Bunting
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kate L Ormerod
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Motoko Koyama
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stuart D Olver
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jasmin Straube
- Gordon and Jessie Gilmour Leukaemia Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Rachel D Kuns
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Renee J Robb
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrea S Henden
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Leanne Cooper
- Gordon and Jessie Gilmour Leukaemia Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nancy Lachner
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Kate H Gartlan
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, and
| | - Olivier Lantz
- INSERM U932 and Department de Biologie des Tumeurs, Institute Curie and Centre d'Investigation Clinique, CICBT507 IGR/Curie, Paris, France
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - Jeffrey Yw Mak
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - David P Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia
| | - Steven W Lane
- Faculty of Medicine, and.,Gordon and Jessie Gilmour Leukaemia Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, and.,The Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
43
|
Gartlan KH, Bommiasamy H, Paz K, Wilkinson AN, Owen M, Reichenbach DK, Banovic T, Wehner K, Buchanan F, Varelias A, Kuns RD, Chang K, Fedoriw Y, Shea T, Coghill J, Zaiken M, Plank MW, Foster PS, Clouston AD, Blazar BR, Serody JS, Hill GR. A critical role for donor-derived IL-22 in cutaneous chronic GVHD. Am J Transplant 2018; 18:810-820. [PMID: 28941323 PMCID: PMC5866168 DOI: 10.1111/ajt.14513] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/07/2017] [Accepted: 09/16/2017] [Indexed: 01/25/2023]
Abstract
Graft-versus-host disease (GVHD) is the major cause of nonrelapse morbidity and mortality after allogeneic stem cell transplantation (allo-SCT). Prevention and treatment of GVHD remain inadequate and commonly lead to end-organ dysfunction and opportunistic infection. The role of interleukin (IL)-17 and IL-22 in GVHD remains uncertain, due to an apparent lack of lineage fidelity and variable and contextually determined protective and pathogenic effects. We demonstrate that donor T cell-derived IL-22 significantly exacerbates cutaneous chronic GVHD and that IL-22 is produced by highly inflammatory donor CD4+ T cells posttransplantation. IL-22 and IL-17A derive from both independent and overlapping lineages, defined as T helper (Th)22 and IL-22+ Th17 cells. Donor Th22 and IL-22+ Th17 cells share a similar IL-6-dependent developmental pathway, and while Th22 cells arise independently of the IL-22+ Th17 lineage, IL-17 signaling to donor Th22 directly promotes their development in allo-SCT. Importantly, while both IL-22 and IL-17 mediate skin GVHD, Th17-induced chronic GVHD can be attenuated by IL-22 inhibition in preclinical systems. In the clinic, high levels of both IL-17A and IL-22 expression are present in the skin of patients with GVHD after allo-SCT. Together, these data demonstrate a key role for donor-derived IL-22 in patients with chronic skin GVHD and confirm parallel but symbiotic developmental pathways of Th22 and Th17 differentiation.
Collapse
Affiliation(s)
- Kate H Gartlan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Hemamalini Bommiasamy
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Katelyn Paz
- Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN, USA
| | - Andrew N Wilkinson
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Mary Owen
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Dawn K Reichenbach
- Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN, USA
| | - Tatjana Banovic
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The Department of Clinical Immunology and Allergy, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Kimberly Wehner
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Faith Buchanan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Antiopi Varelias
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Rachel D Kuns
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Karshing Chang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Yuri Fedoriw
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas Shea
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - James Coghill
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Zaiken
- Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN, USA
| | - Maximilian W Plank
- Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Paul S Foster
- Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | | | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Geoffrey R Hill
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
44
|
Reddy P, Ferrara JL. Graft-Versus-Host Disease and Graft-Versus-Leukemia Responses. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
45
|
Seo S, Yu J, Jenkins IC, Leisenring WM, Steven-Ayers T, Kuypers JM, Huang ML, Jerome KR, Boeckh M, Paczesny S. Diagnostic and Prognostic Plasma Biomarkers for Idiopathic Pneumonia Syndrome after Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2017; 24:678-686. [PMID: 29223372 DOI: 10.1016/j.bbmt.2017.11.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/28/2017] [Indexed: 11/16/2022]
Abstract
Idiopathic pneumonia syndrome (IPS) is a noninfectious pulmonary complication after hematopoietic cell transplantation (HCT) and is difficult to diagnose. In 41 patients with IPS, we evaluated 6 candidate proteins in plasma samples at day 7 post-HCT and at onset of IPS to identify potential diagnostic or prognostic biomarkers for IPS. Samples at similar times from 162 HCT recipients without documented infections and 37 HCT recipients with respiratory viral pneumonia served as controls. In multivariable models, a combination of Stimulation-2 (ST2; odds ratio [OR], 2.8; P < .001) and IL-6 (OR, 1.4; P = .025) was the best panel for distinguishing IPS at diagnosis from unaffected controls, whereas tumor necrosis factor receptor 1 (TNFR1; OR, 2.9; P = .002) was the best marker when comparing patients with IPS and viral pneumonia. The areas under the curve of the receiver operating characteristic (ROC) curves for discriminating between IPS and unaffected controls at day 7 post-HCT were .8 for ST2, .75 for IL-6, and .68 for TNFR1. Using estimated sensitivity and specificity values from cutoffs determined with the ROC analysis (cutoff level: ST2, 21 ng/mL; IL-6, 61 pg/mL; TNFR1, 3421 pg/mL), we calculated positive predictive values (PPV) for a range of estimated population prevalence values of IPS. Among the 3 markers, ST2 showed the highest PPV for IPS occurrence. Based on an assumed prevalence of 8%, a positive ST2 test increased likelihood of IPS to 50%. We conclude that a prospective validation study is warranted to determine whether a plasma biomarker panel can aid the noninvasive diagnosis and prognosis of IPS.
Collapse
Affiliation(s)
- Sachiko Seo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Hematology and Oncology, National Cancer Research Center East, Chiba, Japan
| | - Jeffrey Yu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Isaac C Jenkins
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Wendy M Leisenring
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Terry Steven-Ayers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jane M Kuypers
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington.
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
46
|
Vande Vusse LK, Madtes DK. Early Onset Noninfectious Pulmonary Syndromes after Hematopoietic Cell Transplantation. Clin Chest Med 2017; 38:233-248. [PMID: 28477636 PMCID: PMC7126669 DOI: 10.1016/j.ccm.2016.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lisa K Vande Vusse
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop D5-360, Seattle, WA 98109, USA; Division of Pulmonary and Critical Care Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | - David K Madtes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop D5-360, Seattle, WA 98109, USA
| |
Collapse
|
47
|
Gurczynski SJ, Moore BB. IL-17 in the lung: the good, the bad, and the ugly. Am J Physiol Lung Cell Mol Physiol 2017; 314:L6-L16. [PMID: 28860146 DOI: 10.1152/ajplung.00344.2017] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The IL-17 family of cytokines has emerged over the last two decades as a pleiotropic group of molecules that function in a wide variety of both beneficial and detrimental (pathological) processes, mainly in mucosal barrier tissue. The beneficial effects of IL-17 expression are especially important in the lung, where exposure to foreign agents is abundant. IL-17A plays an important role in protection from both extracellular bacteria and fungi, as well as viruses that infect cells of the mucosal tracts. IL-17 coregulated cytokines, such as IL-22, are involved in maintaining epithelial cell homeostasis and participate in epithelial cell repair/regeneration following inflammatory insults. Thus, the IL-17/IL-22 axis is important in both responding to, and recovering from, pathogens. However, aberrant expression or overexpression of IL-17 cytokines contributes to a number of pathological outcomes, including asthma, pneumonitis, and generation or exacerbation of pulmonary fibrosis. This review covers the good, bad, and ugly aspects of IL-17 in the lung.
Collapse
Affiliation(s)
- Stephen J Gurczynski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
48
|
Role of the intestinal mucosa in acute gastrointestinal GVHD. Blood 2017; 128:2395-2402. [PMID: 27856471 DOI: 10.1182/blood-2016-06-716738] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/14/2016] [Indexed: 12/11/2022] Open
Abstract
Intestinal graft-versus-host disease (GVHD) remains a significant obstacle to the success of allogeneic hematopoietic cell transplantation. The intestinal mucosa comprises the inner lining of the intestinal tract and maintains close proximity with commensal microbes that reside within the intestinal lumen. Recent advances have significantly improved our understanding of the interactions between the intestinal mucosa and the enteric microbiota. Changes in host mucosal tissue and commensals posttransplant have been actively investigated, and provocative insights into mucosal immunity and the enteric microbiota are now being translated into clinical trials of novel approaches for preventing and treating acute GVHD. In this review, we summarize recent findings related to aspects of the intestinal mucosa during acute GVHD.
Collapse
|
49
|
Lee SM, Park HY, Suh YS, Yoon EH, Kim J, Jang WH, Lee WS, Park SG, Choi IW, Choi I, Kang SW, Yun H, Teshima T, Kwon B, Seo SK. Inhibition of acute lethal pulmonary inflammation by the IDO-AhR pathway. Proc Natl Acad Sci U S A 2017; 114:E5881-E5890. [PMID: 28673995 PMCID: PMC5530642 DOI: 10.1073/pnas.1615280114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The lung is a prototypic organ that was evolved to reduce immunopathology during the immune response to potentially hazardous endogenous and exogenous antigens. In this study, we show that donor CD4+ T cells transiently induced expression of indoleamine 2,3-dioxygenase (IDO) in lung parenchyma in an IFN-γ-dependent manner early after allogeneic hematopoietic stem cell transplantation (HSCT). Abrogation of host IDO expression by deletion of the IDO gene or the IFN-γ gene in donor T cells or by FK506 treatment resulted in acute lethal pulmonary inflammation known as idiopathic pneumonia syndrome (IPS). Interestingly, IL-6 strongly induced IDO expression in an IFN-γ-independent manner when deacetylation of STAT3 was inhibited. Accordingly, a histone deacetylase inhibitor (HDACi) could reduce IPS in the state where IFN-γ expression was suppressed by FK506. Finally, l-kynurenine produced by lung epithelial cells and alveolar macrophages during IPS progression suppresses the inflammatory activities of lung epithelial cells and CD4+ T cells through the aryl hydrocarbon receptor pathway. Taken together, our results reveal that IDO is a critical regulator of acute pulmonary inflammation and that regulation of IDO expression by HDACi may be a therapeutic approach for IPS after HSCT.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/immunology
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Female
- Graft vs Host Disease
- Hematopoietic Stem Cell Transplantation/mortality
- Histone Deacetylase Inhibitors/pharmacology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Kynurenine/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Pneumonia/drug therapy
- Pneumonia/metabolism
- Receptors, Aryl Hydrocarbon/immunology
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/immunology
- Tacrolimus/pharmacology
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Soung-Min Lee
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Ha Young Park
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Young-Sill Suh
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Eun Hye Yoon
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Juyang Kim
- Biomedical Research Center and Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Won Hee Jang
- Department of Biochemistry, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Won-Sik Lee
- Department of Hemato/Oncology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Sae-Gwang Park
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Inhak Choi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
- Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Sun-Woo Kang
- Department of Nephrology, Busan Paik Hospital, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Byungsuk Kwon
- Biomedical Research Center and Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea;
| |
Collapse
|
50
|
MacDonald KP, Blazar BR, Hill GR. Cytokine mediators of chronic graft-versus-host disease. J Clin Invest 2017; 127:2452-2463. [PMID: 28665299 DOI: 10.1172/jci90593] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Substantial preclinical and clinical research into chronic graft-versus-host disease (cGVHD) has come to fruition in the last five years, generating a clear understanding of a complex cytokine-driven cellular network. cGVHD is mediated by naive T cells differentiating within IL-17-secreting T cell and follicular Th cell paradigms to generate IL-21 and IL-17A, which drive pathogenic germinal center (GC) B cell reactions and monocyte-macrophage differentiation, respectively. cGVHD pathogenesis includes thymic damage, impaired antigen presentation, and a failure in IL-2-dependent Treg homeostasis. Pathogenic GC B cell and macrophage reactions culminate in antibody formation and TGF-β secretion, respectively, leading to fibrosis. This new understanding permits the design of rational cytokine and intracellular signaling pathway-targeted therapeutics, reviewed herein.
Collapse
Affiliation(s)
- Kelli Pa MacDonald
- Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bruce R Blazar
- Masonic Cancer Center; and Division of Blood and Marrow Transplantation, Department of Pediatrics; University of Minnesota, Minneapolis, USA
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|